Some remarks on CM-triviality

By Ikuo Yoneda

(Received Dec. 23, 2007)
(Revised May 4, 2008)

Abstract

We show that any rosy CM-trivial theory has weak canonical bases, and CM-triviality in the real sort is equivalent to CM-triviality with geometric elimination of imaginaries. We also show that CM-triviality is equivalent to the modularity in O-minimal theories with elimination of imaginaries.

1. Introduction.

CM-triviality is a geometric notion of the forking independence relation. It is introduced by Hrushovski $[\mathbf{H}]$ where he disproves Zilber's conjecture on strongly minimal sets. CM-triviality forbids a point-line-plane incident system. The usual definition for CM-triviality needs canonical bases of types. Since canonical bases do not necessarily exist in rosy theories as in Lemma 2.8 of $[\mathbf{P} 1]$, from $[\mathbf{H}]$ we choose another definition for CM-triviality in rosy theories, which does not need canonical bases. In the next section we show that any CM-trivial rosy theory has weak canonical bases. In third section we investigate the geometric elimination of imaginaries by the strict independence relation in rosy theories. Many generic structures have CM-triviality and weak elimination of imaginaries as in $[\mathbf{H}],[\mathbf{B}]$, $[\mathbf{Y}],[\mathbf{V Y}]$ and $[\mathbf{E}]$. In fourth section we define CM-triviality in the real sort, and we show that CM-triviality in the real sort is equivalent to CM-triviality with geometric elimination of imaginaries in rosy theories. This gives a direct way to show CM-triviality of generic relational structures. We also show that onebasedness implies CM-triviality in rosy theories having weak canonical bases, and we refer to a one-based but non-CM-trivial O-minimal theory. It is known that infinite type-definable stable $[\mathbf{P}]$ or supersimple $[\mathbf{N}]$ fields give a witness for non-CM-triviality. In fifth section we check that the Nubling's proof works for superrosy fields of monomial $U^{\mathfrak{p}}$-rank. In Zariski geometries (which are strongly minimal structures having a generalized Zariski topology), CM-triviality is

[^0]equivalent to one-basedness(=local modularity). In O-minimal theories, local modularity is a strictly strong notion to one-basedness(=CF-property) as in [LP]. In the last section we show that CM-triviality is equivalent to the modularity in O-minimal theories with elimination of imaginaries, by using Peterzil-Starchenko's trichotomy theorem and Pillay's consideration to weak canonical bases in Ominimal theories. Nubling $[\mathbf{N}]$ shows that CM-triviality is preserved under reducts in finite U-rank theories. We show that CM-triviality is not preserved under reducts in O-minimal theories. As O-minimal theories are finite $U^{\mathfrak{p}}$-rank theories, CM-triviality is not preserved under reducts in finite U^{p}-rank theories.

Our notation is standard. Let T be a complete L-theory, and let \mathscr{M} be the big model of T. We work in $\mathscr{M}^{\text {eq }}$, consisting of imaginary elements, which are classes of equivalence relations definable over the empty set. $\bar{a}, \bar{b}, \ldots \subset_{\omega} \mathscr{M}$ denote finite sequences in $\mathscr{M}^{\text {eq }} . A, B, \ldots$ denote small subsets of $\mathscr{M}^{\text {eq }}$ and $A B$ denotes $A \cup B$. For $a \in \mathscr{M}^{\text {eq }}$ and $A \subset \mathscr{M}^{\text {eq }}$, we write $a \in \operatorname{dcl}^{\text {eq }}(A)$ if a is fixed by any automorphism fixing A pointwise. And we write $a \in \operatorname{acl}^{\text {eq }}(A)$ if the orbit of a by automorphisms fixing A pointwise is finite. We write $B \equiv{ }_{A} C$ for $\operatorname{tp}(B / A)=$ $\operatorname{tp}(C / A)$ in $T^{\text {eq }}$. For definitions and basic properties of rosy theories, we refer the reader to $[\mathbf{A}]$ and $[\mathbf{O}]$. The author would like to thank the referee for his/her kind comments.

2. The existence of weak canonical bases in rosy CM-trivial theories.

Following $[\mathbf{A}]$, recall that a ternary relation $* \downarrow_{*} *$ between small subsets of $\mathscr{M}^{\text {eq }}$ is a strict independence relation if the following nine conditions hold.
(1) invariance: If $A \perp_{B} C$ and $A B C \equiv A^{\prime} B^{\prime} C^{\prime}$, then $A^{\prime} \downarrow_{B^{\prime}} C^{\prime}$.
(2) monotonicity: If $A \downarrow_{B} C, A^{\prime} \subseteq A$ and $C^{\prime} \subseteq C$, then $A^{\prime} \downarrow_{B} C^{\prime}$.
(3) (right) base monotonicity: If $A \downarrow_{B} D$ and $B \subseteq C \subseteq D$, then $A \downarrow_{C} D$.
(4) (left) transitivity: If $B \subseteq C \subseteq D, D \bigsqcup_{C} A$ and $C \downarrow_{B} A$, then $D \downarrow_{B} A$.
(5) (left) normality: $A \downarrow_{B} C$ implies $A B \downarrow_{B} C$.
(6) extension: If $A \downarrow_{B} C$ and $C \subseteq D$, then there exists $A^{\prime}\left(\equiv_{B C} A\right)$ such that $A^{\prime} \downarrow_{B} D$.
(7) (left) finite character: If $\bar{a} \bigsqcup_{B} C$ for each $\bar{a} \subset_{\omega} A$, then $A \bigsqcup_{B} C$.
(8) local character: For any A there is a cardinal $\kappa(A)$ such that, for any B there exists $B_{0} \subseteq B$ with $\left|B_{0}\right|<\kappa(A)$ and $A \downarrow_{B_{0}} B$.
(9) anti-reflexivity: $A \downarrow_{B} A$ implies $A \subseteq \operatorname{acl}^{\mathrm{eq}}(B)$.

Note that (1)-(8) imply symmetry : $A \downarrow_{B} C \Leftrightarrow B \downarrow_{A} C$.
(Theorem 1.14 in $[\mathbf{A}]$)

Remark 2.1. Let $A, B, C, A^{\prime}, B^{\prime}, C^{\prime} \subset \mathscr{M}^{\text {eq }}$ be such that $\operatorname{acl}^{\text {eq }}\left(A^{\prime}\right)=$ $\operatorname{acl}^{\mathrm{eq}}(A), \operatorname{acl}^{\mathrm{eq}}\left(B^{\prime}\right)=\operatorname{acl}^{\mathrm{eq}}(B), \operatorname{acl}^{\mathrm{eq}}\left(C^{\prime}\right)=\operatorname{acl}^{\mathrm{eq}}(C)$. Then $A \downarrow_{B} C \Leftrightarrow A^{\prime} \perp_{B^{\prime}} C^{\prime}$.

Proof. Suppose $A \downarrow_{B} C$. By symmetry and normality, we may assume $B \subseteq C, B^{\prime} \subseteq C^{\prime}$. By local character and base monotonicity, for any A, D, we have $A \downarrow_{D} D$. By extension and invariance, we have $A \downarrow_{D} \operatorname{acl}^{\text {eq }}(D)$. So, by symmetry and transitivity, we have $A \downarrow_{B^{\prime}}$ acl ${ }^{\text {eq }}\left(C^{\prime}\right)$. By monotonicity again, we see $A \downarrow_{B^{\prime}} C^{\prime}$. By symmetry, we also see $A^{\prime} \downarrow_{B^{\prime}} C^{\prime}$.

