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Poisson structures and generalized Kähler submanifolds

By Ryushi Goto
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Abstract. Let X be a compact Kähler manifolds with a non-trivial holomor-
phic Poisson structure β. Then there exist deformations {(Jβt, ψt)} of non-trivial
generalized Kähler structures with one pure spinor on X. We prove that every Poisson
submanifold of X is a generalized Kähler submanifold with respect to (Jβt, ψt) and
provide non-trivial examples of generalized Kähler submanifolds arising as holomor-
phic Poisson submanifolds. We also obtain unobstructed deformations of bihermitian
structures constructed from Poisson structures.

Introduction.

A generalized complex structure interpolates between symplectic and complex
structures [17], where a generalized Kähler structure is obtained by extending the
notion of ordinary Kähler structures from the viewpoint of generalized geometry
[14]. Recently, Hitchin gave a construction of generalized Kähler structures on Del
Pezzo surfaces by using holomorphic Poisson structures [18], [19], while we showed
a stability theorem of generalized Kähler structures to obtain a family {(Jβt, ψt)}
of non-trivial generalized Kähler structures on a compact Kähler manifold with
a holomorphic Poisson structure [13]. The present paper is a sequel to [13] by
discussing holomorphic Poisson submanifolds and generalized Kähler submanifolds
from the viewpoint of deformations.

In Section 1.1, we give an exposition of generalized complex structures. In
Section 1.2, we introduce a notion of J -submanifolds of a generalized complex
manifold (X, J ) which is due to Oren Ben-Bassart and Mitya Boyarchenko. A
J -submanifold M inherits the induced generalized complex structure JM [4],
[31]1. Both complex submanifolds and symplectic submanifolds arise as special
classes of J -submanifolds. Let Jb be the generalized complex structure given by
the action of d-closed b-fields. Then a J -submanifold is also a Jb-submanifold
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1Note that there is a different notion of generalized complex submanifolds due to Gualtieri.
To avoid a confusion, we use the terminology of J -submanifolds in this paper.
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(see Example 1.8). We denote by N∗ the conormal bundle to M in X. If a
submanifold M admits a J -invariant conormal bundle, i.e.,

J (N∗) = N∗,

then M is a J -submanifold. After a short explanation of generalized Kähler
structures in Section 1.3, we prove in Section 1.4 that if a submanifold M of a
generalized Kähler manifold (X, J0, J1) admits a J0-invariant conormal bundle,
then M is also a J1-submanifold and M inherits the induced generalized Kähler
structure (J0,M ,J1,M) (see Theorem 1.9). In Section 1.5, we introduce a gener-
alized Kähler structure with one pure spinor which is a pair (J , ψ) consisting of
a generalized complex structure J and a d-closed, non-degenerate, pure spinor
ψ such that the induced pair (J , Jψ) is a generalized Kähler structure. On a
Kähler manifold with a Kähler form ω, there is the ordinary generalized Kähler
strucutre with one pure spinor, where the pure spinor is given by exp(

√−1ω).

Theorem 1.14. Let (X, J0, ψ) be a generalized Kähler manifold with one
pure spinor. Let M be a submanifold with invariant conormal bundle with respect
to J0. Then the pull back i∗Mψ is a d-closed, non-degenerate, pure spinor on M

and the induced pair (J0,M , i∗Mψ) is a generalized Kähler structure with one pure
spinor on M .

This is analogous to the fact that the pull back of a Kähler form to a complex
submanifold is also a Kähler form. In Section 1.6, let X be a compact Kähler
manifold with a Poisson structure β and a Kähler form ω. (We always consider
holomorphic Poisson structures in this paper.) A complex submanifold M is a
Poisson submanifold if there exists the induced Poisson structure βM on M (see
Definition 1.17). Note that in algebraic geometry, Poisson schemes and Pois-
son subschemes are developed [26], [27]. A Poisson structure β on a compact
Kähler manifold generates deformations of generalized complex structures {Jβt}
parametrized by the complex number t. By applying the stability theorem [13], we
obtain deformations of generalized Kähler structures {Jβt, ψt}t∈4′ with one pure
spinor, where 4′ is a one dimensional complex disk. Then it turns out that every
Poisson submanifold M of X admits a Jβt-invariant conormal bundle, which is
a generalized Kähler submanifold of (X, Jβt, ψt) for t ∈ 4′. Thus every Poisson
submanifold inherits the induced generalized Kähler structures.

Theorem 1.20. Let M be a Poisson submanifold of a Poisson manifold X

with a Kähler structure ω. Then M is a generalized Kähler manifold with the
induced structure (Jβt,M , ψt,M).
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In Section 1.7, we discuss examples of generalized Kähler manifolds arising as
Poisson submanifolds. For instance, every hypersurface of degree d ≤ 3 in CP 3

is a Poisson submanifold which admits a non-trivial generalized Kähler structure.
We also exhibit invariant Poisson submanifolds of Poisson manifolds given by the
action of commutative complex group.

In Section 2, we will give a formal proof of the stability theorem in the case
of a Kähler manifold with a Poisson structure β2. The construction in the special
case is based on the Hodge decomposition and the Lefschetz decomposition, which
is an application of the theorem showing unobstructed deformations of generalized
Calabi-Yau (metrical) structures [12]. (Note that the proof in the general case is
similar and depends on the generalized Hodge decomposition.) The method of our
proof is a generalization of the one in unobstructed deformations of Calabi-Yau
manifolds due to Bogomolov-Tian-Todorov [30].

In Section 3, we discuss an application of the stability theorem to defor-
mations of bihermitian structures. By the one to one correspondence between
generalized Kähler structures and bihermitian structures with a torsion condi-
tion, our deformations of generalized Kähler structures {Jβt, ψt} give rise to
deformations of bihermitian structures {I+(t), I−(t), ht}. In particular, we show
that the infinitesimal deformations of {I±(t)} are respectively given by the class
[±β · ω] ∈ H0,1(T 1,0) defined by the contraction of the Poisson structure β and
the Kähler from ω. In other words, it follows from the stability theorem that the
class [β · ω] gives rise to unobstructed deformations of complex structures. As an
example, we discuss deformations of complex structures on the product of CP 1

and a complex torus. We show that Poisson structures on the product generate
the Kuranishi family in terms of the classes [β · ω].

Recently Gualtieri extended Hithicn’s construction of bihermitain structures
to Poisson manifolds by the Hamiltonian diffeomorphisms [16]. It seems to be
interesting to compare the construction by the stability theorem as in [13] and
the one by Hamiltonian diffeomorphsims. It must be noted that the construction
by Hamiltonian diffeomorphisms requires that the Kodaira-Spencer class [β · ω]
vanishes3.

