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Abstract. We give a method of determining the centralizer of an elliptic element
in a real semisimple Lie algebra g, in relation with the maximal compact subalgebra of g
and the compact dual of g. Moreover, we determine a special central element (called the
H-element) of the isotropy subalgebra of each simple irreducible pseudo-Hermitian
symmetric Lie algebra.

1. Introduction.

Let g be a real semisimple Lie algebra. An element X € g is called semisimple, if the
operator ady X is semisimple. A semisimple element X is called elliptic, if the eigenvalues
of ady X are all purely imaginary. Let G be a connected Lie group with Lie G = g. The
adjoint orbit Ad(G)X through a semisimple element (resp. an elliptic element) X is
called a semisimple orbit (resp. an elliptic orbit). Ad(G)X is expressed as the coset space
G/Cq(X), where Cg(X) is the centralizer of X in G. Note that elliptic orbits of
semisimple Lie groups can be characterized geometrically. Actually Dorfmeister-Guan
[6] and Kobayashi-Ono [11], Kobayashi [10] have shown that a semisimple orbit
G/Cqx(X) is elliptic if and only if it admits a G-invariant pseudo-Kéhler metric.

Our main concern is how to determine the isotropy subgroup Cg(X) for an
arbitrary elliptic element X. We consider this problem in the Lie algebra level. So our
problem is to determine the centralizer ¢g(X) of an arbitrary elliptic element X € g. The
first aim in this paper is to settle the problem. Let € be a maximal compact subalgebra of
g containing X, and let (g,, £) be the compact dual of orthogonal symmetric Lie algebra
(g,%). Our main result is the structure theorem for ¢5(X) (cf. Theorem 3.4), which
enables us to determine it in terms of the centralizer ¢;(X) in ¢ and the semisimple part
and the center of the centralizer ¢; (X) in g,. In Section 5, applying this structure
theorem to s[(4, R), we actually determine, up to inner automorphism, the centralizers
of all possible elliptic elements in s[(4, R) (cf. Proposition 5.1).

In 1957, Berger [1] has classified simple (affine) symmetric spaces. In [1], the notion
of pseudo-Hermitian symmetric space was introduced. A symmetric space G/R is called
pseudo-Hermitian, if it has an invariant complex structure J and an invariant pseudo-
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Hermitian metric (with respect to J). In 1971, Shapiro [14] has shown that for a pseudo-
Hermitian symmetric space G/R, there exists an elliptic element T € g = Lie G which
satisfies two conditions (i) R is the centralizer C¢(T') of T in G, and (ii) adyT induces the
complex structure J. Following Satake’s book [13], we prefer to call such an element T'
the “H-element” in pseudo-Hermitian symmetric Lie algebra (g,t), where v = Lie R,
although in [13] the terminology “H-element” is used only for a Hermitian symmetric
Lie algebra.

Our second problem is to determine the H-elements in all simple irreducible
pseudo-Hermitian symmetric Lie algebras. In the course of the realization of pseudo-
Hermitian symmetric spaces of type K. as Siegel domains, Kaneyuki [7] solved the
problem for that specified type of pseudo-Hermitian symmetric spaces. In Section 6, we
completely settle this problem for all the twenty-nine simple irreducible pseudo-
Hermitian symmetric Lie algebras (cf. Theorem 6.16). We describe the H-elements in
terms of the dual basis for the simple roots. Our method depends on Theorem 3.4, and is
different from Kaneyuki’s.

In Section 2, we will collect the notation utilized through this paper. In Section 4,
we will define involutive outer-automorphisms of compact simple Lie algebras precisely
(cf. Lemmas 4.3 and 4.4) and make reference to the result of Murakami [12], which are
used in Sections 5 and 6. This paper is organized as follows:

Section 1 Introduction.

Section 2 Definitions and notation.

Section 3 The structure of ¢4 (7).

Section 4 Elementary facts about root theory.

Section 5 Determination of the centralizer cgy r)(T)-

Section 6 The H-elements in pseudo-Hermitian symmetric Lie algebras.
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2. Definitions and notation.

DEFINITION 2.1. Let g be a real semisimple Lie algebra, let £ be a maximal
compact subalgebra of g, and let

g=t@ip (Cg%) (F1)
denote the Cartan decomposition. Then, a compact real form g, of g€ can be given by
g.=t@p (Cg9), (F2)

and there exists an involutive automorphism o of g, such that
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(F3)
p:{P€gu|0’(P):7P}

{E= {K eg,|o(K) =K},
In these settings, we say that compact semisimple Lie algebra g, is related with (g, ¢) as
in the formulae (F1) and (F2), and say that compact symmetric pair (g,, o) is related
with (g, ) as in the formulae (F1), (F2) and (F'3).

