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Abstract. We show that any rosy CM-trivial theory has weak canonical

bases, and CM-triviality in the real sort is equivalent to CM-triviality with

geometric elimination of imaginaries. We also show that CM-triviality is

equivalent to the modularity in O-minimal theories with elimination of

imaginaries.

1. Introduction.

CM-triviality is a geometric notion of the forking independence relation. It is

introduced by Hrushovski [H] where he disproves Zilber’s conjecture on strongly

minimal sets. CM-triviality forbids a point-line-plane incident system. The usual

definition for CM-triviality needs canonical bases of types. Since canonical bases

do not necessarily exist in rosy theories as in Lemma 2.8 of [P1], from [H] we

choose another definition for CM-triviality in rosy theories, which does not need

canonical bases. In the next section we show that any CM-trivial rosy theory has

weak canonical bases. In third section we investigate the geometric elimination of

imaginaries by the strict independence relation in rosy theories. Many generic

structures have CM-triviality and weak elimination of imaginaries as in [H],[B],

[Y],[VY] and [E]. In fourth section we define CM-triviality in the real sort, and we

show that CM-triviality in the real sort is equivalent to CM-triviality with

geometric elimination of imaginaries in rosy theories. This gives a direct way to

show CM-triviality of generic relational structures. We also show that one-

basedness implies CM-triviality in rosy theories having weak canonical bases, and

we refer to a one-based but non-CM-trivial O-minimal theory. It is known that

infinite type-definable stable [P] or supersimple [N] fields give a witness for non-

CM-triviality. In fifth section we check that the Nubling’s proof works for

superrosy fields of monomial Up-rank. In Zariski geometries (which are strongly

minimal structures having a generalized Zariski topology), CM-triviality is
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equivalent to one-basedness(=local modularity). In O-minimal theories, local

modularity is a strictly strong notion to one-basedness(=CF-property) as in [LP].

In the last section we show that CM-triviality is equivalent to the modularity in

O-minimal theories with elimination of imaginaries, by using Peterzil-Starchen-

ko’s trichotomy theorem and Pillay’s consideration to weak canonical bases in O-

minimal theories. Nubling [N] shows that CM-triviality is preserved under

reducts in finite U-rank theories. We show that CM-triviality is not preserved

under reducts in O-minimal theories. As O-minimal theories are finite Up-rank

theories, CM-triviality is not preserved under reducts in finite Up-rank theories.

Our notation is standard. Let T be a complete L-theory, and let M be the big

model of T . We work in M eq, consisting of imaginary elements, which are classes

of equivalence relations definable over the empty set. �a; �b; . . . �! M denote finite

sequences in M eq. A;B; . . . denote small subsets of M eq and AB denotes A [B.

For a 2 M eq and A � M eq, we write a 2 dcleqðAÞ if a is fixed by any auto-

morphism fixing A pointwise. And we write a 2 acleqðAÞ if the orbit of a by

automorphisms fixing A pointwise is finite. We write B �A C for tpðB=AÞ ¼
tpðC=AÞ in T eq. For definitions and basic properties of rosy theories, we refer the

reader to [A] and [O]. The author would like to thank the referee for his/her kind

comments.

2. The existence of weak canonical bases in rosy CM-trivial

theories.

Following [A], recall that a ternary relation � ðj �� between small subsets of

M eq is a strict independence relation if the following nine conditions hold.

(1) invariance: If A ðj B
C and ABC � A0B0C0, then A0

ðj B0C
0.

(2) monotonicity: If A ðj B
C, A0 � A and C0 � C, then A0

ðj B
C0.

(3) (right) base monotonicity: If A ðj B
D and B � C � D, then A ðj C

D.

(4) (left) transitivity: If B � C � D, D ðj C
A and C ðj B

A, then D ðj B
A.

(5) (left) normality: A ðj B
C implies AB ðj B

C.

(6) extension: If A ðj B
C and C � D, then there exists A0ð�BC AÞ such that

A0

ðj B
D.

(7) (left) finite character: If �a ðj B
C for each �a �! A, then A ðj B

C.

(8) local character: For any A there is a cardinal �ðAÞ such that, for any B

there exists B0 � B with jB0j < �ðAÞ and A ðj B0
B.

(9) anti-reflexivity: A ðj B
A implies A � acleqðBÞ.

Note that (1)-(8) imply symmetry : A ðj B
C , B ðj A

C.

