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Abstract. The main purpose of this article is to introduce the notion of real
quadratic fields of minimal type in terms of continued fractions with period `. We
show that fundamental units of real quadratic fields that are not of minimal type are
relatively small. So, we see by a theorem of Siegel that such fields have relatively large
class numbers. Also, we show that there exist exactly 51 real quadratic fields of class
number 1 that are not of minimal type, with one more possible exception. All such
fields are listed in the table of Section 8.2. Therefore we study real quadratic fields
with period ` of minimal type in order to find real quadratic fields of class number
1, and first examine the case where ` ≤ 4. In particular we obtain a result on Yokoi

invariants md and class numbers hd of real quadratic fields Q(
√

d) with period 4 of
minimal type.

1. Introduction.

Let Q(
√

d) be a real quadratic field where d is a square-free positive integer
with d > 1. We put ω = ω(d) :=

√
d or ω := (1 +

√
d)/2 according to whether

d ≡ 2, 3 or d ≡ 1 mod 4. The canonical integral basis of Q(
√

d) is given by {1, ω},
and the simple continued fraction expansion of ω becomes of the form

ω = [a0, a1, . . . , a`]. (∗)

Here, ` is the (minimal) period of ω. For brevity, we say that ` is a period of a real
quadratic field Q(

√
d). It is known by the classical theory of continued fractions

(Euler, Lagrange, Legendre, Galois) that (i) the symmetric property: an = a`−n,
1 ≤ n ≤ `− 1 is satisfied, and that (ii) the last positive integer a` appeared in the
right hand side of equality (∗) is uniquely determined by the integral part a0 of
ω. It is also known that the fundamental unit εd > 1 of it is calculated by using
partial quotients a0, a1, . . . , a`.
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We can write uniquely εd = (t + u
√

d)/2 with positive integers t, u. Yokoi
[26] introduced an integer md := [u2/t] (≥ 0) as an invariant of Q(

√
d), which

is one of Yokoi’s d-invariants nd,md, ad, bd for a real quadratic field. Here, [x]
denotes the largest integer ≤ x for a real number x. Yokoi [22], [23] defined the
first form of nd, ad, bd to study Gauss conjecture (class number one problem) on
real quadratic fields Q(

√
p), p being a prime number for which p ≡ 1 mod 4. In

Yokoi [24], he reformed these invariants and first introduced the definition of md,
where he treated real quadratic fields whose fundamental units have norm −1, that
is, ones with odd period. Finally, he defined Yokoi’s d-invariants for general real
quadratic fields in [26]. These invariants give an estimate for the class number of
a real quadratic field ([26], Yokoi [25]), and a necessary and sufficient condition
for Ankney-Artin-Chowla conjecture [1] to hold ([24]). Recently, they have given
also a necessary and sufficient condition for Pell equation x2 − dy2 = ±2 to have
a solution in positive integers, and in particular the least solution is naturally
expressed by using md (see Yokoi [27] and Yuan [28]).

Here, we call simply md among Yokoi’s d-invariants the Yokoi invariant of a
real quadratic field Q(

√
d). Let nd := [t/u2] (≥ 0). Yokoi proved ([26, Proposi-

tion 4.1 (2)] and [24, Corollary 1.4]) that there exist finitely many real quadratic
fields Q(

√
d) of class number 1 with nd > 0. (In fact, it is immediate from [26,

Proposition 4.1 (2)] that there exist exactly 39 such fields with one more possible
exception.) When d 6= 3, 5, since the condition that md > 0 is equivalent to the
condition that nd = 0, as its consequence, he introduced the Yokoi invariant md

to study real quadratic fields with nd = 0 (cf. [24, Introduction]). Furthermore,
he proved that if d > 13 then mdd < εd < (md + 1)d, so that the quantity md

gives a size of the fundamental unit for d. When the value of md is large, we
may consider that the fundamental unit is large. This paper is mainly about real
quadratic fields with md > 0.

Conversely, let ` be a fixed positive integer and a1, . . . , a`−1 any symmetric
positive integers. Then, we construct a non-square positive integer d such that the
continued fraction expansion of ω = ω(d) with period ` is of the form (∗), and if
it is square-free then we consider a real quadratic field Q(

√
d). A construction of

non-square positive integers d such that the continued fraction expansion of ω has
the given symmetric part a1, . . . , a`−1 is obtained by Friesen [4] in the case where
ω =

√
d, and by Halter-Koch [5] in the case where ω = (1+

√
d)/2 and d ≡ 1 mod

4. We improve their result by considering three cases separately (Theorem 3.1).
By using an integer s0 appeared in this theorem of Friesen and Halter-Koch, we
can define the notion of a positive integer with period ` of minimal type and a real
quadratic field with period ` of minimal type (Definition 3.1). Their result implies
that there exist infinitely many real quadratic fields which are not of minimal
type such that the continued fraction expansion of ω has the given symmetric
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part (cf. Example 3.2 and Proposition 8.2 of Section 8.1). As a consequence
of Theorem 3.1, we shall prove that the Yokoi invariant of a real quadratic field
with arbitrary period that is not of minimal is equal to at most 3. Therefore the
fundamental unit of such a field is relatively small. So, we see by a theorem of
Siegel [19] concerning the approximate behavior of the product of class number
and regulator that the class number is relatively large. Louboutin [10, Section 5]
has dealt with real quadratic fields such that the continued fraction expansion of
ω has a given constant symmetric part, and reported that a few field has class
number 1 among such fields, which become not of minimal type (Example 3.5).
Furthermore, we shall prove that there exist exactly 51 real quadratic fields of
class number 1 that are not of minimal type, with one more possible exception
(Proposition 4.4). Hence we have to examine a construction of real quadratic fields
of minimal type in order to find real quadratic fields of class number 1. For any
positive integers ` and h, Sasaki [18, Theorem 1] and Lachaud [9, Theorem 2.2]
proved by using a theorem of Siegel that there exist at most finitely many real
quadratic fields with period ` of class number h.

Thus, we are interested in a construction of real quadratic fields of minimal
type. In the present paper, we shall give real quadratic fields with period 4 of
minimal type. Let hd denote the class number (in the wide sense) of real quadratic
field Q(

√
d).

Theorem 1.1.

(i) Let δ = 2 or 3, and a be a positive integer such that 2a + 1 is square-free.
Then, for any positive integer h, there exist infinitely many real quadratic
fields Q(

√
d), d ≡ δ mod 4 with period 4 of minimal type such that hd > h

and md = 16a.
(ii) Let a be a positive odd integer such that a + 2 is square-free. Then, for any

positive integer h, there exist infinitely many real quadratic fields Q(
√

d),
d ≡ 1 mod 4 with period 4 of minimal type such that hd > h and md = a.

Our family of real quadratic fields obtained explicitly has two parameters of
nonnegative integers. Since the values of Yokoi invariants are bounded, a theorem
of Siegel yields that the class numbers are relatively large (Lemma 4.5). We use a
theorem of Nagell to show that our family contains infinite ones.

This paper is organized as follows. After preparations on continued fractions
in Section 2, we prove Theorem 3.1 in Section 3 which is our basic tool. The
notations A,B, C, s0, g(x), h(x) and f(x) as explained there are used throughout
this paper. In Definition 3.1, we define the notion of a positive integer with period
` of minimal type and a real quadratic field with period ` of minimal type by using
Theorem 3.1. Then, Q(

√
5) is only a real quadratic field with period 1 of minimal

type. Also, we see that there does not exist a real quadratic field with period 2, 3
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of minimal type. In Section 4, we calculate Yokoi invariants of some real quadratic
fields by using Theorem 3.1. We show in Proposition 4.2 that the Yokoi invariant
of a real quadratic field with arbitrary period that is not of minimal is equal to at
most 3. We see also that the Yokoi invariant of a real quadratic field with period
≤ 3 is equal to at most 2. On the other hand, Yokoi invariants of real quadratic
fields with period 4 of minimal type obtained in Section 5 are large (Proposition
5.2). In Section 6, we improve a theorem of Nagell (Proposition 6.1). Though it
seems known, a proof of it will be given here, as no reference for it is known to
the authors. In Section 7 we prove Theorem 1.1. See Remark 8.1 for a numerical
example of it. All numerical examples in this paper are calculated by using PARI-
GP [3]. In Section 8.1, following an idea of Friesen, we show that there exist
infinitely many real quadratic fields with period ` which are not of minimal type
such that the continued fraction expansion of ω has a given symmetric part.

In [8] we will examine a construction of real quadratic fields with large even
period of minimal type.

We denote by N , Z and Q the set of positive integers, the ring of rational
integers and the field of rational numbers, respectively. For a set S, ]S denotes
the cardinal of S.

2. Preparations on continued fractions.

We begin with basic properties of continued fractions, and refer the reader to
excellent books of Ono [15] and Rosen [17] for them. If a0 is any positive integer
and {an}n≥1 is a sequence of positive integers, then we define nonnegative integers
pn, qn, rn by using recurrence equations:





p0 = 1, p1 = a0, pn = an−1pn−1 + pn−2,

q0 = 0, q1 = 1, qn = an−1qn−1 + qn−2,

r0 = 1, r1 = 0, rn = an−1rn−1 + rn−2.

n ≥ 2 (2.1)

Let λ be a variable. Then the following are known:

[a0, . . . , an, λ] =
λpn+1 + pn

λqn+1 + qn
, [a0, . . . , an] =

pn+1

qn+1
, n ≥ 0, (2.2)

pnqn−1 − pn−1qn = (−1)n, n ≥ 1, (2.3)

pn = a0qn + rn, n ≥ 0. (2.4)

We see easily (2.4) by induction in n. (Recurrence equations and partial quotients
of a continued fraction are both numbered beginning with 0.) We let a1, . . . , a` be
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any ` positive integers, and assume that `− 1 positive integers a1, . . . , a`−1 satisfy
the symmetric property: an = a`−n, 1 ≤ n ≤ ` − 1 if ` ≥ 2. Then we define a
sequence {an}n≥1 of positive integers: for each integer n ≥ 1, we put an := ar if
r > 0, and otherwise an := a` where r is the remainder of the division of n by
`. Thus, we construct periodically {an}n≥1 from a1, . . . , a` in what follows and
throughout this paper.

Lemma 2.1. Let k be a positive integer. Under the above setting, the fol-
lowing hold.

qk`−1 = rk`, (2.5)

q2
k`−1 − (−1)k` = qk`rk`−1. (2.6)

Proof. Let M0 := E be the unit matrix of degree 2, and put for each
integer n ≥ 1,

Mn :=
(

a1 1
1 0

)
· · ·

(
an 1
1 0

)
.

We see easily that

Mn =
(

qn+1 qn

rn+1 rn

)
, n ≥ 0 (2.7)

by induction. Since a1, . . . , a`−1 have the symmetric property, M`−1 is a symmetric
matrix. Furthermore, Mk`−1 is also a symmetric matrix by the definition of the
sequence {an}n≥1. Therefore we have qk`−1 = rk` from (2.7). Note that qnrn−1−
qn−1rn = (−1)n−1 for each n ≥ 1. (See the determinants of both sides of (2.7).)
Hence,

q2
k`−1 = qk`−1rk` = qk`rk`−1 − (−1)k`−1,

which yields (2.6). ¤

From now on, we let d be a non-square positive integer and put ω :=
√

d or
(1 +

√
d)/2. Also, we assume d ≡ 1 mod 4 if ω = (1 +

√
d)/2. (This assumption

is necessary for the proof of Lemma 2.2.) It is known by Euler-Lagrange Theo-
rem ([15, p. 184, Theorem 4.10], [17, p. 493, Theorem 12.21]) that the continued
fraction expansion of ω is periodic:
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ω = [a0, a1, . . . , a`].

