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Abstract. The Kirchhoff elastic rod is one of the mathematical models of thin
elastic rods, and is characterized as a critical point of the energy functional obtained
by adding the effect of twisting to the bending energy. In this paper, we investigate
Kirchhoff elastic rods in three-dimensional space forms. In particular, we give explicit
formulas of Kirchhoff elastic rods in the three-sphere and in the three-dimensional
hyperbolic space in terms of Jacobi sn function and the elliptic integrals.

1. Introduction.

The most famous model of thin elastic rods is probably Euler’s elastica, which
is a critical curve for the energy with the effect of bending only. The uniform
symmetric case of the Kirchhoff elastic rod is a generalization of the elastica and
is the simplest model with the effect of bending and twisting. (In this paper, we
call it a Kirchhoff elastic rod for short.)

Such mathematical models of thin elastic rods in the Euclidean space have
been extensively studied since the days of Euler in the 1730s (see, e.g., [1], [23]).
Meanwhile, the elastica or its certain generalizations in Riemannian manifolds,
except the Euclidean space, have been investigated since the 1980s not only for
their own interests but also for applications to constructing Willmore surfaces, and
so on (see, e.g., [2], [3], [4], [8], [16], [19], [20], [26]).

In this paper, we consider Kirchhoff elastic rods in the simply-connected three-
dimensional space forms, R3, S3 and H3. In [21], by using Pontryagin’s maxi-
mum principle, Langer and Singer derived the Hamiltonian systems associated to
a class of variational problems, including that of Kirchhoff elastic rods in the three-
dimensional space forms, and proved their Liouville integrability. These Hamilto-
nian systems are defined on the cotangent bundle of the orthonormal frame bundle
(or its certain enlargement) of the space form. Also, Jurdjevic ([11]) considered
the complexified Hamiltonian equations induced by the variational problems of
generalized Kirchhoff elastic rods (see also [8], [9], [10]). Jurdjevic classified the
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integrable cases, including that of Kirchhoff elastic rods in the three-dimensional
space forms, and showed the integration procedures. However, it seems to be dif-
ficult to visualize immediately the global shapes of the centerlines of Kirchhoff
elastic rods in the non-Euclidean space forms. To make the visualization easier,
we would like to take a system of coordinates on the space form itself and obtain
simple explicit formulas of Kirchhoff elastic rods by well-known special functions.

In the case of the three-dimensional Euclidean space R3, many authors have
been studying explicit expressions of Kirchhoff elastic rods, or their relations with
the Lagrange top, the vortex filament equation or the DNA molecule (e.g., [6],
[7], [14], [15], [22], [25], [27], [28]). Langer-Singer ([22]) and Shi-Hearst ([27])
obtained explicit formulas of the centerlines of Kirchhoff elastic rods by Jacobi sn
function and the elliptic integrals in terms of cylindrical coordinates.

It is natural to ask if we can get such explicit expressions as [22], [27], even
in the three-sphere S3 or the three-dimensional hyperbolic space H3. In the case
of the three-sphere, the author obtained explicit formulas of the centerlines of
Kirchhoff elastic rods by Jacobi sn function and the elliptic integrals in terms
of a system of coordinates analogous to the cylindrical coordinates (Theorem 6.1
of [13]). However, we cannot apply the same method as [13] to the case of the
three-dimensional hyperbolic space.

In this paper, by using an approach not depending on the signature of the
sectional curvature of the space form, we prove that an analogous result also holds
for the three-dimensional hyperbolic space H3.

Let M be a smooth n (≥ 2)-dimensional Riemannian manifold with metric
〈 , 〉. Let γ = γ(t) : [0, l] → M be a smooth unit-speed curve, and T (t) = γ′(t) the
tangent vector to γ. We denote by TM the tangent bundle of M and by ∇ the
Levi-Civita connection in TM .

To describe how the elastic rod is twisted, we utilize a smooth orthonormal
frame field M = (M1,M2, . . . , Mn−1) in the normal bundle T⊥M along γ. We
consider the pair {γ, M} of γ and M . In this paper, we call such a pair {γ, M} a
unit-speed curve with adapted orthonormal frame, and γ the centerline of {γ, M}.
Note that (T (t),M1(t), . . . , Mn−1(t)) is an orthonormal basis of the tangent space
Tγ(t)M for each t. Now, let ν be a fixed positive constant, which is determined
by the material of a given rod. (Throughout the paper, this constant ν is always
fixed.) We define the energy T as follows:

T({γ, M}) =
∫ l

0

|∇T T |2dt + ν
n−1∑

i=1

∫ l

0

|∇⊥T Mi|2dt,

where ∇⊥ denotes the normal connection in T⊥M , so that, ∇⊥T Mi = ∇T Mi −
〈∇T Mi, T 〉T . The first term of T({γ, M}) expresses the energy of bending, and
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the second term that of twisting. We call {γ, M} a Kirchhoff elastic rod if {γ, M}
is a critical point of T with respect to the variations of unit-speed curves with
adapted orthonormal frames which preserve the frames (γ(t), (T (t),M(t))) at the
both end points.

Let M be S3 or H3 of constant sectional curvature G. In Section 2, according
to [13], we give explicit expressions of the curvature and torsion of the centerline
γ of a Kirchhoff elastic rod {γ, M} in M , and then parametrize the space of the
congruence classes of Kirchhoff elastic rods by four real numbers, which we will
write as α, η, p, w (Proposition 2.2).

To obtain the explicit formulas for γ itself, we use a similar method to that
of Langer and Singer (see e.g., [7], [12], [13], [18], [20], [22]). In Section 3, we
construct two Killing vector fields J̃ and H̃ on M associated to the Kirchhoff
elastic rod {γ, M} (Lemma 3.2), and prove that J̃ and H̃ commute (Lemma 3.4).

In Section 4, by using these two lemmas, we show that the matrix repre-
sentations of J̃ and H̃ can be simultaneously canonicalized (Proposition 4.2 and
Proposition 4.5), and we construct a system of coordinates suitable for {γ, M}
(the last part of Section 4).

In Section 5, we first express various constants by α, η, p and w. (A part
of these calculations is written in the appendix (Section 6).) Then, we give the
explicit formulas of the coordinate components of γ in terms of α, η, p, w, Jacobi
sn function and the incomplete elliptic integral of the third kind (Theorem 5.3).

Let

ε =

{
1 if M = S3,

−1 if M = H3,
I(M ) =

{
O(4) if M = S3,

O+(3, 1) if M = H3.

In the case where M = S3, we embed M isometrically into the four-dimensional
Euclidean space R4, with the canonical coordinates (x1, x2, x3, x4), as the stan-
dard three-sphere of radius 1/

√
G. In the case where M = H3, we embed M

isometrically into R4 with the Lorentzian metric dx2
1 + dx2

2 + dx2
3 − dx2

4 as the
hyperboloid {t(x1, x2, x3, x4) ∈ R4 ; x2

1 +x2
2 +x2

3−x2
4 = 1/G, x4 > 0}. We denote

by ι : M → R4 the isometric embedding. Let t(x1, x2, x3, x4) ∈ ι(M ). We take a
local coordinate system (r, θ, ψ), called the cylindrical coordinates with respect to
ι, on M by the following relations:

In the case of S3, x1 = r cos θ, x2 = r sin θ, x3 = r̄ cos ψ, x4 = r̄ sinψ.

In the case of H3, x1 = r cos θ, x2 = r sin θ, x3 = −r̄ sinhψ, x4 = r̄ cosh ψ.

Here, 0 < r < 1/
√

G in the case of S3, and r > 0 in the case of H3. Also,
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r̄ =
√

ε(1/G− r2). This coordinate system (r, θ, ψ) is analogous to a system of
cylindrical coordinates in R3.

Theorem 1.1 (cf. Theorem 5.3). Let {γ, M} be a Kirchhoff elastic rod in
M = S3 or H3. When M = H3, we assume that the associated Killing vector
fields J̃ and H̃ are not parabolic. Then, there exists P ∈ I(M ) satisfying the
following : Let (r, θ, ψ) denote the coordinates as above with respect to the isometric
embedding P ◦ ι : M → R4 instead of ι, and let r(t), θ(t), ψ(t) denote the r, θ, ψ

components of γ. Then,

r(t) =
√

c1 sn2(c2t, c3) + c4.

Moreover, if there exist no points where r(t) = 0 or r̄(t) = 0, then

θ(t) = c5t + c6Π(c2t, c7, c3),

ψ(t) = c8t + c9Π(c2t, c10, c3),

where sn and Π denote Jacobi sn function and the incomplete elliptic integral of
the third kind, respectively. Also, c1, . . . , c10 are real constants, which are explicitly
expressed by (α, η, p, w) and G.

We note that if there exists a point where r(t) = 0 or r̄(t) = 0, then the
explicit formulas of θ(t), ψ(t) are also obtained. Even when M = H3 and J̃

or H̃ is parabolic, the explicit formulas for γ are obtained in terms of another
coordinate system. Consequently, in all cases, we obtain the explicit formulas of
the components of γ (see Theorem 5.3).