(Theorem 1.14 in [A])
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REMARK 2.1. Let A;B;C;A0; B0; C0 � M eq be such that acleqðA0Þ ¼
acleqðAÞ; acleqðB0Þ ¼ acleqðBÞ; acleqðC0Þ ¼ acleqðCÞ. Then A ðj B

C , A0

ðj B0C
0.

PROOF. Suppose A ðj B
C. By symmetry and normality, we may assume

B � C;B0 � C0. By local character and base monotonicity, for any A;D, we have

A ðj D
D. By extension and invariance, we have A ðj D

acleqðDÞ. So, by symmetry

and transitivity, we have A ðj B0acl
eqðC0Þ. By monotonicity again, we see A ðj B0C

0.

By symmetry, we also see A0
ðj B0C

0. �

We say that T is rosy if there exists a strict independence relation on M eq.

And we say that an algebraically closed set C is the ðj -weak canonical base of

tpð�a=BÞ if C is the smallest algebraically closed subset of acleqðBÞ with �a ðj C
B. As

in [A], wcb ðj ð�a=BÞ denotes the ðj -weak canonical base of tpð�a=BÞ if it exists. We

also say that a rosy theory T has the ðj -weak canonical bases if there exists the

ðj -weak canonical base for each type.

FACT 2.2. Let ðj be a strict independence relation on M eq.

(1) Any type has the ðj -weak canonical base if and only if

ðj has the eq-intersection property : �a ðj A
B and �a ðj B

A imply �a ðj A\BAB for

any �a;A;B � M eq such that A ¼ acleqðAÞ and B ¼ acleqðBÞ. (Theorem 3.20

in [A])

(2) If ðj has the eq-intersection property, then ðj coincides with the thorn

independence relation. (Theorem 3.3 in [A])

Suppose that ðj is a strict independence relation on eq-structures. For now,

we do not assume the existence of ðj -weak canonical bases, we choose the

definition for CM-triviality as follows.

DEFINITION 2.3. We say that a rosy theory T is CM-trivial with respect to

ðj if �a ðj A
B implies �a ðj A\acleqð�a;BÞB for any �a;A;B � M eq such that A ¼ acleqðAÞ

and B ¼ acleqðBÞ.

THEOREM 2.4. If T is CM-trivial with respect to ðj , then T has the ðj -weak
canonical bases, and ðj coincides with the thorn independence relation.

PROOF. To apply Fact 2.2, we show that �a ðj A
B and �a ðj B

A with A ¼
acleqðAÞ and B ¼ acleqðBÞ imply �a ðj A\BAB. By CM-triviality, we have

�a ðj acleqð�a;BÞ\AB. By �a ðj B
A and anti-reflexivity, we see acleqð�a;BÞ \AB ¼ B. As

A \ B � A \ acleqð�a;BÞ � AB \ acleqð�a;BÞ ¼ B, we see

acleqð�a;BÞ \A ¼ A \ B:
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By �a ðj acleqð�a;BÞ\AB and �a ðj B
A, we see �a ðj A\BAB. �

REMARK 2.5. Let T be a rosy theory with a strict independence relation ðj .
The following are equivalent.

(1) T is CM-trivial with respect to ðj .
(2) T has the ðj -weak canonical bases and wcb ðj ð�a=AÞ � wcb ðj ð�a=BÞ holds for

any �a;A;B � M eq such that acleqð�a;AÞ \B ¼ A with A ¼ acleqðAÞ and

B ¼ acleqðBÞ.

PROOF.

(1))(2): Suppose that acleqð�a;AÞ \B ¼ A with A ¼ acleqðAÞ and

B ¼ acleqðBÞ. By Theorem 2.4, T has weak canonical bases, so let D :¼
wcb ðj ð�a=BÞ. Then �a ðj D

A follows from �a ðj D
A and A � B. By CM-triviality, we

see �a ðj acleqð�a;AÞ\DA. As D � B and acleqð�a;AÞ \ B ¼ A, we have acleqð�a;AÞ \
D ¼ A \D. So, we have wcb ðj ð�a=AÞ � A \D � D ¼ wcb ðj ð�a=BÞ.