Here, ` is the period of ω. Furthermore, we see by a theorem of Galois that
a1, . . . , a`−1 are symmetric positive integers if ` ≥ 2. And it holds that a` = 2a0 in
the case where ω =

√
d, and that a` = 2a0 − 1 in the case where ω = (1 +

√
d)/2.

We can find the proof for ω =
√

d in [17, p. 501], and for ω = (1 +
√

d)/2 it is
given similarly. (See also Perron [16, p. 79, Satz 3.9] for ω =

√
d, and [16, p. 105,

Satz 3.30] for ω = (1 +
√

d)/2.) We put a := [
√

d] and write ω = (P0 +
√

d)/Q0

for brevity. Then,

P0 <
√

d, 0 < Q0, d ≡ P 2
0 mod Q0. (2.8)

It is well known that the continued fraction expansion of ω is obtained by the
calculations in integers. We put

Q−1 := (d− P 2
0 )/Q0, a0 := [(P0 + a)/Q0], ω0 := ω.

Then Q−1 is a positive integer by (2.8). Since

[(P +
√

d)/Q] = [(P + a)/Q] for P, Q ∈ Z, Q > 0,

we have [ω0] = [P0+a
Q0

] = a0. Also, a0 > 0 as ω0 > 1. Let n ≥ 0. By (2.9), (2.11)
and (2.13), we shall determine positive integers Pn+1, Qn+1, an+1 and a (positive)
quadratic irrational ωn+1 from positive integers Pn, Qn, Qn−1, an and a quadratic
irrational ωn = (Pn +

√
d)/Qn (> 1) in what follows. There are uniquely integers

an, bn such that

Pn + a = anQn + bn, 0 ≤ bn < Qn.

So, an = [Pn+a
Qn

] = [ωn]. Consequently, an > 0 as ωn > 1. First, we put

Pn+1 := a− bn, that is, Pn+1 = anQn − Pn. (2.9)

Since a ≥ Pn by the assumption “
√

d > Pn” and an > 0, we have

2a ≥ Pn + a = anQn + bn ≥ Qn + bn > 2bn,

so that a > bn. We see by (2.9) that
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0 < Pn+1 ≤ a <
√

d. (2.10)

Next, we put

Qn+1 := Qn−1 + an(Pn − Pn+1). (2.11)

Then it holds by induction in n ≥ 0 that

QnQn+1 = d− P 2
n+1. (2.12)

By (2.10) and (2.12), QnQn+1 > 0. As Qn > 0, we have Qn+1 > 0. So, we put

an+1 := [(Pn+1 + a)/Qn+1], ωn+1 := (Pn+1 +
√

d)/Qn+1. (2.13)

Then, [ωn+1] = an+1. Since ωn = (Pn +
√

d)/Qn, it follows from (2.9) and (2.12)
that

1
ωn − an

=
Qn√

d− Pn+1

=
Qn(

√
d + Pn+1)

d− P 2
n+1

= ωn+1.

By ωn 6∈ Q and [ωn] = an, we have ωn+1 > 1. (Also, (Pn+1 +
√

d)/Qn+1 > 1
and (2.10) imply that 0 < Qn+1 < 2

√
d.) By repeating this process, we calculate

Pn, Qn, an and ωn for each integer n ≥ 1. Since ωn = an +(1/ωn+1) and an = [ωn]
hold for all n ≥ 0, we get the continued fraction expansion ω = [a0, a1, a2, . . . ].
As there is the least positive integer ` for which ω`+1 = ω1, we see that ω =
[a0, a1, . . . , a`].

Lemma 2.2. Under the above setting, we put a := [
√

d] and let 2 ≤ `,
1 ≤ n ≤ `− 1. Then, Qn/Q0 is a positive integer ≥ 2 and the following are true.

(i) In the case where ω =
√

d, we have Qnan ≤ 2a, and in particular an ≤ a.
(ii) In the case where ω = (1 +

√
d)/2, if a is even then Qnan ≤ 2a − 1, and

otherwise Qnan ≤ 2a. In particular, an < a/2.

Proof. From (2.9) and (2.11) we have Qn+1 ≡ Qn−1 + anQn mod 2 for
all n ≥ 0. When ω = (1+

√
d)/2, Q−1 is even as d ≡ 1 mod 4 and Q0 = 2, so that

each Qn is also even. Thus, Qn/Q0 is always a positive integer. Let 1 ≤ n ≤ `−1.
We see by (2.10) that

an =
[
Pn + a

Qn

]
≤ Pn + a

Qn
≤ 2a

Qn
.
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Therefore, Qnan ≤ 2a. If ω = (1 +
√

d)/2 then Pn − Pn+1 ≡ 0 mod 2 by (2.9).
As P0 = 1, each Pn is odd. When a is even, since (Pn + a)/Qn is not an integer,
we obtain Qnan < 2a. We assume Qn ≤ Q0 to prove Qn > Q0. We claim that

Qn = Q0, anQ0 = Pn + P1, Pn+1 = P1. (2.14)

As Qn ≤ Q0,

0 ≤ bn < Qn ≤ Q0. (2.15)

First, let ω =
√

d. As Q0 = 1, (2.15) yields that Qn = Q0 = 1 and bn = 0, so that
Pn +a = anQ0. Also, we see from (2.9) that Pn+1 = a and P1 = a0Q0−P0 = a0 =
a. Hence (2.14) holds. Next, let ω = (1 +

√
d)/2. As Q0 = 2, (2.15) yields that

bn = 0, or 1. As Qn is even, we have Qn = Q0 = 2. Therefore, Pn + a = anQ0, or
anQ0 + 1. Also, we see from (2.9) that Pn+1 = a, or a− 1. Since Pn+1 is odd, a is
odd or even according to whether bn = 0 or 1, so that a0 = [(1+a)/2] = (a+1)/2,
or a/2. Hence, P1 = a0Q0−P0 = a, or a−1. Thus we obtain (2.14) and our claim
is proved. It follows from Qn = Q0 and (2.12)n−1 that Qn−1 = (d− P 2

n)/Q0. We
see by (2.11) and (2.14) that

Qn+1 =
d− P 2

n

Q0
+

Pn + P1

Q0
(Pn − P1) = (d− P 2

1 )/Q0 = Q1.

This and Pn+1 = P1 imply that ωn+1 = ω1. Hence ` | n, and this contradicts
n ≤ `− 1. Therefore, Qn > Q0. Since Qn/Q0 is an integer, we have Qn/Q0 ≥ 2.
This proves our lemma. ¤

3. A theorem of Friesen and Halter-Koch.

We let ` be a fixed positive integer, and assume that positive integers
a1, . . . , a`−1 have the symmetric property: an = a`−n, 1 ≤ n ≤ ` − 1. (When
` = 1, we consider that this condition is trivially satisfied.) By using recurrence
equations (2.1), we define nonnegative integers q0, . . . , q`, r0, . . . , r`−1. For brevity,
we put A := q`, B := q`−1, C := r`−1, and define polynomials g(x), h(x) of degree
1 and a quadratic polynomial f(x) in Z[x] by putting

g(x) := Ax− (−1)`BC, h(x) := Bx− (−1)`C2,

f(x) := g(x)2 + 4h(x) = A2x2 + 2(2B − (−1)`ABC)x + (B2 − (−1)`4)C2.
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Furthermore, we let s0 be the least integer s for which g(s) > 0, that is, s >

(−1)`BC/A. The quadratic function f(x) becomes strictly, monotonously increas-
ing in the interval [s0,∞). We consider three cases separately:

(I) A ≡ 1 mod 2, (II) (A,C) ≡ (0, 0) mod 2,
(III) (A,C) ≡ (0, 1) mod 2.

It is not difficult to separate such cases by using recurrence equations (2.1) (cf. [8,
Lemmas 2.2, 2.3]). Under the above setting, Theorem 3.1 was shown in Friesen [4,
Theorem] and Halter-Koch [5, Theorem 1A and Corollary 1A], which we improve
by considering the above three cases separately.

Theorem 3.1 (Friesen, Halter-Koch).
[A] Let ` be a fixed positive integer and a1, . . . , a`−1 symmetric positive integers.

(i) In Case (III), there is no positive integer d such that

√
d =

[
[
√

d], a1, . . . , a`−1, 2[
√

d]
]

(3.1)

is the continued fraction expansion of
√

d. Also, when Case (I) or Case
(II) occurs, we let s be any integer with s ≥ s0, and put d := f(s)/4
and a0 := g(s)/2. Here, we choose an even integer s in Case (I), and
assume that

g(s) > a1, . . . , a`−1 (3.2)

if ` ≥ 2. Then, d and a0 are positive integers, d is non-square, a0 =
[
√

d], and (3.1) is the continued fraction expansion with period ` of
√

d.
(ii) In Case (II), there is no positive integer d such that d ≡ 1 mod 4 and

(1 +
√

d)/2 =
[
[(1 +

√
d)/2], a1, . . . , a`−1, 2[(1 +

√
d)/2]− 1

]
(3.3)

is the continued fraction expansion of (1 +
√

d)/2. Also, when Case
(I) or Case (III) occurs, we let s be any integer with s ≥ s0, and put
d := f(s) and a0 := (g(s) + 1)/2. Here, we choose an odd integer s

in Case (I), and assume that (3.2) holds if ` ≥ 2. Then, d and a0 are
positive integers, d is non-square, d ≡ 1 mod 4, a0 = [(1+

√
d)/2], and

(3.3) is the continued fraction expansion with period ` of (1 +
√

d)/2.
[B] Conversely, we let d be any non-square positive integer. By using a quadratic

polynomial f(x) obtained as above from the symmetric part of the continued
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fraction expansion of
√

d, d becomes uniquely of the form d = f(s)/4 with
some integer s ≥ s0, and (3.2) holds if ` ≥ 2. If d ≡ 1 mod 4 in addition
then the same thing is true for (1 +

√
d)/2.

Proof. We begin by proving the assertion on d, a0, before we show the
non-existence of d in the assertion [A]. For brevity, we put

ω =





√
d,

(1 +
√

d)/2,
α =

{
a0,

a0 − 1,
δ =

{
d,

(d− 1)/4,
a` =

{
2a0,

2a0 − 1

according to whether we consider the assertion [A-i] or [A-ii]. Then we see in both
assertions that

a0 + α =

{
2a0 = g(s),

2a0 − 1 = g(s),
(3.4)

and by the definitions of d and a0 that

δ − a0α = h(s). (3.5)

Since AC = B2 − (−1)` by (2.6)k=1 of Lemma 2.1, we have AC ≡ B + 1 mod 2.
When Case (I) (resp. (II), (III)) occurs, the definition of g(x) implies that

g(s) ≡ s (resp.,≡ 0, 1) mod 2. (3.6)

In the assertion [A-i], since we assume that s is even when Case (I) occurs,
g(s) is always even by (3.6). Therefore we see from (3.4) that a0 is an integer. As
d = h(s)+a2

0 by (3.5), d is also an integer. In the assertion [A-ii], since we assume
that s is odd when Case (I) occurs, g(s) is always odd by (3.6). Therefore we see
from (3.4) that a0 is an integer. As d = 1 + 4h(s) + 4a0(a0 − 1) by (3.5), d is also
an integer and d ≡ 1 mod 4. As g(s) > 0 by the definition of s0, (3.4) yields that
a0 > 0.