The point of the proof of the above theorem is the simultaneous canonical-
ization of the matrix representations of J̃ and H̃. The main difference between
the approach of this paper and that of [13] is as follows: In [13], in order to prove
this simultaneous canonicalizability, the author did not use the commutativity of
J̃ and H̃ directly, but exploited the fact that the two vector fields J̃ ± 2

√
GH̃ are

Killing vector fields on S3 of constant lengths. Thus, the same method cannot
apply to the case of H3. On the other hand, in this paper, we first prove the com-
mutativity of J̃ and H̃, which holds not depending on the signature of G (Lemma
3.4). Due to this commutativity, we can prove the simultaneous canonicalizability
of the matrix representations of J̃ and H̃, and then obtain the explicit formulas
for γ even in the case where M = H3.

The author would like to express his gratitude to the referee for valuable
comments and suggestions.
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2. The space of Kirchhoff elastic rods.

In this section, according to [13], we give explicit expressions of the curvature
and torsion of the centerline γ of a Kirchhoff elastic rod {γ, M} in M = R3, S3,
H3, and then parametrize the space of the congruence classes of Kirchhoff elastic
rods by four real numbers (Proposition 2.2). Unless otherwise specified, all curves,
vector fields, etc., are assumed to be C∞.

Let M be R3, S3 or H3 of constant sectional curvature G. We fix an orienta-
tion of M , and denote by × the vector product. Let {γ, M} be a unit-speed curve
with adapted orthonormal frame in M . We call {γ, M} a Kirchhoff elastic rod
if {γ, M} is a critical point of the energy T with respect to the variations which
preserve the frames (γ(t), (T (t),M(t))) at the both end points. More precisely, a
Kirchhoff elastic rod is defined to be a solution of the associated Euler-Lagrange
equation, whose derivation is discussed in detail in Section 2 of [13].

Definition 2.1. A unit-speed curve with adapted orthonormal frame
{γ, M} is called a Kirchhoff elastic rod if the following equations hold for some
real constants a and µ.

∇T

[
2(∇T )2T + (3|∇T T |2 − µ + 2G + 2νa2)T − 4νaT ×∇T T

]
= 0,

〈∇⊥T M1, T ×M1〉 = a.

The constant a is uniquely determined for each {γ, M}, and is called the
twist rate of {γ, M}. Except the case where γ is a geodesic, the constant µ is
also uniquely determined, and is called the Lagrange multiplier of {γ, M}. In the
rest of the paper, we assume that the centerline of a Kirchhoff elastic rod is not
a geodesic. (A Kirchhoff elastic rod whose centerline is a geodesic is a relatively
trivial object. For details, see page 212 of [13].) Note also that a Kirchhoff elastic
rod {γ, M} is real analytic in t.

For a while, we assume the curvature of γ is positive everywhere. By writing
down the first equation of Definition 2.1 in terms of the Frenet frame (T,N, B)
along γ, we obtain the following equations of the curvature k and torsion τ of γ.

2k′′ + k3 + (2νa2 − µ + 2G)k − 2kτ(τ − 2νa) = 0, (2.1)

k2(τ − νa) = b, (2.2)

where b is a constant. Using the substitution τ = b/k2 + νa and multiplication by
k′ and integration, we obtain
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(k′)2 +
k4

4
+

1
2
(2νa2 − µ + 2G + 2ν2a2)k2 +

b2

k2
= c, (2.3)

where c is a constant.
Let sn(x, p), cn(x, p), dn(x, p) and K(p) denote Jacobi sn, cn, dn functions

and the complete elliptic integral of the first kind, respectively (cf. [5], [20]).
The solution k(t) of (2.3) is expressed by Jacobi sn function, and the space of
all congruence classes of Kirchhoff elastic rods, including the case where γ has
inflection points, is parametrized by four real numbers (Proposition 3.1 of [13]).
For the proof, see pages 212–215 of [13].

In this paper, instead of the parameter (a+, α1, α2, α3) in Proposition 3.1 of
[13], we use another parameter (α, η, p, w), which is defined as follows:

α = α3, η =
a+√
α3

, p =
√

α3 − α2

α3 + α1
, w =

√
α3

α3 + α1
.

Then Proposition 3.1 of [13] is rewritten as the following proposition. (As for the
definition of a congruence class of unit-speed curves with adapted orthonormal
frames, see pages 211–212 of [13].)

Proposition 2.2. The space of all congruence classes of Kirchhoff elastic
rods (except geodesics) defined on R in M = R3, S3 or H3 corresponds to the
parameter space P = P̃/ ∼, where

P̃ = {(α, η, p, w) ; α > 0, −∞ < η < ∞, 0 ≤ p ≤ w ≤ 1, w 6= 0}(⊂ R4),

and the equivalence relation ∼ is defined as follows: If p = w or w = 1, then
(α, η, p, w) ∼ (α,−η, p, w).

An element [(α, η, p, w)] of P corresponds to the congruence class of Kirch-
hoff elastic rods with twist rate ±η

√
α, whose curvature k(t) and torsion τ(t) are

expressed as follows:

k(t) =
√

α(1− q2 sn2(y(t− t0), p)), (2.4)

τ(t) = ±
(

α3/2
√

(1− w2)(w2 − p2)
2w2k(t)2

+ νη
√

α

)
, (2.5)

where q = p/w, y =
√

α/(2w) and t0 ∈ R. Also, the double sign of η
√

α and that
of the right hand side of (2.5) are in the same order.
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We note that the parameters µ, a and b are expressed by (α, η, p, w) as follows:

µ =
α

2w2
[−Y + 2w2(1 + 2νη2)], a = ±η

√
α, b = ±α3/2

2w2
V X, (2.6)

where

V =
√

1− w2, X =
√

w2 − p2, Y = 1 + p2− (1 + 4ν2η2)w2− 4Gw2/α. (2.7)

The expressions (2.6) follow from (3.13), (3.14) and (3.15) of [13]. For details, see
the proof of Proposition 3.1 of [13]. The expression of the parameter c in terms
of (α, η, p, w) can be obtained as well, but we omit it, because we need not use it
below.

We give some relations between (α, η, p, w) and the shape of γ. If the elliptic
modulus p = 0, then γ is a helix, that is, both k and τ are constant. If 0 < p < 1,
then k is a periodic function with primitive period 2K(p)/y, which attains the
maximum (resp. minimum) value

√
α (resp.

√
β) precisely when t = 2mK(p)/y+t0

(resp. (2m+1)K(p)/y+t0), where β = α(w2−p2)/w2 and m is an arbitrary integer.
Also, τ is a periodic function with primitive period 2K(p)/y or a constant function.
If p = 1 (which implies w = 1), then k =

√
α sech(y(t− t0)), which is not periodic

and attains the maximum value
√

α at t0, and converges to the infimum value√
β (= 0) as t → ±∞. In this case, τ = ±νη

√
α.

Also, γ has inflection points if and only if p = w 6= 1. In this case, k =√
α|cn(y(t− t0), p)|, which vanishes precisely when t = (2m + 1)K(p)/y + t0 (m ∈

Z), and τ = ±νη
√

α except at the periodic inflection points.

3. Construction of Killing vector fields.

In this section, we construct two commuting Killing vector fields associated to
a Kirchhoff elastic rod (Lemmas 3.2 and 3.4), which will be used in the following
sections to construct a system of coordinates and obtain explicit formulas of the
components of the centerline of the Kirchhoff elastic rod.

In the rest of the paper, let {γ, M} be a Kirchhoff elastic rod in M . Without
loss of generality, we may assume that t0 in (2.4) is zero. Now, we define two
vector fields J and H along γ by setting

J = 2(∇T )2T + (3|∇T T |2 − µ + 2νa2)T − 4νaT ×∇T T,

H = 2νaT + T ×∇T T.

Note that in terms of the Frenet frame along γ, these are expressed as follows:
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J = (k2 − µ + 2νa2)T + 2k′N + 2k(τ − 2νa)B, (3.1)

H = 2νaT + kB. (3.2)

Before stating the main claims of this section, we give some useful formulas
with respect to J and H. By using the formula X1 × (X2 ×X3) = 〈X1, X3〉X2 −
〈X1, X2〉X3, where X1, X2 and X3 are tangent vectors at a point in M , we see

∇T (−T ) = T ×H, (3.3)

∇T H = T × 1
2
J. (3.4)

We should mention that the relations (3.3) and (3.4) correspond to the n = 1, 2
cases of the filament model recursion scheme (1) of [17] starting with −T . Vector
fields −T , H and (1/2)J are the first three of the sequence derived from this
scheme.

Since the first equation of Definition 2.1 is equivalent to ∇T J = −2G∇T T , it
follows from (3.3) that

∇T J = 2GT ×H. (3.5)

Using these formulas, we obtain the following two first integrals, which are viewed
as the space form versions of the n = 3 case of (11) of [17].

Proposition 3.1. The functions 〈J,H〉 and |J |2 + 4G|H|2 are constant.

Proof. By (3.4) and (3.5), it follows that

d

dt
〈J,H〉 = 2G〈T ×H, H〉+

1
2
〈J, T × J〉 = 0,

d

dt
(|J |2 + 4G|H|2) = 4G〈T ×H, J〉+ 4G〈T × J,H〉 = 0. ¤

We state the main claims of this section, that is, Lemmas 3.2 and 3.4.

Lemma 3.2 (Proposition 4.1 of [13]). The vector fields J , H along γ extend
uniquely to Killing vector fields on M .