The author would like to thank Professor Fujiki for valuable comment about
bihermitian structures. He would like to express his gratitude to Professor
Namikawa for his meaningful suggestions about Poisson geometry. He also thanks
to Professor Vaisman for a kind comment about definition of generalized com-

2This construction provides a formal family of deformations of generalized Kähler structures
in the case of Poisson deformations (see Section 4 in [13] for the convergence of the formal power
series).

3For instance, on a complex torus and a hyper Kähler manifold, there are Poisson structures
with non-vanishing class [β · ω].
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plex submanifolds. He is grateful to Professor Gualtieri for his comment about
deformations of bihermitian structures. Finally he would like to thank Professor
Hitchin for explaining the generalized geometry.

1. Generalized Kähler submanifolds.

1.1. Generalized complex structures.
Let X be a real compact manifold of dimension 2n. We denote by π : TX ⊕

T ∗X → TX the projection to the first component. The natural coupling between
TX and T ∗X defines the symmetric bilinear form 〈 , 〉 on the direct sum TX ⊕
T ∗X. Then we have the fibre bundle SO(TX ⊕ T ∗X) over X with fibre the
special orthogonal group with respect to TX ⊕ T ∗X. Note that SO(TX ⊕ T ∗X)
is a subbundle of End(TX ⊕ T ∗X). An almost generalized complex structure J
is a section of fibre bundle SO(TX ⊕ T ∗X) with J 2 = −id. Let LJ be the
(−√−1)-eigenspace with respect to J and LJ its complex conjugate. Then an
almost generalized complex structure J gives rise to the decomposition of the
complexified (TX ⊕ T ∗X)C into eigenspaces

(TX ⊕ T ∗X)C = LJ ⊕ LJ .

An almost generalized complex structure J is integrable if the space LJ is in-
volutive with respect to the Courant bracket [ , ]c. An integrable J is called a
generalized complex structure.

1.2. J -submanifolds.
Let iM : M → X be a submanifold of dimension 2m. We denote by T ∗X|M

the restricted bundle i−1
M T ∗X over M . Let p be a bundle map defined by the pull

back i∗M and the identity map idTM of TM ,

p = idT M ⊕ i∗M : TM ⊕ T ∗X|M → TM ⊕ T ∗M.

We denote by N∗(= N∗
M |X) the conormal bundle to M in X. Then we have the

short exact sequence,

0 −→ N∗ −→ TM ⊕ T ∗X|M p−→ TM ⊕ T ∗M −→ 0.

We define an intersection LJ (M) by

LJ (M) = LJ ∩ (TM ⊕ T ∗X|M )C = LJ ∩ (π−1(TM))C



Poisson structures and generalized Kähler submanifolds 111

and denote by LJ (M) its complex conjugate. For simplicity, we assume that
LJ (M) is a subbundle of (TM ⊕ T ∗X|M )C . Then the map p is restricted to the
direct sum LJ (M) ⊕ LJ (M) and we have the map q : LJ (M) ⊕ LJ (M) −→
(TM ⊕ T ∗M)C . Let LJ (N∗) denotes the intersection,

LJ (N∗) = LJ ∩ (N∗)C .

We also assume that LJ (N∗) a subbundle of (N∗)C . Then LJ (N∗) ⊕ LJ (N∗)
is a bundle in the kernel of the map q and we have the following sequence,

LJ (N∗)⊕ LJ (N∗) −→ LJ (M)⊕ LJ (M)
q−→ (TM ⊕ T ∗M)C . (1.1)

The sequence is not exact in general. Note that

LJ (N∗)⊕ LJ (N∗) ⊂ (
LJ (M)⊕ LJ (M)

) ∩ (N∗)C = ker q.

The following definition is same as those in [4], which was given in terms of the
pulback of Dirac structures [8].

Definition 1.1. A submanifold M is a J -submanifold if the sequence (1.1)
is exact,

0 −→ LJ (N∗)⊕ LJ (N∗) −→ LJ (M)⊕ LJ (M)
q−→ (TM ⊕ T ∗M)C −→ 0.

(1.2)

The image q(LJ (M)) is a maximally isotropic subbundle of TM ⊕T ∗M (see
[8]). Hence rank q(LJ (M)) = dimR M and we have

Lemma 1.2. There are three equivalent conditions:

(1) M is a J -submanifold.
(2) The map q : LJ (M)⊕ LJ (M) −→ (TM ⊕ T ∗M)C is surjective.
(3) 4 q(LJ (M)) ∩ q(LJ (M)) = {0}.

Since both bundles LJ (N∗) ⊕ LJ (N∗) and LJ (M) ⊕ LJ (M) are J -
invariant, TM ⊕ T ∗M inherits the almost generalized complex structure JM in-
duced in the quotient bundle. The almost generalized complex structure JM gives
the decomposition into eigenspaces,

4The condition (3) is the definition of a generalized complex submanifold in [4]. There is a
presentation by classical tensor fields [31].



112 R. Goto

(TM ⊕ T ∗M)C = LJ ,M ⊕ LJ ,M ,

and we have the exact sequence,

0 −→ LJ (N∗) −→ LJ (M) −→ LJ ,M −→ 0,

where LJ ,M = q(LJ (M)). Then from a viewpoint of the Dirac structure, it is
shown in [4] that

Theorem 1.3 ([4]). The induced structure JM is integrable and M inherits
a generalized complex structure.

Proof. For the sake of reader, we will give a proof. We denote by E|M ∈
Γ(M, TX ⊕ T ∗X|M ) the restriction of a smooth section E ∈ Γ(X,TX ⊕ T ∗X) to
M . Let Ei be a section of Γ(X, TX ⊕T ∗X) with Ei|M ∈ Γ(M,TM ⊕TX∗|M ) for
i = 1, 2. The Courant bracket is given by

[E1, E2]c = [u1, u2] +
1
2
{
Lv1θ

2 −Lv2θ
1 − iv2dθ1 + iv1dθ2

}
, (1.3)

where Ei = ui + θi for ui ∈ TM and θi ∈ T ∗X (i = 1, 2). Since the pull back i∗M
commutes with the exterior derivative d, the Lie derivative Lu and the interior
product iu for u ∈ TM , the Courant bracket satisfies the following,

[
p(E1|M ), p(E2|M )

]
c

= p
(
[E1, E2]c|M

)
. (1.4)

Since M is a J -submanifold, we have the exact sequence,

0 −→ LJ (N∗)⊕ LJ (N∗) −→ LJ (M)⊕ LJ (M) −→ (TM ⊕ T ∗M)C −→ 0,

where (TM ⊕ T ∗M)C = LJ ,M ⊕ LJ ,M . For every smooth section Ẽ ∈
Γ(M, LJ ,M ), there exists a smooth section E ∈ Γ(X, TX ⊕ T ∗X) with E|M ∈
Γ(M, LJ (M)) satisfying p(E|M ) = Ẽ. It follows from (1.3) that for Ẽ1, Ẽ2 ∈
Γ(M, LJ ,M) we have

[
Ẽ1, Ẽ2

]
c

= p
(
[E1, E2]c|M

)
.