(2))(1): Suppose that �a ðj A
B with A ¼ acleqðAÞ and B ¼ acleqðBÞ. Put

C :¼ acleqðABÞ \ acleqð�a;BÞ. Then we have B � C and �a ðj A
C. As acleqð�a; CÞ �

acleqð�a;ABÞ \ acleqð�a;BÞ and acleqðCAÞ � acleqðABÞ \ acleqð�a;ABÞ, we see C ¼
acleqð�a; CÞ \ acleqðCAÞ. By our assumption, we have wcb ðj ð�a=CÞ � wcb ðj ð�a=
CAÞ ¼ wcb ðj ð�a=AÞ. As wcb ðj ð�a=CÞ � C \A ¼ acleqð�a;BÞ \ A, we see �a ðj acleqð�a;BÞ\A
C. As B � C, we have �a ðj acleqð�a;BÞ\AB. �

3. Geometric elimination of imaginaries in rosy theories.

We say that T has geometric elimination of imaginaries (T has GEI) if for any

e 2 M eq, there exists �b �! M such that e 2 acleqð�bÞ and �b 2 acleqðeÞ.
Let ðj be a strict independence relation on M eq. We say that ðj has the

intersection property if �a ðj A
B and �a ðj B

A imply �a ðj A\BAB for any �a;A;B � M

with A ¼ aclðAÞ and B ¼ aclðBÞ.

LEMMA 3.1. If T has a strict independence relation having the intersection

property, then T has GEI.

PROOF. Fix e ¼ �aE 2 M eq. Take �b; �cj=tpð�a=eÞ such that �b; �c; �a are ðj -in-
dependent over e. As e ¼ �bE ¼ �cE and �a ðj e

�b�c, we have �a ðj �b
�b�c and �a ðj �c

�b�c. Let

A ¼ aclð�bÞ \ aclð�cÞ. Then �a ðj A
�b�c by the intersection property of ðj . By

e 2 dcleqð�aÞ \ dcleqð�b�cÞ and anti-reflexivity, e 2 acleqðAÞ. On the other hand,

A � acleqðeÞ follows from �b ðj e
�c and anti-reflexivity. �

LEMMA 3.2. If T has GEI, then we have
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acleqðAÞ \ acleqðBÞ ¼ acleqðA \ BÞ

for any A;B � M such that A ¼ aclðAÞ and B ¼ aclðBÞ.

PROOF. Let e 2 acleqðAÞ \ acleqðBÞ. By GEI, there exists �a �! M such that

e 2 acleqð�aÞ and �a 2 acleqðeÞ. As �a 2 acleqðAÞ and �a 2 acleqðBÞ, we see �a � A \B.

Thus, e 2 acleqðA \ BÞ. �

LEMMA 3.3. If ðj has the intersection property, then it has the eq-inter-

section property.

PROOF. Suppose that �a ðj A
B and �a ðj B

A with A ¼ acleqðAÞ and

B ¼ acleqðBÞ. By 3.1, there exist �a0; A0 ¼ aclðA0Þ; B0 ¼ aclðB0Þ � M such that

acleqð�a0Þ ¼ acleqð�aÞ; acleqðA0Þ ¼ acleqðAÞ; acleqðB0Þ ¼ acleqðBÞ. By remark 2.1, we

have �a0 ðj A0B
0 and �a0 ðj B0A

0. So we see �a0 ðj A0\B0A
0B0 by the intersection property.

Since A \ B ¼ acleqðA0 \ B0Þ holds by Lemma 3.2, we see �a ðj A\BAB by remark

2.1. �

PROPOSITION 3.4. The following are equivalent.

(1) T has GEI and a strict independence relation having the eq-intersection

property.

(2) T has a strict independence relation having the intersection property.

(3) T has a strict independence relation having weak canonical bases in the real

sort : weak canonical bases are interalgebraic with real elements.

PROOF. (1))(2) follows from remark 2.1 and Lemma 3.2. (2))(1) follows

from Lemma 3.1 and 3.3. (1))(3) and (3))(2) are clear. �

REMARK 3.5.

(1) Let T be a simple theory with elimination of hyperimaginaries. As the

forking independence relation in T has the eq-intersection property, by Fact 2.2,

we see that T has GEI iff the forking independence relation in T has the

intersection property.