We say that T is rosy if there exists a strict independence relation on $\mathscr{M}^{\text {eq }}$. And we say that an algebraically closed set C is the \mathcal{L}-weak canonical base of $\operatorname{tp}(\bar{a} / B)$ if C is the smallest algebraically closed subset of $\operatorname{acl}^{\text {eq }}(B)$ with $\bar{a} \downarrow_{C} B$. As in $[\mathbf{A}]$, wcb ${ }_{\downarrow}(\bar{a} / B)$ denotes the \downarrow-weak canonical base of $\operatorname{tp}(\bar{a} / B)$ if it exists. We also say that a rosy theory T has the \mathcal{L}-weak canonical bases if there exists the \mathcal{L}-weak canonical base for each type.

FACT 2.2. Let \downarrow be a strict independence relation on $\mathscr{M}^{\text {eq }}$.
(1) Any type has the $\mathcal{\perp}$-weak canonical base if and only if
\downarrow has the eq-intersection property: $\bar{a} \downarrow_{A} B$ and $\bar{a} \downarrow_{B} A$ imply $\bar{a} \downarrow_{A \cap B} A B$ for any $\bar{a}, A, B \subset \mathscr{M}^{\text {eq }}$ such that $A=\operatorname{acl}^{\text {eq }}(A)$ and $B=\operatorname{acl}^{\text {eq }}(B)$. (Theorem 3.20 in $[\mathbf{A}]$)
(2) If \downarrow has the eq-intersection property, then \downarrow coincides with the thorn independence relation. (Theorem 3.3 in $[\mathbf{A}]$)

Suppose that \downarrow is a strict independence relation on eq-structures. For now, we do not assume the existence of \downarrow-weak canonical bases, we choose the definition for CM-triviality as follows.

Definition 2.3. We say that a rosy theory T is $C M$-trivial with respect to \downarrow if $\bar{a} \perp_{A} B$ implies $\bar{a} \downarrow_{A \cap a c^{\mathrm{eq}}(\bar{a}, B)} B$ for any $\bar{a}, A, B \subset \mathscr{M}^{\text {eq }}$ such that $A=\operatorname{acl}^{\mathrm{eq}}(A)$ and $B=\operatorname{acl}^{\mathrm{eq}}(B)$.

Theorem 2.4. If T is $C M$-trivial with respect to \downarrow, then T has the \downarrow-weak canonical bases, and \downarrow coincides with the thorn independence relation.

Proof. To apply Fact 2.2 , we show that $\bar{a} \bigsqcup_{A} B$ and $\bar{a} \downarrow_{B} A$ with $A=$ $\operatorname{acl}^{\text {eq }}(A)$ and $B=\operatorname{acl}^{\text {eq }}(B)$ imply $\bar{a} \downarrow_{A \cap B} A B$. By CM-triviality, we have $\bar{a} \perp_{\text {acl }}{ }^{\text {la }}(\bar{a}, B) \cap A$. By $\bar{a} \perp_{B} A$ and anti-reflexivity, we see $\operatorname{acl}^{\text {eq }}(\bar{a}, B) \cap A B=B$. As $A \cap B \subseteq A \cap \operatorname{acl}^{\text {eq }}(\bar{a}, B) \subseteq A B \cap \operatorname{acl}^{\text {eq }}(\bar{a}, B)=B$, we see

$$
\operatorname{acl}^{\mathrm{eq}}(\bar{a}, B) \cap A=A \cap B
$$

By $\bar{a} \downarrow_{\text {acl }{ }^{\text {eq }}(\bar{a}, B) \cap A} B$ and $\bar{a} \downarrow_{B} A$, we see $\bar{a} \downarrow_{A \cap B} A B$.
REMARK 2.5. Let T be a rosy theory with a strict independence relation \downarrow. The following are equivalent.
(1) T is CM-trivial with respect to \downarrow.
(2) T has the \downarrow-weak canonical bases and $\operatorname{wcb}_{\downarrow}(\bar{a} / A) \subseteq \operatorname{wcb}_{\downarrow}(\bar{a} / B)$ holds for any $\bar{a}, A, B \subset \mathscr{M}^{\text {eq }}$ such that $\operatorname{acl}^{\mathrm{eq}}(\bar{a}, A) \cap B=A$ with $A=\operatorname{acl}^{\text {eq }}(A)$ and $B=\operatorname{acl}^{\mathrm{eq}}(B)$.

Proof.

$(1) \Rightarrow(2)$: \quad Suppose that $\quad \operatorname{acl}^{\mathrm{eq}}(\bar{a}, A) \cap B=A \quad$ with $\quad A=\operatorname{acl}^{\mathrm{eq}}(A) \quad$ and $B=\operatorname{acl}^{\mathrm{eq}}(B)$. By Theorem 2.4, T has weak canonical bases, so let $D:=$ $\operatorname{wcb}_{\perp}(\bar{a} / B)$. Then $\bar{a} \perp_{D} A$ follows from $\bar{a} \perp_{D} A$ and $A \subseteq B$. By CM-triviality, we see $\bar{a} \perp_{\operatorname{acl}^{\text {eq }}(\bar{a}, A) \cap D} A$. As $D \subseteq B$ and $\operatorname{acl}^{\text {eq }}(\bar{a}, A) \cap B=A$, we have $\operatorname{acl}^{\text {eq }}(\bar{a}, A) \cap$ $D=A \cap D$. So, we have $\operatorname{wcb}_{\downarrow}(\bar{a} / A) \subseteq A \cap D \subseteq D=\operatorname{wcb}_{\downarrow}(\bar{a} / B)$.
$(2) \Rightarrow(1)$: Suppose that $\bar{a} \downarrow_{A} B$ with $A=\operatorname{acl}^{\mathrm{eq}}(A)$ and $B=\operatorname{acl}^{\mathrm{eq}}(B)$. Put $C:=\operatorname{acl}^{\mathrm{eq}}(A B) \cap \operatorname{acl}^{\mathrm{eq}}(\bar{a}, B)$. Then we have $B \subseteq C$ and $\bar{a} \perp_{A} C$. As acl ${ }^{\mathrm{eq}}(\bar{a}, C) \subseteq$ $\operatorname{acl}^{\mathrm{eq}}(\bar{a}, A B) \cap \operatorname{acl}^{\mathrm{eq}}(\bar{a}, B)$ and $\operatorname{acl}^{\mathrm{eq}}(C A) \subseteq \operatorname{acl}^{\mathrm{eq}}(A B) \cap \operatorname{acl}^{\mathrm{eq}}(\bar{a}, A B)$, we see $C=$ $\operatorname{acl}^{\mathrm{eq}}(\bar{a}, C) \cap \operatorname{acl}^{\mathrm{eq}}(C A)$. By our assumption, we have $\mathrm{wcb}_{\downarrow}(\bar{a} / C) \subseteq \mathrm{wcb}_{\downarrow}(\bar{a} /$ $C A)=\operatorname{wcb}_{\downarrow}(\bar{a} / A)$. As wcb $\operatorname{web}_{\downarrow}(\bar{a} / C) \subseteq C \cap A=\operatorname{acl}^{\mathrm{eq}}(\bar{a}, B) \cap A$, we see $\bar{a} \bigsqcup_{\text {acl }}(\bar{a}, B) \cap A$ C. As $B \subseteq C$, we have $\bar{a} \perp_{\mathrm{acl}^{\mathrm{eq}}(\bar{a}, B) \cap A} B$.