DEFINITION 2.2 (Kobayashi [9] or [10]). Let g be a real semisimple Lie algebra.
An element S € g is called semisimple if adyS is a semisimple endomorphism of g. A
semisimple element T € g is said to be elliptic if any eigenvalue of adyT is purely
imaginary. Let G be a connected Lie group with Lie algebra g. The adjoint orbit Ad(G)S
through semisimple element S € g is called a semisimple orbit. The adjoint orbit
Ad(G)T through elliptic element T' € g is said to be an elliptic orbit.

NOTATION 2.3. Throughout this paper, we utilize the following notation:

) [€: the complexification of real Lie algebra I.

) B the Killing form of Lie algebra [.

) ad: the adjoint representation of Lie algebra .

) c(X): the centralizer of X in Lie algebra [, for X € L.

) ls: the semisimple part of reductive Lie algebra [, namely [ = [[, [].
n6) [,: the center part of reductive Lie algebra [.

) rkl: the rank of real reductive Lie algebra [.

) m @ n: the direct sum of vector spaces m and n.

) fla: the restriction of mapping f to set A.

)

If § is a complex semisimple Lie algebra and if b is a Cartan subalgebra of g, then we
specially utilize the following notation:

(n11) A(g,b): the set of non-zero roots of g with respect to b.
(n12) A*(g,b): the set of positive roots in A(g, h) (with respect to some chosen order).

(n13) II,gp: the set of simple roots in A(g, h) (with respect to some chosen order).

Let g be a real semisimple Lie algebra with Cartan decomposition (F1) g = ¢ @ ip. Then,
we utilize the following notation:

(n14) t": an n-dimensional abelian subalgebra of g which is contained in &.
(n15) R": an n-dimensional abelian subalgebra of g which is contained in ip.

3. The structure of ¢,(T).

Let g be a real semisimple Lie algebra, let £ be a maximal compact subalgebra
of g, and let (g, o) be the compact symmetric pair related with (g, ) as in the formulae
(F1) g=taip, (F2) g, =t&p (Cg°), and (F3) E={K €g,|o(K) =K}, p=
{P €y, |o(P)=—P}. In Subsection 3.1, we verify that all elements of ¢ are elliptic
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ones of g. In Subsection 3.2, we investigate relation between c¢g(7) and ¢4 (T'), for
T € ¢. Finally in Subsection 3.3, we prove Theorem 3.4, and assert two Corollaries 3.6
and 3.8.

3.1.

Let & be a Cartan involution of g = ¢ & ip defined by K +iP +— K —iP for K € ¢
and P €p. Define a positive-definite inner product (-,-) on g by (X,Y):=
—By(X,6(Y)) for X,Y € g. Then, it is obvious that ([K, X],Y) = —(X,[K,Y]) for any
K etand X,Y € g. Accordingly, each K € £ is an elliptic element of g.

REMARK 3.1. For any elliptic element T € g, there exists a maximal compact
subalgebra of g such that T belongs to it. Therefore, there exists an inner automorphism
1 of g which maps T into ¢ (cf. Helgason [6, Theorem 7.2, p. 183]). Since ¢4(T) is
isomorphic to ¢;(¢(T)) via 1), one may assume that T belongs to a fixed, maximal
compact subalgebra € of g from the beginning, as far as clarifying ¢;(7") up to inner
automorphism of g.

3.2. Relation between ¢;(T) and ¢y (T).
For T € t = g, Ng, we study ¢g (T') first, and investigate relation between ¢g(7) and
¢g, (T) afterward.

3.2.1. Take any element T € €. Since adgy, T is semisimple, ¢; (T') is a reductive Lie
algebra. Thus, it can be decomposed as follows (recall Notation 2.3 (n5) and (n6) for
‘g, (T)ss and ‘g, (T)Z) :

€., (T) = cGu(T)ss ® ch(T)z'

It follows from o(T) =T that o(cg,(T)) C cq,(T). Therefore, we obtain o(cq, (1)) C
¢g,(T) and o(cq (T),) C ¢q,(T), because ¢g (T) = [¢g,(T), ¢q,(T)]. This provides

¢g,(T) = (¢g,(T)s NE) & (¢, (T)s N p) & (¢q,(T), NE) & (¢, (T), Np).  (3.2.1)

