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The Turing degrees for some computation model

with the real parameter

By Yoshimi Yonezawa

(Received Dec. 5, 2005)

Abstract. L. Blum, M. Shub and S. Smale defined a kind of computation
model having parameters that take real values [2]. In this paper we will extend
their computation theory on the basis of the conventional recursion theory which is
constructed on the domain of integers. In particular, we will define the Turing degree
for the set of reals similarly to the Turing degree for the set of integers, so as to derive
some related results.

1. Definitions, Notations and Basic properties.

In order to define computation theory on real values, we will first introduce a
kind of programming language and define a function that is computable with this
programming language.

Definition (Program language PL(R)).
1. Variable symbols.

◦ N0, N1, . . . Integer type input output variables
◦ TN0, TN1, . . . Integer type auxiliary variables
◦ A0, A1, . . . Real type input output variables
◦ TA0, TA1, . . . Real type auxiliary variables
◦ X0, X1, . . . Finite real sequence type input output variables
◦ TX0, TX1, . . . Finite real sequence type auxiliary variables

Note:
1) Integer type variables take non-negative integer values.
2) If X is a finite real sequence type variable, then

2.1) the value of X is a finite sequence of reals.
2.2) Let X[i] represent the i–th element of X.
2.3) Let size(X) represent the length of the sequence X.
2.4) Assume that X[i] = 0 if i ≥ size(X) holds.
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2. Statements.
Let N be an integer type variable, A, B, C and Bi (i = 1, 2, . . .) be real type

variables, and X, Y be finite real sequence type variables.

S1) N := N + 1 S2) N := N − 1
S3) IF N 6= 0 GOTO s S4) A := B + C

S5) A := B − C S6) A := B · C
S7) A := B/C S8) A := B

S9) A := α (α ∈ R) S10) IF A ≤ B GOTO s

S11) A := X[N ] S12) X[N ] := A

S13) N := size(X) S14) X := 〈B0, B1, . . . , Bn−1〉
S15) X := 〈α0, α1, . . . , αn−1〉 (αi ∈ R) S16) X := Y

S17) END

A program written in PL(R) has line numbers assigned to every code line.
Now initialize the variables as

N0 = x0, N1 = x1, . . . , Nn−1 = xn−1

A0 = α0, A1 = α1, . . . , Am−1 = αm−1

X0 = Z0, X1 = Z1, . . . , Xl−1 = Zl−1

(0 for the rest of the variables) for input 〈~x, ~α, ~Z〉 ∈ ωn × Rm × (R<ω)l,
run the program starting with the statement of line number 1, and halt at the
line of ‘END’ statement. The output (∈ ωn′ × Rm′ × (R<ω)l′) gives values of
N0, N1, . . . , Nn′−1, A0, A1, . . . , Am′−1, X0, X1, . . . , Xl′−1.

Definitions (B.S.S. recursive map, B.S.S. recursive set, B.S.S. recursive
predicate). Assume that X = ωn×Rm× (R<ω)l and Y = ωn′ ×Rm′ × (R<ω)l′ .

• When a partial map f : X → Y is computable with a PL(R) program p,
then f is said to be a B.S.S. recursive map.

• When the characteristic function χA : X → {0, 1} of the set A of X is a total
B.S.S. recursive function, then A is said to be a B.S.S. recursive set.

• When the set {A ∈ X|P (A)} of the predicate P on X is a B.S.S. recursive
set, then P is said to be a B.S.S. recursive predicate.

The above definition of B.S.S. recursive appears to be different from the one
given in [2]. However it is easy to see that they are identical when we restrict the
parameters to the real numbers.

Definition (Computation with oracle). When S ⊆ X = ωn×Rm×(R<ω)l

is a set, a new programming language PL(R)S is defined as PL(R) plus the
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following new type of statement:

SO) IF (〈M0, . . . , Mn−1, B0, . . . , Bm−1, Y0, . . . , Yl−1〉 ∈ S) GOTO s

Mi’s are integer type variables, Bj ’s are real type variables, and Yk’s are finite real
sequence type variables.