3. Geometric elimination of imaginaries in rosy theories.

We say that T has geometric elimination of imaginaries (T has GEI) if for any $e \in \mathscr{M}^{\mathrm{eq}}$, there exists $\bar{b} \subset_{\omega} \mathscr{M}$ such that $e \in \operatorname{acl}^{\mathrm{eq}}(\bar{b})$ and $\bar{b} \in \operatorname{acl}^{\text {eq }}(e)$.

Let \downarrow be a strict independence relation on $\mathscr{M}^{\text {eq }}$. We say that \downarrow has the intersection property if $\bar{a} \downarrow_{A} B$ and $\bar{a} \downarrow_{B} A$ imply $\bar{a} \downarrow_{A \cap B} A B$ for any $\bar{a}, A, B \subset \mathscr{M}$ with $A=\operatorname{acl}(A)$ and $B=\operatorname{acl}(B)$.

Lemma 3.1. If T has a strict independence relation having the intersection property, then T has GEI.

Proof. Fix $e=\bar{a}_{E} \in \mathscr{M}^{\text {eq }}$. Take $\bar{b}, \bar{c} \mid=\operatorname{tp}(\bar{a} / e)$ such that $\bar{b}, \bar{c}, \bar{a}$ are \downarrow-independent over e. As $e=\bar{b}_{E}=\bar{c}_{E}$ and $\bar{a} \perp_{e} \bar{b} \bar{c}$, we have $\bar{a} \perp_{\bar{b}} \bar{b} \bar{c}$ and $\bar{a} \downarrow_{\bar{c}} \bar{b} \bar{c}$. Let $A=\operatorname{acl}(\bar{b}) \cap \operatorname{acl}(\bar{c})$. Then $\bar{a} \perp_{A} \bar{b} \bar{c}$ by the intersection property of ${ }^{\mathcal{L}} \downarrow$. By $e \in \operatorname{dcl}^{\mathrm{eq}}(\bar{a}) \cap \operatorname{dcl}^{\mathrm{eq}}(\bar{b} \bar{c})$ and anti-reflexivity, $e \in \operatorname{acl}^{\mathrm{eq}}(A)$. On the other hand, $A \subset \operatorname{acl}^{\text {eq }}(e)$ follows from $\bar{b} \perp_{e} \bar{c}$ and anti-reflexivity.

Lemma 3.2. If T has GEI, then we have

$$
\operatorname{acl}^{\mathrm{eq}}(A) \cap \operatorname{acl}^{\mathrm{eq}}(B)=\operatorname{acl}^{\mathrm{eq}}(A \cap B)
$$

for any $A, B \subset \mathscr{M}$ such that $A=\operatorname{acl}(A)$ and $B=\operatorname{acl}(B)$.
Proof. Let $e \in \operatorname{acl}^{\text {eq }}(A) \cap \operatorname{acl}^{\text {eq }}(B)$. By GEI, there exists $\bar{a} \subset_{\omega} \mathscr{M}$ such that $e \in \operatorname{acl}^{\mathrm{eq}}(\bar{a})$ and $\bar{a} \in \operatorname{acl}^{\mathrm{eq}}(e)$. As $\bar{a} \in \operatorname{acl}^{\mathrm{eq}}(A)$ and $\bar{a} \in \operatorname{acl}^{\mathrm{eq}}(B)$, we see $\bar{a} \subseteq A \cap B$. Thus, $e \in \operatorname{acl}^{\text {eq }}(A \cap B)$.

Lemma 3.3. If \downarrow has the intersection property, then it has the eq-intersection property.

Proof. Suppose that $\bar{a} \bigsqcup_{A} B$ and $\bar{a} \bigsqcup_{B} A$ with $A=\operatorname{acl}^{\text {eq }}(A)$ and $B=\operatorname{acl}^{\mathrm{eq}}(B)$. By 3.1, there exist $\bar{a}^{\prime}, A^{\prime}=\operatorname{acl}\left(A^{\prime}\right), B^{\prime}=\operatorname{acl}\left(B^{\prime}\right) \subseteq \mathscr{M}$ such that $\operatorname{acl}^{\mathrm{eq}}\left(\bar{a}^{\prime}\right)=\operatorname{acl}^{\mathrm{eq}}(\bar{a}), \operatorname{acl}^{\mathrm{eq}}\left(A^{\prime}\right)=\operatorname{acl}^{\mathrm{eq}}(A), \operatorname{acl}^{\mathrm{eq}}\left(B^{\prime}\right)=\operatorname{acl}^{\mathrm{eq}}(B)$. By remark 2.1, we have $\bar{a}^{\prime} \downarrow_{A^{\prime}} B^{\prime}$ and $\bar{a}^{\prime} \perp_{B^{\prime}} A^{\prime}$. So we see $\bar{a}^{\prime} \perp_{A^{\prime} \cap B^{\prime}} A^{\prime} B^{\prime}$ by the intersection property. Since $A \cap B=\operatorname{acl}^{\text {eq }}\left(A^{\prime} \cap B^{\prime}\right)$ holds by Lemma 3.2 , we see $\bar{a} \perp_{A \cap B} A B$ by remark 2.1.

Proposition 3.4. The following are equivalent.
(1) T has GEI and a strict independence relation having the eq-intersection property.
(2) Thas a strict independence relation having the intersection property.
(3) T has a strict independence relation having weak canonical bases in the real sort : weak canonical bases are interalgebraic with real elements.

Proof. $\quad(1) \Rightarrow(2)$ follows from remark 2.1 and Lemma 3.2. $(2) \Rightarrow(1)$ follows from Lemma 3.1 and 3.3. $(1) \Rightarrow(3)$ and $(3) \Rightarrow(2)$ are clear.

Remark 3.5.
(1) Let T be a simple theory with elimination of hyperimaginaries. As the forking independence relation in T has the eq-intersection property, by Fact 2.2, we see that T has GEI iff the forking independence relation in T has the intersection property.
(2) In rosy theories, GEI does not necessarily imply the intersection property: Let $T=\operatorname{Th}\left(\boldsymbol{R},+,<,\left.\pi\right|_{(-1,1)}(*)\right)$, where $\left.\pi\right|_{(-1,1)}(x):=\pi x$ for $x \in(-1,1)$. Then T is an o-minimal theory with elimination of imaginaries. Take $a, b, c \in \mathscr{M}$ be such that $a, b, c>\boldsymbol{R},|a-b|<1,|a-c|<1$ and $\operatorname{dim}(a, b, c)=3$. Then $\operatorname{dim}(a, \pi a / b, \pi b, c$, $\pi c)=\operatorname{dim}(a, \pi a / b, \pi b)=\operatorname{dim}(a, \pi a / c, \pi c)=1<2=\operatorname{dim}(a, \pi a) \quad$ and $\quad \operatorname{acl}(b, \pi b) \cap$ $\operatorname{acl}(c, \pi c)=\operatorname{acl}(\emptyset)$. As $\mathrm{U}^{\mathfrak{p}}(*)=\operatorname{dim}(*)$ in O-minimal theories by $[\mathbf{O}]$, the thorn independence relation in T does not have the intersection property.

4. CM-triviality in the real sort.

Definition 4.1. We say that T is $C M$-trivial in the real sort with respect to \downarrow if $\bar{a} \downarrow_{A} B$ implies $\bar{a} \downarrow_{A \cap \operatorname{acl}(\bar{a}, B)} B$ for any $\bar{a}, A, B \subset \mathscr{M}$ such that $A=\operatorname{acl}(A)$ and $B=\operatorname{acl}(B)$.