The key lemma of the proof of Lemma 3.2 is the following:

Lemma 3.3 ([18], [20]). Let M be R3, S3, or H3 of constant sectional
curvature G. Let γ = γ(t) be a unit-speed C∞ curve in M whose curvature k(t)
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is positive everywhere. Let Λ be a C∞ vector field along γ. Then Λ extends
to a Killing vector field on M if and only if Λ satisfies the following system of
differential equations.

〈∇T Λ, T 〉 = 0,
〈
(∇T )2Λ + GΛ,N

〉
= 0,

〈
(∇T )3Λ− k′

k
(∇T )2Λ + (G + k2)∇T Λ− k′

k
GΛ,B

〉
= 0,

where (T, N, B) is the Frenet frame along γ. Moreover, the Killing vector field
is uniquely determined. (Such a vector field Λ is said to be a Killing vector field
along γ.)

By using Lemma 3.3 and the Euler-Lagrange equations (2.1) and (2.2), we
can prove Lemma 3.2, but we omit it. For details, see [13].

Lemma 3.4. Let J̃ , H̃ denote the unique extensions of J , H as Killing vector
fields on M , respectively. Then, [J̃ , H̃] = 0.

Proof. The set of all zeros of a Killing vector field on M is either the
empty set, the whole M , or one geodesic in M . Thus it is sufficient to verify that
[J̃ , H̃] = 0 on γ, because the image of γ is not contained in any geodesic. Since
[J̃ , H̃] = ∇J̃H̃ −∇H̃ J̃ , it is sufficient to show that ∇H̃ J̃ = 0 and ∇J̃H̃ = 0 on γ.

First, we show∇H̃ J̃ = 0 on γ. Since J̃ is not expressed explicitly except at the
points on γ, it is difficult to compute ∇H̃ J̃ directly. And so, we replace ∇H̃ J̃ by
another expression. Let ϕλ (λ ∈ R) denote the one-parameter group of isometries
generated by J̃ , and ϕλ

∗ the differential map of ϕλ for each λ. We write (ϕλ ◦γ)(t)
as γ̂(λ, t) = γλ(t), and let T̂ (λ, t) = ∂γ̂/∂t and Ĵ(λ, t) = ∂γ̂/∂λ (= J̃(γ̂(λ, t))).
We denote the induced connection by ∇γ̂−1TM , and write ∇γ̂−1TM

∂/∂t and ∇γ̂−1TM
∂/∂λ

as ∇T̂ and ∇Ĵ , respectively. Now, let Ĥ be the vector field along γ̂ defined by
Ĥ(λ, t) = 2νaT̂ + T̂ × ∇T̂ T̂ . The formulas obtained by replacing T , J and H

in (3.3), (3.4) and (3.5) by T̂ , Ĵ and Ĥ are valid, because T̂ (λ, t) = ϕλ
∗(T (t)),

Ĵ(λ, t) = ϕλ
∗(J(t)) and Ĥ(λ, t) = ϕλ

∗(H(t)).
Since H̃ coincides with Ĥ on γ, it suffices to calculate ∇Ĥ J̃ . Also, since Ĥ

is invariant under the flow ϕλ, ∇Ĥ J̃ = ∇ĴĤ holds. Hence it suffices to show
∇ĴĤ = 0. We write T̂ , Ĵ , Ĥ, ∇Ĵ , etc. as T , J , H, ∇J , etc., unless confusions
could occur. We can verify that ∇JT = ∇T J and

∇J∇T X = ∇T∇JX + G(〈T, X〉J − 〈J,X〉T ), (3.6)



560 S. Kawakubo

where X is an arbitrary vector field along γ̂. These formulas together with ∇T J =

−2G∇T T and ∇T H =
1
2
T × J yield

∇JH = 2νa∇T J +∇T J ×∇T T + T × ((∇T )2J + GJ)

= −2G(2νa∇T T + T × (∇T )2T ) + GT × J

= −2G

(
∇T H − 1

2
T × J

)
= 0. (3.7)

Hence ∇H̃ J̃ = 0 on γ.
Next, we show ∇J̃H̃ = 0 on γ. In the same way as above, we replace ∇J̃H̃

by another expression. Let ψλ (λ ∈ R) be the one-parameter group of isometries
generated by H̃. We write (ψλ ◦ γ)(t) as γ̄(λ, t) = γλ(t), and let T̄ (λ, t) = ∂γ̄/∂t,
H̄(λ, t) = ∂γ̄/∂λ (= H̃(γ̄(λ, t))), ∇T̄ = ∇γ̄−1TM

∂/∂t and ∇H̄ = ∇γ̄−1TM
∂/∂λ . Let J̄ be

the vector field along γ̄ defined by

J̄(λ, t) = 2(∇T̄ )2T̄ +
(
3|∇T̄ T̄ |2 − µ + 2νa2

)
T̄ − 4νaT̄ ×∇T̄ T̄ .

Since J̃ coincides with J̄ on γ, it suffices to calculate ∇J̄H̃. Also, J̄(λ, t) =
ψλ
∗ (J(t)) yields∇J̄H̃ = ∇H̄ J̄ . Thus, it suffices to show∇H̄ J̄ = 0. By a calculation

similar to that of ∇ĴĤ, we obtain

∇H̄ J̄ =2(∇T )3H +
(
3|∇T T |2 − µ + 2G + 2νa2

)∇T H

− 4νa
(∇T H ×∇T T + T × (∇T )2H + GT ×H + G∇T T

)

on γ. It is sufficient to show that the right hand side is equal to zero except at the
inflection points of γ. By using (k2(τ − νa))′ = k(2k′τ + kτ ′ − 2νak′) = 0, we see
that the right hand side of the above expression becomes

− (τ − 2νa)[2k′′ + k3 + (2νa2 − µ + 2G)k − 2kτ(τ − 2νa)]N

+ [2k′′ + k3 + (2νa2 − µ + 2G)k − 2kτ(τ − 2νa)]′B,

which is equal to zero by (2.1). Hence ∇J̃H̃ = 0 on γ, which completes the proof.
¤

For a later convenience, we need the following lemma, which follows from
Lemma 3.3 together with a straightforward calculation.
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Lemma 3.5. Let {γ, M} be a Kirchhoff elastic rod such that γ is a helix.
Then the tangent vector T of γ extends uniquely to a Killing vector field on M .

4. Construction of coordinates.

In this section, we construct a system of coordinates suitable for a Kirchhoff
elastic rod {γ, M} by using the associated commuting Killing vector fields J̃ and
H̃ constructed in the previous section.

Let

ε =





0 if M = R3,

1 if M = S3,

−1 if M = H3.

We embed M isometrically into R4 = {t(x1, x2, x3, x4); x1, x2, x3, x4 ∈ R} with
the Euclidean metric as

{t(x1, x2, x3, 1) ; x1, x2, x3 ∈ R} if M = R3,

{t(x1, x2, x3, x4) ∈ R4 ; x2
1 + x2

2 + x2
3 + x2

4 = 1/G} if M = S3.

Also, we embed M isometrically into R4 with the Lorentzian metric dx2
1 + dx2

2 +
dx2

3 − dx2
4 as the hyperboloid

{t(x1, x2, x3, x4) ∈ R4 ; x2
1 + x2

2 + x2
3 − x2

4 = 1/G, x4 > 0} if M = H3.

We denote by ι : M → R4 the above isometric embedding, and we often identify
M with ι(M ). The Euclidean or Lorentzian metric on R4 and the Riemannian
metric on M are denoted by the same notation 〈 , 〉. Let

I(M ) =





E(3) if M = R3,

O(4) if M = S3,

O+(3, 1) if M = H3,

Lie(I(M )) =





e(3) if M = R3,

o(4) if M = S3,

o(3, 1) if M = H3,

where

E(3) =
{(

R b

0 1

)
∈ GL(4,R); R ∈ O(3), b ∈ R3

}
,
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O+(3, 1) =
{
P ∈ GL(4,R) ; tPBP = B, P44 ≥ 1

}
,

e(3) =
{(

A b

0 0

)
∈ M(4,R) ; A ∈ o(3), b ∈ R3

}
,

o(3, 1) =
{(

A b
tb 0

)
∈ M(4,R) ; A ∈ o(3), b ∈ R3

}
,

B =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 ,

and O(4) is the Lie group of all 4×4 orthogonal matrices and o(4) is the Lie algebra
of all 4× 4 skew-symmetric matrices. That is, I(M ) is the isometry group of M ,
and Lie(I(M )) is its Lie algebra. For a later use, we define E1, E2 ∈ Lie(I(M ))
and F1, F2 ∈ o(3, 1) as follows:

E1 =




0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , E2 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 ε 0


 ,

F1 =




0 0 −1 1
0 0 0 0
1 0 0 0
1 0 0 0


 , F2 =




0 0 0 0
0 0 −1 1
0 1 0 0
0 1 0 0


 .

For any Killing vector field Y on M , there exists a unique 4 × 4 matrix
AY ∈ Lie(I(M )), called the matrix representation of Y with respect to ι, satisfying
(ι∗Y )(x) = AY x, where x = t(x1, x2, x3, x4) ∈ ι(M ). Note that if P ∈ I(M ),
then the matrix representation of Y with respect to P ◦ ι is equal to PAP−1.