A partial map which is computable with PL(R)S is a B.S.S. recursive map in S.
B.S.S. recursive sets in S and B.S.S. recursive predicates in S are defined similarly.

Definitions (Coding, Index). Programs written in PL(R) or PL(R)S can
be coded in the form of 〈e,E〉 (e ∈ ω, E ∈ R<ω) by employing a proper coding
system. When a B.S.S. recursive map in S is computable with a program which has
〈e,E〉 as a code, 〈e,E〉 is called the index of f , and f is expressed as f = {〈e,E〉}S .

Definition (Computation path). Assume that f is a B.S.S. recursive map
in S which has index 〈e,E〉, then:

• If the calculation of 〈e,E〉 for input A = 〈~x, ~α, ~Z〉 halts at the T -th step, the
sequence p = 〈l0, l1, . . . , lT−1〉 which contains the successive line numbers
executed for the computation of {〈e,E〉}S(A) is called the computation path
of {〈e,E〉}S(A).

• Let V
〈e,E〉,S
p = {A | the computation path of {〈e,E〉}S(A) is p}.

Definition (B.S.S. r.e. set).
• When f is a B.S.S. recursive map in S which has index 〈e,E〉, the event of

the program 〈e,E〉 halting at input A is denoted as f(A) ↓, and the event
of the program 〈e,E〉 not halting at input A is denoted as f(A) ↑. It is also
assumed that dom(f) = {A | f(A) ↓}.

• If there exists a B.S.S. recursive map f in S for a set Ω so that Ω = dom(f),
then Ω is called a B.S.S. r.e. set in S. When {A | A(A)} is a B.S.S. r.e. set
in S for predicate A, A is called a B.S.S. r.e. predicate in S.

• When S = ∅, we simply say B.S.S. r.e. set/predicate instead of B.S.S.
set/predicate in ∅.

Definition (basic semi algebraic set).
• A subset X of Rm is called a basic semi algebraic set when there exist

rational functions h1
1(x), . . . , h1

n1
(x), h2

1(x), . . . , h2
n2

(x) such that

x ∈ X ⇐⇒
h1

1(x) > 0 & · · · & h1
n1

(x) > 0 & h2
1(x) ≥ 0 & · · · & h2

n2
(x) ≥ 0.
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• A map h : Rn → Rm, h = (h1, h2, . . . , hm) is said to be a rational map if
every element hi is a rational function.

• Let S ⊆ Rn be a set. A subset X of Rm is called a basic semi algebraic set
in S when there exist rational functions h1

1(x), . . . , h1
n1

(x), h2
1(x), . . . , h2

n2
(x)

and rational maps h3
1(x), . . . , h3

n3
(x), h4

1(x), . . . , h4
n4

(x) such that:

x ∈X ⇐⇒
h1

1(x) > 0 & · · · & h1
n1

(x) > 0 & h2
1(x) ≥ 0 & · · · & h2

n2
(x) ≥ 0

& h3
1(x) ∈ S & · · · & h3

n3
(x) ∈ S & h4

1(x) 6∈ S & · · · & h4
n4

(x) 6∈ S.

Theorem. Let f be a B.S.S. recursive map in S with the index 〈e,E〉.
(1) V

〈e,E〉,S
p is a basic semi algebraic set in S, and the coefficients of the rational

maps of its definition are recursively determined by e, E and p.
(2) dom(f) =

⋃
p∈ω V

〈e,E〉,S
p . So every B.S.S. r.e. set in S is a countable union

of basic semi algebraic sets in S.
(3) The restriction of f to V

〈e,E〉,S
p is the rational map.

In the theory of B.S.S. recursive functions, many theorems from the classical
version of the theory ([6, Chapter 6 and 7]) remain valid. We present three of
these theorems.