THEOREM 4.2. The following are equivalent.
(1) T is CM-trivial with respect to \downarrow and has GEI.
(2) T is CM-trivial in the real sort with respect to \downarrow.

Proof. $\quad(1) \Rightarrow(2)$: Clear. $(2) \Rightarrow(1)$: By working in \mathscr{M} and replacing acl ${ }^{\text {eq }}$ with acl in the proof of Theorem 2.4, we see that \downarrow has the intersection property. By Lemma 3.1, GEI follows.

Remark 4.3.

(1) Let T be the theory of a rosy relational structure with a closure operator $\mathrm{cl}(*)$ and a strict independence relation \downarrow such that

- $\operatorname{cl}(\operatorname{acl}(A))=\operatorname{acl}(A)$ and $\operatorname{cl}(\operatorname{cl}(A) \cap \operatorname{cl}(B))=\operatorname{cl}(A) \cap \operatorname{cl}(B)$,
- $A \downarrow_{A \cap B} B \Leftrightarrow " A B=\operatorname{cl}(A B)$ and $R^{A B}=R^{A} \cup R^{B}$ for any predicate R " for any algebraically closed sets $A, B \subset \mathscr{M}$.
Then T is CM-trivial: By Theorem 4.2, we have only to show CM-triviality in the real sort. Suppose that $\bar{a} \downarrow_{A} B$. Let $C=\operatorname{acl}(\bar{a}, A), D=\operatorname{acl}(A B)$. As $C \downarrow_{A} B$ and $C \cap B=A, \operatorname{cl}(C B)=C B$ and $R^{C B}=R^{C} \cup R^{B}$ for any predicate R. Let $E=$ $\operatorname{acl}(\bar{a}, B)$. Then $\operatorname{cl}(C B \cap E)=C B \cap E$ and $R^{C B \cap E}=R^{C \cap E} \cup R^{B \cap E}$ for any predicate R. So, we see $C \cap E \downarrow_{A \cap E} B \cap E$. As $\bar{a} \subset C \cap E, B \subset B \cap E, \bar{a} \downarrow_{A \cap \operatorname{acl}(\bar{a}, B)} B$ follows.
(2) CM-triviality does not imply CM-triviality in the real sort.

In $[\mathbf{E}]$, Evans gave an ω-categorical CM-trivial structure \mathfrak{C}, defined below, of SU-rank one without weak elimination of imaginaries.

Here, we show that \mathfrak{C} does not have GEI: Let M be the ω-categorical SU-rank two generic structure M (a countable binary graph with a predimension $\delta(A)=$ $\left.2|A|-\left|R^{A}\right|\right)$ constructed by Evans such that no triangles, no squres in M, and points and adjacent pairs of points are closed in M, and $\operatorname{cl}(*)=\operatorname{acl}(*)$ in M. Fix $a \in M$. Let C, D be the sets of vertices at distance 1,2 from a. Let \mathfrak{C} be the canonical structure on C such that $\operatorname{Aut}(\mathfrak{C})$ is homeomorphic to $\operatorname{Aut}(M / a)$. As \mathfrak{C} and (M, a) are biinterpretable, \mathfrak{C} is of SU-rank one and CM-trivial.

Let $c \in C, d \in D$ be such that $M=R(a, c) \wedge R(c, d)$. As no triangles and squares in M, we have $\operatorname{acl}(a, d) \cap C=\operatorname{cl}(a, d) \cap C=\{c\}$. If \mathfrak{C} had GEI, then, as $d \in \mathbb{C}^{\text {eq }}$, we could find $\bar{c} \subset_{\omega} C$ such that $d \in \operatorname{acl}(a, \bar{c})$ and $\bar{c} \in \operatorname{acl}(a, d)$ in the sense of M. As $\operatorname{acl}(a, d) \cap C=\{c\}, \bar{c}$ must be the singleton c. Since $\operatorname{cl}(a, c)=\operatorname{acl}(a, c)=$
$\{a, c\}$ in M, so $d \notin \operatorname{acl}(a, c)$ in M, a contradiction.
By Theorem 4.2, \mathfrak{C} is CM-trivial but not $C M$-trivial in the real sort.
Remark 4.4.
(1) In rosy theories having weak canonical bases, we define one-basedness as usual: $\operatorname{wcb}(a / A) \subseteq \operatorname{acl}^{\mathrm{eq}}(a)$ holds for any $a, A \subset \mathscr{M}$ with $A=\operatorname{acl}^{\mathrm{eq}}(A)$. By Remark 2.5, we see that one-basedness implies CM-triviality: As $\operatorname{wcb}(\bar{a} / B) \subseteq \operatorname{acl}^{\mathrm{eq}}(\bar{a}) \cap$ $B \subseteq A \subseteq B$, we have $\operatorname{wcb}(\bar{a} / B)=\operatorname{wcb}(\bar{a} / A)$.
(2) There exists a one-based but non-CM-trivial rosy theory: Let $T=$ $\operatorname{Th}\left(\boldsymbol{R},+,<,\left.\pi\right|_{(-1,1)}(*)\right) . T$ is an O-minimal theory with CF-property and elimination of imaginaries. As in [P1], CF-property is equivalent to one-basedness in O-minimal theories. By Remark 3.5 (2) and Theorem 4.2, T is not CM-trivial.

5. Non-CM-triviality of superrosy fields of monomial rank.

Let \downarrow be the thorn independence relation. We show that CM-triviality is equivalent to non-2-ampleness in rosy theories. We also show that superrosy fields of monomial $\mathrm{U}^{\mathfrak{p}}$-rank are 2 -ample. It is unknown whether any superrosy (nonsupersimple) field of infinite $U^{\mathfrak{p}}$-rank exists. Any supersimple field has monomial $\mathrm{SU}\left(=\mathrm{U}^{\mathfrak{p}}\right)$-rank. It is also unknown whether any superrosy field has monomial U^{p}-rank.

Definition 5.1. A rosy theory T is n-ample if after naming some parameters, there exist $A_{0}, A_{1}, \ldots, A_{n} \subset \mathscr{M}^{\text {eq }}$ such that
(1) $\operatorname{acl}^{\mathrm{eq}}\left(A_{<r} A_{r}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{<r} A_{r+1}\right)=\operatorname{acl}^{\mathrm{eq}}\left(A_{<r}\right)$ for any $r \leq n-1$.
(2) $A_{r+1} \downarrow_{A_{r}} A_{\leq r}$ for any $r \leq n-1$.
(3) $A_{n} \not \perp A_{0}$
where $A_{\leq r}=A_{0} A_{1} \ldots A_{r}$ and $A_{<r}=A_{0} A_{1} \ldots A_{r-1}$.
Lemma 5.2. Let T be rosy. Then the following are equivalent.
(1) For any $A_{0}, A_{1}, A_{2} \subset \mathscr{M}^{\text {eq }}, A_{2} \downarrow_{A_{1}} A_{0}$ implies $A_{2} \downarrow_{\text {acleq }\left(A_{1}\right) \cap \text { accleq }\left(A_{2} A_{0}\right)} A_{0}$.
(2) For any $A_{0}, A_{1}, A_{2}, B \subset \mathscr{M}^{\mathrm{eq}}$, $\operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(B A_{1}\right)=\operatorname{acl}^{\mathrm{eq}}(B)$, $\operatorname{acl}^{\mathrm{eq}}\left(B A_{0} A_{1}\right) \cap \quad \operatorname{acl}^{\mathrm{eq}}\left(B A_{0} A_{2}\right)=\operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right) \quad$ and $\quad A_{2} \downarrow_{\mathrm{acl}}{ }^{\mathrm{lq}\left(B A_{1}\right)} A_{0} \quad$ imply $A_{2} \downarrow_{B} A_{0}$.
Thus CM-triviality is equivalent to non-2-ampleness without assuming the existence of weak canonical bases.