Let t(x1, x2, x3, x4) ∈ ι(M ). We define a coordinate system (r, θ, ψ), called
the cylindrical coordinates with respect to ι, on M = R3, S3, H3 by the following
relations:

In the case of R3, x1 = r cos θ, x2 = r sin θ, x3 = −ψ.

In the case of S3, x1 = r cos θ, x2 = r sin θ, x3 = r̄ cos ψ, x4 = r̄ sinψ.

In the case of H3, x1 = r cos θ, x2 = r sin θ, x3 = −r̄ sinhψ, x4 = r̄ cosh ψ.
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Here, r > 0 in the case of R3 or H3, and 0 < r < 1/
√

G in the case of S3. Also,
r̄ =

√
ε(1/G− r2). The coordinate fields ∂/∂r, ∂/∂θ, ∂/∂ψ are orthogonal. Note

that ∂/∂θ (resp. ∂/∂ψ) is not defined on the geodesic r =
√

x2
1 + x2

2 = 0 (resp.
r̄ =

√
εx2

3 + x2
4 = 0) in the case of R3, S3, H3 (resp. S3), but naturally extends to

a smooth vector field on the whole M , which is also denoted by the same notation
∂/∂θ (resp. ∂/∂ψ). Then ∂/∂θ (resp. ∂/∂ψ) corresponds to the Killing vector
field whose matrix representation with respect to ι is E1 (resp. E2). In the case of
M = S3, H3, the following holds:

∣∣∣∣
∂

∂r

∣∣∣∣ =
1√
εG r̄

,

∣∣∣∣
∂

∂θ

∣∣∣∣ = r,

∣∣∣∣
∂

∂ψ

∣∣∣∣ = r̄,

∇ ∂
∂θ

∂

∂θ
= −εGrr̄2 ∂

∂r
, ∇ ∂

∂θ

∂

∂ψ
= ∇ ∂

∂ψ

∂

∂θ
= 0, ∇ ∂

∂ψ

∂

∂ψ
= Grr̄2 ∂

∂r
,

∇ ∂
∂θ

∂

∂r
=

1
r

∂

∂θ
, ∇ ∂

∂ψ

∂

∂r
=
−εr

r̄2

∂

∂ψ
.

(4.1)

When M = H3, we also need another coordinate system. We consider the
upper half-space R3

+ = {t(w1, w2, w3) ∈ R3; w3 > 0} with the Poincaré metric
(dw2

1 + dw2
2 + dw2

3)/(−Gw2
3). Let wj (j = 1, 2, 3) be the functions on ι(H3) into

R3
+ defined by




w1

w2

w3


 =

1
x4 − x3




x1

x2

1/
√−G


 ,

where t(x1, x2, x3, x4) ∈ ι(H3). Then, the map t(w1, w2, w3) : ι(H3) → R3
+ is

an isometry between ι(H3) and R3
+. By identifying H3 with ι(H3), we can view

(w1, w2, w3) as a coordinate system on the whole H3, called the upper half-space
coordinates with respect to ι. The coordinate field ∂/∂w1 (resp. ∂/∂w2) on H3

coincides with the Killing vector field whose matrix representation with respect to
ι is F1 (resp. F2).

In what follows, we give an appropriate P ∈ I(M ) and take the cylindrical or
upper half-space coordinates with respect to the isometric embedding P ◦ ι. First,
we consider the transformation of an element of Lie(I(M )) into the canonical
form. We can check the following lemma, whose proof is omitted.

Lemma 4.1.

(1) If A ∈ e(3) (resp. o(4)), then there exist P ∈ E(3) (resp. O(4)) and σ1,
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σ2 ∈ R satisfying PAP−1 = σ1E1 + σ2E2.
(2) If A ∈ o(3, 1), then the only one of the following (i) and (ii) holds:

(i) There exist P ∈ O+(3, 1) and σ1, σ2 ∈ R satisfying PAP−1 = σ1E1 +
σ2E2.

(ii) There exists P ∈ O+(3, 1) satisfying PAP−1 = F1.

A matrix A ∈ o(3, 1) is said to be semi-simple (resp. parabolic) if (i) (resp.
(ii)) holds. It should be noted that through the Lie algebra isomorphism between
sl(2,C) and o(3, 1) derived from the spinor map SL(2,C) → SO+(3, 1), a semi-
simple (resp. parabolic) element of o(3, 1) corresponds to a diagonalizable (resp.
non-diagonalizable) element of sl(2,C). For details about the spinor map, see [24].

In this paper, a Killing vector field Y on H3 is said to be semi-simple (resp.
parabolic) if the matrix representation of Y with respect to ι is semi-simple (resp.
parabolic). (It is clear that if Y is semi-simple (resp. parabolic), then the matrix
representation of Y with respect to P ◦ ι is also semi-simple (resp. parabolic) for
any P ∈ I(M ).) We can check that if a Killing vector field Y is parabolic, then
any integral curve of Y is a horocycle, that is, a curve with curvature

√−G and
torsion 0. Also, if Y is semi-simple, then any integral curve of Y is a helix which
is not a horocycle.

Now, Lemma 4.1 immediately yields the following: If M = R3, S3 or M =
H3 and J̃ is semi-simple, then there exist P ∈ I(M ) and σ1, σ2 ∈ R such that
the matrix representation of J̃ with respect to P ◦ ι is σ1E1 +σ2E2. However, due
to Lemma 3.4, we have the following stronger assertion.

Proposition 4.2. Suppose that M = R3, S3 or M = H3 and J̃ is semi-
simple. Then there exist P ∈ I(M ) and σ1, σ2, ρ1, ρ2 ∈ R such that the matrix
representations of J̃ and H̃ with respect to P ◦ ι are σ1E1 +σ2E2 and ρ1E1 +ρ2E2,
respectively. In particular, if M = H3 and J̃ is semi-simple, then H̃ is again semi-
simple.

Proof. We first consider the case where M = H3 and J̃ is semi-simple.
If J̃ = 0, then the assertion is obvious. We assume that J̃ 6= 0. Let AJ̃ and AH̃

denote the matrix representations of J̃ and H̃ with respect to ι, respectively. Then
there exist P ∈ I(M ) and σ1, σ2 ∈ R such that the matrix representation of J̃

with respect to P ◦ ι is PAJ̃P−1 = σ1E1 + σ2E2. Set

PAH̃P−1 =




0 −h1 −h2 h4

h1 0 −h3 h5

h2 h3 0 h6

h4 h5 h6 0


 , (4.2)
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where h1, . . . , h6 ∈ R. It suffices to show that h2 = h3 = h4 = h5 = 0. Now,
it follows from Lemma 3.4 that (PAJ̃P−1)(PAH̃P−1) = (PAH̃P−1)(PAJ̃P−1).
Thus, a straightforward calculation yields

(
h3 h4

h4 −h3

)(
σ1

σ2

)
=

(
0
0

)
,

( −h5 −h2

−h2 h5

)(
σ1

σ2

)
=

(
0
0

)
.

Since (σ1, σ2) 6= (0, 0), we obtain h2 = h3 = h4 = h5 = 0.

Next we consider the case where M = S3. Suppose that γ is not a helix.
There exist P ∈ I(M ) and ρ1, ρ2 ∈ R such that the matrix representation of H̃

with respect to P ◦ ι is PAH̃P−1 = ρ1E1 + ρ2E2. Since γ is not a helix, |H| is not
a constant function, and hence |ρ1| 6= |ρ2|. Set

PAJ̃P−1 =




0 −j1 −j2 −j4
j1 0 −j3 −j5
j2 j3 0 −j6
j4 j5 j6 0


 ,

where j1, . . . , j6 ∈ R. It suffices to prove j2 = j3 = j4 = j5 = 0. By a similar
calculation to that of the case of H3, we see

(
ρ1 ρ2

ρ2 ρ1

)(
j3 −j2
j4 j5

)
=

(
0 0
0 0

)
.

It follows from |ρ1| 6= |ρ2| that j2 = j3 = j4 = j5 = 0.
Suppose that γ is a helix. By Lemma 3.5, the tangent vector T extends

uniquely to a Killing vector field T̃ on M . Thus, there exist P ∈ I(M ) and
ξ1, ξ2 ∈ R such that the matrix representation of T̃ with respect to P ◦ ι is
ξ1E1 + ξ2E2. Let (r, θ, ψ) be the cylindrical coordinates with respect to P ◦ ι.
Then, T̃ = ξ1(∂/∂θ) + ξ2(∂/∂ψ). It suffices to prove that both of J̃ and H̃ are
linear combinations of ∂/∂θ and ∂/∂ψ. To prove this, we express the Frenet frame
along γ by γ∗(∂/∂r), γ∗(∂/∂θ) and γ∗(∂/∂ψ), where γ∗ denotes the pull-back by
γ. For a later convenience in the appendix, we give a calculation valid for both
cases of M = S3 and H3. Let r(t), θ(t) and ψ(t) be the r, θ and ψ components
of γ(t). Since T = ξ1γ

∗(∂/∂θ) + ξ2γ
∗(∂/∂ψ), we obtain

r(t) = r0, θ′(t) = ξ1, ψ′(t) = ξ2, (4.3)
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where r0 is a constant satisfying r0 6= 0 and r̄0 :=
√

ε(1/G− r2
0) 6= 0. Using (4.1),

we get

∇T T = −(ξ2
1 − εξ2

2)εGr0r̄
2
0 γ∗

∂

∂r
,

√
α =

√
εG r0r̄0|ξ2

1 − εξ2
2 |. (4.4)

Set δ = 1 (resp. −1) if ξ2
1 − εξ2

2 is positive (resp. negative). Then,

N = −δ
√

εG r̄0 γ∗
∂

∂r
, B = ∓δ

(
ξ2r̄0

r0
γ∗

∂

∂θ
− ξ1r0

r̄0
γ∗

∂

∂ψ

)
, (4.5)

where the upper (resp. lower) sign is taken when the orientation of the frame
(∂/∂r, ∂/∂θ, ∂/∂ψ) is positive (resp. negative). Hence (3.1) and (3.2) yield that J

(resp. H) is a linear combination of γ∗(∂/∂θ) and γ∗(∂/∂ψ). Since J̃ (resp. H̃) is
the unique extension of J (resp. H) as a Killing vector field on M , we see that J̃

(resp. H̃) is a linear combination of ∂/∂θ and ∂/∂ψ.

