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Extrinsic estimates for eigenvalues of the Laplace operator

By Daguang Chen and Qing-Ming Cheng

(Received Jan. 29, 2007)

Abstract. For a bounded domain in a complete Riemannian manifold Mn

isometrically immersed in a Euclidean space, we derive extrinsic estimates for eigen-
values of the Dirichlet eigenvalue problem of the Laplace operator, which depend on
the mean curvature of the immersion. Further, we also obtain an upper bound for
the (k + 1)th eigenvalue, which is best possible in the meaning of order on k.

1. introduction.

Let Ω ⊂ Rn be a bounded domain in an n-dimensional Euclidean space Rn.
The Dirichlet eigenvalue problem of the Laplacian is given by

{
∆u = −λu, in Ω

u = 0, on ∂Ω.
(1.1)

It is well known that the spectrum of this problem is real and discrete

0 < λ1 < λ2 ≤ λ3 ≤ · · · ↗ ∞,

where each λi has finite multiplicity which is repeated according to its multiplicity.
The investigation of universal inequalities for eigenvalues of (1.1) was initiated

by Payne, Pólya and Weinberger [13] and [14]. They proved

λk+1 − λk ≤ 4
nk

k∑

i=1

λi. (1.2)
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Although the result of Payne, Pólya and Weinberger has been extended by many
mathematicians in several way, there are two main contributions due to Hile and
Protter [9] and Yang [15]. In 1980, Hile and Protter improved the result of Payne,
Pólya and Weinberger to

k∑

i=1

λi

λk+1 − λi
≥ nk

4
. (1.3)

Further, Yang [15] (cf. [6]) has obtained very sharp inequality, that is, he has
derived

k∑

i=1

(λk+1 − λi)
(

λk+1 −
(

1 +
4
n

)
λi

)
≤ 0. (1.4)

From (1.4), one can infer

λk+1 ≤ 1
k

(
1 +

4
n

) k∑

i=1

λi. (1.5)

The inequalities (1.4) and (1.5) are called Yang’s first inequality and second in-
equality, respectively (cf. [1], [2]). By making use of the Chebyshev’s inequality,
it is not difficult to prove the following relation

(1.4) =⇒ (1.5) =⇒ (1.3) =⇒ (1.2).

In [1] and [2], Ashbaugh has also given a different proof.
On the other hand, from the Weyl’s asymptotic formula, one has

λk ∼ 4π2

(ωnvolΩ)
2
n

k
2
n , k →∞,

where ωn is the volume of the unit ball in Rn. Further, Pólya conjectured eigen-
value λk should satisfy

λk ≥ 4π2

(ωnvolΩ)
2
n

k
2
n ,

for k = 1, 2, . . . . On the conjecture of Pólya, Li and Yau [12] attacked it and
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obtained

λk ≥ n

n + 2
4π2

(ωnvolΩ)
2
n

k
2
n ,

for k = 1, 2, . . . . Recently, Cheng and Yang [6] have obtained a very sharp upper
bound of λk+1, that is, they have proved

λk+1 ≤ C0(n, k)k2/nλ1,

where

C0(n, k) =





j2
n/2,1

j2
n/2−1,1

, for k = 1

1 +
a(min{n, k − 1})

n
, for k ≥ 2

and a(1) ≤ 2.64 and a(m) ≤ 2.2−4 log
(
1+ m−3

50

)
for m ≥ 2 is a constant depending

only on m, and jp,k denotes the kth positive zero of the standard Bessel function
Jp(x) of the first kind of order p. From the Weyl’s asymptotic formula, we know
that the upper bound of Cheng and Yang is best possible in the meaning of order
on k. It is natural and important to obtain universal inequalities for eigenvalues of
the Dirichlet eigenvalue problem on a bounded domain in a complete Riemannian
manifold. Since the Weyl’s asymptotic formula also holds in this case, it is also
important to obtain the lower bound and upper bound of λk.

For the Dirichlet eigenvalue problem of the Laplacian on a compact homo-
geneous Riemannian manifold or on a compact minimal submanifold in a sphere,
many mathematicians have studied universal inequalities for eigenvalues (for ex-
amples [3], [5], [7], [8], [10], [11], [16] and so on). More recently, Cheng and Yang
[3], [5] have derived universal inequalities for eigenvalues of the Dirichlet eigen-
value problem of the Laplacian on a domain in a sphere or in a complex projective
space. The upper bound for λk+1 can also be obtained by the same proof as in
[6].