Since [E1, E2]c |M∈ LJ ∩ (π−1(TM))C = LJ (M) for Ẽ1, Ẽ2 ∈ Γ(M, LJ (M)),
we have
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[
Ẽ1, Ẽ2

]
c
∈ p(LJ (M)) = LJ ,M .

Hence JM is integrable. ¤

Note that Theorem 1.3 holds for sheaves LJ (M) and LJ (N∗) with a similar
proof.

Example 1.4 (symplectic submanifolds). A symplectic manifold with a
symplectic structure ω gives the generalized complex structure Jω. Then a sym-
plectic submanifold of a symplectic manifold is a Jω-submanifold. In this case
we have

LJω (M)⊕ LJω (M) ∼= (TM ⊕ T ∗M)C ,

with LJω (N∗) = {0}.

Example 1.5 (complex submanifolds). A complex manifold with a com-
plex structure J admits the generalized complex structure JJ . Then a complex
submanifold of a complex manifold is a JJ -submanifold with the exact sequence

0 −→ LJJ
(N∗)⊕ LJJ

(N∗) −→ LJJ
(M)⊕ LJJ

(M)
q−→ (TM ⊕ T ∗M)C −→ 0,

where LJJ (N∗) = (N∗)1,0 and LJJ (M) = TM0,1 ⊕ (T ∗X)1,0|M .

Example 1.6. Let X1×X2 be the product of generalized complex manifolds
(X1,J1) and (X2, J2) with the generalized complex structure J1×J2. Let Mi

be a Ji-submanifold of (Xi, Ji) for i = 1, 2. Then the product M1 × M2 is a
(J1 ×J2)-submanifold of X1 ×X2.

Example 1.7 (J -invariant conormal bundles). Let (X, J ) be a general-
ized complex manifold and iM : M → X a submanifold of X whose conormal
bundle N∗ is J -invariant,

J (N∗) = N∗.

Then M is a J -submanifold.

Proof of Example 1.7. The bundle TM⊕T ∗X|M is also defined in terms
of N∗,

TM ⊕ T ∗X|M = {E ∈ TX ⊕ T ∗X|M ; 〈E, θ〉 = 0, ∀θ ∈ N∗}.
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Since J is a section of SO(TX ⊕ T ∗X), we have

〈J E, θ〉 = −〈E, J θ〉 = 0,

for E ∈ TM⊕T ∗X|M and θ ∈ N∗. Thus the bundle TM⊕T ∗X|M is J -invariant.
Hence we have the exact sequence by

0 // (N∗)C // (TM ⊕ T ∗X|M )C // (TM ⊕ T ∗M)C // 0

0 // LJ (N∗)⊕ LJ (N∗) // LJ (M)⊕ LJ (M) // (TM ⊕ T ∗M)C // 0

¤

Example 1.8 (b-fields). Let M be a J -submanifold of a generalized com-
plex manifold (X, J ). For a real d-closed 2-form b, the exponential eb acts on J
by the adjoint action to obtain a generalized complex structure Jb = AdebJ .
Then M is also a Jb-submanifold.

Proof of Example 1.8. The bundles LJb
(M) and LJb

(N∗) are respec-
tively given as the images by the adjoint action Adeb ,

LJb
(M) = Adeb(LJ (M)), LJb

(N∗) = Adeb

(
LJ (N∗)

)
,

and the adjoint action Adeb preserves the bundles TM ⊕ T ∗X|M and N∗. Hence
we have the exact sequence by

0 // LJ (N∗)⊕ LJ (N∗) // (LJ (M)⊕ LJ (M)) //

Ad
eb

²²

(TM ⊕ T ∗M)C //

Ad
ei∗b

²²

0

0 // LJb(N
∗)⊕ LJb(N

∗) // (LJb(M)⊕ LJb(M)) // (TM ⊕ T ∗M)C // 0,

where Adei∗b denotes the adjoint action by the exponential of the pull back i∗b.
¤

1.3. Generalized metrics and generalized Kähler structures.
A generalized metric Ĝ is a section of SO(TX ⊕T ∗X) with Ĝ2 =id satisfying

the condition: a bilinear form G defined by G(E1, E2) := 〈ĜE1, E2〉 is a positive-
definite metric on TX ⊕ T ∗X, where Ei = vi + ηi for vi ∈ TX and ηi ∈ T ∗X (i =
1, 2). A generalized metric gives the decomposition of TX⊕T ∗X into eigenspaces

TX ⊕ T ∗X = C+ ⊕ C−,
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where C+ and C− denotes the (+1)-eigenspace and the (−1)-eigenspace respec-
tively. Then there are a Riemannian metric g and a 2-form b such that C+ and
C− are respectively written as

C+ = {v + g(v, ) + b(v, ) | v ∈ T}
C− = {v − g(v, ) + b(v, ) | v ∈ T},

(1.5)

where g(v, ) and b(v, ) denote the 1-forms given by the interior product by v ∈
TX respectively. Hence the restriction of the projection π to C+ and C− gives
isomorphisms respectively,

π|C+ : C+ ∼= TX, π|C− : C− ∼= TX. (1.6)

A generalized Kähler structure is a pair (J0, J1) consisting of two commuting gen-
eralized complex structures with the generalized metric G = −J0J1 = −J1J0.
Then (TX ⊕ T ∗X)C is simultaneously decomposed into four eigenspaces by J0

and J1,

(TX ⊕ T ∗X)C = (LJ0 ∩ LJ1)⊕ (LJ0 ∩ LJ1) (1.7)

⊕ (LJ0 ∩ LJ1)⊕ (LJ0 ∩ LJ1). (1.8)

Then eigenspaces C+ and C− of the generalized metric G = −J0J1 = −J1J0

are respectively given by

(C+)C = (LJ0 ∩ LJ1)⊕ (LJ0∩LJ1), (1.9)

(C−)C = (LJ0∩LJ1)⊕ (LJ0∩LJ1). (1.10)

1.4. Generalized Kähler submanifolds.
As in example 1.7, if M has a J -invariant conormal bundle, then M admits

the induced generalized complex structure JM . Then we shall show the following
in this section 1.4.

Theorem 1.9. Let (J0,J1) be a generalized Kähler structure on X. If
a submanifold M of X admits a J0-invariant conormal bundle, then M is
also a J1-submanifold and M inherits the induced generalized Kähler structure
(J0,M , J1,M).

At first we define a generalized Kähler submanifold which is due to Barton



116 R. Goto

and Stiénon [3].