Here, we remark that

e(T) = e(T), & (), = ¢, (T) N = (6 (1) NH) & (0, (T),NE),  (32.2)
¢, (T)Np = (cg,(T)s N p) ® (cq,(T),NP); (3.2.3)

and that
the Killing form of ¢; (T) = (¢q,(T)s NE) & (¢q,(T)s NP)

is negative-definite. (3.2.4)

3.2.2. Now, let us investigate relation between ¢;(7) and ¢g (7).
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LEMMA 3.2.  With the assumptions above; for T € ¥, the following eight items hold:

(1) <alT) = (6q,(T)y N8) & (¢, (T), M) @ ilcq, (T) Np) & i(cy, (T), N p).

(ii) ¢g(T) is a reductive Lie algebra. Moreover, ¢g(T)y = (¢q, (1) NE) ® i(cg, (T)g N P)

and cq(T), = (54, (T), O18) @ i(cq, (T), Np)-

(iil) If ¢q, (T) NP # {0}, then (cg(T)y ¢, (T) NE) is the non-compact dual, orthog-

onal symmetric Lie algebra of (¢g (T)g, ¢q, (T) N E).
) (T is a mazimal compact subalgebra of reductive Lie algebra cg(T').
) ¢, (T),NECc(T),

(vi) ¢g,(T) is the compact dual of reductive Lie algebra c¢g(T).

1) ¢, (T) NE is the orthogonal complement of ¢g (T), N in c(T) (with respect to

By,).

(viii) If ¢g,(T) Np # {0}, then (cg(T)g, ce(T)y @ (cq,(T), N E):(T)z) is the non-compact
dual of orthogonal symmetric Lie algebra (cg, (T, ce(T)y @ (cq,(T), ﬂE)i(T)Z).
Here, (¢q,(T), N E)i(T)z denotes the orthogonal complement of ¢g (T), N € in ¢ (T)
with respect to By , namely

(60, (T), N &)sipy, == {C € we(T), | By,(C,Y) =0 for all Y € ¢4 (T),NE}.

PROOF.

(i) For any X €¢g(T), one can describe it as X =K +iP (K c#t P¢cp)
because X e€g==0t®ip. Then 0=[X,T]=[K,T]+iP,T]. Since g=¢tPip is
Cartan decomposition, and since T € ¢, we obtain 0= [K,T] = [P,T]. Accordingly,
it follows that K € ¢y (T)NE and P € ¢y (T)Np. This, together with (3.2.2) and
(3.2.3), concludes that X =K +iP € (¢g (T)NE) @ (cq,(T),NE) ®i(cy, (T) NPp) @
i(cg,(T),Np). Consequently, we have got ¢g(T) C (¢, (T)NE) ® (cq,(T),NE) S
i(cq, (1) Np) ®i(cq, (T),Np). The converse inclusion is immediate from direct compu-
tations. For the reasons, we have shown the first item.

(ii) It follows from (i) and (3.2.1) that (cg(T))C = (cgu(T))C; and hence ¢4(7T') is
reductive. Since (i), and since (cgu(T)SS)C = ((¢g,(T)s NE) D i(cq,(T)s NP)) ¢ and
(¢g,(T),) C= ((cq,(T), NE) Bi(eq, (T),N p))c7 we perceive that (cg, (T),NE) S
i(cq, (T) Np) is the semisimple part of ¢g(7T"), and that (¢q (T), NE) @ i(cy (T), Np) is
the center part of ¢g(T')—that is, ¢g(T) = (¢q,(T)y NE) B i(cy, (1), Np) and ¢(7T), =
(cg,(T), NE) ®i(cq,(T), Np).

(iii) From (3.2.4) and (cq (T).) = ((cq, (T)ss NE) @ i(cq, (T), M) €, it is natural
that the Killing form of ¢y(T) = (¢q, (1) NE) @ i(cq, (T)y NP) is negative-definite on
(cg,(T)sNE) X (¢q (T) s NE), and positive-definite on i(cg, (7)) NP) X i(cq, (T)s N P).
Therefore, we see that ¢;(T) = (¢, (T) NE) ®i(cq, (), Np) is the Cartan decompo-
sition by involution &| ) , where ¢ was defined in Subsection 3.1. Hence (c(T)y
¢g,(T) NE) is an orthogonal symmetric Lie algebra when ¢g (T), Np # {0}. Further-
more, it is the non-compact dual of (¢g (T, ¢q, (1) N E), because ¢g(T)y, = (cq,(T) N
§) @ ilcq, (7). ") and ¢, (T),, = (cq, (T N8) & (cq.(T),, (1p).