(2) In rosy theories, GEI does not necessarily imply the intersection property:

Let T ¼ ThðR;þ; <; �jð�1;1Þð�ÞÞ, where �jð�1;1ÞðxÞ :¼ �x for x 2 ð�1; 1Þ. Then T is

an o-minimal theory with elimination of imaginaries. Take a; b; c 2 M be such

that a; b; c > R, ja� bj < 1; ja� cj < 1 and dimða; b; cÞ ¼ 3. Then dimða; �a=b; �b; c;
�cÞ ¼ dimða; �a=b; �bÞ ¼ dimða; �a=c; �cÞ ¼ 1 < 2 ¼ dimða; �aÞ and aclðb; �bÞ \
aclðc; �cÞ ¼ aclð;Þ. As Upð�Þ ¼ dimð�Þ in O-minimal theories by [O], the thorn

independence relation in T does not have the intersection property.
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4. CM-triviality in the real sort.

DEFINITION 4.1. We say that T is CM-trivial in the real sort with respect to

ðj if �a ðj A
B implies �a ðj A\aclð�a;BÞB for any �a;A;B � M such that A ¼ aclðAÞ and

B ¼ aclðBÞ.

THEOREM 4.2. The following are equivalent.

(1) T is CM-trivial with respect to ðj and has GEI.

(2) T is CM-trivial in the real sort with respect to ðj .

PROOF. (1))(2): Clear. (2))(1): By working in M and replacing acleq

with acl in the proof of Theorem 2.4, we see that ðj has the intersection property.

By Lemma 3.1, GEI follows. �

REMARK 4.3.

(1) Let T be the theory of a rosy relational structure with a closure operator

clð�Þ and a strict independence relation ðj such that

. clðaclðAÞÞ ¼ aclðAÞ and clðclðAÞ \ clðBÞÞ ¼ clðAÞ \ clðBÞ,

. A ðj A\BB , ‘‘AB ¼ clðABÞ and RAB ¼ RA [ RB for any predicate R’’ for

any algebraically closed sets A;B � M .

Then T is CM-trivial: By Theorem 4.2, we have only to show CM-triviality in the

real sort. Suppose that �a ðj A
B. Let C ¼ aclð�a;AÞ; D ¼ aclðABÞ. As C ðj A

B and

C \B ¼ A, clðCBÞ ¼ CB and RCB ¼ RC [ RB for any predicate R. Let E ¼
aclð�a;BÞ. Then clðCB \ EÞ ¼ CB \ E and RCB\E ¼ RC\E [ RB\E for any predi-

cate R. So, we see C \ E ðj A\EB \ E. As �a � C \ E;B � B \ E, �a ðj A\aclð�a;BÞB

follows.

(2) CM-triviality does not imply CM-triviality in the real sort.

In [E], Evans gave an !-categorical CM-trivial structure C, defined below, of

SU-rank one without weak elimination of imaginaries.

Here, we show that C does not have GEI: Let M be the !-categorical SU-rank

two generic structure M (a countable binary graph with a predimension �ðAÞ ¼
2jAj � jRAj) constructed by Evans such that no triangles, no squres in M, and

points and adjacent pairs of points are closed in M, and clð�Þ ¼ aclð�Þ in M. Fix

a 2 M. Let C;D be the sets of vertices at distance 1; 2 from a. Let C be the

canonical structure on C such that AutðCÞ is homeomorphic to AutðM=aÞ. As C

and ðM;aÞ are biinterpretable, C is of SU-rank one and CM-trivial.

Let c 2 C; d 2 D be such that Mj=Rða; cÞ ^ Rðc; dÞ. As no triangles and

squares in M, we have aclða; dÞ \ C ¼ clða; dÞ \ C ¼ fcg. If C had GEI, then, as

d 2 Ceq, we could find �c �! C such that d 2 aclða; �cÞ and �c 2 aclða; dÞ in the sense of

M. As aclða; dÞ \ C ¼ fcg, �c must be the singleton c. Since clða; cÞ ¼ aclða; cÞ ¼
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fa; cg in M, so d 62 aclða; cÞ in M, a contradiction.

By Theorem 4.2, C is CM-trivial but not CM-trivial in the real sort.

REMARK 4.4.

(1) In rosy theories having weak canonical bases, we define one-basedness as

usual: wcbða=AÞ � acleqðaÞ holds for any a;A � M with A ¼ acleqðAÞ. By Remark

2.5, we see that one-basedness implies CM-triviality: As wcbð�a=BÞ � acleqð�aÞ \
B � A � B, we have wcbð�a=BÞ ¼ wcbð�a=AÞ.