Unfortunately, for a general complete Riemannian manifold, it is very hard to
find an appropriate trial function with “nice” properties such that one can infer
universal inequalities for eigenvalues. Fortunately, we have the Nash’s theorem:
each complete Riemannian manifold can be isometrically immersed in a Euclidean
space. In this paper, we shall make use of this theorem to construct appropriate
trial functions with “nice” properties. By making use of these trial functions, we
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derive universal inequalities for eigenvalues and the upper bounds for eigenvalues,
which is best possible in the meaning of order on k.

Theorem 1.1. Let Ω be a bounded domain in an n-dimensional complete
Riemannian manifold Mn isometrically immersed in RN . For the Dirichlet eigen-
value problem of the Laplacian:

{
∆u = −λu in Ω,

u|∂Ω = 0,
(1.6)

we have

k∑

i=1

(µk+1 − µi)2 ≤ 4
n

k∑

i=1

(µk+1 − µi)µi, (1.7)

where µi = λi + n2

4 ‖H‖2, λi denotes the ith eigenvalue of (1.6) and H is the mean
curvature vector field of Mn with ‖H‖2 = sup

Ω
|H|2.

Since the formula (1.7) is a quadratic inequality of µk+1, it is easy to infer
the following:

Corollary 1.1. Under the same assumptions as in the Theorem 1.1, we
have

µk+1 ≤
(

1 +
4
n

)
1
k

k∑

i=1

µi. (1.8)

Remark 1.1. Our universal inequality (1.7) is the Yang-type first inequality
and (1.8) is the Yang-type second inequality.

In particular, when Mn is isometrically minimally immersed in RN , we have

Corollary 1.2. Let Ω be a bounded domain in an n-dimensional complete
Riemannian manifold Mn isometrically minimally immersed in RN . Then, we
have

k∑

i=1

(λk+1 − λi)2 ≤ 4
n

k∑

i=1

(λk+1 − λi)λi. (1.9)
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Remark 1.2. Since Rn can be seen as a totally geodesic minimal hypersur-
face in Rn+1, we know that the results of Yang is included in the Corollary 1.2.
Further, since there exist many complete minimal submanifolds in RN , we know
that the Yang’s inequalities for eigenvalues also hold for any bounded domain in
any complete minimal submanifold in RN .

Since the n-dimensional unit sphere Sn(1) can be seen as a totally umbilical
hypersurface with the mean curvature 1 in Rn+1, from our Theorem 1.1, we have

k∑

i=1

(λk+1 − λi)2 ≤ 4
n

k∑

i=1

(λk+1 − λi)
(

λi +
n2

4

)
,

which is the Yang-type inequality for eigenvalues of the Dirichlet eigenvalue prob-
lem of Laplacian on a domain in a unit sphere obtained by Cheng and Yang [3].

In order to obtain the upper bound for λk+1, the universal inequality for lower
order eigenvalues of the eigenvalue problem (1.6) is necessary.

Theorem 1.2. Under the same assumptions as in the Theorem 1.1, we have

µ2 + µ3 + · · ·+ µn+1

µ1
≤ n + 4. (1.10)

Corollary 1.3. Let Ω be a bounded domain in an n-dimensional complete
Riemannian manifold Mn isometrically minimally immersed in RN . Then, we
have

λ2 + λ3 + · · ·+ λn+1

λ1
≤ n + 4. (1.11)

Remark 1.3. According to the same arguments as in the Remark 1.2, we
know that the result for lower order eigenvalues of Payne, Pólya and Weinberger
[14] does not only hold for a bounded domain in Rn, but also for a bounded
domain in any complete minimal submanifold in RN .

Since the upper bound for λk+1 of Cheng and Yang [6] does hold not only
for eigenvalues, but also for any positive real numbers which satisfy Yang’s first
inequality and the inequality of Payne, Pólya and Weinberger which is same as
(1.11), we infer, from the Theorem 1.1 and the Theorem 1.2,

Theorem 1.3. Under the same assumptions as in Theorem 1.1, we have
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µk+1 ≤
(

1 +
a(min{n, k − 1})

n

)
k2/nµ1,

where the bound of a(m) can be formulated as:





a(0) ≤ 4,

a(1) ≤ 2.64,

a(m) ≤ 2.2− 4 log
(

1 +
1
50

(m− 3)
)

, for m ≥ 2.

In particular, for n ≥ 41 and k ≥ 41, we have

µk+1 ≤ k2/nµ1.