Finally, we consider the case where M = R3. In this case, the first equation
of Definition 2.1 yields ∇T J = 0, and so J̃ is a constant vector field. Now,
suppose that H̃ is not a constant vector field. Then there exist P ∈ I(M ) and
ρ1(6= 0), ρ2 ∈ R such that the matrix representation of H̃ with respect to P ◦ ι is
PAH̃P−1 = ρ1E1 +ρ2E2. Since J̃ is a constant vector field, PAJ̃P−1 is expressed
as follows:

PAJ̃P−1 =




0 0 0 j4
0 0 0 j5
0 0 0 j6
0 0 0 0


 ,

where j4, j5, j6 ∈ R. By ρ1 6= 0 and a similar calculation to those of the cases of
H3, S3, we obtain j4 = j5 = 0, and hence PAJ̃P−1 = −j6E2.

Suppose that H̃ is a constant vector field. We assume that J̃ and H̃ are
linearly independent. Since |H|2 is constant, γ is a helix. By (3.1) and (3.2)
together with the assumption that J̃ and H̃ are linearly independent, we see T is
expressed as a linear combination of J and H. Thus ∇T T = 0, which contradicts
the assumption that γ is not a geodesic. Consequently, J̃ and H̃ are constant
vector fields which are linearly dependent. Hence the assertion is obvious. This
completes the proof. ¤

Before examining the case where M = H3 and J̃ is parabolic, we investigate
another exceptional case. In this case, in spite of M = R3 or S3, we need to take
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P ∈ I(M ) in a different way from Proposition 4.2 (see Case 3 in page 570). We
set

f = 2〈J,H〉, h = |J |2 + 4G|H|2, (4.6)

which are constants independent of t by Proposition 3.1.

Lemma 4.3. The following are equivalent.

(1) J ×H = 0 for all t ∈ R.
(2) M = R3, S3, γ is a helix and (τ − 2νa)2 = G.
(3) M = R3, S3, p = 0 and

η =
1
ν

(
V

2w
+

√
G

α

)
or η =

1
ν

(
V

2w
−

√
G

α

)
.

(4) M = R3, S3 and h2 − 4Gf2 = 0.

Proof. First, we show that (1) and (2) are equivalent. Since

〈J ×H, T 〉 = 〈T × J,H〉 = 〈2∇T H, H〉 = (|H|2)′ = (k2)′,

we see J × H 6= 0 at a point where (k2)′(t) 6= 0. Thus, if γ is not a helix, then
J × H 6= 0 everywhere except at periodic points or one point. Next, let γ be a
helix. Noting that (2.1) yields µ = α + 2νa2 − 2τ(τ − 2νa) + 2G, we have

J ×H =
√

α[−(α−µ + 2νa2) + 4νa(τ − 2νa)]N = 2
√

α(G− (τ − 2νa)2)N. (4.7)

Thus, (1) holds if and only if γ is a helix and (τ−2νa)2 = G. Hence (1) and (2) are
equivalent. Also, by using (2.2) and (2.6), we see that (2) and (3) are equivalent.

We show that (1) and (4) are equivalent. By (4.6),

h2 − 4Gf2 = (4G|H|2 − |J |2)2 + 16G|J ×H|2. (4.8)

Hence (1) follows from (4). Next, suppose that (1) holds. Then the above argument
yields that M = R3, S3, γ is a helix and α− µ + 2νa2 = 4νa(τ − 2νa). By (3.1)
and (3.2), we have J = 2(τ − 2νa)H, which implies |J |2 = 4G|H|2. Hence (4)
holds. ¤

Finally, we examine the case where M = H3 and J̃ is parabolic. First, we
express by f and h the condition that J̃ is parabolic.
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Lemma 4.4. Let M = H3. Then the Killing vector field J̃ is parabolic if
and only if f = h = 0.

Proof. First, we note that there exists at least one point t ∈ R such that
〈J ×H,∇T T 〉 6= 0. Indeed, let t0 be a point satisfying k(t0) = kmax(=

√
α), for

example, let t0 = 0. Then, by a calculation similar to (4.7),

〈J ×H,∇T T 〉|t=t0 = 2α

(
k′′(t0)√

α
+ G− (τ(t0)− 2νa)2

)
< 0.

Let γ̂(λ, t), Ĵ , Ĥ, ∇Ĵ , etc. be the same as in Lemma 3.4. We fix t ∈ R

satisfying 〈J × H,∇T T 〉 6= 0, and let Σ : R → H3 be the curve defined by
Σ(λ) = γ̂(λ, t). Since J̃ is a Killing vector field, Σ is a helix with constant speed
|J(t)|(> 0). The curvature kΣ and torsion τΣ of Σ are calculated as follows:

kΣ =

√
−G

(
Gf2

|J |4 −
h

|J |2 + 1
)

> 0, (4.9)

τΣ =
−Gf

|J |2 . (4.10)

(The proof of these expressions are written below.) If J̃ is parabolic, then Σ is a
horocycle, that is, kΣ =

√−G and τΣ = 0. Hence (4.9) and (4.10) yield f = h = 0.
Conversely, if f = h = 0, then Σ is a horocycle, and hence J̃ is parabolic.

Now, we show (4.9) and (4.10). In the same way as in Lemma 3.4, we write Ĵ ,
Ĥ, etc. as J , H, etc. First, we show ∇JJ = 2GJ×H. It follows from ∂|J |2/∂λ = 0
that 〈∇JJ, J〉 = 0. Also, ∂〈J,H〉/∂λ = 0 and (3.7) yield 〈∇JJ,H〉 = −〈J,∇JH〉 =
0. Hence ∇JJ is parallel to J ×H. It follows from (3.6), (3.5) and (3.4) that

〈∇JJ,∇T T 〉 = −〈J,∇J∇T T 〉 = −〈J, (∇T )2J + G(J − 〈J, T 〉T )〉
= −G〈J, 2∇T T ×H + 2T ×∇T H + J − 〈J, T 〉T 〉
= −G〈J, 2∇T T ×H〉 = 〈2GJ ×H,∇T T 〉.

Hence, by 〈J ×H,∇T T 〉 6= 0, we obtain ∇JJ = 2GJ ×H. Thus,

kΣ =
2(−G)|J ×H|

|J |2 =
−2G

√
|J |2|H|2 − 〈J,H〉2

|J |2 .
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Therefore, by using (4.6), we have (4.9). It follows from J ×H 6= 0 that kΣ > 0
and τΣ is well-defined. Since (∇J)2J = 4G2(J ×H)×H, we see that

τΣ =
〈(∇J)2J, J ×∇JJ〉

(kΣ)2|J |6 =
−2G〈J,H〉

|J |2 =
−Gf

|J |2 . ¤

Proposition 4.5. Suppose that M = H3 and J̃ is parabolic. Then there
exists P ∈ I(M ) such that the matrix representations of J̃ and H̃ with respect to
P ◦ ι are F1 and (1/(2

√−G))F2, respectively. In particular, H̃ is again parabolic.

Proof. Since J̃ is parabolic, there exists P ∈ I(M ) such that the matrix
representation of J̃ with respect to P ◦ ι is F1. Let the matrix representation of
H̃ with respect to P ◦ ι be as the right hand side of (4.2). By Lemma 3.4 and a
straightforward calculation, we have h5 = h3, h4 = h2 and h1 = h6 = 0. Thus,

〈
J̃(x), H̃(x)

〉
= h2(−x3 + x4)2,

∣∣J̃(x)
∣∣2 + 4G

∣∣H̃(x)
∣∣2 =

(
1 + 4G(h2

2 + h2
3)

)
(−x3 + x4)2,

for x = t(x1, x2, x3, x4) ∈ H3. It follows from Lemma 4.4 that 〈J̃ , H̃〉 = 0 and
|J̃ |2 + 4G|H̃|2 = 0 on γ. Hence h2 = 0 and h3 = ±1/(2

√−G). In the case of
h3 = −1/(2

√−G), we consider P1 ◦P , where P1(∈ O+(3, 1)) is the transformation
sending t(x1, x2, x3, x4) to t(x1,−x2, x3, x4), and rewrite P1 ◦ P as P . Then the
matrix representations of J̃ and H̃ with respect to P ◦ ι are equal to F1 and
(1/(2

√−G))F2, respectively.
Since QF2Q

−1 = F1, where Q ∈ O+(3, 1) is the transformation sending
t(x1, x2, x3, x4) to t(x2, x1, x3, x4), F2 is parabolic. Hence H̃ is parabolic. ¤

Now, we introduce the system of coordinates suitable for {γ, M}. We note
that by (4.8), h2 − 4Gf2 ≥ 0 always holds.