Theorem (Enumeration Theorem). Let TS
n,m,l(e,E,A, p) ≡ “A ∈ V

〈e,E〉,S
p ”

(A ∈ X = ωn ×Rm × (R<ω)l), then the predicate TS
n,m,l(e,E,A, p) is a B.S.S. re-

cursive predicate in S. And if A ⊆ X is a B.S.S. r.e. set in S, there exists 〈e,E〉
such that

A ∈ A ⇐⇒ ∃p ∈ ω TS
n,m,l(e,E,A, p).

Theorem (Parameter Theorem). Let X = ωn ×Rm × (R<ω)l, Y = ωn′ ×
Rm′×(R<ω)l′ . There is a B.S.S. map Sn′,m′,l′

n, m, l (e,E,A) : ω×R<ω×X → ω×R<ω

such that

{
Sn′,m′,l′

n, m, l (e,E,A)
}A(B) = {〈e,E〉}A(A,B) (where A ∈ X, B ∈ Y).

Theorem. Let A(A) be a predicate on X = ωn × Rm × (R<ω)l, then the
following are equivalent :

(1) A(A) is B.S.S. r.e. in S,
(2) For some 〈e,E〉, A(A) ⇐⇒ ∃p ∈ ω TS

n,m,l(e,E,A, p),
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(3) For some predicate R which is B.S.S. recursive in S,
A(A) ⇐⇒ ∃n ∈ ω R(n, A).

We also note that Post’s theorem remains valid in B.S.S. recursion theory.
In our theory, we deal with three types of existential quantifiers. The next

theorem shows that “B.S.S. r.e. ness” is preserved under all three types of quan-
tifications.

Theorem 1.1.

(1) If R(n, A) is a B.S.S. r.e. predicate, then ∃n ∈ ω R(n, A) is also a
B.S.S. r.e. predicate.

(2) If R(α, A) is a B.S.S. r.e. predicate, then ∃α ∈ R R(α, A) is also a
B.S.S. r.e. predicate.

(3) If R(X, A) is a B.S.S. r.e. predicate, then ∃X ∈ R<ω R(X, A) is also a
B.S.S. r.e. predicate.

Proof.

(1) is Easy.
(2) Since R(α, A) is a B.S.S. r.e. predicate, there exists 〈e,E〉 such that

R(α, A) ≡ ∃p ∈ ω Tn,m+1,l(e,E, α,A, p).

And then

∃α ∈ R R(α, A) ≡ ∃α ∈ R∃p ∈ ω Tn,m+1,l(e,E, α,A, p)

≡ ∃p ∈ ω∃α ∈ R Tn,m+1,l(e,E, α,A, p)

≡ ∃p ∈ ω∃α ∈ R T0,1,0(S(e,E,A), α, p)

(where S is the map S0, 1, 0
n, m, l in the parameter theorem.)

≡ ∃p ∈ ω ∃α ∈ R α ∈ V S(e,E,A)
p .

Since V
S(e,E,A)
p is a basic semi algebraic set, it is defined by inequalities of

rational functions. And ∃α ∈ R α ∈ V
S(e,E,A)
p means that the inequalities have a

solution. Now using the quantifier elimination theorem (effective version (see [5]))
on real-closed fields, the existence is shown of inequalities of rational functions
which are equivalent to ∃α ∈ R α ∈ V

S(e,E,A)
p . Furthermore, all coefficients

thereof can be computed recursively from e, E, p, A. Therefore conjunction of
these inequalities (let it be denoted as R′(e,E,A, p)) is a B.S.S. recursive predicate
such that
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∃α ∈ R α ∈ V S(e,E,A)
p ≡ R′(e,E,A, p).