(2) There exists a one-based but non-CM-trivial rosy theory: Let T ¼
ThðR;þ; <; �jð�1;1Þð�ÞÞ. T is an O-minimal theory with CF-property and

elimination of imaginaries. As in [P1], CF-property is equivalent to one-basedness

in O-minimal theories. By Remark 3.5 (2) and Theorem 4.2, T is not CM-trivial.

5. Non-CM-triviality of superrosy fields of monomial rank.

Let ðj be the thorn independence relation. We show that CM-triviality is

equivalent to non-2-ampleness in rosy theories. We also show that superrosy fields

of monomial Up-rank are 2-ample. It is unknown whether any superrosy (non-

supersimple) field of infinite Up-rank exists. Any supersimple field has monomial

SUð¼ UpÞ-rank. It is also unknown whether any superrosy field has monomial

Up-rank.

DEFINITION 5.1. A rosy theory T is n-ample if after naming some

parameters, there exist A0; A1; . . . ; An � M eq such that

(1) acleqðA<rArÞ \ acleqðA<rArþ1Þ ¼ acleqðA<rÞ for any r � n� 1.

(2) Arþ1 ðj Ar
A�r for any r � n� 1.

(3) An ðj

/A0

where A�r ¼ A0A1 . . .Ar and A<r ¼ A0A1 . . .Ar�1.

LEMMA 5.2. Let T be rosy. Then the following are equivalent.

(1) For any A0; A1; A2 � M eq, A2 ðj A1
A0 implies A2 ðj acleqðA1Þ\acleqðA2A0ÞA0.

(2) For any A0; A1; A2; B � M eq, acleqðBA0Þ \ acleqðBA1Þ ¼ acleqðBÞ,
acleqðBA0A1Þ \ acleqðBA0A2Þ ¼ acleqðBA0Þ and A2 ðj acleqðBA1ÞA0 imply

A2 ðj B
A0.

Thus CM-triviality is equivalent to non-2-ampleness without assuming the

existence of weak canonical bases.

PROOF.

(1))(2): We have A2 ðj acleqðBA1ÞA0B by A2 ðj acleqðBA1ÞA0.

By (1), we see A2 ðj acleqðBA1Þ\acleqðBA0A2ÞA0B. On the other hand, we have
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acleqðBA1Þ \ acleqðBA2A0Þ � acleqðBA1Þ \ acleqðBA0Þ ¼ acleqðBÞ. Thus we see

A2 ðj B
A0.

(2))(1): Put B ¼ acleqðA1Þ \ acleqðA0A2Þ � acleqðA1Þ.

CLAIM 1. We have acleqðBA0Þ \ acleqðBA1Þ ¼ acleqðBÞð¼ BÞ and
acleqðBA0A1Þ \ acleqðBA0A2Þ ¼ acleqðBA0Þ.

By the definition of B, we see acleqðBA0Þ � acleqðA0A1Þ \ acleqðA0A2Þ �
acleqðBA0Þ, so acleqðBA0A1Þ \ acleqðBA0A2Þ ¼ acleqðBA0Þ follows.

acleqðBÞ � acleqðBA0Þ \ acleqðBA1Þ

¼ acleqðBA0Þ \ acleqðA1Þ

� acleqðA0A1Þ \ acleqðA0A2Þ \ acleqðA1Þ

� acleqðA0A1Þ \ acleqðBÞ � acleqðBÞ

By A2 ðj BA1
A0 and (2), A2 ðj B

A0 follows. �

From now on, we check that any superrosy field of monomial Up-rank is not

CM-trivial (=2-ample) by following the Nubling’s proof for n-ampleness of

supersimple field. As the Nubling’s proof works for superrosy field of monomial

Up-rank, any superrosy field of monomial Up-rank is n-ample for any n < !.

Let F be an infinite superrosy field. We say that a0; a1; . . . ; ai; . . . 2 F are

independent generics over A if Upða0=AÞ ¼ Upða1=AÞ ¼ � � � ¼ Upðai=AÞ ¼ � � � ¼
UpðF Þ and a0; a1; . . . ; ai; . . . are thorn independent over A.

FACT 5.3. Let F be an infinite superrosy field.

(1) Let a; b; c 2 F be independent generics over A. Then bc; a; c are independent

generics over A and aþ bc; a; c are independent generics over A.

(2) Let a1; . . . ; ai; . . . ; b; c1; . . . ; ci; . . . 2 F be independent generics over A. Then

a1 þ bc1; . . . ai þ bci; . . . ; c1; . . . ; ci; . . . are independent generics over A.