Definition 1.10. Let (X, J0, J1) be a generalized Kähler manifold and
M a submanifold of X. A submanifold M is a generalized Kähler submanifold if
M is a J0-submanifold and M is also a J1-submanifold.

Then it is shown that a generalized Kähler submanifold M inherits a gener-
alized Kähler structure (J0,M ,J1,M).

Let (X, J0, J1) be a 2n-dimensional generalized Kähler manifold with the
generalized metric G and M a submanifold of dimension 2m. As in Section 1.3,
we have subbundles C+ and C−. We define C+(M) and C−(M) respectively by
the intersections

C+(M) = C+ ∩ π−1(TM), C−(M) = C− ∩ π−1(TM). (1.11)

Then from (1.6), we see that C+(M) and C−(M) are bundles with rank C+(M) =
rankC−(M) = dim M = 2m. Let p be the bundle map in section 1.2,

p : TM ⊕ T ∗X|M −→ TM ⊕ T ∗M.

We denote by γ the bundle map given by the restriction of p to the subbundle
(C+(M)⊕ C−(M)),

Lemma 1.11. The map γ : (C+(M) ⊕ C−(M)) −→ (TM ⊕ T ∗M) is an
isomorphism.

Proof. The kernel of the map γ is the intersection N∗∩(C+(M)⊕C−(M)).
From (1.5), C+(M) and C−(M) are respectively written as

C+(M) = {u1 + g(u1, ) + b(u1, ) | u1 ∈ TM}, (1.12)

C−(M) = {u2 − g(u2, ) + b(u2, ) | u2 ∈ TM}. (1.13)

Since g is positive-definite, it follows that N∗∩(C+(M)⊕C−(M)) = {0}. Hence γ

is injective. Since rank (C+(M)⊕ C−(M)) = rank (TM ⊕ T ∗M) = 4m, it follows
that γ is an isomorphism. ¤

Lemma 1.12. If M admits a J0-invariant conormal bundle, then C+(M)
and C−(M) are respectively invariant under both actions of J0 and J1.

Proof. If M admits aJ0-invariant conormal bundle, as in Example 1.7,
π−1(TM) = TM⊕T ∗X|M is also J0-invariant. Since C+ and C− are respectively
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eigenspaces of G and J0 commutes with G, C+(M) and C−(M) are respectively
invariant under both action J0 and G. It follows from J1 = GJ0 that J1 is
preserving C+(M) and C−(M). ¤

Proof of Theorem 1.9. We shall show the sequence is exact,

LJ1(N
∗)⊕ LJ1(N

∗) −→ LJ1(M)⊕ LJ1(M)
q1−→ (TM ⊕ T ∗M)C .

Since M is a J0-submanifold, it follows from Theorem 1.3 that we have the exact
sequence with respect to J0,

0 −→ LJ0(N
∗)⊕ LJ0(N

∗) −→ LJ0(M)⊕ LJ0(M)
q0−→ (TM ⊕ T ∗M)C −→ 0,

and we have the induced generalized complex structure Jo,M . From Lemma 1.12,
(C+(M)⊕C−(M))C is a subbundle of both LJ0(M)⊕ LJ0(M) and LJ1(M)⊕
LJ1(M). It follows from Lemma 1.11 that we have the following commutative
diagram,

0 // LJ0(N
∗)⊕ LJ0(N

∗) // LJ0(M)⊕ LJ0(M)
q0 // (TM ⊕ T ∗M)C // 0

(C+(M)⊕ C−(M))C

OO

²²

∼=
γ

// (TM ⊕ T ∗M)C

LJ1(N
∗)⊕ LJ1(N

∗) // LJ1(M)⊕ LJ1(M) q1
// (TM ⊕ T ∗M)C .

Hence the map q1 : LJ1(M)⊕ LJ1(M) → (TM ⊕ T ∗M)C is surjective. Hence it
follows from Lemma 1.2 (2) that M is a J1-submanifold and a generalized Kähler
submanifold. ¤

Our Theorem 1.9 can be generalized. For instance, as in our proof, if
C+(M) ⊕ C−(M) is invariant under the action of J0, then M is a generalized
Kähler submanifold.

1.5. Generalized Kähler manifolds with one pure spinor.
A pure spinor of X is a complex differential form ψ with dimC kerψ =

2 dimC X, where kerψ = {E ∈ (TX ⊕ T ∗X) ⊗ C | E · ψ = 0}. A pure spinor is
non-degenerate if we have a decomposition,

(TX ⊕ T ∗X)C = kerψ ⊕ kerψ.
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Thus a non-degenerate, pure spinor induces the almost generalized complex struc-
ture Jψ such that kerψ is the (−√−1) eigenspace Lψ of Jψ. If a non-degenerate,
complex pure spinor ψ is d-closed, then the induced Jψ is integrable.

Definition 1.13. A pair (J0, ψ) consisting of a generalized complex struc-
ture and a d-closed, non-degenerate, complex pure spinor is a generalized Kähler
structure with one pure spinor if the induced pair (J0,Jψ) is a generalized Kähler
structure.

For a point x ∈ M , a non-degenerate pure spinor ψ is written as

ψx = ψl,xeb+
√−1ω, (1.14)

where ψl,x is a complex l-form which is given by ψl,x = θ1 ∧ · · · ∧ θl in terms of
1-forms {θi}l

i=1 and ω and b are real 2-forms. The degree of ψl,x is called Type of
the pure spinor ψ at x. If Type ψx = 0, it follows that the pullback i∗Mψx of ψ to
a submanifold M does not vanish. In general the pullback i∗Mψ may vanish which
is not a pure spinor on M . However, we have

Theorem 1.14. Let (X, J0, ψ) be a generalized Kähler manifold with one
pure spinor. Let M be a submanifold with invariant conormal bundle with respect
to J0. Then the pull back i∗Mψ is a d-closed, non-degenerate, pure spinor on M

and the induced pair (J0,M , i∗Mψ) is a generalized Kähler structure with one pure
spinor on M .

We shall show the following lemma for the proof of Theorem 1.14.

Lemma 1.15. Let (X, J0, ψ) be a generalized Kähler manifold with one pure
spinor and M a submanifold with invariant conormal bundle with respect to J0.
Then the pull back i∗Mψ does not vanish.

Proof of Lemma 1.15. In the case l = 0, then i∗Mψx = i∗Meb+
√−1ω 6= 0.