(iv) Since (3.2.2) and (i), we confirm that c(T) = (¢g, (1) NE) & (¢, (T),NE) =
¢g(T) N& and so ¢(7T') is a maximal compact subalgebra of ¢;(T).
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(v) It is obvious from (3.2.2) that c¢(T) = (¢g,(T) N )EB (g, (T ) ﬁ?) C cg (T), so
that we obtain ¢g (T),NEC c(T) and [cq, (T ) Ne ce(T)] C [cq,(T),,cq,(T)] ={0}.
Therefore, the item (v) holds.

(vi) The sixth item comes from (i) and (3.2.1).

(vii) It is natural from cq, (7)), = [¢q, (T), g, (T)] that By, (cg, (T, ¢q,(T),) = {0}, so
that (cq, (T)NE€) @ (¢q,(T),NE) is an orthogonal decomposition with respect to By, .
Therefore we conclude that item (vii) holds, because of (3.2.2) ¢(T) = (¢q, (1), NE) @
(¢q,(T),N¢) and By, being negative-definite.

(viii) By virtue of (iii) we can get the last item, if ¢g (T), NE=c(T), P
(¢q,(T), ﬂE)i(T)Z. Thus, let us prove that ¢g (T)NE = ce(T) D (¢q,(T), ﬂ?)imz. For
any X € ¢g (), NE, it can be written as X = S+ C (5 € (T, C € ¢(T),) because it
follows from (3.2.2) that ¢y (7)), M€ C ¢(T), @ (T),. Since By (¢, (1), ¢, (T),) = {0},
we comprehend By (X,¢q (T),NE€) ={0}; moreover, the item (v) and

By, (c¢(T) g, ce(T),) = {0} mean that By (S,¢q (1), NE) ={0}. Hence, By (C,¢q (T),N
E) By (X = 8,¢5,(T),NE) ={0}; and so C € (¢q (T), ﬂ?’):(T)/ Accordingly X =S5+
Cecq ( ) ® (¢q,(T), N E):(T)Z. Therefore, one perceives that ¢; (T'),NEC ce(T), &
(¢q,(T), N ) . Now, we will demonstrate that the converse inclusion also
holds. Deﬁnltlon of (¢q,(T),N E)i(T)Z’ combined with (v) and By (¢ (T), ce(T),) = {0},
implies that

By, (CE(T)SS @ (cq,(T), N ) cgu( ), Ne)
By, (ct(T)ss Cgu(T )
By, (ce(T)g, ce(T),)
= {O}

Consequently, it follows from (vii) that ce(T") @ (¢q, (T), N E)i(T) C g, (T), NE For the

reasons, we have proved that ¢g, (T') N € = ce(T)y, @ (¢q,(T), N E)i(T). . Hence, Lemma 3.2
has been shown. g

We will also verify the following lemma needed later:

LEMMA 3.3. In the settings above; for T € &, the following four items hold:

(1) rkg =r1key(T) =rkg, =rkeq (T).
(2) rkt=rkc(T).
(3) Ifdimceg (T), =1, then

¢g, (1), Nt = spang{T},
¢, (1), Np={0},
¢g,(T) = ¢4,(T)ys & (¢q,(T), NE).

(4) Ifrkg=rké, then



Isotropy subalgebras of elliptic orbits in semisimple Lie algebras 1141

ch (T)z N b= {0}7
¢g, (1) = ¢q,(T) & (cq,(T), NE),
Cgu (T)Z = (g (T)z (: cgu (T)z N E) :

PROOF. The items (1) and (2) are obvious because T is semisimple.

(3) Since ¢4 (T), = (cq,(T),NE) ® (cq,(T), Np), we see that ¢ (T), Nt = spangp{T}
and ¢ (T),Np = {0} in case of dime, (T'), = 1. It follows from ¢y (7'), Np = {0} and
(3.2.1) that ¢g (T) = ¢4, (1) @ (¢g,(T), N E).