Especially, when Mn is a complete minimal submanifold in RN , we have

Corollary 1.4. Under the same assumptions as in the Corollary 1.2, we
have

λk+1 ≤
(

1 +
a(min{n, k − 1})

n

)
k2/nλ1

and when n ≥ 41 and k ≥ 41,

λk+1 ≤ k2/nλ1.

2. Proof of Theorem 1.1.

Throughout this paper we will agree the following convention on ranges of
indices:

1 ≤ i, j, . . . ,≤ n; 1 ≤ α, β, . . . ,≤ N ; n + 1 ≤ A,B, . . . ,≤ N.

Let Mn be an n-dimensional complete Riemannian manifold isometrically
immersed in RN . Let Ω ⊂ Mn be a bounded domain of Mn and P ∈ Ω be
an arbitrary point of Ω. Let (x1, . . . , xn) be an arbitrary coordinate system in a
neighborhood U of P in Mn. Assume that y with components yα defined by

yα = yα(x1, . . . , xn), 1 ≤ α ≤ N,
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is the position vector of P in RN . Since Mn is isometrically immersed in RN ,
then

gij = g

(
∂

∂xi
,

∂

∂xj

)
=

〈 N∑
α=1

∂yα

∂xi

∂

∂yα
,

N∑

β=1

∂yβ

∂xj

∂

∂yβ

〉
=

N∑
α=1

∂yα

∂xi

∂yα

∂xj
, (2.1)

where g denotes the induced metric of Mn from RN , 〈, 〉 is the standard inner
product in RN . At the point P ,

N∑
α=1

g(∇yα,∇yα) =
N∑

α=1

n∑

i,j=1

∂yα

∂xi

∂yα

∂xj
gij =

n∑

i,j=1

gijgij = n, (2.2)

where ∇ is the gradient operator on Mn.

Lemma 2.1. For any function u ∈ C∞(Mn), we have

N∑
α=1

(
g(∇yα,∇u)

)2 = |∇u|2, (2.3)

N∑
α=1

(∆yα)2 = n2|H|2, (2.4)

N∑
α=1

∆yα∇yα = 0, (2.5)

where |H| is the mean curvature of Mn.

Proof. Let ∇′ and h denote the connection of RN and the second fun-
damental form of Mn, respectively. We choose a new coordinate system ȳ =
(ȳ1, . . . , ȳN ) of RN given by y − y(P ) = ȳA such that

(
∂

∂ȳ1

)
P

, . . . ,
(

∂
∂ȳn

)
P

span
TP Mn and at P , g

(
∂

∂ȳi ,
∂

∂ȳj

)
= δij , where A = (aα

β) ∈ O(N) is an N ×N orthog-
onal matrix. Then we have

∇′ ∂

∂xi

∂

∂xj
=

N∑
α=1

∂2ȳα

∂xi∂xj

∂

∂ȳα
. (2.6)

Therefore, from the formula of Gauss, we infer
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hA
ij = hA

(
∂

∂xi
,

∂

∂xj

)
=

∂2ȳA

∂xi∂xj
, (2.7)

where hA
ij =

〈∇′ ∂

∂xi

∂
∂xj , ∂

∂ȳA

〉
denotes the component of the second fundamental

form h of Mn. For u ∈ C∞(Mn), at P , we have

N∑
α=1

(
g(∇yα,∇u)

)2 =
N∑

α=1

[
g

(
∇

(
yα(P ) +

N∑

β=1

aα
β ȳβ

)
,∇u

)]2

=
N∑

α=1

[
g

( N∑

β=1

aα
β∇ȳβ ,∇u

)]2

=
N∑

α=1

( N∑

β=1

n∑

i=1

aα
β

∂ȳβ

∂ȳi

∂u

∂ȳi

)2

=
n∑

i=1

( N∑
α=1

aα
i aα

i

)
∂u

∂ȳi

∂u

∂ȳi

= |∇u|2,

where |∇u|2 = g(∇u,∇u). Since P is any point, it finishes the proof of (2.3).
Let H be the mean curvature vector of Mn. Then, from the standard calcu-

lation, we have

∆y = nH. (2.8)

Therefore, we derive

N∑
α=1

(∆yα)2 = n2|H|2. (2.9)

Since ∇iy is tangent to Mn, we have

N∑
α=1

∆yα∇iy
α = 〈∆y,∇iy〉 = 0.