Proof.
$(1) \Rightarrow(2):$ We have $A_{2} \downarrow_{\mathrm{acc}^{\mathrm{leq}}\left(B A_{1}\right)} A_{0} B$ by $A_{2} \downarrow_{\text {acl }^{\mathrm{eq}}\left(B A_{1}\right)} A_{0}$.
By (1), we see $A_{2} \downarrow_{\text {acl }^{\text {eq }}\left(B A_{1}\right) \text { nacl }^{\left.\operatorname{leq}_{\left(B A_{0}\right.} A_{2}\right)}} A_{0} B$. On the other hand, we have
$\operatorname{acl}^{\mathrm{eq}}\left(B A_{1}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(B A_{2} A_{0}\right) \subseteq \operatorname{acl}^{\mathrm{eq}}\left(B A_{1}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right)=\operatorname{acl}^{\mathrm{eq}}(B)$. Thus we see $A_{2} \downarrow_{B} A_{0}$.
$(2) \Rightarrow(1):$ Put $B=\operatorname{acl}^{\mathrm{eq}}\left(A_{1}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{0} A_{2}\right) \subseteq \operatorname{acl}^{\mathrm{eq}}\left(A_{1}\right)$.
Claim 1. We have $\operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(B A_{1}\right)=\operatorname{acl}^{\mathrm{eq}}(B)(=B)$ and $\operatorname{acl}^{\mathrm{eq}}\left(B A_{0} A_{1}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(B A_{0} A_{2}\right)=\operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right)$.

By the definition of B, we see $\operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right) \subseteq \operatorname{acl}^{\mathrm{eq}}\left(A_{0} A_{1}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{0} A_{2}\right) \subseteq$ $\operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right)$, so acl ${ }^{\mathrm{eq}}\left(B A_{0} A_{1}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(B A_{0} A_{2}\right)=\operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right)$ follows.

$$
\begin{aligned}
\operatorname{acl}^{\mathrm{eq}}(B) & \subseteq \operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(B A_{1}\right) \\
& =\operatorname{acl}^{\mathrm{eq}}\left(B A_{0}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{1}\right) \\
& \subseteq \operatorname{acl}^{\mathrm{eq}}\left(A_{0} A_{1}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{0} A_{2}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{1}\right) \\
& \subseteq \operatorname{acl}^{\mathrm{eq}}\left(A_{0} A_{1}\right) \cap \operatorname{acl}^{\mathrm{eq}}(B) \subseteq \operatorname{acl}^{\mathrm{eq}}(B)
\end{aligned}
$$

By $A_{2} \downarrow_{B A_{1}} A_{0}$ and (2), $A_{2} \perp_{B} A_{0}$ follows.
From now on, we check that any superrosy field of monomial U^{p}-rank is not CM-trivial ($=2$-ample) by following the Nubling's proof for n-ampleness of supersimple field. As the Nubling's proof works for superrosy field of monomial U^{p}-rank, any superrosy field of monomial $\mathrm{U}^{\mathfrak{p}}$-rank is n-ample for any $n<\omega$.

Let F be an infinite superrosy field. We say that $a_{0}, a_{1}, \ldots, a_{i}, \ldots \in F$ are independent generics over A if $\mathrm{U}^{\mathfrak{p}}\left(a_{0} / A\right)=\mathrm{U}^{\mathfrak{p}}\left(a_{1} / A\right)=\cdots=\mathrm{U}^{\mathfrak{p}}\left(a_{i} / A\right)=\cdots=$ $\mathrm{U}^{\mathfrak{p}}(F)$ and $a_{0}, a_{1}, \ldots, a_{i}, \ldots$ are thorn independent over A.

FACT 5.3. Let F be an infinite superrosy field.
(1) Let $a, b, c \in F$ be independent generics over A. Then $b c, a, c$ are independent generics over A and $a+b c, a, c$ are independent generics over A.
(2) Let $a_{1}, \ldots, a_{i}, \ldots, b, c_{1}, \ldots, c_{i}, \ldots \in F$ be independent generics over A. Then $a_{1}+b c_{1}, \ldots a_{i}+b c_{i}, \ldots, c_{1}, \ldots, c_{i}, \ldots$ are independent generics over A.

Proof. We may assume $A=\emptyset$.
(1) Since $b c$ and b are interdefinable oner c, we see $\mathrm{U}^{\mathfrak{p}}(F) \geq \mathrm{U}^{\mathfrak{p}}(b c) \geq \mathrm{U}^{\mathfrak{p}}(b c / c, a)=$ $\mathrm{U}^{\mathfrak{p}}(b / c, a)=\mathrm{U}^{\mathfrak{p}}(F)$. As $a+b c$ and $b c$ are interdefinable over a, we also see that $\mathrm{U}^{\mathfrak{p}}(F) \geq \mathrm{U}^{\mathfrak{p}}(a+b c) \geq \mathrm{U}^{\mathfrak{p}}(a+b c / a, c)=\mathrm{U}^{\mathfrak{p}}(b c / a, c)=\mathrm{U}^{\mathfrak{p}}(F)$.
(2) By (1), we have only to show
$a_{i+1}+b c_{i+1}, c_{i+1} \downarrow a_{0}+b c_{0}, \ldots, a_{i}+b c_{i}, c_{0} \ldots, c_{i}$.
As $a_{i+1}, c_{i+1} \perp_{b} a_{0}, \ldots, a_{i}, c_{0}, \ldots, c_{i}$, we have
$a_{i+1}+b c_{i+1}, c_{i+1} \perp_{b} a_{0}+b c_{0}, \ldots, a_{i}+b c_{i}, c_{0}, \ldots, c_{i}$.

Since $\mathrm{U}^{\mathfrak{p}}\left(a_{i+1}+b c_{i+1} / b, c_{i+1}\right)=\mathrm{U}^{\mathfrak{p}}\left(a_{i+1} / b, c_{i+1}\right)=\mathrm{U}^{\mathfrak{p}}(F)$, we have $a_{i+1}+b c_{i+1} \downarrow b, c_{i+1}$. As $b \downarrow c_{i+1}$, we see $a_{i+1}+b c_{i+1}, c_{i+1} \downarrow b$.
So we see the conclusion.
Let F be a superrosy field. To get a witness for non-CM-triviality, we define a plane \mathbf{P} in F^{3}, a line \mathbf{l} on \mathbf{P}, and a point \mathbf{p} on \mathbf{l} as follows.

Let $a_{0}^{0,0}, a_{1}^{0,0}, a_{2}^{0,0}$ be independent generics. Put $\mathbf{P}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F^{3}: a_{0}^{0,0}+\right.$ $\left.a_{1}^{0,0} x_{1}+a_{2}^{0,0} x_{2}=x_{3}\right\}$. We consider $A_{0}:=\left\{a_{0}^{0,0}, a_{1}^{0,0}, a_{2}^{0,0}\right\}$ as parameters for \mathbf{P}.