(4) If ¢4 (T),Np # {0}, then rkcy (T) > rkce(T) because of (3.2.1) and (3.2.2).
Therefore, the items (1) and (2) show that rkg > rk€ when ¢4 (7'), Np # {0}. Thus by
the contraposition, we conclude that ¢ (7'), "p = {0} if rk g = rk €. The rest of proof is
immediate from ¢, (T'), Np = {0}, (3.2.1) and Lemma 3.2-(ii). Consequently, we have
verified Lemma 3.3. g

3.3. Results.
Now, we will demonstrate the following (recall Notation 2.3 (n5) and (n6), for

Cg” (T)ss’ Cg“ (T)z7 CE(T)SS and CE(T)z>:

THEOREM 3.4. Let g be a real semisimple Lie algebra, let € be a maximal compact
subalgebra of g, and let g, be the compact semisimple Lie algebra related with (g, ) as in
the formulae (F1) and (F2). For any element T € €, the structure of ¢g(T) is as follows:

() if ee(T) = <, (1) ® (cq, (1), M), then
¢o(T) = (1) ®i(cq, (1), NP);
(B) if ce(T) # ¢q,(T) ® (¢q,(T), NE), then

¢g(T) =5@ (cq,(1),NE) ®icg,(T),Np).

Here, s is a semisimple Lie algebra such that (s,c(T)g @ (cg,(T), ﬂ?) o(T) ) is the non-
compact dual of orthogonal symmetric Lie algebra (¢ (T, ce(T)y @ (¢q,(T), N E) ), )
where (¢q, (T), N E)i(T)» is the orthogonal complement of ¢g (T'), N in ce(T)
to By, .

, With respect

PROOF. We are going to prove Theorem 3.4 by use of the notation utilized in this
section. Comparing ¢¢(T") with ¢5 () @ (¢q,(T), N€), we see whether ¢; (T'), Np = {0}
or not, because it follows from (3.2.2) that ¢;(7) @ (¢g, (1) N P) = ¢q, (1) ® (¢q,(T), N E).
Let us check two Cases (A) & (T) = ¢, (1) @ (¢q,(T), NE) and (B) ce(T) # ¢4, (1) @
(¢q,(7),N¥), individually.

CAsE (A): (T) = ¢ (T),, & (c
Lemma 3.2-(i) means that ¢;(T) =
ingly, we deduce

o, (1), ﬂE) In this case, ¢ (T')Np = {0}. Thus,
(g, (T)gs NV E) & (¢q,(T), NE) & i(cq, (T), Np). Accord-
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¢g(T) = ce(T) ©i(cq, (T), Np)

by virtue of (3.2.2).

CASE (B): ¢ (T) # ¢, (T)y ® (¢q,(T), NE): In this case, ¢5 (T),Np # {0}. Lemma
3.2-(viii) enables us to perceive that ¢g(T), is uniquely determined by duality
(¢g(T)ger t(T)y @ (eq,(T), N E)zoiry ) (g, (T)ges ce(T) © (cq,(T), N &)z )- Therefore if

s denotes ¢;(T),,, then Lemma 3.Z2—(i) and -(ii) imply that ’

(1) =5 @ (cg, (1), NE) ®i(cg, (T),Np),

where s is a semisimple Lie algebra such that (s, ce(T)y @ (cq,(T), N E)i(T)') is the non-
compact dual, orthogonal symmetric Lie algebra of (¢g (), ce(T)y @ (¢q,(T), N E)i(T) ).
For the reasons, we have completed the proof of Theorem 3.4. O

REMARK 3.5. Theorem 3.4 implies that it is possible to determine ¢g(7") with
T e ¢, if four structures of ¢(T), ¢q (T), ¢q,(T), Nt and ¢ (T), Np are clarified. These
four structures can be clarified by using two root theories for € and g, (see Section 5).
Accordingly, Theorem 3.4 enables us to assert that ¢g(7") can be determined by using
two root theories for ¢ and g,.

Theorem 3.4 and Lemma 3.3-(3) lead the following:

COROLLARY 3.6.  With the same assumptions in Theorem 3.4; for an element T’ €
¢ with dimcg (1), = 1, the structure of ¢g(1") is as follows:

(A) if o(T") = ¢, (T"), then
(1) = «(T") (= ¢, (T"));
(B) if ee(T") # ¢, (1), then

¢y(T") = s ® spang{T"}.

Here, s is a semisimple Lie algebra such that (s, c(T"), & spanR{T’}é(T,) ) is the non-
compact dual of orthogonal symmetric Lie algebra (cq, (T7)y, ce(T") @ spanR{T’}i(T,)),
where SpanR{T’}i(T,) is the orthogonal complement of spanp{T'} in ¢(T"), with respect
to B

VA

Gu*

REMARK 3.7. Corollary 3.6 enables us to determine ¢;(T”) by using the structures
of ¢g (1) and ¢(T"), in case of dim ¢y, (1"), = 1.