Thus, we have
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N∑
α=1

∆yα∇yα = 0. (2.10)

¤

The following theorem of Cheng and Yang [5] will play an important role to
prove our Theorem 1.1

Theorem CY. Let λi be the ith eigenvalue of the Dirichlet eigenvalue prob-
lem on an n-dimensional compact Riemannian manifold Ω̄ = Ω∪∂Ω with boundary
∂Ω and ui be the orthonormal eigenfunction corresponding to λi. Then, for any
function f ∈ C3(Ω) ∩ C2(∂Ω) and any integer k, we have

k∑

i=1

(λk+1 − λi)2‖ui∇f‖2 ≤
k∑

i=1

(λk+1 − λi)‖2∇f · ∇ui + ui∆f‖2,

where ‖f‖2 =
∫

M
f2 and ∇f · ∇ui = g(∇f,∇ui).

Proof of Theorem 1.1. Let ui be the eigenfunction corresponding to the
eigenvalue λi such that {ui}i∈N becomes an orthonormal basis of L2(Ω). Put
fα = yα, 1 ≤ α ≤ N . Since Mn is complete and Ω is a bounded domain, we know
that Ω̄ is a compact Riemannian manifold with boundary. From the theorem CY
of Cheng and Yang, we infer

k∑

i=1

(λk+1 − λi)2‖ui∇fα‖2 ≤
k∑

i=1

(λk+1 − λi)‖2∇fα · ∇ui + ui∆fα‖2. (2.11)

Taking sum on α from 1 to N , we have

k∑

i=1

(λk+1 − λi)2
N∑

α=1

‖ui∇fα‖2 ≤
k∑

i=1

(λk+1 − λi)
N∑

α=1

‖2∇fα · ∇ui + ui∆fα‖2.

From (2.2) and the lemma 2.1, we infer

k∑

i=1

(λk+1 − λi)2
N∑

α=1

‖ui∇fα‖2 =
k∑

i=1

(λk+1 − λi)2
∫

Ω

u2
i

N∑
α=1

|∇yα|2

= n
k∑

i=1

(λk+1 − λi)2,
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N∑
α=1

k∑

i=1

(λk+1 − λi)‖2∇yα · ∇ui + ui∆yα‖2

=
k∑

i=1

(λk+1 − λi)
∫

Ω

{
4

N∑
α=1

|∇yα · ∇ui|2 + u2
i

N∑
α=1

(∆yα)2

+ 2
N∑

α=1

(∆yα∇yα) · ∇u2
i

}

≤ 4
k∑

i=1

(λk+1 − λi)
∫

Ω

|∇ui|2 + n2‖H‖2
k∑

i=1

(λk+1 − λi)

= 4
k∑

i=1

(λk+1 − λi)λi + n2‖H‖2
k∑

i=1

(λk+1 − λi),

where ‖H‖2 = sup
Ω
|H|2. Therefore, we derive

n
k∑

i=1

(λk+1 − λi)2 ≤ 4
k∑

i=1

(λk+1 − λi)λi + n2‖H‖2
k∑

i=1

(λk+1 − λi).

Putting µi = λi +
n2

4
‖H‖, we obtain the inequality (1.7). ¤

3. Proof of Theorem 1.2.

In this section we shall give a proof of the Theorem 1.2.

Proof. Let ui be the eigenfunction corresponding to the eigenvalue λi such
that {ui}i∈N becomes an orthonormal basis of L2(Ω). Hence,

∫
Ω

uiuj = δij

for ∀ i, j ∈ N . We consider the N × N -matrix B = (bαβ) defined by bαβ =∫
Ω

yαu1uβ+1, where y = (yα) is the position vector of the immersion in RN . From
the orthogonalization of Gram and Schmidt, there exist an upper triangle matrix
R = (Rαβ) and an orthogonal matrix Q = (qαβ) such that R = QB. Thus,

Rαβ =
N∑

γ=1

qαγbγβ =
∫

Ω

N∑
γ=1

qαγyγu1uβ+1 = 0, for 1 ≤ β < α ≤ N. (3.1)

Defining gα =
∑N

γ=1 qαγyγ , we have
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∫

Ω

gαu1uβ+1 =
∫

Ω

N∑
γ=1

qαγyγu1uβ+1 = 0, for 1 ≤ β < α ≤ N. (3.2)

Therefore, the functions defined by

Ψα = (gα − aα)u1, aα =
∫

Ω

gαu2
1, for 1 ≤ α ≤ N (3.3)

satisfy

∫

Ω

Ψαuβ+1 = 0, for 0 ≤ β < α ≤ N.