Thus it suffices to consider the case l > 1. From (1.14), if i∗Mψx = 0, then we have
i∗Mψl,x = 0. Thus i∗Mψl,x is generated by N∗ and at least one element of {θi}l

i=1

belongs to N∗. We can assume that θi 6= 0 ∈ N∗. It follows from θi · ψx = 0 that
we see θi ∈ Lψ. Then we have

G(θi, θ
i
) = 〈Gθi, θ

i〉 = 〈−J0Jψθi, θ
i〉 (1.15)

=
√−1〈J0θ

i, θ
i〉. (1.16)

Since J0N
∗ = N∗, we see that J0θ

i is a 1-form and 〈J θi, θ
i〉 = 0. Hence
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G(θi, θ
i
) = 0. Since G is positive-definite, it implies θi = 0, which is a contradic-

tion. Hence we conclude that i∗Mψx 6= 0 for all x ∈ M . ¤

Proof of Theorem 1.14. Let Jψ be the induced generalized complex
structure by ψ with the (−√−1)-eigenspace Lψ. As in Section 1.4, C+(M) ⊕
C−(M) is Jψ-invariant and under the isomorphism q : C+(M) ⊕ C−(M) ∼=
TM ⊕ T ∗M we have the decomposition,

(TM ⊕ T ∗M)C = q(Lψ(M))⊕ q(Lψ(M)).

For E = u + η ∈ L
(M)
ψ , we see that

q(E) · i∗Mψ = (u + i∗Mη) · i∗Mψ (1.17)

= i∗M(u + η) · ψ = i∗M(E · ψ) = 0. (1.18)

It implies that q(Lψ(M)) ⊂ ker i∗Mψ. Since dim q(Lψ(M)) = 2m and q(Lψ(M)) ∩
q(Lψ(M)) = {0}, it follows from Lemma 1.15 that q(Lψ(M)) = ker i∗Mψ is maxi-
mally isotropic. Thus i∗Mψ is a non-degenerate, pure spinor on M with the induced
structure JM,ψ. Since the pull back i∗Mψ is d-closed, the pair (JM,0,JM,ψ) is a
generalized Kähler structure. Hence the pair (JM,0, i

∗
Mψ) is a generalized Kähler

structure with one pure spinor. ¤

1.6. Poisson submanifolds.
Definition 1.16. Let X be a complex manifold with a holomorphic 2-vector

β. If the Schouten bracket vanishes, i.e., [β, β]Sch = 0, we call β a (holomorphic)
Poisson structure on X and the Poisson bracket is defined by

{f, g} = β(df ∧ dg).

Definition 1.17. Let X be a complex manifold with a Poisson structure β

and M a complex submanifold with the defining ideal sheaf IM . A submanifold
M is a Poisson submanifold if we have {f, g} ∈ IM for all f ∈ IM and g ∈ OX .

A Poisson submanifold admits the induced Poisson structure.
Let JJ be the generalized complex structure defined by the usual complex struc-
ture J . By using a Poisson structure β, we obtain a family of generalized complex
structures Jβt parameterized by the complex numbers t

Jβt = eβt ◦JJ ◦ e−βt,
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The structure Jβt is written in the form of a matrix,

Jβt =

(
J −2

√−1(βt− βt)

0 −J∗

)
. (1.19)

Then we have

Lemma 1.18. Every Poisson submanifold M admits a Jβt-invariant conor-
mal bundle for all t.

Proof. Since β(df, dg) ∈ IM for f ∈ IM and (N∗)1,0 is generated by the
set {df | f ∈ IM}, we have the restriction β(df, )|M = 0. It follows from (1.19)
that Jβ(N∗) = N∗. ¤

In [13] we obtain a stability theorem of generalized Kähler structures with one
pure spinor. It implies that a generalized Kähler structure with one pure spinor
is stable under small deformations of generalized complex structures. By apply-
ing the stability theorem to small deformations of generalized complex structures
{Jβt} starting from JJ , we have deformations of generalized Kähler structures
with one pure spinor {Jβt, ψt}. The type of Jβt is given by

TypeJβt = n− 2 rank β.

It implies that if β 6= 0, then deformations of generalized Kähler structures with
one pure spinor {Jβt, ψt} can not be obtained from ordinary Kähler structures
by the action of b-fields. Hence we have,

Theorem 1.19. Let X be a Kähler manifold with non-trivial Poisson struc-
ture β. Then there exists an analytic family of non-trivial generalized Kähler
structures with one pure spinor {Jβt, ψt}.

Hence it follows from 1.18 and 1.14 that

Theorem 1.20. Let M be a Poisson submanifold of a Poisson manifold X

with a Kähler structure ω. Then M is a generalized Kähler manifold with the
induced structure (Jβt,M , ψt,M).

1.7. Examples of generalized Kähler submanifolds arising as Pois-
son submanifolds.

Let X be a compact Kähler manifold on which an l-dimensional commutative
complex group G acts holomorphically. The Lie algebra g of G generates holo-
morphic vector fields {Vi}l

i=1 on X. Since [Vi, Vj ] = 0, it follows that a linear
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combination of 2-vectors Vi ∧ Vj ’s gives a holomorphic Poisson structure β,

β =
∑

i,j

λi,jVi ∧ Vj , (1.20)

where λi,j is a constant. Note that [Vi, Vj ] = 0 implies [β, β]Sch = 0. If β 6= 0,
from the stability theorem we have deformations of generalized Kähler structures
{Jβt, ψt}.

Lemma 1.21. Let M be a complex submanifold with defining ideal IM . If
the ideal IM is invariant under the action of G, then M is a Poisson submanifold
of (X, β).

Proof. Since we have Vif ∈ IM for f ∈ IM and i = 1, . . . , l. Hence
β(df, ) ∈ IM ⊗ T 1,0X for f ∈ IM . It implies that M is a Poisson submanifold. ¤

Example 1.22 (toric submanifolds). Let X be a compact toric manifold of
dimension n. Then there is the action of n-dimensional complex torus G on X.
Then a toric submanifold M which is invariant under the action of G is a Poisson
submanifold with respect to β as in (1.20).

Example 1.23. Let CP 4 be the complex projective space with the homo-
geneous coordinates [z0, z1, z2, z3, z4] on which the commutative group C× ×C×

acts by a homomorphism ρ : C× ×C× →GL(5, C),

ρ(λ1, λ2) = diag(1, λ1, λ1, λ2, λ2).