Theorem 3.4 and Lemma 3.3-(4) allow us to get the following:

COROLLARY 3.8. With the same assumptions in Theorem 3.4, and with the
assumption of tkg = rk¥; for any element T € &, the structure of ¢y(T') is as follows:
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(A) if oo(T) = cq (T), then
Cg(T> = ¢(T) (: Cq, (T))§
(B) if ce(T) # cq,(T), then

(1) =5 @ cq, (1),

Here, s is a semisimple Lie algebra such that (s,ce(T)y @ (cq,(T), ) )) is the non-
compact dual of orthogonal symmetric Lie algebra (Cgl( )es> €e(T)gs @ (cq, (1), >i(T) ),
where (cg, (T)z)i(T), is the orthogonal complement of ¢g (T), in ce(T), with respect to By,

7z

REMARK 3.9. By Corollary 3.8 we can completely determine ¢g(7") by using the
structures of ¢g (T') and ¢(7), in the case where g is of inner type.

4. Elementary facts about root theory.

In this section, we will first review the relation between root theory for a complex
semisimple Lie algebra and that for its compact real form (cf. Subsection 4.1), and next
define involutive outer-automorphisms of compact simple Lie algebras (cf. Lemmas 4.3
and 4.4 in Subsection 4.2). Lastly in Subsection 4.3, we will make reference to the result
of Murakami [12]. These arguments on this section are needed in Sections 5 and 6.

4.1. Weyl basis, and root-space decomposition.
Let g be a complex semisimple Lie algebra, and let h be a Cartan subalgebra of g.
Then, there exists a basis {X, | @ € (g, )} of g (called Weyl basis) such that for all

a, B € A(g,h)

[XaaX—a] = H,, [H7 Xa] = OZ(H) - X, for H € 6;

[Xo: X5l =0 if a+B#0and a+ B¢ A h);

[XaaXB} = Naﬂ : Xa+‘{5 if a+ ﬂ S A(ﬁv h)7
where the real constants N, g satisfy Nyg=—N_,_p (cf. [6, Theorem 5.5, p. 176]).
Here, for o € A(g, h) we define H, € h by B;(H, H,) = o(H) for all H € h. By using this
Weyl basis, a compact real form g, of g can be given as follows:

g.=ibg © @ spang{X,— X .} @spang{i(Xa+ X o)} (4.1.1)
a€At(g,h)

(ref. the proof of Theorem 6.3 in [6, p. 181]), where by is a real vector subspace of h
defined by

br :=spang{H, |a € A(G,h)} (={Heb|a(H)c Rforal acAgh)}). (4.1.2)

REMARK 4.1. (1) ihg is a maximal abelian subalgebra of g,. (2) Decomposition
(4.1.1) is the root-space decomposition of compact real form g, of g with respect to ibp.
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In this case, positive roots in A(g,,ihg) coincide with ones in A(g, ) multiplied by —i,
namely

A+(gu7i6R) = { —la | OS A+(ﬁ,6)}

(cf. Toda and Mimura [15]).

4.2. Outer automorphisms.

Involutive outer-automorphisms of g, need be precisely defined, in Sections 5 and 6.
In order to obtain the goal, we will give two Lemmas 4.3 and 4.4.

Theorem 5.1 in Helgason [6, p. 421] and its proof enable us to demonstrate the
following:

LEMMA 4.2. Let g be a complex semisimple Lie algebra, let § be a Cartan
subalgebra of g, let g, be a compact real form of g with decomposition (4.1.1), and let ¢ be
a real linear isomorphism of ihg. Suppose that the transposed mapping of ¢¢ satisfies

t¢C(A(ga 6)) = A(gv 6)7

where ¢c denotes the complex linear extension of ¢ to h. Then, there exists an
automorphism o of g which satisfies three conditions

(i) o(g.) C 8, (ii) olig, = ¢,
(iii) o(Hy,) = Hig1(a,) and 0(Xa,) = Xig1(a,) for all be {1,...,r}.

Moreover, o is involutive if so is ¢. Here, {ay},_, denotes the set of simple roots in
A(g,h), and X, are given in Subsection 4.1 (H,, = [Xo,, X))

By means of Lemma 4.2 we will define involutive outer-automorphisms of g, =
su(2l) and so(21), in Subsections 4.2.1 and 4.2.2.