First, we assume ` ≥ 2 to show

h(s) > 0, g(s)− h(s) ≥ 0. (3.7)

Then, B > 0. By using s ≥ s0 > (−1)`B{B2 − (−1)`}/A2 and C = {B2 −
(−1)`}/A, we see that
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h(s) = Bs− (−1)`C2 >
B2 − (−1)`

A2
. (3.8)

Also, when A−B > 0,

g(s)− h(s) = (A−B)s + (−1)`C(C −B) > −B2 − (−1)`

A2
.

When A−B = 0, we have ` = 2, a1 = 1 so that A = B = 1, C = 0. Consequently,
g(s)− h(s) = 0 = −(B2 − (−1)`)/A2. Therefore we see that

g(s)− h(s) ≥ −B2 − (−1)`

A2
. (3.9)

If ` is even then (B2 − 1)/A2 < 1 by A ≥ B. If ` is odd, as ` ≥ 3, then A > B

so that A ≥ B + 1. Therefore, (B2 + 1)/A2 < 1. Thus it always holds that
(0 ≤) {B2 − (−1)`}/A2 < 1. Hence, (3.8) and (3.9) imply (3.7). Next, we assume
` = 1. Since A = C = 1 and B = 0, Case (I) occurs and we obtain

s ≥ s0 = 1, g(x) = x, h(x) = 1.

Hence, (3.7) holds.
First, we consider the assertion [A-i]. It follows from (3.7), (3.5) and (3.4) that

d > a2
0 and 2a0 ≥ d−a2

0. Consequently, a2
0 < d < (a0+1)2 so that a0 <

√
d < a0+1.

Hence a0 = [
√

d], and this inequality yields that d is non-square. Next, we consider
the assertion [A-ii]. By the similar argument, we have

(d− 1)/4 > a0(a0 − 1), 2a0 − 1 ≥ (d− 1)/4− a0(a0 − 1).

Consequently, (2a0− 1)2 < d < (2a0 +1)2 so that 2a0− 1 <
√

d < 2a0 +1. Hence,
a0 = [(1 +

√
d)/2]. If we assume that

√
d is an integer, then we see by the last

inequality that
√

d = 2a0. Therefore, d ≡ 0 mod 4 and this is a contradiction.
Thus, d is non-square.

Since

h(x)A− g(x)B = (−1)`C(−AC + B2) = C,

(3.4) and (3.5) imply that

(δ − a0α)A− (a0 + α)B = C. (3.10)
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Now we get the continued fraction expansion of ω. By using the positive integer
a0 and the recurrence equation (2.1), we define other positive integers p0, . . . , p`.
By (2.4) and (2.5)k=1, we have

p` = a0q` + q`−1. (3.11)

Therefore it follows from (2.3)n=`, (3.11) and (2.6)k=1 that

p`−1 = (p`q`−1 − (−1)`)/q` = {(a0q` + q`−1)q`−1 − (−1)`}/q`

= a0q`−1 + (q2
`−1 − (−1)`)/q` = a0B + C. (3.12)

By putting λ = α + ω in (2.2)n=`−1, we see that

ω = [a0, . . . , a`−1, α + ω] (3.13)

if and only if

ω =
(α + ω)p` + p`−1

(α + ω)A + B
.

(Note that the denominator of the right hand side of this equation is not equal to
0 as ω 6∈ Q, or it is positive.) This is equivalent to the following condition. (Note
that ω2 = δ + ω in the assertion [A-ii].)

(αp` + p`−1) + p`ω = ω2A + (αA + B)ω

⇐⇒ (αp` + p`−1) + p`ω = δA + (a0A + B)ω

⇐⇒ αp` + p`−1 = δA (by (3.11)).

Hence we find that the condition (3.13) is equivalent to

δA = αp` + p`−1. (3.14)

By the way, as

αp` + p`−1 = a0αA + (a0 + α)B + C

by (3.11) and (3.12), it follows from (3.10) that αp` + p`−1 = δA. Since this is
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equivalent to (3.13) as we have seen above, we have 1/(ω − a0) = [a1, . . . , a`−1,

α + ω]. Hence we see that

α + ω = a` +
1

1/(ω − a0)
= [a`, a1, . . . , a`−1, α + ω] = [a`, a1, . . . , a`−1].

By substituting it for (3.13), we obtain ω = [a0, a1, . . . , a`]. This gives the contin-
ued fraction expansion of ω by the uniqueness of continued fraction expansion ([15,
Theorem 1.8]). As a` = g(s) by (3.4), we see from (3.2) that a1, . . . , a`−1 < a`.
Since the positive integer a` is not in the symmetric part of the continued fraction
expansion, ` becomes the period of ω.

[B] Conversely, we let d be a non-square positive integer and put ω :=
√

d or
(1 +

√
d)/2. Also, we assume d ≡ 1 mod 4 if ω = (1 +

√
d)/2. So, then (d− 1)/4

is an integer. As we mention in Section 2, the continued fraction expansion of ω

is periodic: ω = [a0, a1, . . . , a`]. Furthermore, a1, . . . , a`−1 are symmetric positive
integers if ` ≥ 2, and it holds that a` = 2a0 in the case where ω =

√
d, and that

a` = 2a0−1 in the case where ω = (1+
√

d)/2. By using the partial quotients and
recurrence equations (2.1), we define nonnegative integers pn, qn, 0 ≤ n ≤ `, and
various values A,B, C, f(x), . . . , s0, α, δ, . . . . Then, in particular (3.11) and (3.12)
hold. Since 1/(ω − a0) = [a1, . . . , a`], the definition of α yields that

α + ω = a` +
1

1/(ω − a0)
= [a`, a1, . . . , a`] = [a`, a1, . . . , a`−1].

Therefore,

ω = [a0, a1, . . . , a`−1, a`, a1, . . . , a`−1] = [a0, a1, . . . , a`−1, α + ω].

Thus (3.13) holds. Since this condition is equivalent to (3.14), substituting (3.11)
and (3.12) for (3.14) implies that δA = α(a0A + B) + a0B + C. Hence we obtain

(δ − a0α)A− (a0 + α)B = C.

The pair (δ − a0α, a0 + α) is a solution of a Diophantine equation Ax−By = C.
On the other hand, as

{−(−1)`C2}A− {−(−1)`BC}B = (−1)`C(−AC + B2) = C,

the pair (−(−1)`C2,−(−1)`BC) is also a solution. Since (A,B) = 1 by (2.3),
there is some integer s such that
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δ − a0α = Bs− (−1)`C2 (= h(s)), a0 + α = As− (−1)`BC (= g(s)). (3.15)

As a0 > 0, the second equation of (3.15) yields that g(s) > 0, so that s ≥ s0. We
see by (3.4) and (3.5) that

f(s) = g(s)2 + 4h(s) = (a0 + α)2 + 4(δ − a0α) = 4d, or d

according to whether ω =
√

d, or ω = (1 +
√

d)/2. Also, the definition of α and
the second equation of (3.15) yield that a0 = g(s)/2, or (g(s) + 1)/2. By using
AC = B2 − (−1)`, we can obtain by simple calculations

f(x) = A2

{
x +

(2− (−1)`AC)B
A2

}2

− (−1)`42

4A2
and s0 > − (2− (−1)`AC)B

A2
.

Hence the quadratic function f(x) is strictly, monotonously increasing in the in-
terval [s0,∞). (The discriminant d(f) of quadratic polynomial f(x) is equal to
(−1)`42.) This implies the uniqueness of s.

We prove the parity of s and the non-existence of d in the assertion [A]. First,
we consider the case where ω =

√
d. As α = a0, the second equation of (3.15)

yields that g(s) is even. Therefore we see by (3.6) that s have to be even when
Case (I) occurs, and that Case (III) never occurs. In Case (III), hence there is no
positive integer d such that (3.1) is the continued fraction expansion of

√
d. Next,

we consider the case where ω = (1+
√

d)/2. As α = a0− 1, g(s) is odd. Therefore
we see by (3.6) that s have to be odd when Case (I) occurs, and that Case (II)
never occurs. In Case (II), hence there is no positive integer d such that d ≡ 1
mod 4 and (3.3) is the continued fraction expansion of (1 +

√
d)/2.

Finally, we show (3.2) if ` ≥ 2, by using Lemma 2.2. For brevity, we put
a := [

√
d], and let 1 ≤ n ≤ ` − 1. When ω =

√
d, we see by Lemma 2.2 (i)

that an ≤ a = a0 < 2a0 = g(s). When ω = (1 +
√

d)/2, we have an < a/2 and
a0 = [(1 + a)/2]. If a is even then, as a0 = a/2 we have an < a0 ≤ 2a0 − 1 = g(s).
If a is odd then, as a0 = (1 + a)/2 we have an < a0 − 1/2 < 2a0 − 1 = g(s). Thus
(3.2) holds, and the positive integer d is obtained by our construction. ¤

Definition 3.1. Let d be any non-square positive integer. We see by The-
orem 3.1 [B] that d is uniquely of the form d = f(s)/4 with some integer s ≥ s0.
Here, the quadratic polynomial f(x) and the integer s0 are obtained as above from
the symmetric part of the continued fraction expansion with period ` of

√
d. If

s = s0 then we say that d is a positive integer with period ` of minimal type for
√

d.
When d ≡ 1 mod 4 in addition, we see that d is uniquely of the form d = f(s)
with some integer s ≥ s0. Here, the quadratic polynomial f(x) and the integer s0



Real quadratic fields of minimal type 879

are obtained as above from the symmetric part of the continued fraction expansion
with period ` of (1 +

√
d)/2. If s = s0 then we say that d is a positive integer with

period ` of minimal type for (1 +
√

d)/2.
Let Q(

√
d) be a real quadratic field. Here, d is a square-free positive integer.

We say that Q(
√

d) is a real quadratic field with period ` of minimal type, if d is a
positive integer with period ` of minimal type for

√
d when d ≡ 2, 3 mod 4, and

if d is a positive integer with period ` of minimal type for (1 +
√

d)/2 when d ≡ 1
mod 4.

Example 3.2. We let ` ≥ 2 be any positive integer, and consider a sym-
metric string of ` − 1 positive integers a1, . . . , a`−1. Let L := [`/2]. We shall see
that there exist infinitely many real quadratic fields with period ` which are not of
minimal type such that the continued fraction expansion of ω has the symmetric
part a1, . . . , a`−1.

By Theorem 3.1 [A-i], when Case (III) occurs for a1, . . . , a`−1, there is no
positive integer d such that (3.1) is the continued fraction expansion of

√
d.