Then we have a Poisson structure β = V1 ∧ V2 as in (1.20). We take a following
quadratic function F of CP 4

F (z) =
∑
i=1,2
j=3,4

aijzizj ,

where aij are constants. The hypersurface M defined as the zero of F becomes a
smooth manifold of complex dimension 3 for suitably chosen constants aij . Since
ρ∗(λ1, λ2)F (z) = λ1λ2F (z), the hypersurface M is a Poisson submanifold in CP 4

which admits the deformations generalized Kähler structure with one pure spinor
(Jβt, ψt) from Theorem 1.20. Since the Type of Jβt is 2 at generic points of
X and the type of the induced Jβt,M is 1 at generic points of M , the gener-
alized Kähler structure (Jβt, ψt) and the induced generalized Kähler structure
(JβtM , ψt) are not obtained from Kähle structures by the action of b-fields.
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Example 1.24. Let CP 3 be the complex projective space with the ho-
mogeneous coordinates [z0, z1, z2, z3]. On the open set {z0 6= 0}, we have the
inhomogeneous coordinates {ζ1, ζ2, ζ3} given by ζi = zi

z0
. Let f = f(ζ1, ζ2, ζ3) be a

polynomial of degree d ≤ 3 and we assume that df 6= 0. Then we define a 2-vector
field βf by

βf = f1
∂

∂ζ2
∧ ∂

∂ζ3
+ f2

∂

∂ζ3
∧ ∂

∂ζ1
+ f3

∂

∂z1
∧ ∂

∂ζ2
,

where fi = ∂
∂zi

f . Then it turns out that [β, β]Sch = 0. Thus βf is a Poisson
structure, which is called the exact quadratic Poisson structure [24], [27]. We also
see that β(df, ) = 0. Thus the zero of f is a Poisson submanifold with respect
to the Poisson structure βf on C3. Let F = F (z0, . . . , z3) be the homogeneous
polynomial defined by

F = zd
0f

(
z1

z0
,
z2

z0
,
z3

z0

)
.

Since each fi is a quadratic polynomial, βf can be extended as a holomorphic
Poisson structure βF on CP 3. Then a complex surface M given by the zero of F

is a Poisson submanifold.

Theorem 1.25. Let M be a complex smooth hypersurface of the projective
space CP 3 defined by a homogeneous polynomial F of degree d ≤ 3. Then M is
a non-trivial generalized Kähler manifold arising as Poisson submanifold of CP 3

with respect to the Poisson structure βF .

Proof. It suffices to show that the induced Poisson structure βM is non-
trivial. On {z0 6= 0}, βM is the induced structure from βf . Since M is smooth,
we can assume that there exists an open set defined by {f3 6= 0} with coordinates
(η1, η2, η3),

η1 = ζ1

η2 = ζ2

η3 = f(ζ1, ζ2, ζ3).

Then βf is written as

βf = f3
∂

∂η1
∧ ∂

∂η2
.
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Since M is defined by η3 = 0, it follows that βM is non-trivial. Hence the type
of the induced generalized complex structure JM is 0 on the complement of the
zero of βM . Hence the induced generalized Kähler structure on M is not obtained
from ordinary Kähler structures by b-field action. ¤

2. Deformations of generalized Kähler structures via Poisson
structures.

Let X be a compact Kähler manifold with a Kähler form ω. Then we have
the generalized Kähler structure with one pure spinor (JJ , ψ), where JJ denotes
the generalized complex structure induced from the complex structure J on X and
ψ is the pure spinor defined by

ψ = e
√−1ω.

We assume that there exists a Poisson structure β on X. Then we have defor-
mations of generalized complex structures {Jβt}t∈4 as in Section 1. Applying
the stability Theorem in [13] to deformations of generalized complex structures
{Jβt}t∈4, we obtain

Theorem 1.19. Let X be a Kähler manifold with non-trivial Poisson struc-
ture β. Then there exists an analytic family of non-trivial generalized Kähler
structure with one pure spinor {Jβt, ψt}.

In the case of deformations starting from ordinary Kähler manifolds, the proof
of stability theorem becomes simple which is based on the ordinary Hodge decom-
position and the Lefschetz decomposition. Note that in general case, we used the
generalized Hodge decomposition. We shall give an exposition of our proof in the
special cases. We use the same notation as in [13].

Let CL be the real Clifford algebra of TX ⊕ T ∗X with respect to 〈 , 〉. Then
CL acts on differential forms by the spin representation. The Clifford group Gcl

is defined in terms of the twisted adjoint Ãdg,

Gcl := {g ∈ CL× | Ãdg(TX ⊕ T ∗X) ⊂ TX ⊕ T ∗X}.

Let CL2 be the Lie algebra which consists of elements of the Clifford algebra of
degree less than or equal to 2. It turns out that CL2 is the Lie algebra of the
Clifford group Gcl. The set of almost generalized complex structures forms an
orbit of the adjoint action of the Clifford group and the set of almost generalized
Kähler structures with one pure spinor is also an orbit of the diagonal action of
the Clifford group. Thus it follows that small deformations of almost generalized
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Kähler structures with one pure spinor are given by the action of exponential of
CL2 on (JJ , ψ),

(
Adez(t)JJ , ez(t) · ψ)

,

where z(t) ∈CL2[[t]]. Let {Jβt} be deformations of generalized complex structures
by a Poisson structure β as before. The deformations {Jβt} are given by the
adjoint action of real 2-vector a = β + β,

Jβt = AdeatJJ .

Let b(t) be an analytic family of b(t) of CL2[[t]],

b(t) = b1t + b2
t2

2!
+ · · · =

∞∑

i=1

bi
ti

i!
.

We denote by ∧n,0 the canonical line bundle of (X,J). We assume that there
exists a family {b(t)} with the following conditions (2.1) and (2,2),

bi · ∧n,0 ⊂ ∧n,0 (2.1)

d(eat eb(t) · ψ) = 0. (2.2)

Then it follows from the Campbel-Hausdorff formula that there is the z(t) ∈
CL2[[t]] with

ez(t) = eateb(t).

From (2.1), we see that the action by b(t) is preserving JJ ,

Adeb(t)JJ = JJ .

Thus we have

Adez(t)JJ = Adeat ◦Adeb(t)JJ (2.3)

= AdeatJJ = Jβt. (2.4)

From (2.2), the non-degenerate pure spinor ψt = ez(t) · ψ is d-closed. Hence the
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pair (Adz(t)JJ , ez(t) · ψ) = (Jβt, ψt) is a generalized Kähler structure with one
pure spinor. We shall construct b(t) which satisfies the (2.1) and (2.2). Let CL[i]

be the subspace of the CL of degree i. We define CLi for i = 0, . . . , 3 by

CL0 = C∞(X), CL1 = TX ⊕ T ∗X, (2.5)

CL2 = CL0 ⊕ CL[2], CL3 = CL1 ⊕ CL[3]. (2.6)

Then we define bundles k̃er
1

and k̃er
2

respectively by

k̃er
1

= {b ∈ CL2 | b · ∧n,0 ⊂ CL0 · ∧n,0}, (2.7)

k̃er
2

= {b ∈ CL3 | b · ∧n,0 ⊂ CL1 · ∧n,0}, (2.8)

where CLi · ∧n,0 denotes the image by the action of CLi on the canonical line

bundle ∧n,0. Then a section b ∈ k̃er
i

(i = 1, 2) acts on ψ = e
√−1ω by the spin

representation and we obtain bundles K̃1 and K̃2,

K̃i =
{
b · ψ | b ∈ k̃er

i}
.