Hence

∃α ∈ R R(α, A) ≡ ∃p ∈ ω R′(e,E,A, p)

which is a B.S.S. r.e. predicate.
(3) For each n ∈ ω, let

An(A) ≡ ∃α1 · · · ∃αn ∈ R R(〈α1, . . . , αn〉,A)

then this is a B.S.S. r.e. predicate as shown in (2). Moreover, since it is shown
that An(A) can be uniformly defined with respect to n by reviewing the proof of
(2), U(n, A) expressed as U(n, A) ≡ An(A) is also a B.S.S. r.e. predicate. Thus

∃X ∈ R<ω R(X, A) ≡ ∃n ∈ ω U(n, A)

is also a B.S.S. r.e. predicate. ¤

Corollary 1.2. If f is a B.S.S. recursive map then range(f) is a B.S.S.
r.e. set.

2. B.S.S. Turing Degrees.

In this section, we will define the degree of a set of reals using B.S.S. recursive
maps, and show the existence of incomparable sets in two ways.

Definition (B.S.S. Turing Degree). Suppose X = ωn × Rm × (R<ω)l,
Y = ωn′ ×Rm′ × (R<ω)l′ .

• We say A is B.S.S. Turing reducible from B when there exists a function
f : X → {0, 1} for A ⊆ X and B ⊆ Y which is a total B.S.S. recursive
function in B and satisfies

f(A) = 1 ⇐⇒ A ∈ A

and express this statement as A ≤BSS
T B.

• Define A ≤BSS
T B & B ≤BSS

T A as A ≡BSS
T B.

Also define A ≤BSS
T B & B 6≤BSS

T A as A <BSS
T B.

• That A 6≤BSS
T B & B 6≤BSS

T A for A ⊆ X and B ⊆ Y is expressed by
the statement that A and B are incomparable in the sense of B.S.S. Turing
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degree.
• Denote as DBSS

T = (℘(X)/ ≡BSS
T ) and call the element of DBSS

T the B.S.S.
Turing degree.

Method 1 (Topological method).
Here we will employ a topological method to show that a specific set, namely

the set of all rational numbers, and Cantor’s ternary set are incomparable in the
sense of B.S.S. Turing degree.

Theorem 2.1. Let A, B be subsets of Rn. B is a ∆0
α set (α > 1) and

A ≤BSS
T B then A is also a ∆0

α set.

Proof. Since A ≤BSS
T B, assume that f : Rn → {0, 1}, f = {〈e,E〉}B is a

total B.S.S. recursive function in B which satisfies f(x) = 1 ⇐⇒ x ∈ A.
Rn =

⋃
p∈ω V

〈e,E〉,B
p holds. V

〈e,E〉,B
p is basic semi algebraic in B for each p,

and is therefore defined by the following inequalities using rational maps:

h1
1(x) > 0 & · · · & h1

n1
(x) > 0 & h2

1(x) ≥ 0 & · · · & h2
n2

(x) ≥ 0

& h3
1(x) ∈ B & · · · & h3

n3
(x) ∈ B & h4

1(x) 6∈ B & · · · & h4
n4

(x) 6∈ B.

Thus since B is a ∆0
α set, V

〈e,E〉,B
p is also a ∆0

α set. Therefore

x ∈ A ⇐⇒ ∃p ∈ ω
[
f(x) = 1 & x ∈ V 〈e,E〉,B

p

]

x 6∈ A ⇐⇒ ∃p ∈ ω
[
f(x) = 0 & x ∈ V 〈e,E〉,B

p

]
.

Since f can be expressed as a rational function on V
〈e,E〉,B
p , A and Ac are Σ0

α

sets, and consequently A is a ∆0
α set (because it is continuous except for some

closed set). ¤

Theorem 2.2. If Q ⊆ R is an at most countable set and C ⊆ R is an
uncountable measure 0 set [or meager set ], then C 6≤BSS

T Q.

The following lemmas are used to prove this theorem.

Lemma 2.3. Let h : R → R be a non-constant rational function and Q be
a countable set, then {x ∈ R | h(x) ∈ Q} is an at most countable set.