So, we first assume that Case (III) does not occur. For an example, if ` and
aL are both even then Case (II) occurs ([8, Remark 2.1]). For δ = 1, 2, 3,
let Dδ = Dδ(`; a1, . . . , a`−1) denote the set of all square-free positive integers d

which are not of minimal type for
√

d such that d ≡ δ mod 4 and
√

d = [[
√

d],
a1, . . . , a`−1, 2[

√
d]] is the continued fraction expansion with period ` of

√
d. Then,

Friesen [4, Section III] shows that D1 ∪ D2 ∪ D3 is infinite. Furthermore, we can
prove that D2 ∪ D3 is infinite (Proposition 8.2 of Section 8.1). (When ` = 1, we
can see that D3 is empty, and both D1 and D2 are infinite.)

By Theorem 3.1 [A-ii], when Case (II) occurs for a1, . . . , a`−1, there is no
positive integer d such that d ≡ 1 mod 4 and (3.3) is the continued fraction ex-
pansion with period ` of (1 +

√
d)/2. So, we next assume that Case (II) does

not occur. For an example, if “` is even and aL is odd”, or ` is odd, then Case
(II) does not occur ([8, Remark 2.1]). Then, Halter-Koch [5, Theorem 2A (ii)]
shows that there exist infinitely many square-free positive integers d which are
not of minimal type for (1 +

√
d)/2 such that d ≡ 1 mod 4 and (1 +

√
d)/2 =

[a0, a1, . . . , a`−1, 2a0 − 1] is the continued fraction expansion with period ` of
(1 +

√
d)/2. Here, a0 := [(1 +

√
d)/2]. (When ` = 1, the same thing is true.)

Example 3.3. When d ≡ 1 mod 4, we give positive integers d of minimal
type for

√
d and for (1 +

√
d)/2 in Table 1. (When d ≡ 1 mod 4, it is known that

the parity of period of
√

d coincides with that of (1 +
√

d)/2. For an example, see
Kaplan and K. S. Williams [7, Introduction].)

Example 3.4 (` = 1). As we have seen in the proof of Theorem 3.1, when
` = 1, Case (I) occurs and s0 = 1. As g(x) = x and h(x) = 1, Theorem 3.1 [A-ii]
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Table 1. Positive integers d, 2 ≤ d ≤ 200 of dual minimal type.

ω =
√

d ω = (1 +
√

d)/2
d ` s0 Case ` s0 Case
57 6 4 II 6 1 III
73 7 −20 I 9 −115 III
89 5 −4 I 7 −1 III
97 11 −348 I 9 −87 III

109 15 −72688 I 7 −9 I
113 9 −18 I 7 −79 III
129 10 68 II 10 17 III
133 16 33904 II 4 1 I
137 9 −52 I 7 −13 III
153 8 9 II 8 113 III
157 17 −57402 I 5 −7 I
161 10 303 II 10 1117 III
177 8 132 II 12 33 III
181 21 −7709944 I 5 −1 I
193 13 −90260 I 15 −22565 III

implies that d = f(s0) = 1 + 4 = 5 is a positive integer with period 1 of minimal
type for (1 +

√
d)/2. Also, we see by the assertions [A-i] and [B] of it that there

exists no positive integer d with period 1 of minimal type for
√

d.

Example 3.5 (` = 2, 3). We let ` ≥ 2 be any positive integer, and consider
a (symmetric) constant string of `−1 positive integers a, . . . , a. Since we see easily
that

rn = qn−1, 1 ≤ n ≤ `,

we have (A,B, C) = (q`, r`, q`−2). For brevity, we put D := Ar`−2−BC, and then

D = q`r`−2 − r`q`−2 = (aq`−1 + q`−2)r`−2 − (ar`−1 + r`−2)q`−2

= a(q`−1r`−2 − q`−2r`−1) = (−1)`−2a = (−1)`a.

Therefore,

(−1)`r`−2 − (−1)`BC/A = (−1)`D/A = a/q`.

If ` > 2 then, as q`−2 > 0 we have q` > aq`−1 ≥ a. Consequently, 0 < a/q` < 1.
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By the definition of s0, we obtain s0 = (−1)`r`−2. We see easily that this holds
when ` = 2. Since

g(s0) = q` · (−1)`r`−2 − (−1)`r`q`−2 = (−1)`D = a,

the condition (3.2) of Theorem 3.1 for s = s0 does not hold. As a continued
fraction expansion with period 2, 3 has a constant symmetric part, in particular,
this implies that there exists no positive integer d with period 2, 3 of minimal type
for

√
d, and for (1 +

√
d)/2.

In Section 5 we shall construct positive integers with period 4 of minimal
type.

4. Yokoi invariant.

In this section, we let d be a square-free positive integer with d > 1, and
consider a real quadratic field Q(

√
d). Let ε > 1 be the fundamental unit of it,

and we write uniquely ε = (t+u
√

d)/2 with positive integers t, u. Then, we define
the Yokoi invariant md of a real quadratic field Q(

√
d) by putting md := [u2/t].

Also, we put ω = ω(d) :=
√

d or ω := (1 +
√

d)/2 according to whether d ≡ 2, 3
or d ≡ 1 mod 4.

Lemma 4.1. We express d as in Theorem 3.1 [B] by using the quadratic
polynomial f(x) and the integer s, and put

λ :=
A2

g(s)A + 2B
.

Then, if d ≡ 2, 3 mod 4 then md = [4λ], and if d ≡ 1 mod 4 then md = [λ].

Proof. Let x be a variable. For each integer n ≥ 0, it holds that
[a1, . . . , an, x] = (xqn+1 + qn)/(xrn+1 + rn). Let α be the same meaning as in
the proof of Theorem 3.1. The continued fraction expansion of ω and (2.5) imply
that

ω1 = 1/(ω − a0) = [a1, . . . , a`−1, α + ω] =
(α + ω)q` + q`−1

(α + ω)r` + r`−1
=

(α + ω)A + B

(α + ω)B + C
.

Therefore, {(α + ω)B + C}ω1 −B = (α + ω)A. On the other hand, as

a`B + C = (α + ω)B + C −B(ω − a0)
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by a` = a0 + α, we see from (ω − a0)ω1 = 1 that

(a`B + C)ω1 = {(α + ω)B + C}ω1 −B.

Hence we obtain (a`B + C)ω1 = (α + ω)A. Also, it holds that

ω1 = [a1, . . . , a`, ω1] =
q`+1ω1 + q`

r`+1ω1 + r`
,

and it is known ([15, Proposition 4.16]) that the denominator of the right hand
side of it is equal to ε. (Also, NQ(

√
d)/Q(ε) = (−1)`.) Therefore we see by (2.5)

that

ε = (a`r` + r`−1)ω1 + r` = (a`q`−1 + r`−1)ω1 + q`−1 = (a`B + C)ω1 + B.

Consequently, ε = αA+B+Aω. First, we assume d ≡ 2, 3 mod 4. As α = g(s)/2
from (3.4), we have ε = (g(s)A+2B+2A

√
d)/2, so that t = g(s)A+2B and u = 2A.

Hence, md = [4λ]. Next, we assume d ≡ 1 mod 4. As α = (g(s)−1)/2 from (3.4),
we have ε = (g(s)A + 2B + A

√
d)/2, so that t = g(s)A + 2B and u = A. Hence,

md = [λ]. Our lemma is proved. ¤

Proposition 4.2. Let Q(
√

d) be a real quadratic field with arbitrary period
that is not of minimal type. Then, if d ≡ 2, 3 mod 4 then 0 ≤ md ≤ 3, and if
d ≡ 1 mod 4 then md = 0.

Proof. As A > 0, the linear function g(x) is strictly, monotonously in-
creasing. Since s > s0 by the assumption, we have

g(s) ≥ g(s0 + 1) = A(s0 + 1)− (−1)`BC

> A · (−1)`BC/A + A− (−1)`BC = A.

Therefore, g(s) ≥ A + 1. Hence,

λ ≤ A2

(A + 1)A + 2B
= V −1, where V :=

(A + 1)A + 2B

A2
= 1 +

1
A

+
2B

A2
.

If d ≡ 2, 3 mod 4 then Lemma 4.1 implies that md = [4λ] ≤ [4V −1]. As V > 1,
we have 4V −1 < 4. Hence, md ≤ 3. If d ≡ 1 mod 4 then md = [λ] ≤ [V −1]. As
V −1 < 1, we obtain md = 0. This proves our proposition. ¤
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We suppose that d is a square-free positive integer, and let ` be the period of
ω = ω(d).

Example 4.1 (` = 1). We have md = 2 if d = 2, md = 1 if d = 5, and
otherwise md = 0.

Proof. When ` = 1, Case (I) occurs, s0 = 1, and f(x) = x2 + 4. First,
we assume d ≡ 2, 3 mod 4. We see by the assertions [B] and [A-i] of Theorem
3.1 that there is some even integer s ≥ 2 for which d = (s2 + 4)/4. Since A = 1
and B = 0, we have λ = 1/s, and Lemma 4.1 implies that md = [4/s]. Therefore,
md = 2 if s = 2 (d = 2). As d ≡ 2, 3 mod 4, we have s 6= 4. If s ≥ 6 then md = 0.
Next, we assume d ≡ 1 mod 4. We see by the assertions [B] and [A-ii] of it that
there is some odd integer s ≥ 1 for which d = s2 + 4. Lemma 4.1 implies that
md = [1/s]. Therefore, md = 1 if s = 1 (d = 5). If s ≥ 3 then md = 0. ¤

We shall calculate the value of md when ` = 2, 3. As we have seen in Example
3.5, then d is a positive integer that is not of minimal type. Hence, Proposition
4.2 yields that md = 0 if d ≡ 1 mod 4. So, we may assume d ≡ 2, 3 mod 4.

Example 4.2 (` = 2). The integer d is of the form d = (as/2)2 + s. Here,
“a is a positive odd integer and s is a positive even integer”, or “a is a positive
even integer and s ≥ 2 is a positive integer”. Then, we have md = 1 if s = 2 or 3,
and otherwise md = 0.

Proof. We consider a “symmetric” positive integer a. Since A = a, B = 1
and C = 0, if a is odd then Case (I) occurs, and if a is even then Case (II) occurs.
As we have seen in Example 3.5, s0 = (−1)2r0 = 1. Also, as g(x) = ax and h(x) =
x, we have f(x) = a2x2 + 4x. For any integer s ≥ 1, the condition (3.2) holds if
and only if s ≥ 2. Since d ≡ 2, 3 mod 4, we see by the assertions [B] and [A-i] of
Theorem 3.1 that there is some integer s ≥ 2 for which d = f(s)/4 = (as/2)2 + s.
Here, s becomes even if a is odd, and

√
d =

[
as

2
, a, as

]

is the continued fraction expansion with period 2 of
√

d. Furthermore,

λ =
a2

(as)a + 2
=

a2

a2s + 2
.

If s = 2, as 4λ = 1+(a2−1)/(a2 +1), then Lemma 4.1 implies that md = [4λ] = 1.
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If s = 3 then 4λ = 1 + (a2 − 2)/(3a2 + 2), and a ≥ 2 as a is even. Therefore,
md = 1. If s ≥ 4 then, as (a2s + 2) − 4a2 > 0 we have 4λ < 1, so that md = 0.
Thus we obtain our assertion. ¤

Example 4.3 (` = 3). The integer d is of the form d = (a2 + 1)2(s/2)2 +
a(a2 + 3)s/2 + (a/2)2 + 1. Here, a and s are both positive even integers. Then,
we have md = 1 if s = 2, and md = 0 if s ≥ 4.