The coordinates suitable for {γ, M}.
Case 1. h2 − 4Gf2 > 0.

By Lemma 4.4, if M = H3, then J̃ is semi-simple. Thus, there exists P ∈
I(M ) as in Proposition 4.2. We take the cylindrical coordinates (r, θ, ψ) with
respect to P ◦ ι.

Case 2. M = H3 and h2 − 4Gf2 = 0.
By Lemma 4.4, this case corresponds to the case where M = H3 and J̃ is

parabolic. We take the upper half-space coordinates (w1, w2, w3) with respect to
P ◦ ι, where P is as in Proposition 4.5.
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Case 3. M = R3, S3 and h2 − 4Gf2 = 0.
It follows from Lemma 4.3 that γ is a helix. By Lemma 3.5 and Lemma 4.1,

there exist P ∈ I(M ) and ξ1, ξ2 ∈ R such that the matrix representation of T̃

with respect to P ◦ ι is ξ1E1 + ξ2E2. We take the cylindrical coordinates (r, θ, ψ)
with respect to P ◦ ι. In the case of M = S3, we may assume that ξ2 ≥ |ξ1| and
the orientation of the frame (∂/∂r, ∂/∂θ, ∂/∂ψ) is negative (cf. Proposition 5.5 of
[13]).

5. Explicit formulas.

In this section, we first express various constants by α, η, p and w. (A part of
these calculations is written in the appendix (Section 6).) Then, we give explicit
formulas of the coordinate components of γ in terms of α, η, p, w, Jacobi sn
function and the incomplete elliptic integral of the third kind (Theorem 5.3).

From now on, we always assume M = S3 or H3. By using an argument
similar to those stated below, we can obtain the R3 version of Theorem 5.3, but
we omit it for the sake of simplicity. For details about the R3 case, see also [7],
[12], [22] and [27].

We express various quantities in the previous sections by (α, η, p, w). In order
to simplify expressions of (α, η, p, w), we introduce the following notation:

R = V X − 2νηw2, S = Y − 2(1 + 4ν2η2)w2, U1 = Y − 4νηR,

U2 = (1− p2 − (1− 4ν2η2 + 4G/α)w2)X/w − 4νηwV,

L1 = −α(Y 2 + 4R2) + 16Gw4(1 + 4ν2η2),

L2 = −α((Y − 2p2)2 + 4w2(V − 2νηX)2) + 16Gw4(X2/w2 + 4ν2η2),

where V , X and Y are defined by (2.7).
First, we calculate f . It follows from (3.1), (3.2) and (2.2) that

f = ±2α3/2

w2
(νηY + R), (5.1)

where the upper sign is taken when b ≥ 0, while the lower sign is taken when
b < 0.

Next, we calculate h. We denote the values of |J(t)|, |H(t)|, |J(t)×H(t)| at
a point t satisfying k(t)2 = α (resp. β) by |J |α, |H|α, |J ×H|α (resp. |J |β , |H|β ,
|J ×H|β). (We can check that these values are determined not depending on the
choice of t satisfying k(t)2 = α (resp. β). Also, when p = 1, there are no points
t satisfying k(t)2 = β. In this case, |J |β etc. are not defined.) By (3.4), we see
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|J |2 = 〈J, T 〉2 + 4|∇T H|2, which yields

|J |2α = (α− µ + 2νa2)2 + 4α(b/α− νa)2 =
α2

4w4
(Y 2 + 4R2).

Since |H|2α = α(1 + 4ν2η2), we obtain

h =
α

4w4

[
α(Y 2 + 4R2) + 16Gw4(1 + 4ν2η2)

]
. (5.2)

A calculation similar to that of |J |2α yields

|J |2β =
α2

4w4

[
(Y − 2p2)2 + 4w2(V − 2νηX)2

]
.

Also, by a straightforward computation, we have

|J ×H|2α =
α3

4w4
U2

1 , 4G|H|2α − |J |2α =
αL1

4w4
, (5.3)

|J ×H|2β =
α3

4w4
U2

2 , 4G|H|2β − |J |2β =
αL2

4w4
. (5.4)

Now, we consider Case 1, that is, h2 − 4Gf2 > 0. By Proposition 4.2,

J̃ = σ1
∂

∂θ
+ σ2

∂

∂ψ
, H̃ = ρ1

∂

∂θ
+ ρ2

∂

∂ψ
. (5.5)

We seek for expressions of σ1, σ2, ρ1 and ρ2 in terms of (α, η, p, w). By virtue of
(5.1) and (5.2), it suffices to express them by f and h.

Without loss of generality, we may assume ρ1 ≥ 0. (Because if ρ1 < 0, then it
suffices to take (r, θ, ψ) with respect to P1◦P ◦ι instead of P ◦ι, where P1(∈ I(M ))
is the transformation sending t(x1, x2, x3, x4) to t(−x1, x2, x3, x4).) In addition, we
may assume ρ2 ≥ 0. Next, by h2− 4Gf2 > 0 and Lemma 4.3, J ×H 6= 0 for some
t. Thus, if ρ1 = 0, then σ1 6= 0. Hence we may assume, without loss of generality,
that if ρ1 = 0, then σ1 > 0. Similarly, we may assume that if ρ2 = 0, then σ2 > 0.
In addition, in the case of M = S3, we may assume ρ2

1 − ερ2
2 = ρ2

1 − ρ2
2 ≥ 0.

Lemma 5.1.

σ2
1 =

G

2

(
h−

√
h2 − 4Gf2

)
, σ2

2 =
εG

2

(
h +

√
h2 − 4Gf2

)
,
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ρ2
1 =

1
8

(
h +

√
h2 − 4Gf2

)
, ρ2

2 =
ε

8

(
h−

√
h2 − 4Gf2

)
.

Proof. To begin with, we show that the above expressions of σ2
1 , σ2

2 , ρ2
1

and ρ2
2 follow from the following relations:

σ1ρ1 = Gf/2, (5.6)

σ2ρ2 = εGf/2, (5.7)

σ2
1 + 4Gρ2

1 = Gh, (5.8)

σ2
2 + 4Gρ2

2 = εGh. (5.9)

Let M = S3. We first show ρ2
1 > ρ2

2. Seeking the contradiction, we suppose
ρ2
1 = ρ2

2. Then ρ1 = ρ2. Since |H|2 = k(t)2 + 4ν2a2 is not identically zero,
(ρ1, ρ2) 6= (0, 0) holds. Thus, (5.6) and (5.7) yield σ1 = σ2, which implies that J̃

and H̃ are linearly dependent. By Lemma 4.3, this contradicts h2 − 4Gf2 > 0.
Hence ρ2

1 > ρ2
2. Now, by (5.6), (5.7), (5.8) and (5.9), both of ρ2

1 and ρ2
2 satisfy

the quadratic equation 4x2 − hx + Gf2/4 = 0 of x. Hence we have ρ2
1 = (h +√

h2 − 4Gf2)/8 and ρ2
2 = (h −

√
h2 − 4Gf2)/8. Next, let M = H3. It follows

from (5.8) and (5.6) that ρ2
1 = (h±

√
h2 − 4Gf2)/8. We show that the double sign

is +. Seeking the contradiction, we suppose that it is −. Then ρ1 = 0, f = 0 and
h ≥ 0. By (5.7), σ2 = 0 or ρ2 = 0. If σ2 = 0, then (5.9) and h ≥ 0 yield ρ2 = 0.
Thus, ρ1 = ρ2 = 0, which contradicts that |H|2 is not identically zero. Hence the
double sign is +. By a similar argument, we obtain ρ2

2 = (−h +
√

h2 − 4Gf2)/8.
Also, σ2

1 and σ2
2 follow immediately from (5.8) and (5.9).

We show (5.6), (5.7), (5.8) and (5.9). Let r(t), θ(t), ψ(t) be the r, θ, ψ

components of γ. By |∂/∂θ| = r, |∂/∂ψ| = r̄ and (5.5), we have

f/2 = 〈J,H〉 = (σ1ρ1 − εσ2ρ2)r(t)2 + εσ2ρ2/G, (5.10)

h = |J |2 + 4G|H|2 = (σ2
1 + 4Gρ2

1 − ε(σ2
2 + 4Gρ2

2))r(t)
2 + ε(σ2

2 + 4Gρ2
2)/G.