The bundle K̃1 is the direct sum of U0,−n and U0,−n+2,

K̃1 = U0,−n ⊕ U0,−n+2,

where U0,−n = CL0 · ψ = {fψ | f ∈ C∞(X)} and U0,−n+2 is given by the
contraction ∧ω by the Kähler form ω,

U0,−n+2 = {hψ + p ∧ ψ | h ∈ C∞(M), p ∈ ∧1,1, ∧ω p + 2h = 0}, (2.9)

where ∧1,1 denotes forms of type (1, 1) with respect to the complex structure J .
We define K1 to be U0,−n+2 and write K̃2 as K2. Then K2 is written as

K2 = K̃2 = {η ∧ ψ | η ∈ ∧1 ⊕ ∧2,1 ⊕ ∧1,2}.

Then we have a differential complex {Ki, d} by the exterior derivative d,

0 // K1 d // K2 d // · · · .
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It turns out that the complex (Ki, d) is elliptic since we have the following elliptic
complex,

0 −→ P 1,1 d−→ ∧2,1 ⊕ ∧1,2 d−→ · · · ,

where P 1,1 denotes the primitive (1, 1)-forms on the Kähler manifold X (cf, Propo-
sition 4.7 in [11]). The complex (K∗, d) is a subcomplex of the full de Rham
complex,

0 // K1 d //

²²

K2 d //

²²

· · ·

⊕2n
i=0∧i d // ⊕2n

i=0∧i d // ⊕2n
i=0∧i // · · ·

We denote by Hi(K∗) the cohomology group of the complex (K∗, d). It follows
from the Hodge decomposition and the Lefschetz decomposition that the map
pi : Hi(K∗) → ⊕2n

j=0H
j
dR(X) is injective for i = 1, 2.

Let (dez(t)ψ)[k] denotes the term of dez(t)ψ of degree k in t. The first term is
given by

(dez(t)ψ)[1] = daψ + db1ψ,

where daψ = (d(β + β)ω2) ∧ ψ ∈ (∧2,1 ⊕ ∧2,1) ∧ ψ. Thus daψ ∈ K2 is d-exact.
Since the map p2 is injective, the class [daψ] ∈ H2(K∗) vanishes and we have a
solution b1 ∈ K1 of the first equation daψ + db1ψ = 0.

Next we consider an operator e−z(t)dez(t) acting on differential forms, where
z(t) = log eateb(t). It follows that the operator e−z(t)dez(t) is a Clifford-Lie operator
of order 3 which is locally written in terms of the Clifford algebra valued Lie
derivative,

e−z(t)dez(t) =
∑

i

EiLvi + Ni, (2.10)

where Lvi denotes the Lie derivative by a vector vi and Ei ∈ CL1, Ni ∈ CL3 (cf
Definition 2.2 in [12]). We find an open covering {Uα} of X with a non-vanishing
holomorphic n-form Ωα on each Uα. We denote by Φα the pair (Ωα, ψ). Since
the set of almost generalized Kähler structures is invariant under the action of
diffeomorphisms, the Lie derivative of Φa by a vector field v is given by



Poisson structures and generalized Kähler submanifolds 127

LvΦα = aα · Φα = (aα · Ωα, aα · ψ),

for a section aα ∈ CL2 on Uα. It follows from (2.10) that there is a hα ∈ CL3 such
that

e−z(t)dez(t) · Φα = hα · Φα = (hα · Ωα, hα · ψ).

Since b(t) ∈ k̃er
1

and Adez(t)JJ = Jβt is integrable, we have

dez(t)Ωα = Eα · ez(t)Ωα,

for a Eα ∈ CL1, which is the integrablity condition of Jβt in terms of pure spinors.
Thus

e−z(t)dez(t) · Ωα = Ẽα · Ωa,

where Ẽa = e−z(t)Eaez(t) ∈ CL1. It follows from ha ·Ωα = Ẽα ·Ωα that hα ∈ k̃er
2
.

It implies that hα · ψ ∈ K2.
We shall find a solution b(t) of the equation (dez(t)ψ) = 0 by the induction

on the degree k. We assume that there exists a solution bj ∈ k̃er
1

for 0 ≤ j < k of
the equation (dez(t)ψ)[i] = 0, for all 0 ≤ i < k. Then we have

(e−z(t)dez(t)ψ)[k] =
∑

i+j=k
0≤i,j≤k

(e−z(t))[j](d ez(t)ψ)[i] (2.11)

= (d ez(t)ψ)[k]. (2.12)

Since (e−z(t)dez(t)ψ)|Uα = hα ·ψ|Uα ∈ K2 for hα ∈ k̃er
2

on each Uα, it follows that
(d ez(t)ψ)[k] = (hα · ψ)[k] ∈ K2. The d-exact form (d ez(t)ψ)[k] is written as

(d ez(t)ψ)[k] =
1
k!

(dbk · ψ) + Obk,

where Obk is also a d-exact form in K2 which defined in terms of a and bj for
1 ≤ j < k. Since the map p2 is injective, it follows that the class [Obk] ∈ H2(K∗)
vanishes and we have a solution bk of the equation (d ez(t)ψ)[k] = 0. By our
assumption of the induction, we have a solution b(t) in the form of formal power
series, which can be shown to be a convergent series.
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The cohomology group H1(K∗) is given by H1,1(X). Then by applying The-
orem 3.2 in [13], we obtain a 2-parameter family of deformations of generalized
Kähler structures (Jβt, ψt,s),

Theorem 2.1. There exists a family of solutions bs(t) parameterized by
s ∈ H1,1(M), which gives rise to deformations of generalized Kähler structures
(Jβt, ψt,s).

3. Deformations of bihermitian structures.

Let (X,ω) be an n-dimensional compact Kähler manifold with a Poisson struc-
ture β and a complex structure J . Then we have deformations of generalized
Kähler structures {Jβt, ψt} as in Section 2. According to theorem by Gualtieri,
there is the one to one correspondence between generalized Kähler structures and
bihermitian structures with a torsion condition. A bihermitian structure is a triple
(I+, I−, h) consisting of two complex structures I+ and I− and a Hermitian struc-
ture h with respect to both I+ and I−. Let ω± be the Hermitian 2-form and ∂

±

the ∂-operator with respect to I± respectively. Then the torsion condition is given
by

d+
c ω+ = −d−c ω− = H,

where H is a d-exact 3-form and d±c =
√−1(∂±−∂

±
). Let z(t) be a solution of the

equation dez(t)ψ = 0 as in section 2, which gives rise to deformations of generalized
Kähler structures {Jβt, ψt}, where ez(t) = eat eb(t) and a = β + β. Then we
have the corresponding deformations of bihermitian structures {(I+(t), I−(t), ht)},
where I+(0) = I−(0) = J . Let b1 be the first term of power series b(t) in t. On
an open set U , we find a basis {Zi}n

i=1 of vector fields of type (1, 0) with respect
to the complex structure J . We denote by θ

i
the 1-form of type (0, 1) defined by

the interior product of −√−1ω by Zi,

θ
i
= −√−1 iZi ω.