Let $a_{0}^{1,0}, a_{1}^{1,0}$ be independent generics over previous elements. Put $B_{1}^{1,0}=$ $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F^{3}: a_{0}^{1,0}+a_{1}^{1,0} x_{1}=x_{2}\right\}$ and Put $\mathbf{l}=\mathbf{P} \cap B_{1}^{1,0}$. Then $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbf{l}$ iff $\left(a_{0}^{0,0}+a_{2}^{0,0} a_{0}^{1,0}\right)+\left(a_{1}^{0,0}+a_{2}^{0,0} a_{1}^{1,0}\right) x_{1}=x_{3}$. Put $a_{0}^{1,1}:=a_{0}^{0,0}+a_{2}^{0,0} a_{0}^{1,0}$ and $a_{1}^{1,1}:=$ $a_{1}^{0,0}+a_{2}^{0,0} a_{1}^{1,0}$. Let $B_{1}^{1,1}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F^{3}: a_{0}^{1,1}+a_{1}^{1,1} x_{1}=x_{3}\right\}$. Then $\mathbf{l}=B_{1}^{1,0} \cap$ $B_{1}^{1,1}$ and we consider $A_{1}:=\left\{a_{0}^{1,0}, a_{1}^{1,0}, a_{0}^{1,1}, a_{1}^{1,1}\right\}$ as parameters for \mathbf{l}.

Let $a_{0}^{2,0}$ be generic over previous elements. Put $B_{2}^{2,0}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in F^{3}\right.$: $\left.a_{0}^{2,0}=x_{1}\right\}$ and $B_{2}^{2,1}:=B_{2}^{2,0} \cap B_{1}^{1,0}$ and $B_{2}^{2,2}:=B_{2}^{2,0} \cap B_{1}^{1,1}$. Then $\left(x_{1}, x_{2}, x_{3}\right) \in B_{2}^{2,1}$ iff $a_{0}^{2,1}:=a_{0}^{1,0}+a_{1}^{1,0} a_{0}^{2,0}=x_{2}$, and $\left(x_{1}, x_{2}, x_{3}\right) \in B_{2}^{2,2}$ iff $a_{0}^{2,2}:=a_{0}^{1,1}+a_{1}^{1,1} a_{0}^{2,0}=x_{3}$.

Let $\mathbf{p}:=B_{2}^{2,0} \cap B_{2}^{2,1} \cap B_{2}^{2,2}=B_{2}^{2,0} \cap \mathbf{l}$ and we consider $A_{2}=\left\{a_{0}^{2,0}, a_{0}^{2,1}, a_{0}^{2,2}\right\}$ as parameters for \mathbf{p}.

Now we have the following lemma. (Here, we need not to assume that F is of monomial U^{p}-rank.)

Lemma 5.4.

(1) $\operatorname{dcl}^{\mathrm{eq}}\left(A_{1}, A_{2}\right)=\operatorname{dcl}^{\mathrm{eq}}\left(A_{1}, a_{0}^{2,0}\right)$.
(2) $\operatorname{dcl}^{\mathrm{eq}}\left(A_{0}, A_{1}\right)=\operatorname{dcl}^{\mathrm{eq}}\left(A_{0}, a_{0}^{1,0}, a_{1}^{1,0}\right)$.
(3) $A_{2} \perp_{A_{1}} A_{0}$
(4) $a_{0}^{2,2} \in \operatorname{dcl}^{\mathrm{eq}}\left(A_{0}, a_{0}^{2,0}, a_{0}^{2,1}\right)$ and $a_{0}^{0.0} \in \operatorname{dcl}^{\mathrm{eq}}\left(a_{1}^{0,0}, a_{2}^{0,0}, A_{2}\right)$.
(5) $A_{0} \nVdash A_{2}$.

Proof. (1),(2) are clear. (3) follows from $a_{0}^{2,0} \downarrow A_{0}, A_{1}$. (4) follows from

$$
\begin{aligned}
a_{0}^{2,2} & =a_{0}^{1,1}+a_{1}^{1,1} a_{0}^{2,0} \\
& =\left(a_{0}^{0,0}+a_{2}^{0,0} a_{0}^{1,0}\right)+\left(a_{1}^{0,0}+a_{2}^{0,0} a_{1}^{1,0}\right) a_{0}^{2,0} \\
& =a_{0}^{0,0}+a_{2}^{0,0}\left(a_{0}^{1,0}+a_{1}^{1,0} a_{0}^{2,0}\right)+a_{1}^{0,0} a_{0}^{2,0} \\
& =a_{0}^{0,0}+a_{2}^{0,0} a_{0}^{2,1}+a_{1}^{0,0} a_{0}^{2,0}
\end{aligned}
$$

(5): If we had $A_{0} \downarrow A_{2}$, then $a_{0}^{0,0} \downarrow_{a_{1}^{0,0}, a_{2}^{0,0}} A_{2}$, so $a_{0}^{0,0} \in \operatorname{acl}^{\mathrm{eq}}\left(a_{1}^{0,0}, a_{2}^{0,0}\right)$ would hold.

Proposition 5.5. If F has a monomial $\mathrm{U}^{\mathfrak{p}}$-rank, then we have
(1) $\operatorname{acl}^{\mathrm{eq}}\left(A_{0}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{1}\right)=\operatorname{acl}^{\mathrm{eq}}(\emptyset)$.
(2) $\operatorname{acl}^{\mathrm{eq}}\left(A_{0} A_{1}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{0} A_{2}\right)=\operatorname{acl}^{\mathrm{eq}}\left(A_{0}\right)$.

Proof. Let $\mathrm{U}^{\mathfrak{p}}(F)=\omega^{\alpha} k=: \beta$, where α is an ordinal and k is a natural number.
(1): By Fact 5.3, A_{1} consists of independent generics.

Claim 2. $\quad \mathrm{U}^{\mathfrak{p}}\left(A_{0} / A_{1}\right) \geq \beta$.
A_{0}, A_{1} and $A_{0}, a_{0}^{1,0}, a_{1}^{1,0}$ are interdefinable. So, we have $\beta 5=\mathrm{U}^{\mathfrak{p}}\left(A_{0} A_{1}\right) \leq$ $\mathrm{U}^{\mathfrak{p}}\left(A_{0} / A_{1}\right) \oplus \mathrm{U}^{\mathfrak{p}}\left(A_{1}\right)=\mathrm{U}^{\mathfrak{p}}\left(A_{0} / A_{1}\right) \oplus \beta 4$. The claim follows.