(5.11)

Thus, in order to show (5.6), (5.7), (5.8) and (5.9), it suffices to verify

σ1ρ1 − εσ2ρ2 = 0, (5.12)

σ2
1 + 4Gρ2

1 − ε(σ2
2 + 4Gρ2

2) = 0. (5.13)

We prove (5.12) and (5.13) in the case where γ is not a helix. The proof of
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the case where γ is a helix is written in Section 6. It follows from (5.5) that

|H|2 = (ρ2
1 − ερ2

2)r(t)
2 +

ερ2
2

G
. (5.14)

Also, since γ is not a helix, |H|2 = k(t)2 + 4ν2a2 is not a constant function.
Thus, r(t)2 is not a constant function. Hence (5.10) yields (5.12). Similarly, (5.13)
follows from (5.11). ¤

By Lemma 5.1 and the assumption of the signatures of σ1, σ2, ρ1 and ρ2, we
obtain the following

Proposition 5.2.

(1) ρ1 =
√

(h +
√

h2 − 4Gf2)/8, ρ2 =
√

ε(h−
√

h2 − 4Gf2)/8.

(2) If ρ1 = 0 (⇔ h < 0 and f = 0), then σ1 =
√

Gh. If ρ1 6= 0, then σ1 =
Gf/(2ρ1).

(3) If ρ2 = 0 (⇔ h > 0 and f = 0), then σ2 =
√

εGh. If ρ2 6= 0, then
σ2 = εGf/(2ρ2).

Now, we state the main theorem. We introduce the following notation:

A1 =
−σ1

4G

(
ερ2

2

G
+

αS

2w2

)
+ 2νaρ1, A2 =

−σ2

4G

(
ρ2
1

G
+

αS

2w2

)
+ 2νaρ2,

C1 =
A1

y(α + 4ν2a2 − ερ2
2/G)

, C2 =
A2

y(α + 4ν2a2 − ρ2
1/G)

,

B1 =
αq2

α + 4ν2a2 − ερ2
2/G

, B2 =
αq2

α + 4ν2a2 − ρ2
1/G

.

It should be noted that all of these are expressed by (α, η, p, w). We denote by

Π(x, c, p) =
∫ x

0

dx

1− c sn2(x, p)

the incomplete elliptic integral of the third kind, where c, p are real numbers
satisfying c ≤ 1, 0 ≤ p ≤ 1.

Theorem 5.3. Let r(t), θ(t), ψ(t), w1(t), w2(t) and w3(t) denote the r, θ,
ψ, w1, w2 and w3 components of γ(t).

Case 1. The case of h2 − 4Gf2 > 0.
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(1) r(t) is given by

r(t) =

√
(α + 4ν2a2 − ερ2

2/G)− αq2 sn2(yt, p)
ρ2
1 − ερ2

2

.

(a) There exists t ∈ R satisfying r(t) = 0 if and only if

p 6= 1, U2 = 0 and L2 ≤ 0. (5.15)

If (5.15) holds, then the set of all zeros of r(t) is {(2m+1)K(p)/y ; m ∈
Z}.

(b) There exists t ∈ R satisfying r̄(t) = 0 if and only if

M = S3, U1 = 0 and L1 ≥ 0. (5.16)

If (5.16) holds and p 6= 1, then the set of all zeros of r̄(t) is
{2mK(p)/y ; m ∈ Z}. If (5.16) holds and p = 1, then the set of all
zeros of r̄(t) is {0}.

(2) θ(t) is given as follows:
If (5.15) does not hold, then

θ(t) =
−σ1

4G
t + C1Π(yt, B1, p) + θ(0).

If (5.15) holds, then

θ(t) =
−σ1

4G
t + mπ + θ(0),

(2m− 1)K(p)
y

< t <
(2m + 1)K(p)

y
,

where m is an arbitrary integer.
(3) ψ(t) is given as follows:

If (5.16) does not hold, then

ψ(t) =
−σ2

4G
t + C2Π(yt, B2, p) + ψ(0).

If (5.16) holds and p 6= 1, then

ψ(t) =
−σ2

4G

(
t−K(p)

y

)
+mπ+ψ

(
K(p)

y

)
,

2mK(p)
y

< t <
(2m + 2)K(p)

y
,



Kirchhoff elastic rods 575

where m is an arbitrary integer.
If (5.16) holds and p = 1, then

ψ(t) =
−σ2

4G

(
t− K(p)

y

)
+ n(t)π + ψ

(
K(p)

y

)
,

where

n(t) =

{
0 if t > 0,

−1 if t < 0.

Case 2. The case of M = H3 and h2 − 4Gf2 = 0.
w1(t), w2(t) and w3(t) are given as follows:

w1(t) =
1

−4G

[
t +

S

w
√

α(1 + 4ν2η2)
Π

(
yt,

q2

1 + 4ν2η2
, p

)]
+ w1(0),

w2(t) =
±2νηw√−Gα(1 + 4ν2η2)

Π

(
yt,

q2

1 + 4ν2η2
, p

)
+ w2(0),

w3(t) =
1

−2G
√

α(1 + 4ν2η2 − q2 sn2(yt, p))
.

Case 3. The case of M = S3 and h2 − 4Gf2 = 0.
In this case, p = 0 and η =

(
V/(2w) +

√
G/α

)
/ν or

(
V/(2w)−

√
G/α

)
/ν.

If η =
(
V/(2w) +

√
G/α

)
/ν, then r(t), θ(t) and ψ(t) are given as follows:

r(t) =

√
1− (ξ2

2/G)
ξ2
1 − ξ2

2

, θ(t) = ξ1t + θ(0), ψ(t) = ξ2t + ψ(0), (5.17)

where

(ξ1, ξ2) =
(
±
√

α−√D1

2w
,

√
α +

√
D1

2w

)
, D1 = αw2 + (

√
αV + 2

√
Gw)2.

If η =
(
V/(2w) −

√
G/α

)
/ν, then r(t), θ(t) and ψ(t) are given by (5.17),

where

(ξ1, ξ2) =
(
∓
√

α−√D2

2w
,

√
α +

√
D2

2w

)
, D2 = αw2 + (

√
αV − 2

√
Gw)2.
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Proof. First, we consider Case 1. By Lemma 5.1, ρ2
1 − ερ2

2 =√
h2 − 4Gf2/4 > 0. Thus it follows from (5.14) that

r(t) =

√
k(t)2 + 4ν2a2 − ερ2

2/G

ρ2
1 − ερ2

2

.

Substituting (2.4) yields the expression of r(t) of (1).
We show (a). In the case of p = 1, it follows from k2 = α sech2(yt) that r

does not attain the minimum value and is positive everywhere. Next, let p 6= 1.
Then r attains the maximum (resp. minimum) value rmax (resp. rmin) precisely
when k(t)2 = α (resp. β), that is, when t = 2mK(p)/y (resp. (2m + 1)K(p)/y),
where m is an arbitrary integer. By |H|2β = β + 4ν2a2 and (4.6), we see

(rmin)2 =
β + 4ν2a2 − ερ2

2/G

ρ2
1 − ερ2

2

=
4G|H|2β − |J |2β +

√
(4G|H|2β − |J |2β)2 + 16G|J ×H|2β
8G(ρ2

1 − ερ2
2)

.

Thus, rmin = 0 if and only if |J ×H|β = 0 and 4G|H|2β − |J |2β ≤ 0. It follows from
(5.4) that rmin = 0 if and only if U2 = 0 and L2 ≤ 0. Hence we complete the proof
of (a).

Next, we show (b). In the case of M = H3, since r̄2 = −1/G + r2 ≥ −1/G,
r̄(t) is positive everywhere. Let M = S3. Then r̄ attains the minimum value r̄min

precisely when k(t)2 = α, that is, when

t =

{
2mK(p)/y (m ∈ Z) if p 6= 1,

0 if p = 1,

and

(r̄min)2 =
−(α + 4ν2a2 − ρ2

1/G)
ρ2
1 − ερ2

2

=
4G|H|2α − |J |2α −

√
(4G|H|2α − |J |2α)2 + 16G|J ×H|2α
−8G(ρ2

1 − ερ2
2)

. (5.18)

Thus r̄min = 0 if and only if |J × H|α = 0 and 4G|H|2α − |J |2α ≥ 0. By (5.3),
r̄min = 0 is equivalent to U1 = 0 and L1 ≥ 0, which completes the proof of (b).
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We seek for θ(t) and ψ(t). By (5.5), J̃ × H̃ = (σ1ρ2 − σ2ρ1)(∂/∂θ × ∂/∂ψ).
Since Lemma 4.3 and the assumption h2 − 4Gf2 > 0 imply that J × H 6= 0 for
some t, we see σ1ρ2 − σ2ρ1 6= 0, and so

∂

∂θ
=

1
σ1ρ2 − σ2ρ1

(ρ2J̃ − σ2H̃),
∂

∂ψ
=

1
σ1ρ2 − σ2ρ1

(−ρ1J̃ + σ1H̃).

Thus, at a point where r(t) > 0, we have

θ′(t) =
〈T, ∂/∂θ〉
|∂/∂θ|2 =

ρ2〈J, T 〉 − σ2〈H, T 〉
(σ1ρ2 − σ2ρ1)r(t)2

,

where we write γ∗(∂/∂θ) as ∂/∂θ, for short. Now, (5.6), (5.7), (5.8) and (5.9)
yield σ1ρ1 = εσ2ρ2 and σ2

1 − εσ2
2 = −4G(ρ2

1 − ερ2
2), from which we obtain

(ρ2
1 − ερ2

2)ρ2

σ1ρ2 − σ2ρ1
=
−σ1

4G
,

(ρ2
1 − ερ2

2)σ2

σ1ρ2 − σ2ρ1
= −ρ1.