4.2.1. Involutive outer-automorphism oy of su(2l), I > 2.

Let h be a Cartan subalgebra of the complex simple Lie algebra sl(2l, C) of type
Ag_1. Fix a linear order in A(sl(21, C), ), and assume that {aa}il;f is the set of simple
roots in A(sl(2l, C),h) whose Dynkin diagram is as follows:

ap Qg Qg1—2 Qg1

(cf. Plate I in Bourbaki’s book [4, p. 265]). Suppose that su(2l) is situated in sl(2, C) as
compact real form with decomposition (4.1.1). Now, let {Z,}*7' be the dual basis of
{a 2} =11, (si(21,0)5)—that s, aa(Zb) = 8up. Then, it follows from (4.1.2) that Z, € hg
for all 1 <a <2]—1, so that {Z, }a | is a real basis of hg. Let us define an involutive,
real linear isomorphism ¢; of ihp by
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01(iZ,) == iZ91—q forl1<a<2l-1.

From A*(sl(2l,C),b) ={>,cpen |1 <m <n <2} and '¢1c(aq) = g, it is
obvious that ¢y ¢ (A(sl(2, C),h)) = A(sl(2l, C),h), where ¢ denotes the complex
linear extension of ¢; to h. These arguments and Lemma 4.2 lead the following:

LEMMA 4.3.  With the settings in Subsection 4.2.1; there exists an involutive outer-
automorphism o1 of sl(2l, C) such that

(i) o1 (su(20)) C su(20), (i) 01(iZy) = iZa—q;
(111) g1 (Haa) = HtUl((Ya) and UI(XQ(,) = X‘m(aa)

for all 1 <a<?2l—1. In particular, a mazximal abelian subalgebra ibgp of su(2l) is
decomposed as follows:

{H €ibg | o\(H)=H} =spang{i(Z, + Zo_,), iZ | 1 < p < 1 -1},
{H €ibg|o\(H)=—H} =spang{i(Z, — Zy_,) | 1 <p<1-1}.

Here, {Z, Y7} is the dual basis of {cg}’") = p@@,0)p), and Xa, are given in
Subsection 4.1 (Hy, = [Xa,, X—a,])-

aq Qg a1
O et o S

‘or | ! !

O— O e
Qg1 Qo] —q Qg1

o

4.2.2. Involutive outer-automorphism oy of so0(21), | > 4.
Let b be a Cartan subalgebra of the complex simple Lie algebra so(2l, C) of type D;.
Fix a linear order in A(so(2l, C),h), and assume that {3 },_, is the set of simple roots in

A(s0(2l, C),h) whose Dynkin diagram is as follows:

Q-1
O—O— e -
ap O Q-3 N-270

(ct. Plate IV in [4, p. 271]). Suppose that so(2]) is situated in so0(2l, C) as compact real
form with decomposition (4.1.1). By discussions similar to those on Subsection 4.2.1,
we are able to get Lemma 4.4.

LEMMA 4.4.  With the settings in Subsection 4.2.2; there exists an involutive outer-
automorphism oy of s0(2l, C) such that
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(i) o2(s0(20)) C s0(21),
(ii) 02(2Z;) = iZ; for all 1 < j <1—2, 09(1Z1—1) = iZ; and 02(iZ)) = iZj1;
(111) O’Q(Hm)) = HiO'Q(ab) and (TQ(X%) = Xtdz(&z,) fOT’ all 1 < b < l.

Particularly, a mazimal abelian subalgebra iy of s0(21) is decomposed as follows:

{HEiER‘ag( H}fspanR{z (Zi-1+ Zy) |1<]<172}
{H cibg|o2(H)=—H} =spang{i(Zi-1 — Z)}.

Here {Zb}ézl is the dual basis of {ab}ézl = A (so21,¢0)9): and Xo, are given in Subsection

4.1 (Hab = [Xava—ab])'
€7
t0.2 O— 4@@
[e%1 A2
ay

REMARK 4.5. The above decomposition of ihp in Lemma 4.3 (resp. Lemma 4.4)
will be utilized in Section 5 (resp. Section 6).

4.3. Cartan decompositions.

Let g be a complex (semi)simple Lie algebra, and let b be a Cartan subalgebra
of . Let us fix a linear order in A(g, ), and assume that the Dynkin diagram of UG 1s
one of the Dynkin diagrams in Bourbaki [4]. Then, two Lists of Murakami [12, p. 297
and p. 305] (also see Borel and de Siebenthal [2]) enable us to read off the following five
items:

(i) Real semisimple Lie algebra g such that g¢ = g.
(ii) Maximal compact subalgebra ¢ of g.