Proof. We consider a (symmetric) constant string of 2 positive integers
a, a. Since A = a2 +1, B = a and C = 1, if a is even then Case (I) occurs, and if a

is odd then Case (III) occurs. As we have seen in Example 3.5, s0 = (−1)3r1 = 0.
Also, as g(x) = (a2 + 1)x + a and h(x) = ax + 1, we have f(x) = (a2 + 1)2x2 +
2a(a2 +3)x+a2 +4. For any integer s ≥ 0, the condition (3.2) holds if and only if
s > 0. As d ≡ 2, 3 mod 4, we see by the assertions [B] and [A-i] of Theorem 3.1
that Case (I) occurs, that is, a is even, and that there is some even integer s ≥ 2
for which d = f(s)/4 = (a2 + 1)2(s/2)2 + a(a2 + 3)s/2 + (a/2)2 + 1. Then,

√
d =

[
(a2 + 1)s + a

2
, a, a, (a2 + 1)s + a

]

is the continued fraction expansion with period 3 of
√

d. Furthermore,

λ =
(a2 + 1)2

{(a2 + 1)s + a}(a2 + 1) + 2a
=

(a2 + 1)2

(a2 + 1)2s + a(a2 + 3)
.

If s = 2, since the second term of the right hand side of

4λ = 1 +
2(a2 + 1)2 − a(a2 + 3)
2(a2 + 1)2 + a(a2 + 3)

is positive and less than 1, Lemma 4.1 implies that md = [4λ] = 1. If s ≥ 4 then,
as 0 < 4λ < 1 we have md = 0. Thus we obtain our assertion. ¤

Example 4.4. When d = 55, as s0 = 1, s = 2, Q(
√

d) is a real quadratic
field (with period 4) that is not of minimal type, and we have md = 3 (hd = 2).
Also, when d = 58, as s0 = −3, s = −2, Q(

√
d) is a real quadratic field (with

period 7) that is not of minimal type, and md = 3 (hd = 2). Thus there exist real
quadratic fields that are not of minimal type satisfying md = 3.

Finally, we see a usefulness of Yokoi invariant. Let εd > 1 and md denote
the fundamental unit and the Yokoi invariant of a real quadratic field Q(

√
d),
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respectively. Yokoi [26, Theorem 1.1] proved the following:

Lemma 4.3. If d > 13 then mdd < εd < (md + 1)d.

Proposition 4.4. There exist exactly 51 real quadratic fields of class num-
ber 1 that are not of minimal type, with one more possible exception. All such
fields are listed in the table of Section 8.2.

Proof. Let hd denote the class number of a real quadratic field Q(
√

d). It
is known by a theorem of Tatuzawa [20, Theorem 2] and Dirichlet’s class number
formula that

hd >
0.3275

s
· d(s−2)/2s

log εd

for any real number s ≥ 11.2, and any square-free positive integer d ≥ es with
one possible exception. (For an example, see [26, p. 187].) We let Q(

√
d) be a

real quadratic field that is not of minimal type, take s := 16, and assume that
d ≥ e16 = 8886110.5 · · · . Since md ≤ 3 by Proposition 4.2, Lemma 4.3 yields that
εd < 4d. Hence,

hd >
0.3275

16
· d7/16

log 4d
≥ 0.3275

16
· e7

log 4e16
= 1.2 · · · > 1.

Here, we use the fact that the function (x7/16)/ log 4x is monotonously increasing
in the interval [(e16/7)/4,∞). On the other hand, when d < 107, there are exactly
51 real quadratic fields Q(

√
d) of class number 1 that are not of minimal type by

the table of Section 8.2. This proves our proposition. ¤

Lemma 4.5 is used in Section 7.

Lemma 4.5. We suppose that a sequence {dn}n≥1 of square-free positive
integers is strictly monotonously increasing. Let εdn

> 1, mdn
and hdn

denote the
fundamental unit, the Yokoi invariant and the class number of a real quadratic field
Q(
√

dn), respectively. We assume that mdn ≥ 1 for all n ≥ 1 and the sequence
{mdn

}n≥1 of positive integers is bounded. Then, the sequence {hdn
}n≥1 of positive

integers is not bounded. Namely, for any positive integer h, there exist infinitely
many numbers n ≥ 1 such that hdn

> h.

Proof. By our assumption, there is some real number c′ > 0 such that
mdn

≤ c′ for any number n ≥ 1. Also, as {dn}n≥1 is strictly monotonously
increasing, there is some number n0 ≥ 1 for which dn > 13 if n ≥ n0. Consequently,
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Lemma 4.3 implies that

mdn
dn < εdn

< (mdn
+ 1)dn

for all n ≥ n0. Put c := c′ + 1, and then c > 1. As mdn ≥ 1, we have

dn < εdn
< cdn, ∀n ≥ n0. (4.1)

Let n ≥ n0. Note that cdn > 1 as dn > 1. We see by (4.1) that

log log dn

log dn
<

log log εdn

log dn
<

log log(cdn)
log dn

.

Hence,

lim
n→∞

log log εdn

log dn
= 0. (4.2)

Let Ddn
denote the discriminant of Q(

√
dn). We put δ := 4 or δ := 1 according to

whether dn ≡ 2, 3 or dn ≡ 1 mod 4. Then, Ddn = δdn. It follows from (4.2) that

log log εdn

log Ddn

=
log log εdn/ log dn

(log δ/ log dn) + 1
−→ 0 (n −→∞). (4.3)

On the other hand, we see by a theorem of Siegel (Narkiewicz [14, Theorem 8.14])
that

lim
n→∞

log(hdn
log εdn

)
log Ddn

=
1
2
. (4.4)

Since

log(hdn
log εdn

)
log Ddn

=
log hdn

log Ddn

+
log log εdn

log Ddn

,

if we assume that {hdn}n≥1 is bounded then (4.4) yields that

lim
n→∞

log log εdn

log Ddn

=
1
2
.
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This contradicts (4.3). Therefore, {hdn
}n≥1 is not bounded. ¤

5. Real quadratic fields with period 4 of minimal type.

In this section, we shall construct positive integers with period 4 of minimal
type to give real quadratic fields with period 4 of minimal type.

Lemma 5.1. We consider a symmetric string of 3 positive integers a1, a2, a1.
Then the following hold.

(i) If (a1, a2) ≡ (1, 1) mod 2 then Case (I) occurs, if a2 is even then Case (II)
occurs, and if (a1, a2) ≡ (0, 1) mod 2 then Case (III) occurs.

(ii) The condition (3.2) of Theorem 3.1 for s = s0 holds if and only if “a1 >

a2”, or “a1 < a2 and a1 - a2”. Furthermore, if this condition holds then
s0 = [a2/a1] + 1.

Proof. The assertion (i) follows from A = a1(a1a2 + 2), B = a1a2 + 1 and
C = a2. To show the assertion (ii), we note that

0 < (−1)`BC/A =
a2

a1
− C

A
<

a2

a1

and g(s0) = a1(a1a2 + 2)s0 − a2(a1a2 + 1).
(A) The case where a1 ≥ a2. As 0 < (−1)`BC/A < 1, the definition of s0

implies that s0 = 1. When a1 = a2, we see by Example 3.5 that (3.2)s=s0
does

not hold. When a1 > a2, as g(s0) = (a1 − a2)(a1a2 + 1) + a1, we have g(s0) > a1,
so that (3.2)s=s0

holds.
(B) The case where a1 < a2. Let q and r be the quotient and the remainder

of the division of a2 by a1, respectively. Then,

(−1)`BC/A = q +
r

a1
− C

A
. (5.1)

If r = 0, as 0 < C/A < 1, we have s0 = q = a2/a1 by (5.1). Therefore g(s0) = a2,
and then (3.2)s=s0

does not hold. If r > 0 then

rA− a1C = a1{r(a1a2 + 2)− a2} = a1{(ra1 − 1)a2 + 2r} ≥ 2a1r > 0,

which yields that 0 < r
a1
− C

A . On the other hand, we have r
a1
− C

A < 1− C
A < 1.

From (5.1) we obtain s0 = q + 1 = [a2/a1] + 1. Hence, since
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g(s0) = a1(a1a2 + 2)q + (a1 − a2)(a1a2 + 2) + a2

= (a1a2 + 2)(a1q + a1 − a2) + a2 = (a1a2 + 2)(a1 − r) + a2 > a2,

(3.2)s=s0
holds. This proves our lemma. ¤

Proposition 5.2.

(i) Let a be a positive integer. For any integer t ≥ 0, we put

d = d(t) := {(8a2 + 6a + 1)t + 8a2 + 4a + 1}2 + (4a + 2)t + 4a + 1.

Then, d is a positive integer with period 4 of minimal type for
√

d and

√
d =

[
(8a2 + 6a + 1)t + 8a2 + 4a + 1,

4a + 1, (4a + 1)t + 4a, 4a + 1, (16a2 + 12a + 2)t + 16a2 + 8a + 2
]
.

(5.2)

If t is even then d ≡ 2 mod 4, and if t is odd then d ≡ 3 mod 4. Further-
more, if d is square-free then md = 16a.

(ii) Let a be a positive odd integer. For any integer t ≥ 0, we put

d = d(t) := {(a2 + 3a + 2)t + a2 + 2a + 2}2 + 4{(a + 2)t + a + 1}.

Then, d is a positive integer with period 4 of minimal type for (1 +
√

d)/2,
d ≡ 1 mod 4, and

(1 +
√

d)/2 =
[
(a2 + 3a + 2)t + a2 + 2a + 3

2
,

a + 1, (a + 1)t + a, a + 1, (a2 + 3a + 2)t + a2 + 2a + 2
]
.

(5.3)

Furthermore, if d is square-free then md = a.

Proof. We let b and t be integers with b ≥ 1, t ≥ 0, and consider a sym-
metric string of 3 positive integers b + 1, (b + 1)t + b, b + 1, to make the integral
part of λ in Lemma 4.1 larger. Then, Lemma 5.1 (ii) implies that the condition
(3.2)s=s0

holds and s0 = t + 1. Since

A = (b + 1){(b + 1)2t + b2 + b + 2}, B = (b + 1)2t + b2 + b + 1, C = (b + 1)t + b,
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simple calculations yield that

g(s0) = (b2 + 3b + 2)t + b2 + 2b + 2, h(s0) = (b + 2)t + b + 1.

Consequently,

f(s0) = g(s0)2 + 4h(s0)

= {(b2 + 3b + 2)t + b2 + 2b + 2}2 + 4{(b + 2)t + b + 1}. (5.4)

For brevity, we put a1 := b + 1, a2 := (b + 1)t + b, and obtain

g(s0)A + 2B = a2
1(a1a2 + 2)2s0 − a1a2(a1a2 + 2)(a1a2 + 1) + 2(a1a2 + 1)

= a2
1(a1a2 + 2)2s0 − a1a2(a1a2 + 2)2 + a1a2(a1a2 + 2)

+ 2(a1a2 + 2)− 2 (∵ a1a2 + 1 = a1a2 + 2− 1)

= a2
1(a1a2 + 2)2s0 − a1a2(a1a2 + 2)2 + (a1a2 + 2)2 − 2

= (a1a2 + 2)2(a2
1s0 − a1a2 + 1)− 2.