Lemma 2.4. Let f : R → R, f = {〈e,E〉}B be a total function whose range
is a finite set. Then if V

〈e,E〉,B
p is an infinite set, f is constant over V

〈e,E〉,B
p .
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Proof of Theorem 2.2. Suppose that C ≤BSS
T Q, and that f : R →

{0, 1}, f = {〈e,E〉}Q, that is a total function which satisfies f(x) = 1 ⇐⇒ x ∈ C.
Since R =

⋃
p∈ω V

〈e,E〉,Q
p , V

〈e,E〉,Q
p ∩ C is an uncountable set for some p ∈ ω. In

the definition inequalities of V
〈e,E〉,Q
p

h1
1(x) > 0 & · · · & h1

n1
(x) > 0 & h2

1(x) ≥ 0 & · · · & h2
n2

(x) ≥ 0

& h3
1(x) ∈ Q & · · · & h3

n3
(x) ∈ Q & h4

1(x) 6∈ Q & · · · & h4
n4

(x) 6∈ Q

it may be assumed that each rational function is not constant. Then since such
a set of x as h3

i (x) ∈ Q is at most countable, expressions having the form of
h3

i (x) ∈ Q are not included. Further, define a set V ′ by

h1
1(x) > 0 & · · · & h1

n1
(x) > 0 & h2

1(x) > 0 & · · · & h2
n2

(x) > 0

& h4
1(x) 6∈ Q & · · · & h4

n4
(x) 6∈ Q

which is derived by excluding the symbol of equality from expressions having the
form h2

j (x) ≥ 0 among the preceding inequalities. Then, since V ′ ⊆ V
〈e,E〉,Q
p and

the difference thereof is at most finite, V ′, too, is an uncountable set. Since V ′ is
a non-empty open set minus at most countable points, V ′ −C 6= ∅ because C is a
measure 0 set [or meager set]. This leads to V

〈e,E〉,Q
p ∩ C 6= ∅, V

〈e,E〉,Q
p − C 6= ∅

which contradicts the proposition that f is a constant function on V
〈e,E〉,Q
p . ¤

Corollary 2.5. Let Q be the set of all rational numbers, and C be Cantor’s
ternary set, then Q and C are incomparable in the sense of B.S.S. Turing degree.

Proof. C is a closed set, and is therefore a ∆0
2 set. However, since Baire’s

category theorem dictates that Q is not ∆0
2, Q 6≤BSS

T C according to Theorem
2.1. C 6≤BSS

T Q is derived from Theorem 2.2. ¤

Method 2 (Algebraic method).
Now we show the existence of incomparable sets using algebraic methods.

Theorem 2.6. Let K, L ⊆ R be finitely generated fields of Q.
Then K ⊆ L ⇐⇒ K ≤BSS

T L.

Proof (of K ⊆ L ⇒ K ≤BSS
T L). We show this for the case where L is a

simple extension field of K. Because K and L are finitely generated fields, we can
find reals α1, α2, . . . , αm such that L = K(α1, α2, . . . , αm). Then

K ⊆ K(α1) ⊆ K(α1, α2) ⊆ · · · ⊆ K(α1, α2, . . . , αm),
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every extension is simple, and the relation ≤BSS
T is transitive.

Build a PL(R)L program which accepts K where L = K(α). Let n = [L : K]
(1 ≤ n ≤ ∞).

1. if x 6∈ L then output 0 end.
2. Since x ∈ L = K(α), find a K-coefficient irreducible rational function

f(t)/g(t) (f(t), g(t) are polynomials) which satisfies x = f(α)/g(α) and
the degree of f , g are less than n. (In the case n < ∞, we take g(t) ≡ 1.)
(Since K is expressed as K = Q(β1, . . . , βl), elements of K and the entire
K-coefficient polynomial can be enumerated by a B.S.S. recursive function.
Furthermore such polynomials f and g are determined uniquely for each x.)