PROOF. We may assume A ¼ ;.
(1) Since bc and b are interdefinable oner c, we see UpðF Þ � UpðbcÞ � Upðbc=c; aÞ ¼
Upðb=c; aÞ ¼ UpðF Þ. As aþ bc and bc are interdefinable over a, we also see that

UpðF Þ � Upðaþ bcÞ � Upðaþ bc=a; cÞ ¼ Upðbc=a; cÞ ¼ UpðF Þ.

(2) By (1), we have only to show

aiþ1 þ bciþ1; ciþ1 ðj a0 þ bc0; . . . ; ai þ bci; c0 . . . ; ci.

As aiþ1; ciþ1 ðj b
a0; . . . ; ai; c0; . . . ; ci, we have

aiþ1 þ bciþ1; ciþ1 ðj b
a0 þ bc0; . . . ; ai þ bci; c0; . . . ; ci.
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Since Upðaiþ1 þ bciþ1=b; ciþ1Þ ¼ Upðaiþ1=b; ciþ1Þ ¼ UpðF Þ, we have

aiþ1 þ bciþ1 ðj b; ciþ1. As b ðj ciþ1, we see aiþ1 þ bciþ1; ciþ1 ðj b.
So we see the conclusion. �

Let F be a superrosy field. To get a witness for non-CM-triviality, we define a

plane P in F 3, a line l on P, and a point p on l as follows.

Let a0;00 ; a0;01 ; a0;02 be independent generics. Put P ¼ fðx1; x2; x3Þ 2 F 3 : a0;00 þ
a0;01 x1 þ a0;02 x2 ¼ x3g. We consider A0 :¼ fa0;00 ; a0;01 ; a0;02 g as parameters for P.

Let a1;00 ; a1;01 be independent generics over previous elements. Put B1;0
1 ¼

fðx1; x2; x3Þ 2 F 3 : a1;00 þ a1;01 x1 ¼ x2g and Put l ¼ P \B1;0
1 . Then ðx1; x2; x3Þ 2 l iff

ða0;00 þ a0;02 a1;00 Þ þ ða0;01 þ a0;02 a1;01 Þx1 ¼ x3. Put a1;10 :¼ a0;00 þ a0;02 a1;00 and a1;11 :¼
a0;01 þ a0;02 a1;01 . Let B1;1

1 ¼ fðx1; x2; x3Þ 2 F 3 : a1;10 þ a1;11 x1 ¼ x3g. Then l ¼ B1;0
1 \

B1;1
1 and we consider A1 :¼ fa1;00 ; a1;01 ; a1;10 ; a1;11 g as parameters for l.

Let a2;00 be generic over previous elements. Put B2;0
2 :¼ fðx1; x2; x3Þ 2 F 3 :

a2;00 ¼ x1g and B2;1
2 :¼ B2;0

2 \ B1;0
1 and B2;2

2 :¼ B2;0
2 \ B1;1

1 . Then ðx1; x2; x3Þ 2 B2;1
2 iff

a2;10 :¼ a1;00 þ a1;01 a2;00 ¼ x2, and ðx1; x2; x3Þ 2 B2;2
2 iff a2;20 :¼ a1;10 þ a1;11 a2;00 ¼ x3.

Let p :¼ B2;0
2 \B2;1

2 \B2;2
2 ¼ B2;0

2 \ l and we consider A2 ¼ fa2;00 ; a2;10 ; a2;20 g as

parameters for p.

Now we have the following lemma. (Here, we need not to assume that F is of

monomial Up-rank.)

LEMMA 5.4.

(1) dcleqðA1; A2Þ ¼ dcleqðA1; a
2;0
0 Þ.

(2) dcleqðA0; A1Þ ¼ dcleqðA0; a
1;0
0 ; a1;01 Þ.

(3) A2 ðj A1
A0

(4) a2;20 2 dcleqðA0; a
2;0
0 ; a2;10 Þ and a0:00 2 dcleqða0;01 ; a0;02 ; A2Þ.

(5) A0 ðj

/A2.