From the Rayleigh-Ritz inequality, we have, for 1 ≤ α ≤ N ,

λα+1 ≤ ‖∇Ψα‖2
‖Ψα‖2 . (3.4)

From the definition of Ψα, we derive

∆Ψα = ∆gαu1 + 2∇gα · ∇u1 − λ1u1g
α + λ1a

αu1. (3.5)

Therefore, (3.4) can be written as

(λα+1 − λ1)‖Ψα‖2 ≤
∫

Ω

(−∆gαu1 − 2∇gα · ∇u1)Ψα. (3.6)

From the Cauchy-Schwarz inequality, we obtain

( ∫

Ω

(−∆gαu1 − 2∇gα · ∇u1)Ψα

)2

≤ ‖Ψα‖2‖(∆gαu1 + 2∇gα · ∇u1)‖2. (3.7)

Multiplying (3.7) by (λα+1 − λ1), we infer, from (3.6),

(λα+1 − λ1)
( ∫

Ω

(−∆gαu1 − 2∇gα · ∇u1)Ψα

)2

≤ (λα+1 − λ1)‖Ψα‖2‖(∆gαu1 + 2∇gα · ∇u1)‖2

≤
( ∫

Ω

(−∆gαu1 − 2∇gα · ∇u1)Ψα

)
‖(∆gαu1 + 2∇gα · ∇u1)‖2.
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Hence, we derive

(λα+1 − λ1)
∫

Ω

(−∆gαu1 − 2∇gα · ∇u1)Ψα ≤ ‖(∆gαu1 + 2∇gα · ∇u1)‖2. (3.8)

From the Lemma 2.1 and the definition of gα, taking sum on α from 1 to N , we
have

N∑
α=1

‖(∆gαu1 + 2∇gα · ∇u1)‖2

=
N∑

α=1

∫

Ω

{
(∆gα)2u2

1 + 4(∇gα · ∇u1)2 + 2(∆gα∇gα) · ∇u2
1

}

= n2

∫

Ω

|H|2u2
1 + 4

∫

Ω

|∇u1|2 ≤ 4λ1 + n2‖H‖2. (3.9)

From the Stokes’ theorem and the definition of Ψα, we conclude

∫

Ω

(−∆gαu1 − 2∇gα · ∇u1)Ψα =
∫

Ω

(−∆gαu1 − 2∇gα · ∇u1)(gαu1 − aαu1)

=
∫

Ω

−∆gαgαu2
1 −

1
2
∇(gα)2 · ∇u2

1

=
∫

Ω

|∇gα|2u2
1. (3.10)

By (3.8), (3.9), (3.10) and (2.2), we deduce

N∑
α=1

λα+1

∫

Ω

|∇gα|2u2
1 ≤ (4 + n)λ1 + n2‖H‖2. (3.11)

For any point P , we use the same transformation of coordinates as in the proof
of the Lemma 2.1 y − y(P ) = ȳA. Since A and Q are orthogonal matrices, QA is
also an orthogonal matrix. Hence, we have, for any α,

|∇gα|2 = g(∇gα,∇gα)

=
N∑

β,γ=1

qαγqαβg(∇yγ ,∇yβ)
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=
N∑

β,γ=1

qαγqαβg

( N∑
µ=1

aγ
µ∇ȳµ,

N∑
ν=1

aβ
ν∇ȳν

)

=
N∑

β,γ,µ,ν=1

qαγaγ
µqαβaβ

νg(∇ȳµ,∇ȳν)

=
n∑

j=1

( N∑

β=1

qαβaβ
j

)2

≤ 1. (3.12)

Therefore, from (3.12), we have

N∑
α=1

λα+1|∇gα|2 ≥
n∑

i=1

λi+1|∇gi|2 + λn+1

N∑

A=n+1

|∇gA|2

=
n∑

i=1

λi+1|∇gi|2 + λn+1

(
n−

n∑

i=1

|∇gi|2
)

=
n∑

i=1

λi+1|∇gi|2 + λn+1

n∑

i=1

(1− |∇gi|2)

≥
n∑

i=1

λi+1|∇gi|2 +
n∑

i=1

λi+1(1− |∇gi|2)

=
n∑

i=1

λi+1. (3.13)

From (3.11) and (3.13), we infer

µ2 + µ3 + · · ·+ µn+1

µ1
≤ n + 4,

with µi = λi + n2

4 ‖H‖2. ¤
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