3. if deg f = deg g = 0 then output 1 else output 0.
4. end. ¤

To prove the converse, we show the following lemmas:

Lemma 2.7. Suppose that K ⊆ R is a subfiled of R, and h(x) is a real
coefficient rational function, such that h(r) ∈ K for infinitely many r ∈ K. Then
h(x) has elements of K as its coefficients.

Proof. Assume h(x) = f(x)/g(x), (f(x), g(x) are polynomials). We show
this by induction with respect to n = deg(f) + deg(g).
When n = 0, this is clear.
When n > 0, we can assume deg(f) ≥ deg(g) (by considering the inverse 1/h(x)).
Let h(r) = q, then

h(x) = (f(x)− qg(x))/g(x) + q = (x− r)f1(x)/g(x) + q

and then the induction hypothesis may be applied to f1(x)/g(x). ¤

Lemma 2.8. Suppose that K ⊆ R is a subfiled of R, and h(x) is a real
coefficient rational function. If α 6∈ K and q1, q2 ∈ K (q1 6= q2) satisfy

∃∞r ∈ K[h(r + qiα) ∈ K] (i = 1, 2)

then h(x) is a constant function.

Proof. Since the rational function h(x + qiα) takes values belonging to K

for an infinite number of r ∈ K, Lemma 2.7 asserts that this is a K-coefficient
rational function. Thus h(x + qiα) = pi(x) where pi(x) is a K-coefficient rational
function for i = 1, 2. Since p1(x) = h(x + q1α) and p2(x − q2α) = h(x), we
conclude p1(x) = h(x+ q1α) = p2((x+ q1α)− q2α) = p2(x+ qα) (q = q1− q2 6= 0).



320 Y. Yonezawa

Comparison of coefficients on both sides of this equation shows that p1(x) and
hence h(x) is constant. ¤

Proof (of K ≤BSS
T L ⇒ K ⊆ L). Assume K ≤BSS

T L and K 6⊆ L. We will
derive a contradiction. Suppose that f : R → {0, 1} is f = {〈e,E〉}L, total, and
satisfies

f(x) = 1 ⇐⇒ x ∈ K

Since R =
⋃

p∈ω V
〈e,E〉,L
p , V

〈e,E〉,L
p is an uncountable set for some p ∈ ω, then

clearly V
〈e,E〉,L
p −K 6= ∅.

It can be assumed that each rational map hi
j(x) is not constant in the defini-

tion inequalities of V
〈e,E〉,L
p

h1
1(x) > 0 & · · · & h1

n1
(x) > 0 & h2

1(x) ≥ 0 & · · · & h2
n2

(x) ≥ 0

& h3
1(x) ∈ L & · · · & h3

n3
(x) ∈ L & h4

1(x) 6∈ L & · · · & h4
n4

(x) 6∈ L.

Then, since such a set of x as h3
i (x) ∈ L is at most countable, expressions having

the form of h3
i (x) ∈ L are not included. Let U be an open set defined by

h1
1(x) > 0 & · · · & h1

n1
(x) > 0 & h2

1(x) > 0 & · · · & h2
n2

(x) > 0

and W be a set defined by

h4
1(x) 6∈ L & · · · & h4

n4
(x) 6∈ L.

Then U ∩W is not empty since V
〈e,E〉,L
p is an uncountable set.

Claim. U ∩W ∩K 6= ∅.
If U ∩W ∩K is empty, then

x ∈ U ∩K ⇒ h4
1(x) ∈ L ∨ · · · ∨ h4

n4
(x) ∈ L.

Since the set K − L is a dense subset of R, we take an α ∈ U ∩ (K − L). Now
consider x = r + qα ∈ U ∩K(r, q ∈ Q), then there exist j and q1, q2(q1 6= q2) such
that there are infinitely many r ∈ Q which satisfy h4

j (r + qiα) ∈ L for i = 1, 2.
Therefore, from Lemma 2.8, h4

j (x) is a constant function, which contradicts the
proposition.