We define E
±
i to be Zi ± θ

i ∈ (TX ⊕ T ∗X) ⊗C. Then b1 ∈ CL2 acts on E
±
i by

the adjoint action,

[
b1, E

±
i

] ∈ (TX ⊕ T ∗X)⊗C.

We denote by β(θ
i
) the vector filed given by the contraction of 2-vector β by 1-
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from θ
i
. Then we have a deformed basis {Z±i (t)} of vectors of type (1, 0) with

respect to I±(t) on U which is written by the followings up to degree 1 in t,

Z+
i (t) ≡ Zi +

(
β(θ

i
) + πT X [b1, E

+

i ]
)
t, (mod t2) (3.1)

Z−i (t) ≡ Zi +
(− β(θ

i
) + πT X [b1, E

−
i ]

)
t, (mod t2), (3.2)

where πT X : TX ⊕ T ∗X → TX denotes the projection.

Lemma 3.1. For a = β + β, there exists a solution z(t) of the equation
dez(t) · ψ = 0 such that the first term b1 is a real 2-form.

Proof. The first term of the equation dez(t)ψ = 0 is given by

da · ψ + db1 · ψ = 0.

Then we have

da · ψ = d(β + β) · ψ = −1
2
(β · ω2 + β · ω2)ψ,

where β · ω2 denotes the interior product of the 4-form ω2 by the 2-vector β. The
d-exact form − 1

2d(β ·ω2+β ·ω2) is a real form of type ∧2,1⊕∧1,2. As in Proposition
4.7 in [11], we have a real elliptic complex,

0 −→ P 1,1
R

d−→ (∧2,1 ⊕ ∧1,2)R
d−→ · · · ,

whose cohomology groups are respectively given by the harmonic real primitive
form P 1,1

R of type (1, 1) and the real part of the Dolbeault cohomology (H2,1(X)⊕
H1,2(X))R. Hence we obtain a real b1 ∈ P 1,1

R with da · ψ + db1 · ψ = 0. Hence the
result follows. ¤

Hence for b1 ∈ ∧2T ∗X, it follows from πT X [b1, E
+

i ] = 0 that the Z±i (t) is
given by

Z±i (t) = Zi ± β · θi
t, (mod t2). (3.3)

The contraction between β and
√−1ω is written as

√−1β · ω =
∑

i

(β · θ)θi ∈ T 1,0 ⊗ ∧0,1.
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Since
√−1β ·ω is ∂-closed, we have a class

√−1[β ·ω] ∈ H0,1(X, T 1,0). Then it fol-
lows from (3.3) that the infinitesimal tangents of deformations {I+(t)} and {I−(t)}
are respectively given by the classes

√−1[β · ω] and −√−1[β · ω] ∈ H0,1(X, T 1,0).
Hence we have

Theorem 3.2. Let X be a compact Kälher manifold with a Poisson structure
β. The class [β·ω] ∈ H0,1(X, T 1,0) defined by the contraction of β by a Kähler form
ω gives rise to unobstructed deformations. In other words, we have a vanishing of
the obstruction class, [β · ω, β · ω] = 0 ∈ H0,2(X,T 1,0).

Proof. Let {Jβt, ψt} be deformations of generalized Kähler structures
as in section 2 with the corresponding deformations of bihermitian structures
{I+(t), I−(t), ht}. Then the class

√−1[β · ω] ∈ H0,1(X, T 1,0) is the infinitesi-
mal tangent of the deformations of I+(t). Hence we obtain a vanishing of the
obstruction class, [β · ω, β · ω] = 0 ∈ H0,2(X, T 1,0). ¤

Example 3.3. Let M be a complex torus of dimension n and X the product
of M and the projective space CP 1. Deformations of X were explicitly studied in
[22]. A holomorphic vector field on CP 1 is written as a linear combination,

a
∂

∂ζ
+ bζ

∂

∂ζ
+ cζ2 ∂

∂ζ
,

where ζ is the affine coordinates of CP 1 and a, b, c are constants. Let {z1, . . . , zn}
be the coordinates of complex torus M . Then every representative p of
H0,1(X,T 1,0) is given in the from,

p =
∑

i

(
ai

∂

∂ζ
+ biζ

∂

∂ζ
+ ciζ

2 ∂

∂ζ

)
dzi +

∑

j,k

λjk
∂

∂zj
dzk, (3.4)

where λjk are constants. We define an n× 3 matrix P by

P =




a1 b1 c1

a2 b2 c2
...

...
...

an bn cn


 .

Then we see that the class of obstruction [p, p] vanishes if and only if the rank of
the matrix P is less than or equal to 1. On the other hand, every holomorphic
2-vector on X is given by
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β =
∑

i

(
ai

∂

∂ζ
+ biζ

∂

∂ζ
+ ciζ

2 ∂

∂ζ

)
∧ ∂

∂zi
+

∑

j,k

λjk
∂

∂zj
∧ ∂

∂zk
.

Then the Schouten bracket [β, β] also vanishes if and only if the rank of P is less
than or equal to 1. Let ω be the Kähler form ωFS + ωM , where ωFS denotes the
Fubini-Study form of CP 1 and ωM is the standard Kähler form of M . Then the
contraction β · ω is the representative p and we have a surjective map

H0(X,∧2T 1,0) → H0,1(X, T 1,0).

Let Λ = {ωα}2n
α=1 be the discrete lattice of maximal rank 2n in Cn with M =

Cn/Λ, where ωα = (ωα1, . . . ωαn). We denote by Vi the holomorphic vector field
ai(∂/∂ζ) + biζ(∂/∂ζ) + ciζ

2(∂/∂ζ). Then Vi generates the automorphism exp (Vi)
of CP 1. For each α, we define an automorphism ρt(ωα) by

ρt(ωα) =
∑

i

exp (ωαiVit).

In the case of the rank of P = 1, V1, . . . , Vn are commuting vector fields. Hence
ρt gives rise to a representation of Λ = π1(M) on automorphisms of CP 1. By the
family of representations {ρt}, we obtain deformations of complex fibre bundles
{Xt} over the torus M starting from the trivial bundle X0 = M ×CP 1,

Xt = M ×ρt CP 1 → M.

In [22], it is shown that the infinitesimal deformation of {Xt} is the class [p] ∈
H0,1(X, T 1,0) in (3.4), where λjk = 0.
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