By these expressions, (3.1) and (3.2),

θ′(t) =
−σ1

4G
+

A1

(ρ2
1 − ερ2

2)r(t)2
=
−σ1

4G
+

yC1

1−B1 sn2(yt, p)
.

Hence, by integration in t, we obtain the former part of (2).
Similarly, at a point where r̄(t) > 0, it follows that

ψ′(t) =
〈T, ∂/∂ψ〉
|∂/∂ψ|2 =

−σ2

4G
+

A2

−ε(ρ2
1 − ερ2

2)r̄(t)2

=
−σ2

4G
+

A2

(α + 4ν2a2 − ρ2
1/G)− αq2 sn2(yt, p)

.

Suppose that r̄(t) > 0 for all t ∈ R. Then, in the case of M = S3, by using
(5.18), we see α + 4ν2a2 − ρ2

1/G 6= 0. In the case of M = H3, it is clear that
α + 4ν2a2 − ρ2

1/G 6= 0. Thus, B2 is well-defined, and hence

ψ′(t) =
−σ2

4G
+

yC2

1−B2 sn2(yt, p)
,

from which the first part of (3) follows.
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Next we consider the case where r (resp. r̄) vanishes. Then, at a point where
r(t) = 0 (resp. r̄(t) = 0), θ(t) (resp. ψ(t)) jumps by π. More precisely, the following
holds.

Lemma 5.4.

(1) Suppose that (5.15) holds. Let t1 satisfy r(t1) = 0. Then, both lim
t→t1+0

θ(t)

and lim
t→t1−0

θ(t) exist, and lim
t→t1+0

θ(t)− lim
t→t1−0

θ(t) = π (mod 2π).

(2) Suppose that (5.16) holds. Let t2 satisfy r̄(t2) = 0. Then, both lim
t→t2+0

ψ(t)

and lim
t→t2−0

ψ(t) exist, and lim
t→t2+0

ψ(t)− lim
t→t2−0

ψ(t) = π (mod 2π).

Proof. We show (1). It is checked that (x1, x2, ψ) is a local coordinate
system around γ(t1). Let x1(t), x2(t) and ψ(t) be the x1, x2 and ψ components of
γ(t). To prove (1), it is sufficient to prove that x′1(t)(∂/∂x1) + x′2(t)(∂/∂x2) does
not vanish at t = t1. Since

∣∣∣∣x′1
∂

∂x1
+ x′2

∂

∂x2

∣∣∣∣ =
∣∣∣∣r′

∂

∂r
+ θ′

∂

∂θ

∣∣∣∣ ≥
∣∣∣∣r′

∂

∂r

∣∣∣∣ =
|r′|√
εG r̄

except at t = t1, it is sufficient to show that |r′| approaches a positive number as
t → t1. It follows from rmin = 0 that β + 4ν2a2 − ερ2

2/G = 0, and hence

r(t) =

√
αq2

ρ2
1 − ερ2

2

|cn(yt, p)|.

Thus,

|r′(t)| = y

√
αq2

ρ2
1 − ερ2

2

|sn(yt, p)|dn(yt, p) → y

√
αq2(1− p2)

ρ2
1 − ερ2

2

as t → t1. Since p 6= 1, the above limit value is positive.
By using the local coordinate system (x3, x4, θ) around γ(t2), we can verify

(2) in the same way as (1). ¤

We show the latter part of (2) of the theorem. Suppose that (5.15) holds.
Since it follows from rmin = 0 that α + 4ν2a2 − ερ2

2/G = αq2, we have

θ(t)− θ(0) =
∫ t

0

θ′(t)dt =
−σ1t

4G
+

A1

αq2

∫ t

0

dt

cn2(yt, p)
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for all t ∈ (−K/y, K/y). If A1 6= 0, then the right hand side diverges as t →
K/y − 0, which contradicts the existence of lim

t→K/y−0
θ(t). Consequently, A1 = 0,

and hence θ′(t) = −σ1/(4G) except at the zeros of r. Combining this with Lemma
5.4, we obtain the latter part of (2). Similarly, we can check the second and third
parts of (3). The proof of Case 1 is completed.

We consider Case 2, that is, the case where M = H3 and J̃ is parabolic.
Proposition 4.5 implies J̃ = ∂/∂w1 and H̃ = (1/(2

√−G))∂/∂w2. Thus, it fol-
lows from |∂/∂w2|2 = 1/(−Gw2

3) that |H|2 = 1/(4G2w3(t)2). Hence w3(t) =
1/(−2G

√
k(t)2 + 4ν2a2). Also, by |∂/∂w1|2 = 1/(−Gw2

3),

w′1(t) =
〈T, ∂/∂w1〉
|∂/∂w1|2 = −Gw3(t)2〈T, J〉 =

1
−4G

(
1 +

−µ + 2νa2 − 4ν2a2

k(t)2 + 4ν2a2

)
.

Substituting (2.4) yields the expressions of w1(t) and w3(t). Similarly, we have
the expression of w2(t).

We consider Case 3. Then γ is a helix and T = ξ1(∂/∂θ) + ξ2(∂/∂ψ). In the
same way as in the proof of Lemma 4.2, we have (4.3). It follows from |T | = 1
that

r0 =
√

(1− ξ2
2/G)/(ξ2

1 − ξ2
2).

Let us express ξ1 and ξ2 by (α, η, p, w). By (4.4) and (4.5),

α = Gr2
0 r̄

2
0(ξ

2
1 − ξ2

2)2 = ξ2
1 + ξ2

2 − (ξ1ξ2)2/G−G,

τ = 〈∇T N, B〉 = −ξ1ξ2/
√

G.

Thus, by the assumption ξ2 ≥ |ξ1|, we have

ξ1 =
1
2

(√
α + (τ −

√
G)2 −

√
α + (τ +

√
G)2

)
,

ξ2 =
1
2

(√
α + (τ −

√
G)2 +

√
α + (τ +

√
G)2

)
.

(5.19)

It follows from Lemma 4.3 that η =
(
V/(2w) +

√
G/α

)
/ν or η =

(
V/(2w) −√

G/α
)
/ν. If η =

(
V/(2w) +

√
G/α

)
/ν, then τ = ±√α(V/(2w) + νη) =

±(
√

αV/w +
√

G). Substituting this to (5.19) yields the formula of (ξ1, ξ2) in
terms of (α, η, p, w). Similarly, when η =

(
V/(2w) −

√
G/α

)
/ν as well, we have
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the formula of (ξ1, ξ2). ¤

6. Appendix.

In this appendix, we prove (5.12) and (5.13) of Lemma 5.1 in the case where
γ is a helix. Note that h2 − 4Gf2 > 0 has been assumed. Since γ is a helix, we
see J = c1T + c3B, H = c2T + c4B, where c1 = α−µ + 2νa2 = 2τ(τ − 2νa)− 2G,
c2 = 2νa, c3 = 2

√
α(τ − 2νa) and c4 =

√
α. It follows from Lemma 4.3 that

J × H = (c2c3 − c1c4)N does not vanish, and hence T and B are expressed
as linear combinations of J and H, respectively. Thus, T is expressed as T =
ξ1γ

∗(∂/∂θ)+ξ2γ
∗(∂/∂ψ) for some ξ1, ξ2 ∈ R. Hence we obtain r(t) = r0, θ′(t) = ξ1

and ψ′(t) = ξ2, where r0 is a constant satisfying r0 6= 0 and r̄0 6= 0.
Let us express σ1, σ2, ρ1 and ρ2 by ξ1, ξ2, c1, c2, c3, c4 and r0. In the same

way as in the proof of Lemma 4.2, we have (4.4), (4.5) and

τ = 〈∇T N, B〉 = ±ξ1ξ2/
√

εG. (6.1)

Thus,

(
σ1 ρ1

σ2 ρ2

)
=

(
ξ1 ∓δξ2r̄0/r0

ξ2 ±δξ1r0/r̄0

)(
c1 c2

c3 c4

)
.

Hence we have

r0r̄0(σ1ρ1−εσ2ρ2) = c1c2r0r̄0(ξ2
1−εξ2

2)+
c3c4(r̄4

0ξ
2
2 − εr4

0ξ
2
1)

r0r̄0
∓ δ(c2c3 + c1c4)ξ1ξ2

εG
.

Now, it follows from |T | = 1 that

r2
0 = (1− εξ2

2/G)/(ξ2
1 − εξ2

2), r̄2
0 = ε(ξ2

1/G− 1)/(ξ2
1 − εξ2

2).

By using these two expressions together with (4.4) and (6.1), we have

r0r̄0(σ1ρ1 − εσ2ρ2) =
δ√
εG

[
c1c2

√
α +

c3c4(τ2 −G)√
α

− (c2c3 + c1c4)τ
]
.

The definitions of c1, . . . , c4 and a straightforward calculation yield that the right
hand side is equal to zero. Since r0, r̄0 6= 0, we obtain (5.12). By a similar
argument, we can verify (σ2

1 − εσ2
2) + 4G(ρ2

1 − ερ2
2) = 0, and hence (5.13) holds.
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