PROOF. (1),(2) are clear. (3) follows from a2;00 ðj A0; A1. (4) follows from

a2;20 ¼ a1;10 þ a1;11 a2;00

¼ ða0;00 þ a0;02 a1;00 Þ þ ða0;01 þ a0;02 a1;01 Þa2;00

¼ a0;00 þ a0;02 ða1;00 þ a1;01 a2;00 Þ þ a0;01 a2;00

¼ a0;00 þ a0;02 a2;10 þ a0;01 a2;00
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(5): If we had A0 ðj A2, then a0;00 ðj a0;0
1
;a0;0

2

A2, so a0;00 2 acleqða0;01 ; a0;02 Þ would

hold. �

PROPOSITION 5.5. If F has a monomial Up-rank, then we have

(1) acleqðA0Þ \ acleqðA1Þ ¼ acleqð;Þ.
(2) acleqðA0A1Þ \ acleqðA0A2Þ ¼ acleqðA0Þ.

PROOF. Let UpðF Þ ¼ !�k ¼: �, where � is an ordinal and k is a natural

number.

(1): By Fact 5.3, A1 consists of independent generics.

CLAIM 2. UpðA0=A1Þ � �.

A0; A1 and A0; a
1;0
0 ; a1;01 are interdefinable. So, we have �5 ¼ UpðA0A1Þ �

UpðA0=A1Þ 	 UpðA1Þ ¼ UpðA0=A1Þ 	 �4. The claim follows.

CLAIM 3. Take A0
0 �acleqðA1Þ A0 with A0

0 ðj A1
A0. Then A0

0 ðj A0.

UpðA0
0A0A1Þ � UpðA0

0A0=A1Þ þ UpðA1Þ

¼ ðUpðA0
0=A1Þ 	 UpðA0=A1ÞÞ þ �4

� �6

As a1;1i ¼ a0;0i þ a0;02 a1;0i ¼ a00;0i þ a00;02 a1;0i , we have

a1;0i ¼
a0;0i � a00;0i

a00;02 � a0;02

2 dcleqðA0
0A0Þ;

so we have A1 � acleqðA0
0A0Þ.

�6 � UpðA0
0A0A1Þ

¼ UpðA0
0A0Þ

� �6

As UpðA0Þ ¼ UpðA0
0Þ ¼ �3, we see the claim.

As acleqðA0Þ \ acleqðA1Þ ¼ acleqðA0
0Þ \ acleqðA1Þ � acleqðA0Þ \ acleqðA0

0Þ and

A0
0 ðj A0, we see the conclusion.

(2): As A1 and a1;00 ; a1;01 are interdefinable over A0 by Lemma 5.4 (2), and A2 and
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a2;00 ; a2;10 are interdefinable over A0 by Lemma 5.4 (4), working over acleqðA0Þ, we
need to prove acleqða1;00 ; a1;01 Þ \ acleqða2;00 ; a2;10 Þ ¼ acleqð;Þ. Note that Upða2;00 ; a2;10 Þ ¼
�2 over acleqðA0Þ by Fact 5.3(2).

The rest is similar to (1) :

As a2;10 2 dcleqða1;00 ; a1;01 ; a2;00 Þ, Upða1;00 ; a1;01 ; a2;00 ; a2;10 Þ ¼ �3 follows.

As �3 ¼ Upða1;00 ; a1;01 ; a2;00 ; a2;10 Þ � Upða1;00 ; a1;01 =a2;00 ; a2;10 Þ 	 Upða2;00 ; a2;10 Þ
¼ Upða1;00 ; a1;01 =a2;00 ; a2;10 Þ 	 �2, we have Upða1;00 ; a1;01 =a2;00 ; a2;10 Þ � �.

Take a01;00 ; a01;01 �acleqða2;0
0
;a2;1

0
Þ a

1;0
0 ; a1;01 with a01;00 ; a01;01 ðj acleqða2;0

0
;a2;1

0
Þa

1;0
0 ; a1;01 .

We have

Upða01;00 ; a01;01 ; a1;00 ; a1;01 ; a2;00 ; a2;10 Þ � Upða01;00 ; a01;01 ; a1;00 ; a1;01 =a2;00 ; a2;10 Þ þ Upða2;00 ; a2;10 Þ
¼ ðUpða1;00 ; a1;01 =a2;00 ; a2;10 Þ 	 Upða01;00 ; a01;01 =a2;00 ; a2;10 ÞÞ þ �2 � �4.