Claim 3. Take $A_{0}^{\prime} \equiv_{\text {acleq }}{ }^{\operatorname{lo}}\left(A_{1}\right) A_{0}$ with $A_{0}^{\prime} \downarrow_{A_{1}} A_{0}$. Then $A_{0}^{\prime} \downarrow A_{0}$.

$$
\begin{aligned}
\mathrm{U}^{\mathfrak{p}}\left(A_{0}^{\prime} A_{0} A_{1}\right) & \geq \mathrm{U}^{\mathfrak{p}}\left(A_{0}^{\prime} A_{0} / A_{1}\right)+\mathrm{U}^{\mathfrak{p}}\left(A_{1}\right) \\
& =\left(\mathrm{U}^{\mathfrak{p}}\left(A_{0}^{\prime} / A_{1}\right) \oplus \mathrm{U}^{\mathfrak{p}}\left(A_{0} / A_{1}\right)\right)+\beta 4 \\
& \geq \beta 6
\end{aligned}
$$

As $a_{i}^{1,1}=a_{i}^{0,0}+a_{2}^{0,0} a_{i}^{1,0}=a_{i}^{0,0}+a_{2}^{0,0} a_{i}^{1,0}$, we have

$$
a_{i}^{1,0}=\frac{a_{i}^{0,0}-a_{i}^{0,0}}{a_{2}^{0,0}-a_{2}^{0,0}} \in \operatorname{dcl}^{\mathrm{eq}}\left(A_{0}^{\prime} A_{0}\right),
$$

so we have $A_{1} \subseteq \operatorname{acl}^{\mathrm{eq}}\left(A_{0}^{\prime} A_{0}\right)$.

$$
\begin{aligned}
\beta 6 & \leq \mathrm{U}^{\mathfrak{p}}\left(A_{0}^{\prime} A_{0} A_{1}\right) \\
& =\mathrm{U}^{\mathfrak{p}}\left(A_{0}^{\prime} A_{0}\right) \\
& \leq \beta 6
\end{aligned}
$$

As $\mathrm{U}^{\mathfrak{p}}\left(A_{0}\right)=\mathrm{U}^{\mathfrak{p}}\left(A_{0}^{\prime}\right)=\beta 3$, we see the claim.
As $\operatorname{acl}^{\mathrm{eq}}\left(A_{0}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{1}\right)=\operatorname{acl}^{\mathrm{eq}}\left(A_{0}^{\prime}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{1}\right) \subseteq \operatorname{acl}^{\mathrm{eq}}\left(A_{0}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(A_{0}^{\prime}\right) \quad$ and $A_{0}^{\prime} \downarrow A_{0}$, we see the conclusion.
(2): As A_{1} and $a_{0}^{1,0}, a_{1}^{1,0}$ are interdefinable over A_{0} by Lemma 5.4 (2), and A_{2} and
$a_{0}^{2,0}, a_{0}^{2,1}$ are interdefinable over A_{0} by Lemma 5.4 (4), working over $\operatorname{acl}^{\text {eq }}\left(A_{0}\right)$, we need to prove $\operatorname{acl}^{\mathrm{eq}}\left(a_{0}^{1,0}, a_{1}^{1,0}\right) \cap \operatorname{acl}^{\mathrm{eq}}\left(a_{0}^{2,0}, a_{0}^{2,1}\right)=\operatorname{acl}^{\mathrm{eq}}(\emptyset)$. Note that $\mathrm{U}^{\mathfrak{p}}\left(a_{0}^{2,0}, a_{0}^{2,1}\right)=$ $\beta 2$ over $\operatorname{acl}^{\text {eq }}\left(A_{0}\right)$ by Fact $5.3(2)$.

The rest is similar to (1) :
As $a_{0}^{2,1} \in \operatorname{dcl}^{\text {eq }}\left(a_{0}^{1,0}, a_{1}^{1,0}, a_{0}^{2,0}\right), \mathrm{U}^{\mathfrak{p}}\left(a_{0}^{1,0}, a_{1}^{1,0}, a_{0}^{2,0}, a_{0}^{2,1}\right)=\beta 3$ follows.
As $\beta 3=\mathrm{U}^{\mathfrak{p}}\left(a_{0}^{1,0}, a_{1}^{1,0}, a_{0}^{2,0}, a_{0}^{2,1}\right) \leq \mathrm{U}^{\mathfrak{p}}\left(a_{0}^{1,0}, a_{1}^{1,0} / a_{0}^{2,0}, a_{0}^{2,1}\right) \oplus \mathrm{U}^{\mathfrak{p}}\left(a_{0}^{2,0}, a_{0}^{2,1}\right)$
$=\mathrm{U}^{\mathfrak{p}}\left(a_{0}^{1,0}, a_{1}^{1,0} / a_{0}^{2,0}, a_{0}^{2,1}\right) \oplus \beta 2$, we have $\mathrm{U}^{\mathfrak{p}}\left(a_{0}^{1,0}, a_{1}^{1,0} / a_{0}^{2,0}, a_{0}^{2,1}\right) \geq \beta$.
Take $a_{0}^{1,0}, a_{1}^{1,0} \equiv_{\text {acl }}\left(a_{0}^{2,0}, a_{0}^{2,1}\right) a_{0}^{1,0}, a_{1}^{1,0}$ with $a_{0}^{1,0}, a_{1}^{11,0} \perp_{\text {acl }{ }^{\text {eq }}\left(a_{0}^{2,2,}, a_{0}^{2,1}\right.} a_{0}^{1,0}, a_{1}^{1,0}$.
We have
$\begin{aligned} & \mathrm{U}^{\mathfrak{p}}\left(a_{0}^{\prime 1,0}, a_{1}^{\prime 1,0}, a_{0}^{1,0}, a_{1}^{1,0}, a_{0}^{2,0}, a_{0}^{2,1}\right) \geq \mathrm{U}^{\mathfrak{p}}\left(a_{0}^{1,0}, a_{1}^{1,0}, a_{0}^{1,0}, a_{1}^{1,0} / a_{0}^{2,0}, a_{0}^{2,1}\right)+\mathrm{U}^{\mathfrak{p}}\left(a_{0}^{2,0}, a_{0}^{2,1}\right) \\ &=\left(\mathrm{U}^{\mathfrak{p}}\left(a_{0}^{1,0}, a_{1}^{1,0} / a_{0}^{2,0}, a_{0}^{2,1}\right) \oplus \mathrm{U}^{\mathfrak{p}}\left(a_{0}^{\prime 1,0}, a_{1}^{11,0} / a_{0}^{2,0}, a_{0}^{2,1}\right)\right)+\beta 2 \geq \beta 4 . \\ & \text { As } a_{0}^{2,1}=a_{0}^{1,0}+a_{1}^{1,0} a_{0}^{2,0}=a_{0}^{11,0}+a_{1}^{1,0} a_{0}^{2,0} \text { and }\end{aligned}$

$$
a_{0}^{2,0}=\frac{a_{0}^{1,0}-a_{0}^{\prime 1,0}}{a_{1}^{\prime 1,0}-a_{1}^{1,0}} \in \operatorname{dcl}^{\mathrm{eq}}\left(a_{0}^{\prime 1,0}, a_{1}^{\prime 1,0}, a_{0}^{1,0}, a_{1}^{1,0}\right),
$$

we have $a_{0}^{2,0}, a_{0}^{2,1} \in \operatorname{dcl}\left(a_{0}^{11,0}, a_{1}^{1,0}, a_{0}^{1,0}, a_{1}^{1,0}\right)$. So we see $\mathrm{U}^{\mathfrak{p}}\left(a_{0}^{11,0}, a_{1}^{1,0}, a_{0}^{1,0}, a_{1}^{1,0}\right)=\beta 4$ and $a_{0}^{1,0}, a_{1}^{1,0} \downarrow a_{0}^{1,0}, a_{1}^{1,0}$.

Therefore we have $\operatorname{acl}^{\mathrm{eq}}\left(a_{0}^{1,0}, a_{1}^{1,0}\right) \cap \operatorname{acl}\left(a_{0}^{2,0}, a_{0}^{2,1}\right)=\operatorname{acl}^{\text {eq }}\left(a_{0}^{1,0}, a_{1}^{11,0}\right) \cap \operatorname{acl}\left(a_{0}^{2,0}\right.$, $\left.a_{0}^{2,1}\right) \subseteq \operatorname{acl}^{\mathrm{leq}^{\mathrm{q}}}\left(a_{0}^{1,0}, a_{1}^{1,0}\right) \cap \operatorname{acl}\left(a_{0}^{\prime 1,0}, a_{1}^{1,0}\right)=\operatorname{acl}^{\mathrm{eq}}(\emptyset)$.