As a2
1s0 − a1a2 + 1 = b + 2, we have

λ :=
A2

g(s0)A + 2B
=

(b + 1)2{(b + 1)2t + b2 + b + 2}2
(b + 2){(b + 1)2t + b2 + b + 2}2 − 2

.

Hence,

λ =
(b2 + 2b){(b + 1)2t + b2 + b + 2}2 − 2b + 2b + {(b + 1)2t + b2 + b + 2}2

(b + 2){(b + 1)2t + b2 + b + 2}2 − 2

= b +
2b + {(b + 1)2t + b2 + b + 2}2

(b + 2){(b + 1)2t + b2 + b + 2}2 − 2
. (5.5)

The second term of the right hand side of it is positive and less than 1.
(i) Take b = 4a. Since (b + 1)t + b ≡ t mod 2, we see by Lemma 5.1 (i) that

if t is odd then Case (I) occurs for the given 3 symmetric positive integers and s0

is even. If t is even then Case (II) occurs. Put d := f(s0)/4, and then (5.4) yields
that

d = {(8a2 + 6a + 1)t + 8a2 + 4a + 1}2 + (4a + 2)t + 4a + 1.
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By Theorem 3.1 [A-i], we obtain the continued fraction expansion (5.2). As d ≡
t2 + 2 mod 4, if t is even then d ≡ 2 mod 4, and if t is odd then d ≡ 3 mod 4.
As b ≥ 4, the second term of the right hand side of (5.5) is less than 1/4. Hence,
when d is square-free, Lemma 4.1 implies that md = [4λ] = 16a.

(ii) Take b = a. Since a is odd, we see by Lemma 5.1 (i) that Case (III) occurs
for the given 3 symmetric positive integers. Put

d := f(s0) = {(a2 + 3a + 2)t + a2 + 2a + 2}2 + 4{(a + 2)t + a + 1},

and then, from Theorem 3.1 [A-ii], we obtain d ≡ 1 mod 4 and the continued
fraction expansion (5.3). When d is square-free, it follows from Lemma 4.1 and
(5.5) that md = [λ] = a. Our proposition is proved. ¤

Remark 5.1. Let d be a positive square-free integer. Let D and ` be the
discriminant and the period of a real quadratic field Q(

√
d), respectively. When

` ≤ 4, Hendy [6, Theorem 1] gave explicit representations of d and partial quotients
of the continued fraction expansion of ω(d) to study the class number of Q(

√
d).

By using the continued fraction expansion of a reduced quadratic irrational with
discriminant D, Azuhata [2] also conduced to another representation of d, which
is different from one of [6], when ` ≤ 4 (also in some case when ` = 5). We assume
that ` = 4, 5 and d ≡ 1 mod 4. Then, Tomita [21] investigated the connection
between the form of d and partial quotients of the continued fraction expansion of
ω(d) = (1 +

√
d)/2, and [21, Theorem, Remark 2] gave a representation of d by

using the partial quotients and some parameters determined by them. Especially,
in the case where [

√
d] is even, it becomes a concrete example that gives the

representation of d by Yokoi’s d-invariant nd (see [26, Theorem 2.1]). Also, in
this case, it was shown ([21, Corollary 1]) that md = 0 holds when ` = 4, and a
necessary and sufficient condition for md = 1 to hold was given when ` = 5 ([21,
Corollary 2]). In the case where [

√
d] is odd, a necessary and sufficient condition

for md 6= 0 to hold was given ([21, Corollaries 1, 3]). However, in this case, we
did not suggest explicitly a representation of md. When ` = 4, Proposition 5.2 is
an example that gives explicit forms of d and md by using partial quotients of the
continued fraction expansion of ω(d).

Remark 5.2. Let d be a non-square positive integer such that d ≡ 1 mod 4,
the period of (1+

√
d)/2 is equal to 4, and [

√
d] is even. Then we see by [6, p. 269]

or [21, Remark 2 (i)] that the symmetric part of the continued fraction expansion
of (1 +

√
d)/2 is of the form 1, a2, 1. Hence, Theorem 3.1 [B] and Lemma 5.1 (ii)

imply that d is not of minimal type for (1+
√

d)/2. (Also, it follows from Theorem
3.1 [A-ii] and Lemma 5.1 (i) that a2 is odd and Case (I) occurs.)
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6. Arithmetic of quadratic polynomials.

In Nagell [12, Section 2], it is proved under some conditions on a quadratic
polynomial f(x) (indeed, of general degree) that there exist infinitely many positive
integers t for which f(t) is square-free. In order to construct an infinite family
of real quadratic fields in Section 7, we make his conditions easy to handle in
Proposition 6.1. Though it seems known, a proof of it will be given here, as no
reference for it is known to the authors. The proof is essentially due to Nagell.

Proposition 6.1. Let f(x) = ax2 + bx + c be a quadratic polynomial in
Z[x] with a > 0. As a > 0, there is some integer t1 such that

t ∈ Z, t ≥ t1 =⇒ f(t) > 0. (6.1)

We suppose that the discriminant d(f) = b2 − 4ac of f(x) is not equal to 0, the
greatest common divisor (a, b, c) is square-free, and

“there is some integer t for which f(t) 6≡ 0 mod 4”. (6.2)

Then, the set {f(t) | t ∈ Z, t ≥ t1} contains infinite square-free elements.

Remark 6.1. If we can find some integer t2 ≥ t1 such that f(t2) is square-
free, then (a, b, c) is square-free. Also, since f(t2) is not divisible by 22, (6.2)
holds.

Proof. For any real number x > t1, we define

A(x) := ]{t ∈ Z | t1 ≤ t ≤ x, f(t) is square-free}.

We shall prove A(x) → ∞ as x → ∞. By a > 0, since the function f(x) is
strictly monotonously increasing for sufficiently large x, this implies that the set
{f(t) | t ∈ Z, t ≥ t1} contains infinite square-free elements. It is known by Nagell
[13, p. 82, Theorem 45] that there are infinitely many prime numbers p which is
a divisor of f(t) with some integer t ≥ t1. We arrange such prime numbers in
order of size: p1, p2, p3, . . . . As

∑∞
i=1

1
p2

i
<

∑∞
k=1

1
k2 < ∞, there is some number

m ≥ 2 such that

∞∑

i=m

1
p2

i

<
1
2
, (6.3)

i ≥ m =⇒ pi - ad(f), (6.4)
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and put

P := p2
1 · · · p2

m−1.

We let ordp(∗) denote the additive valuation on the rationals Q with ordp(p) = 1
for a prime number p, and claim that there is some integer t0,i such that

ordpi
(f(t0,i)) < 2,

for each i (1 ≤ i ≤ m − 1). Let 1 ≤ i ≤ m − 1, p = pi. When p = 2, it follows
from (6.2). When p ≥ 3, we can choose 3 integers u1, u2, u3, any two of which are
distinct modulo p. We assume ordp(f(t)) ≥ 2 for all integers t. Then it holds that
c + buj + au2

j = f(uj) ≡ 0 mod p2 for each uj , that is,




1 u1 u2
1

1 u2 u2
2

1 u3 u2
3







c

b

a


 ≡




0

0

0


 mod p2.

The determinant of the matrix in the left hand side of it is equal to (u2−u1)(u3−u1)
(u3−u2), which is co-prime to p. Since the matrix is invertible modulo p2, all c, b, a

are divisible by p2. This contradicts that (a, b, c) is square-free, and our claim is
proved. Also, Chinese remainder theorem implies that there is some integer t0 ≥ t1
such that

t0 ≡ t0,i mod p2
i , 1 ≤ ∀i ≤ m− 1.

We consider a quadratic polynomial

g(y) := f(Py + t0)

in Z[y], and define

B(y) := ]{t ∈ Z | 0 ≤ t ≤ y, g(t) is square-free}

for any real number y > 0. If 0 ≤ t ≤ y and g(t) is square-free, then the definition
of g(y) yields that f(Pt+ t0) is square-free and t1 ≤ t0 ≤ Pt+ t0 ≤ Py + t0. Thus,
we find a rough comparison of the cardinals

A(Py + t0) ≥ B(y) (6.5)
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for y > 0. For a prime number p and a real number y > 0, we define

B̂p(y) := ]{t ∈ Z | 0 ≤ t ≤ y, g(t) ≡ 0 mod p2}.

That g(t) is square-free means that g(t) is not divisible by p2 for any prime number
p. So, we obtain a rough estimate for B(y) from below:

B(y) ≥ y −
∑

p

B̂p(y). (6.6)

Here, p ranges over all prime numbers. By considering 4 cases separately, we show
that B̂p(y) = 0 for almost all prime numbers p when y is sufficiently large. Let p

be any prime number.
(I) If p is different from pi’s, i ≥ 1, then p does not divide f(t) for all t ≥ t1.

The definition of g(y) implies that p does not divide g(t) for all t ≥ 0. Hence,
B̂p(y) = 0 for y > 0.

(II) The case where p = pi with some i, 1 ≤ i ≤ m − 1. Let t be any
integer. Since Pt + t0 ≡ t0 ≡ t0,i mod p2

i , we see by the definition of t0,i that
g(t) ≡ f(t0,i) 6≡ 0 mod p2

i . Consequently, B̂p(y) = 0 for y > 0.
We let G := (a, b, c), and

f(x) = G
ν∏

k=1

fk(x)

be a factorization of f(x) into irreducible polynomials in Z[x] (ν = 1 or 2). Then
we have the factorization

g(y) = G
ν∏

k=1

gk(y), gk(y) := fk(Py + t0). (6.7)

Put nk := deg fk(x). Each factor gk(y) is a polynomial of degree 1 or 2 in Z[y],
and the leading term of gk(y) is greater than or equal to 1 since it is a positive
integer by P > 0. Hence there are some real numbers yk > 0 and ck > 1 such that

y ≥ yk =⇒ |gk(y)| < ckynk , (6.8)

y ≥ yk, y ≥ t ≥ 0 =⇒ |gk(t)| ≤ |gk(y)|. (6.9)

We put y0 := max{yk | 1 ≤ k ≤ ν} and c := max{ck | 1 ≤ k ≤ ν}, and assume
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that y ≥ y0 throughout the present proof.
(III) The case where p = pi and pi > cy with some i ≥ m. Let t ∈ Z, 0 ≤ t ≤

y. We show that g(t) 6≡ 0 mod p2. For each k (1 ≤ k ≤ ν), it follows from (6.9),
(6.8) and ck > 1 that

|gk(t)| ≤ |gk(y)| < ckynk ≤ cnk

k ynk ≤ cnkynk < pnk .

As nk ≤ 2, we obtain |gk(t)| < p2. On the other hand, Pt + t0 ≥ t0 ≥ t1 and (6.1)
yield that g(t) = f(Pt + t0) > 0. Consequently we have |gk(t)| > 0 from (6.7).
Therefore each gk(t) is not divisible by p2. First, we assume ν = 1. Since G is
co-prime to p by (6.4), the factorization (6.7) implies that g(t) (> 0) is not divisible
by p2. Next, we assume ν = 2. If we assume that p | g1(t) and p | g2(t), then
p | f1(t′) and p | f2(t′). Here we put t′ := Pt+ t0. Let θ1 be a solution of equation
f1(x) = 0, and a1 the leading term of linear polynomial f1(x). Then, a1θ1 ∈ Z.
Since a1 is a divisor of a, we have p - a1 by (6.4). Also, we see from p | f1(t′) that
ordp(a1(t′ − θ1)) = ordp(f1(t′)) > 0. Therefore, ordp(t′ − θ1) > 0. Similarly, let
θ2 be a solution of equation f2(x) = 0, and we obtain ordp(t′ − θ2) > 0. Hence,
ordp(θ1 − θ2) = ordp(θ1 − t′ + t′ − θ2) > 0. Therefore, d(f) = a2(θ1 − θ2)2 implies
that ordp(d(f)) > 0, and this contradicts (6.4). Thus, only one of g1(t) and g2(t)
can be divisible by p(, and not divisible by p2). We see by the same reason as
above that g(t) is not divisible by p2. Thus we have always B̂p(y) = 0.