The Turing degrees for B.S.S. computation 321

V
〈e,E〉,L
p ∩K 6= ∅ is derived from U ∩W ∩K 6= ∅ and U ∩W ⊆ V

〈e,E〉,L
p which,

together with V
〈e,E〉,L
p − K 6= ∅, contradict the proposition that f is a constant

function on V
〈e,E〉,L
p . ¤

3. The embedding of the real line to B.S.S. Turing degrees.

Deduction from Theorem 2.6 shows the existence of a countable ascending
sequence, a countable descending sequence and countable incomparable elements
within B.S.S. Turing degrees. In this section we prove that there exist continuum
many of these.

In this section, we suppose that I = {αk | k ∈ ω} satisfies the conditions

[1] ∀k ∈ ω αk /∈ Q(α0, α1, . . . , αk−1) (Overline means algebraic closure),
[2] I ⊆ R is dense.

Then it is readily shown that I satisfies the condition:

[1’] ∀k ∈ ω αk /∈ Q(I − {αk}).

Theorem 3.1. Let A, B ⊆ R be B.S.S. recursive sets, then the following
statements hold :

(1) If A ⊆ B then A ∩ I ≤BSS
T B ∩ I.

(2) If (B −A)◦ 6= ∅ then B ∩ I 6≤BSS
T A ∩ I.

Proof.

(1) clear.
(2) Assume that B ∩ I ≤BSS

T A∩ I. Let f : R → {0, 1} be a total B.S.S. recursive
function in A ∩ I that satisfies

f(x) = 1 ⇐⇒ x ∈ B ∩ I

and set f = {〈e,E〉}A∩I . Since f is a total function and

R =
⋃
p∈ω

V 〈e,E〉,A∩I
p

then

V 〈e,E〉,A∩I
p ∩ (B −A)◦ is uncountable for some p ∈ ω.

Claim. V
〈e,E〉,A∩I
p ∩ (B −A)◦ ∩ I = ∅.
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Since V
〈e,E〉,A∩I
p is an infinite set, f is constant on this set. If

V
〈e,E〉,A∩I
p ∩ (B−A)◦ ∩ I 6= ∅, then V

〈e,E〉,A∩I
p ∩B ∩ I is not empty, and therefore

f |V 〈e,E〉,A∩I
p = 1. This means V

〈e,E〉,A∩I
p ⊆ B ∩ I, which contradicts that I is a

countable set.

Let the definition inequalities of V
〈e,E〉,A∩I
p be

h1
1(x) > 0 & · · ·& h1

n1
(x) > 0 & h2

1(x) ≥ 0 & · · ·& h2
n2

(x) ≥ 0

& h3
1(x) ∈ A ∩ I & · · ·& h3

n3
(x) ∈ A ∩ I & h4

1(x) 6∈ A ∩ I & · · ·& h4
n4

(x) 6∈ A ∩ I

(it is assumed that every rational function is not constant.) Then the set of x such
that h3

j (x) ∈ A∩I is an at most countable set, so that expressions having the form
h3

j (x) ∈ A ∩ I are not included.
Let U be an open set defined by

h1
1(x) > 0 & · · · & h1

n1
(x) > 0 & h2

1(x) > 0 & · · · & h2
n2

(x) > 0

and W be a set defined by

h4
1(x) 6∈ A ∩ I & · · · & h4

n4
(x) 6∈ A ∩ I.

Then since V
〈e,E〉,A∩I
p is uncountable, U ∩W is not empty. From the claim that

U ∩W ∩ (B −A)◦ ∩ I = ∅ it can be derived that

x ∈ U ∩ (B −A)◦ ∩ I ⇒ h4
1(x) ∈ A ∩ I ∨ · · · ∨ h4

n4
(x) ∈ A ∩ I.