THEOREM 5.6. Let T be a rosy theory. If T interprets a superrosy field of monomial $\mathrm{U}^{\mathfrak{p}}$-rank, then T is not CM-trivial.

Proof. If T interprets a superrosy field of monomial $\mathrm{U}^{\mathfrak{p}}$-rank, then T has a witness for non-CM-triviality by Lemma 5.4 and Proposition 5.5.

6. CM-triviality in O-minimal theories.

We begin with the following facts on O-minimal theories.
FACT 6.1. Let T be O-minimal.
(1) (Peterzil-Starchenko, $[\mathbf{P S}]) T$ is not one-based iff T has a definable real closed field of dimension 1 on some interval.
(2) (Onshuus, $[\mathbf{O}]$) In O-minimal theories, the thorn independence relation coincides with the independence relation defined by dimension.

From now on, we work in O-minimal theories with elimination of imaginaries. (Any O-minimal theory having a group-operation eliminates imaginaries by definable choice.) Note that dcl $=\operatorname{acl}^{\mathrm{eq}}$. In $[\mathbf{P} 1]$, Pillay defines one-basedness in Ominimal theories by the germs of definable functions as follows. Let $f(\bar{x}, \bar{y})$ be an
\emptyset-definable function and let \bar{a} be such that $\operatorname{dim}(\bar{a})=|\bar{a}|=|\bar{x}|$. Let $E_{f, \bar{a}}$ be an \bar{a}-definable equivalence relation defined by $E_{f, \bar{a}}\left(\bar{b}_{1}, \bar{b}_{2}\right) \Leftrightarrow$ either there exists an open neighborhood U of \bar{a} such that $f\left(\bar{x}, \bar{b}_{1}\right), f\left(\bar{x}, \bar{b}_{2}\right)$ are defined on U and $f\left(\bar{x}, \bar{b}_{1}\right) \mid$ $U=f\left(\bar{x}, \bar{b}_{2}\right) \mid U$ or neither of $f\left(\bar{x}, \bar{b}_{1}\right), f\left(\bar{x}, \bar{b}_{2}\right)$ is defined on an open neiborhood of \bar{a}. An O-minimal theory is one-based (equivalent to CF-property, defined by Peterzil) if $\bar{b}_{E_{f, \bar{a}}} \in \operatorname{dcl}(\bar{a}, f(\bar{a}, \bar{b}))$ holds for any \emptyset-definable function $f(\bar{x}, \bar{y})$ and any \bar{a} and \bar{b} with $\operatorname{dim}(\bar{a} / \bar{b})=|\bar{a}|$.

FACT 6.2. (Pillay, [P1]) If T has weak canonical bases, then one-basedness is equivalent to the modularity in T.

Theorem 6.3. In O-minimal theories having elimination of imaginaries, CM-triviality is equivalent to the modularity.

Proof. Let T be a CM-trivial O-minimal theory with elimination of imaginaries. By Fact 6.1 and Theorem 5.6, T is one-based. By CM-triviality and Theorem 2.4, T has weak canonical bases, so it must be modular by Fact 6.2. Conversely, let T be a modular O-minimal theory with elimination of imaginaries. If $A_{2} \downarrow_{A_{1}} A_{0}$, by modularity we have $A_{2} \downarrow_{\operatorname{dcl}\left(A_{2}\right) \cap \operatorname{del}\left(A_{1}\right)} A_{0} A_{1}$. As $\operatorname{dcl}\left(A_{2}\right) \cap \operatorname{dcl}\left(A_{1}\right) \subseteq \operatorname{dcl}\left(A_{2} A_{0}\right) \cap \operatorname{dcl}\left(A_{1}\right) \subseteq \operatorname{dcl}\left(A_{0} A_{1}\right)$, we have CM-triviality; $A_{2} \downarrow_{\mathrm{dcl}\left(A_{1}\right) \operatorname{dcl}\left(A_{2} A_{0}\right)} A_{0}$.

Remark 6.4.
(1) CM-triviality is not equivalent to one-basedness in O-minimal theories in general: Let $T=\operatorname{Th}(\boldsymbol{R},+,<, \pi(*) \mid(-1,1))$, where $\pi(x)=\pi x \in \operatorname{dcl}(x)$ for each $x \in(-1,1)$. Example 4.5 in $[\mathbf{L P}]$ and $[\mathbf{P} 1]$ show that T is one-based but nonlocally modular and does not have weak canonical bases. So T is a non-CM-trivial one-based theory.
(2) Neither local modularity nor CM-triviality are preserved under reducts in O-minimal theories: Let $T^{\prime}=\operatorname{Th}(\boldsymbol{R},+,<, \pi(*))$, where $\pi(x)=\pi x \in \operatorname{dcl}(x)$ for each x. Then T^{\prime} is locally modular and CM-trivial. But the reduct T of T^{\prime} is nonlocally modular and non-CM-trivial.

References

[A] H. Adler, Explanation of independence, Ph.D thesis, Freiburg, 2005, arXiv:math.LO/ 0511616 v1, Nov. 2005.
[B] A. Baudisch, A new uncountably categorical groups, Trans. Amer. Math. Soc., 348 (1996), 3889-3940.
[E] D. Evans, \aleph_{0}-categorical structures with a predimension, Ann. Pure Appl. Logic, 116 (2002), 157-186.
[EPiPo] D. Evans, A. Pillay and B. Poizat, Le groupe dans le groupe, Algebra Logika, 29 (1990), 368-378.
[H] E. Hrushovski, A new strongly minimal set, Ann. Pure Appl. Logic, 62 (1993), 147-166.
[LP] J. Loveys and Y. Peterzil, Linear O-minimal structures, Israel J. Math., 81 (1993), 1-30.
[N] H. Nubling, Reducts and expansions of stable and simple theories, PhD thesis, the University of East Anglia.
[O] A. A. Onshuus, Properties and consequences of thorn-independence, J. Symbolic Logic, 71 (2006), 1-21.
[P] A. Pillay, The geometry of forking and groups of finite Morley rank, J. Symbolic Logic, $\mathbf{6 0}$ (1995), 1251-1259.
[P1] A. Pillay, Canonical bases in O-minimal and related structures, preprint, 2006.
[PS] Y. Peterzil and S. Starchenko, A trichotomy theorem for O-minimal structures, Proc. London Math. Soc. (3), 77 (1998), 481-523.
[Y] I. Yoneda, CM-triviality and generic structures, Arch. Math. Logic, 42 (2003), 423-433.
[VY] V. Verbovskiy and I. Yoneda, CM-triviality and relational structures, Ann. Pure Appl. Logic, 122 (2003), 175-194.

Ikuo Yoneda

Department of Mathematics Tokai University
1117 Kitakaname, Hiratsuka
Kanagawa, 259-1292 Japan
E-mail: ikuo.yoneda@s3.dion.ne.jp

[^0]: 2000 Mathematics Subject Classification. Primary 03C45, 03C64.
 Key Words and Phrases. CM-triviality, rosy theories, O-minimal theories, generic structures, geometric elimination of imaginaries.