(IV) The case where p = pi and pi ≤ cy with some i ≥ m. Note that
y < ([y/p2] + 1)p2 as y/p2 < [y/p2] + 1. Since the interval [0, y] is contained in the
union of intervals [kp2, (k + 1)p2], 0 ≤ k ≤ [y/p2], we obtain

B̂p(y) =
∑

0≤t≤y
g(t)≡0 mod p2

1 ≤
([

y

p2

]
+ 1

) ∑

t mod p2

g(t)≡0 mod p2

1.

Let u be any solution of congruence f(x) ≡ 0 mod p in integers. We let θ1, θ2 be
all solutions of equation f(x) = 0 to show p - f ′(u). Here, f ′(x) is the derivate of
f(x). We denote by Cp the completion of an algebraic closure of the p-adic field
Qp, and denote again by the same symbol the unique extension of ordp(∗) to Cp.
Also, we fix an embedding of an algebraic closure of Q in Cp. Since p - a by (6.4)
and f(x) = a(x−θ1)(x−θ2), we have ordp(u−θ1)+ordp(u−θ2) = ordp(f(u)) > 0.
So, there is some number i for which ordp(u − θi) > 0, say i = 1. If we assume
that p | f ′(u), then f ′(u) = a(u− θ1) + a(u− θ2) and ordp(u− θ1) > 0 yield that
ordp(u − θ2) > 0. Therefore, ordp(θ1 − θ2) > 0. This and the same argument
as in (III) imply that ordp(d(f)) > 0, and it contradicts (6.4). Thus, we obtain
p - f ′(u). It is known under this condition that the congruence f(x) ≡ 0 mod p2
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has at most 2 solutions. As p - P by i ≥ m, the definition of g(y) yields that
g(y) ≡ 0 mod p2 has also at most 2 solutions. Hence,

B̂p(y) ≤ 2
([

y

p2

]
+ 1

)
≤ 2y

p2
+ 2.

The above assertions (I)–(IV) and (6.6) imply that

B(y) ≥ y −
∑

pm≤pi≤cy

Bpi(y) ≥ y −
∑

pm≤pi≤cy

(
2y

p2
i

+ 2
)

= y

(
1− 2

∑

pm≤pi≤cy

1
p2

i

)
− 2

∑

pm≤pi≤cy

1 > y

(
1− 2

∞∑

i=m

1
p2

i

)
− 2π(cy)

for y ≥ y0. Here, π(x) is the number of prime numbers ≤ x. We see by (6.3)
that K1 := 1 − 2

∑∞
i=m

1
p2

i
> 0. Also, the prime number theorem says that

π(x) = o(x), where f = o(g) means that f(x)/g(x) → 0 as x → ∞. Therefore
B(y) > K1y + o(y), so that B(y) → ∞ as y → ∞. From (6.5), since A(x) ≥
B((x − t0)/P ) for x > t0, we obtain A(x) → ∞ as x → ∞. This proves our
proposition. ¤

7. Proof of Theorem 1.1.

Proof of Theorem 1.1 (i). We suppose that a is a positive integer such
that 2a+1 is square-free. For any integer t ≥ 0, we let d(t) be a non-square integer
as in Proposition 5.2 (i). For brevity, we write d(t) = A0t

2 + A1t + A2. By using
PARI-GP [3], it is easy to see

A0 = (8a2 + 6a + 1)2 = (2a + 1)2(4a + 1)2,

A1 = 2(8a2 + 6a + 1)(8a2 + 4a + 1) + 4a + 2 = 4(2a + 1)2(8a2 + 2a + 1),

A2 = (8a2 + 4a + 1)2 + 4a + 1 = 2(2a + 1)(16a3 + 8a2 + 4a + 1).

Therefore we obtain A2
1 − 4A0A2 = 8(2a + 1)3 6= 0 and (A0, A1, A2) = (2a + 1)g.

Here we put

g :=
(
(2a + 1)(4a + 1)2, 4(2a + 1)(8a2 + 2a + 1), 2(16a3 + 8a2 + 4a + 1)

)
.

Since g is a divisor of an odd integer (2a + 1)(4a + 1)2, g is also odd. Hence,
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g =
(
(2a + 1)(4a + 1)2, (2a + 1)(8a2 + 2a + 1), 16a3 + 8a2 + 4a + 1

)
,

and we denote by g′ the right hand side of it. If we assume that g′ > 1 then there
is some odd prime p such that p | g′, so that

16a3 + 8a2 + 4a + 1 ≡ 0 mod p. (7.1)

As p | (2a + 1)(4a + 1)2, we have p | (2a + 1), or p | (4a + 1). When p | (2a + 1),
2a ≡ −1 mod p and (7.1) yield that −1 ≡ 0 mod p, and this is a contradiction.
When p | (4a + 1), 4a ≡ −1 mod p and (7.1) yield that a ≡ 0 mod p. As 1 ≡ 0
mod p by (7.1), this is also a contradiction. Thus we get g′ = 1, and obtain
(A0, A1, A2) = 2a + 1. When d(t) is square-free, we see by Proposition 5.2 (i)
that md(t) = 16a, if t is even then d(t) ≡ 2 mod 4, and if t is odd then d(t) ≡ 3
mod 4. In particular, the condition (6.2) of Proposition 6.1 holds.

(A) The case where δ = 2. We take an even integer t, and write t = 2u

with some integer u ≥ 0. Since the discriminant of a quadratic polynomial d(2u)
in Z[u] is equal to the product of 22 and that of d(t), it is not equal to 0. As
d(2u) = 4A0u

2 + 2A1u + A2, the greatest common divisor of coefficients of it is
equal to

(4A0, 2A1, A2)

= 2(2a + 1)(2(2a + 1)(4a + 1)2, 4(2a + 1)(8a2 + 2a + 1), 16a3 + 8a2 + 4a + 1)

= 2(2a + 1)g′ (∵ 16a3 + 8a2 + 4a + 1 is odd.)

= 2(2a + 1). (∵ g′ = 1)

Since the odd integer 2a + 1 is square-free by the assumption, this is square-free.
Hence, Proposition 6.1 implies that the set {d(2u) | u ∈ Z, u ≥ 0} contains
infinite square-free elements. Consequently, we can choose a sequence {dn}n≥1 of
square-free positive integers which is strictly monotonously increasing such that
dn ≡ 2 mod 4 and mdn

= 16a. Since the sequence {mdn
}n≥1 of positive integers

is constant, we see by Lemma 4.5 that {hdn
}n≥1 is not bounded. Therefore we

obtain the assertion (i).
(B) The case where δ = 3. We take an odd integer t, and write t = 2u − 1

with some u ∈ N . Since the discriminant of a quadratic polynomial d(2u− 1) in
Z[u] is equal to the product of 22 and that of d(t), it is not equal to 0. As

d(2u− 1) = 4A0u
2 + (2A1 − 4A0)u + A0 −A1 + A2,
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the greatest common divisor of coefficients of it is equal to

(4A0, 2A1 − 4A0, A0 −A1 + A2)

= (4A0, 2A1, A0 −A1 + A2)

= (A0, A1, A0 −A1 + A2) (∵ A0 −A1 + A2 is odd.)

= (A0, A1, A2) = 2a + 1,

which is square-free by our assumption. Hence, Proposition 6.1 implies that the
set {d(2u − 1) | u ∈ N} contains infinite square-free elements. Consequently, we
can choose a sequence {dn}n≥1 of square-free positive integers which is strictly
monotonously increasing such that dn ≡ 3 mod 4 and mdn = 16a. Similarly,
Lemma 4.5 yields the assertion (i). ¤

The proof of Theorem 1.1 (ii). We suppose that a is a positive odd
integer such that a + 2 is square-free. For any integer t ≥ 0, we let d(t) be a
non-square integer as in Proposition 5.2 (ii). For brevity, we write d(t) = A0t

2 +
A1t + A2, and then

A0 = (a2 + 3a + 2)2 = (a + 1)2(a + 2)2,

A1 = 2(a2 + 3a + 2)(a2 + 2a + 2) + 4a + 8 = 2(a + 2)2(a2 + a + 2),

A2 = (a2 + 2a + 2)2 + 4a + 4 = (a + 2)(a3 + 2a2 + 4a + 4).

As a is odd, we obtain A2
1 − 4A0A2 = 16(a + 2)3 6= 0 and (A0, A1, A2) = (a + 2)g.

Here we put

g := ((a + 1)2(a + 2), 2(a + 2)(a2 + a + 2), a3 + 2a2 + 4a + 4).

Since g is a divisor of an odd integer a3 +2a2 +4a+4, g is also odd. If we assume
that g > 1 then there is some odd prime p such that p | g, so that

a3 + 2a2 + 4a + 4 ≡ 0 mod p. (7.2)

As p | (a + 1)2(a + 2), we have p | (a + 1), or p | (a + 2). When p | (a + 1), a ≡ −1
mod p and (7.2) yield that 1 ≡ 0 mod p, and this is a contradiction. When
p | (a+2), a ≡ −2 mod p and (7.2) yield that −4 ≡ 0 mod p, so that p = 2. This
is also a contradiction. Thus we get g = 1, and obtain (A0, A1, A2) = a+2, which
is square-free by our assumption. When d(t) is square-free, we see by Proposition
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5.2 (ii) that md(t) = a and d(t) ≡ 1 mod 4. In particular, the condition (6.2)
holds. Hence, Proposition 6.1 implies that the set {d(t) | t ∈ Z, t ≥ 0} contains
infinite square-free elements. Consequently, we can choose a sequence {dn}n≥1 of
square-free positive integers which is strictly monotonously increasing such that
dn ≡ 1 mod 4 and mdn = a. Since the sequence {mdn}n≥1 of positive integers
is constant, we see by Lemma 4.5 that {hdn

}n≥1 is not bounded. Therefore we
obtain the assertion (ii). ¤

Remark 7.1. We see in the following table that there exist real quadratic
fields Q(

√
d) with period 4 of minimal type such that 1 ≤ ord2(md) ≤ 3, which

are different from ones as in Theorem 1.1.

d Case s0 md hd

1397 I 1 2 1
2222 II 1 8 2
4515 II 2 4 8

15411 I 2 8 16
18829 I 1 4 5
19346 II 1 14 8
22243 II 2 6 20
26598 II 1 6 8
37333 I 1 2 10
40458 II 3 8 12
66253 I 5 2 6

d Case s0 md hd

69227 II 2 8 14
72402 II 1 10 16
76839 II 6 4 32
77363 I 4 8 12

120458 II 1 6 16
134981 I 7 2 10
139211 II 2 4 24
185818 II 1 8 40
186747 I 6 8 24
191113 III 1 2 36
218138 II 1 24 16

Remark 7.2. For any positive integer t, we put d(t) := 4t2 + 2, and then
see by Example 4.2 (a = 2t, s = 2) that the period of

√
d(t) is equal to 2,

d(t) ≡ 2 mod 4, and md(t) = 1. By using Proposition 6.1 and Lemma 4.5, the
same argument as in the proof of Theorem 1.1 implies that for any positive integer
h, there exist infinitely many real quadratic fields Q(

√
d), d ≡ 2 mod 4 with

period 2 which are not of minimal type such that hd > h and md = 1. Also, if we
put d(t) := 4t2 − 4t + 3 (a = 2t− 1, s = 2) for any positive integer t, then we can
obtain an infinite family of real quadratic fields Q(

√
d), d ≡ 3 mod 4 with the

same property.