Since U ∩ (B−A)◦ is a non-empty open set, and I is dense in R, U ∩ (B−A)◦ ∩ I

is an infinite set. Thus there is a j which satisfies

∃∞x ∈ U ∩ (B −A)◦ ∩ I[h4
j (x) ∈ A ∩ I] (∗)

Denote K = Q(I), and

∃∞x ∈ K[h4
j (x) ∈ K]

is derived from the above equation, and therefore, from Lemma 2.7, h4
j (x) is a K-

coefficient rational function. Thus when h4
j (x) is expressed as h(x, αk1 , . . . , αkm

)
(coefficients of h are rational numbers) and set C = {αk1 , . . . , αkm

}, then (∗) leads
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to

∃∞x ∈ U ∩ (B −A)◦ ∩ I − C[h(x, αk1 , . . . , αkm
) ∈ A ∩ I] (∗∗)

However, since h is not constant, it can be seen that

∃x ∈ U ∩ (B −A)◦ ∩ I − C[h(x, αk1 , . . . , αkm) ∈ A ∩ I − C].

Let x be αt and h(αt, αk1 , . . . , αkm) be αs, then αs 6= αt is deduced from αs ∈ A

and αt ∈ (B −A)◦. Also because αs 6∈ C,

αs ∈ Q(αt, αk1 , . . . , αkm
) ⊆ Q(I − {αs})

which contradicts condition [1’]. ¤

Corollary 3.2. Suppose ϕ(a) = [(−∞, a)∩I] ([ ] is the equivalence class of
B.S.S. Turing degrees), then ϕ is an ordered embedding from R to B.S.S. Turing
Degrees.

Corollary 3.3. Let Xσ =
⋃

n∈σ(n, n+1) for σ ⊆ ω, then Xσ is a B.S.S. re-
cursive set. Therefore F is an almost disjoint family of [ω]ω(= {X ⊆ ω | |X| =
ω}) which has continuum cardinality, so {[Xσ ∩ I] | σ ∈ F} is an incompatible set
of B.S.S. Turing degrees which have the continuum cardinality.

4. Open problems.

Now we state some open problems.
In classical recursion theory, we can unite two consecutive quantifiers of type

1. However since R and R2 are not isomorphic, it is not clear that we can do this
in B.S.S. recursion theory.

Question 1. When R(α, β, n,A) is a B.S.S. recursive predicate, can
∀α ∈ R ∀β ∈ R ∃n ∈ ω R(α, β, n,A) be expressed in the form of
∀α ∈ R∃n ∈ ω R′(α, n,A) (R′(α, n,A): B.S.S. recursive predicate)?

The use of elimination of quantifiers for the theory of real-closed fields was
essential in the proof of Theorem 1.1 (2). Therefore the same proof cannot be
used when we try to relativize this theorem to S.

Question 2. When R(α, A) is B.S.S. r.e. in S, is ∃α ∈ R R(α, A) also
B.S.S. r.e. in S ?
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In the theory of Turing degrees, the jump operator plays an important role.
In the theory of B.S.S. Turing degrees, we can define the jump operator by S′ =
{〈e,E〉 | {〈e,E〉}S(e,E) ↓}. However in this case, for S ⊆ Rn, S′ will be a subset
of ω ×R<ω. So we ask the following question:

Question 3. Assume S ⊆ Rn. We set j(S) = {〈e, α1, . . . , αn〉 |
{〈e, α1, . . . , αn〉}S(e, α1, . . . , αn) ↓}. Does S <BSS

T j(S) hold?

In B.S.S. recursion theory, topology and algebraic structure play important
roles. Thus in the sense of B.S.S. recursion theory, R and R2 are not isomorphic.
It is not clear that the degree for subsets of R2 corresponds to the degree for
subsets of R.

Question 4. Does ∀A ⊆ R2∃B ⊆ R(A ≡BSS
T B) hold?
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