As a2;10 ¼ a1;00 þ a1;01 a2;00 ¼ a01;00 þ a01;01 a2;00 and

a2;00 ¼
a1;00 � a01;00

a01;01 � a1;01

2 dcleqða01;00 ; a01;01 ; a1;00 ; a1;01 Þ;

we have a2;00 ; a2;10 2 dclða01;00 ; a01;01 ; a1;00 ; a1;01 Þ. So we see Upða01;00 ; a01;01 ; a1;00 ; a1;01 Þ ¼ �4

and a01;00 ; a01;01 ðj a
1;0
0 ; a1;01 .

Therefore we have acleqða1;00 ; a1;01 Þ \ aclða2;00 ; a2;10 Þ ¼ acleqða01;00 ; a01;01 Þ \ aclða2;00 ;

a2;10 Þ � acleqða1;00 ; a1;01 Þ \ aclða01;00 ; a01;01 Þ ¼ acleqð;Þ. �

THEOREM 5.6. Let T be a rosy theory. If T interprets a superrosy field of

monomial Up-rank, then T is not CM-trivial.

PROOF. If T interprets a superrosy field of monomial Up-rank, then T has a

witness for non-CM-triviality by Lemma 5.4 and Proposition 5.5. �

6. CM-triviality in O-minimal theories.

We begin with the following facts on O-minimal theories.

FACT 6.1. Let T be O-minimal.

(1) (Peterzil-Starchenko, [PS]) T is not one-based iff T has a definable real

closed field of dimension 1 on some interval.

(2) (Onshuus, [O]) In O-minimal theories, the thorn independence relation

coincides with the independence relation defined by dimension.

From now on, we work in O-minimal theories with elimination of imaginaries.

(Any O-minimal theory having a group-operation eliminates imaginaries by

definable choice.) Note that dcl ¼ acleq. In [P1], Pillay defines one-basedness in O-

minimal theories by the germs of definable functions as follows. Let fð�x; �yÞ be an
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;-definable function and let �a be such that dimð�aÞ ¼ j�aj ¼ j�xj. Let Ef;�a be an

�a-definable equivalence relation defined by Ef;�að�b1; �b2Þ , either there exists an

open neighborhood U of �a such that fð�x; �b1Þ; fð�x; �b2Þ are defined on U and fð�x; �b1Þj
U ¼ fð�x; �b2ÞjU or neither of fð�x; �b1Þ; fð�x; �b2Þ is defined on an open neiborhood of �a.

An O-minimal theory is one-based (equivalent to CF-property, defined by

Peterzil) if �bEf;�a
2 dclð�a; fð�a; �bÞÞ holds for any ;-definable function fð�x; �yÞ and any

�a and �b with dimð�a=�bÞ ¼ j�aj.

FACT 6.2. (Pillay, [P1]) If T has weak canonical bases, then one-basedness

is equivalent to the modularity in T .

THEOREM 6.3. In O-minimal theories having elimination of imaginaries,

CM-triviality is equivalent to the modularity.

PROOF. Let T be a CM-trivial O-minimal theory with elimination

of imaginaries. By Fact 6.1 and Theorem 5.6, T is one-based. By CM-triviality

and Theorem 2.4, T has weak canonical bases, so it must be modular by

Fact 6.2. Conversely, let T be a modular O-minimal theory with elimination of

imaginaries. If A2 ðj A1
A0, by modularity we have A2 ðj dclðA2Þ\dclðA1ÞA0A1. As

dclðA2Þ \ dclðA1Þ � dclðA2A0Þ \ dclðA1Þ � dclðA0A1Þ, we have CM-triviality;

A2 ðj dclðA1Þ\dclðA2A0ÞA0. �

REMARK 6.4.

(1) CM-triviality is not equivalent to one-basedness in O-minimal theories in

general: Let T ¼ ThðR;þ; <; �ð�Þjð�1; 1ÞÞ, where �ðxÞ ¼ �x 2 dclðxÞ for each

x 2 ð�1; 1Þ. Example 4.5 in [LP] and [P1] show that T is one-based but non-

locally modular and does not have weak canonical bases. So T is a non-CM-trivial

one-based theory.

(2) Neither local modularity nor CM-triviality are preserved under reducts in

O-minimal theories: Let T 0 ¼ ThðR;þ; <; �ð�ÞÞ, where �ðxÞ ¼ �x 2 dclðxÞ for

each x. Then T 0 is locally modular and CM-trivial. But the reduct T of T 0 is non-

locally modular and non-CM-trivial.
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