8. Appendix.

8.1. Results of Friesen and of Halter-Koch.
As mentioned in Example 3.2, there exist infinitely many real quadratic fields

with period ` which are not of minimal type such that the continued fraction
expansion of ω has a given symmetric part. In the present section we show this fact
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by using an idea of Friesen. We utilize the following corollary to prove Proposition
8.2.

Corollary 8.1. Let ϕ(x) = ax2 + bx+ c be a quadratic polynomial in Z[x]
with a > 0. As a > 0, there is some integer s1 such that ϕ(s) > 0 for all integers
s ≥ s1. We suppose that the discriminant of ϕ(x) is of the form d(ϕ) = ±2e with
some e ∈ N , and that there is some integer s for which ϕ(s) 6≡ 0 mod 4. Then, the
greatest common divisor (a, b, c) is square-free and the set {ϕ(s) | s ∈ Z, s ≥ s1}
contains infinite square-free elements.

Proof. By our assumption, there is some integer s2 for which ϕ(s2) 6≡ 0
mod 4. If we assume that (a, b, c) is not square-free, then there is some prime
number q such that q2 | (a, b, c). Therefore, ϕ(s2) ≡ 0 mod q2. On the other
hand, as q | b2 − 4ac = d(ϕ) = ±2e, we obtain q = 2. Consequently ϕ(s2) ≡ 0
mod 4, and this is a contradiction. Thus, (a, b, c) is square-free. Hence, Proposition
6.1 implies our assertion. ¤

Proposition 8.2. We let ` ≥ 2 be any positive integer, and consider a
symmetric string of `− 1 positive integers a1, . . . , a`−1.

(i) Suppose that Case (I) or Case (II) occurs for a1, . . . , a`−1. Then, there exist
infinitely many real quadratic fields Q(

√
d), d ≡ 2 or 3 mod 4 with period

` which are not of minimal type such that

ω =
√

d =
[
[
√

d], a1, . . . , a`−1, 2[
√

d]
]
.

(ii) Suppose that Case (I) or Case (III) occurs for a1, . . . , a`−1. Then, there
exist infinitely many real quadratic fields Q(

√
d), d ≡ 1 mod 4 with period

` which are not of minimal type such that

ω = (1 +
√

d)/2 = [a0, a1, . . . , a`−1, 2a0 − 1], a0 := [(1 +
√

d)/2].

Proof. We let s0 be an integer as in the beginning of Section 3, and define
a quadratic polynomial

f(x) := g(x)2 + 4h(x) = A2x2 + 2(2B − (−1)`ABC)x + (B2 − (−1)`4)C2

in Z[x]. As we have seen in the proof of Theorem 3.1, the discriminant of f(x) is
equal to (−1)`24. Therefore, for any u, v, w ∈ Z, uw 6= 0,
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d(f(ux + v)/w) = u2d(f)/w2 = (−1)`24u2/w2.

Since AC = B2 − (−1)` by (2.6)k=1 of Lemma 2.1, we have AC ≡ B + 1 mod 2.
(i) We shall define a quadratic polynomial ϕ(x) in the following assertions

(A), (B), and see that the leading term of it is positive, the discriminant of ϕ(x)
is of the form d(ϕ) = ±2e with some e ∈ N , and ϕ(s) ≡ 2 or 3 mod 4 for any
integer s. In particular there is some integer s for which ϕ(s) 6≡ 0 mod 4.

(A) The case where Case (I) occurs. Since A is odd, we have C ≡ B + 1
mod 2. If (B,C) ≡ (0, 1) (resp., ≡ (1, 0)) mod 2, then we note that

f(2x)/4 = A2x2 + (2B − (−1)`ABC)x + (B2 − (−1)`4)C2/4

≡ x2 + Bx + (B/2)2 − (−1)` (resp., ≡ x2 + (2 + C)x + (C/2)2) mod 4.

We see easily the following: first, we assume B ≡ 2 mod 4. If ` is even then we
put ϕ(x) := f(4x + 2)/4, and obtain ϕ(s) ≡ 3 mod 4. If ` is odd then we put
ϕ(x) := f(4x)/4, and obtain ϕ(s) ≡ 2 mod 4. Next, we assume B ≡ 0 mod 4. If
` is even then we put ϕ(x) := f(4x)/4, and obtain ϕ(s) ≡ 3 mod 4. If ` is odd
then we put ϕ(x) := f(4x+2)/4, and obtain ϕ(s) ≡ 2 mod 4. Finally, we assume
that B is odd. Put ϕ(x) := f(4x + 2)/4. If C ≡ 2 mod 4 then ϕ(s) ≡ 2 mod 4,
and if C ≡ 0 mod 4 then ϕ(s) ≡ 3 mod 4.

(B) The case where Case (II) occurs. Since A is even, B is odd. If A ≡ 2
(resp., ≡ 0) mod 4, then we note that

f(x)/4 = (A/2)2x2 +
(

B − (−1)` ABC

2

)
x + (B2 − (−1)`4) · (C/2)2

≡ (A/2)2x2 +
(

B − (−1)` ABC

2

)
x + (C/2)2

≡ x2 + (B + C)x + (C/2)2 (resp., ≡ Bx + (C/2)2) mod 4.

We see easily the following: first, we assume A ≡ 2 mod 4. Put ϕ(x) :=
f(4x + 2)/4. If C ≡ 2 mod 4 then ϕ(s) ≡ 3 mod 4, and if C ≡ 0 mod 4 then
ϕ(s) ≡ 2 mod 4. Next, we assume A ≡ 0 mod 4. If C ≡ 2 (resp., ≡ 0) mod 4
then we put ϕ(x) := f(4x + B)/4 (resp., := f(4x + 2)/4), and obtain ϕ(s) ≡ 2
mod 4. Also, if C ≡ 2 (resp., ≡ 0) mod 4 then we put ϕ(x) := f(4x + 2)/4 (resp.,
:= f(4x + 3B)/4), and obtain ϕ(s) ≡ 3 mod 4.

We take an integer s1 such that

s1 > s0 and g(s1) > a1, . . . , a`−1.
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The above definition of ϕ and Corollary 8.1 imply that the set {ϕ(s) | s ∈ Z,
s ≥ s1} contains infinite square-free elements. Consequently, we can choose a
sequence {dn}n≥1 of square-free positive integers which is strictly monotonously
increasing such that dn ≡ 2 or 3 mod 4. By the definition of ϕ, we see that each dn

is of the form dn = f(4s + u0)/4 with some integer s ≥ s1. Here, u0 = 0, 2, B, or
3B, and u0 is even when Case (I) occurs. As 4s + u0 ≥ s ≥ s1, the condition (3.2)
of Theorem 3.1 for 4s + u0 holds. Also, 4s + u0 > s0. Hence, Theorem 3.1 [A-i]
implies that the continued fraction expansion of

√
dn has the desired form, and

that each Q(
√

dn) is a real quadratic field with period ` which is not of minimal
type.

(ii) Since either of A, B and C is even, we obtain f(x) ≡ A2x2 + B2C2

mod 4. Consequently, when Case (I) (resp., (III)) occurs, we have f(2x + 1) ≡ 1
(resp., f(x) ≡ 1) mod 4. So, if we put ϕ(x) := f(2x + 1) (resp., := f(x)), then
ϕ(s) ≡ 1 mod 4 for any integer s. In particular there is some integer s for which
ϕ(s) 6≡ 0 mod 4. Also, the discriminant of ϕ is of the form d(ϕ) = ±2e with some
e ∈ N . By using Corollary 8.1 and Theorem 3.1 [A-ii], the same argument as in
the assertion (i) implies the assertion (ii). Our proposition is proved. ¤

8.2. List of real quadratic fields of class number 1 that are not of
minimal type.

When d < 107, we see in the following table that there are exactly 51 real
quadratic fields Q(

√
d) of class number 1 that are not of minimal type.

Remark 8.1. In Mollin and H. C. Williams [11, Theorem 3.1], it is shown
that there are exactly 20 real quadratic fields of period 4 satisfying hd = 1, with
one more possible exception, and all such fields are listed in Table 3.1 of it. On
the other hand, the table below says that 13 fields are not of minimal type among
such 20 fields: d = 7, 14, 23, 47, 62, 69, 167, 213, 398, 413, 717, 1077, 1757. The 4
fields among 7 fields Q(

√
d) of minimal type can be obtained from Proposition 5.2

(ii): d = 33 (a = 1, t = 0), d = 141 (a = 1, t = 1), d = 573 (a = 1, t = 3), d = 1293
(a = 1, t = 5). (The 3 rest fields are as follows. For d = 133, md = hd = 1,
(1 +

√
133)/2 = [6, 3, 1, 3, 11]. For d = 1397, md = 2, hd = 1, (1 +

√
1397)/2 =

[19, 5, 3, 5, 37]. For d = 3053, md = hd = 1, (1 +
√

3053)/2 = [28, 7, 1, 7, 55].)
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d ` s0 s Case md

2 1 1 2 I 2
3 2 1 2 I 1
6 2 1 2 II 1
7 4 1 2 I 2

11 2 1 2 I 1
13 1 1 3 I 0
14 4 2 3 II 2
17 3 0 1 III 0
21 2 1 3 I 0
23 4 3 4 I 2
29 1 1 5 I 0
37 3 0 2 III 0
38 2 1 2 II 1
47 4 5 6 I 2
53 1 1 7 I 0
61 3 0 1 I 0
62 4 6 7 II 2
69 4 1 3 I 0
77 2 1 7 I 0
83 2 1 2 I 1
93 2 1 3 I 0

101 3 0 4 III 0
149 5 −1 1 I 0
167 4 11 12 I 2
173 1 1 13 I 0
197 3 0 6 III 0

d ` s0 s Case md

213 4 3 5 I 0
227 2 1 2 I 1
237 2 1 3 I 0
269 5 −3 −2 III 0
293 1 1 17 I 0
317 3 0 3 I 0
341 6 6 7 I 0
398 4 18 19 II 2
413 4 1 7 I 0
437 2 1 19 I 0
453 2 1 3 I 0
461 3 0 1 I 0
557 3 0 2 III 0
677 3 0 12 III 0
717 4 7 9 I 0
773 3 0 5 I 0
797 7 −3 −1 I 0

1013 5 −2 −1 I 0
1077 4 9 11 I 0
1133 2 1 11 I 0
1253 2 1 7 I 0
1757 4 3 4 III 0
1877 3 0 1 I 0
2477 5 0 3 I 0
3533 5 0 1 I 0
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