) Compact real form g, of g with decomposition (4.1.1).

) An involutive automorphism o of g, satisfying two conditions (1) it stabilizes a
maximal abelian subalgebra i of g,, and (2) compact symmetric pair (g,,o) is
related with (g, %) as in the formulae (F1) g=¢®ip, (F2) g, =t D p, and (F3)
e={K eg,|o(K)=K}and p = {Peg,|a(P)=—P}.

(v) The set of simple roots in A(E €Nibhg).

Here, we note that £ Nihp is a maximal abelian subalgebra of compact Lie algebra .
For example, the five items stated above are as follows (ref. [12, p. 305, type Al]):

EXAMPLE 4.6. g =sl(2], R) with [ > 2.

(ii) &= s0(21).
(iii) g, =su(2l) =ihp ® Docr iz 0)p) SPanR{Xa — X_o} @ spang{i(Xs + X o)}
(iv) o = o1 o exp 2miadgy /i,

)

(V) Haenipy = {—i0, ..., —idu-1, —i(q-1 + )},
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where o, is given in Lemma 4.3 and h; € hp is defined by a.(h) = 6,/2 for
@ € Up g0 = {ab}i;l, and where —idy, 1= —iaylyp, for each —iay € I (g ip,)
and 1 < k <[ (refer to Remark 4.1).

REMARK 4.7. Involutive outer automorphisms o; in Lemma 4.3 and o5 in Lemma
4.4 are the same as 0, utilized in Murakami’s List [12, p. 305].

NOTICE 4.8. There are differences with respect to numbering of simple roots
in the Dynkin diagrams of type Fg, E;, Fs and Gs, between Murakami [12] and
Bourbaki [4]." Throughout this paper, we apply the numbering in Bourbaki [4] to our
arguments. Thus, we utilize the following Dynkin diagrams of type Eg, E7 and Go:

1 2 3 2 1

aq [ %] Q4 QO Qg

2 3 4 3 2 1

a1 Qg Qy a5 Qg Q7

2 © Q9
3 2
95 o&——o
(0%} (%)

and so we must rewrite List of Murakami [12, p. 297] as follows:

g maximal root h ¢ 9y,
ay + 2a9 + 2a hi Dy xT EIII
+3a4 + 205 + ag hs Ay x As EII
201 + 2a9 + 33 hq Ay X Dg EVI
Br | +4ay+305 + 205 | hs | EgxT | EVII
+ag hy Aq EV
Gy 3ag + 2ap hy | Ap x4 G

Es

5. Determination of the centralizer ¢4, ) (T)-

This section is devoted to determining, up to inner automorphism, the centralizer of
an arbitrary elliptic element T in s[(4, R)—that is, we will demonstrate Proposition 5.1
(on page 1148).

5.1.
First, let us introduce our settings. Let h be a Cartan subalgebra of sl(4, C). Fix a
linear order in A(sl(4, C),h), and assume that {a,}7 | is the set of simple roots

*Erratum: p. 289, line 9 on [4], read “ay, ag + ag, 201 + s, 3oy + o, 3oy + 2a, a” instead of “aq, g + o,
201 + o, 3o + ag, 3a; + 2a”.
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in A(sl(4, C),h) whose Dynkin diagram is the Dynkin diagram utilized in Bourbaki
[4, p. 265, Plate I]. Then, List of Murakami [12, p. 305, type Al] enables us to obtain the
following five items:

(i
(ii
(iii
(iv

real simple Lie algebra g = sl(4, R);

maximal compact subalgebra & = so0(4) of g;

compact real form g, = su(4) of sl(4, C') with decomposition (4.1.1);

involutive automorphism o = o o exp 2miadgy4)h2 of g, satisfying two conditions
(1) it stabilizes a maximal abelian subalgebra ihz of g, and (2) compact
symmetric pair (g, o) is related with (g, £) as in the formulae (F1) g = ¢ @ ip, (F2)
g, =t&p, and (F3) b= {K € g, | o(K) = K} and p = {P € g, | o(P) = —P};
(v) the set of simple roots in A(E, €N ihg)

)
)
)
)

(see Example 4.6 for detail). Here, we remark that the set of positive roots in
A(g,,ibg) = A(su(4),ibg) and the set of simple roots in A(€,€Nihg) are as follows (cf.
Remark 4.1):

AT (g ibg) = {—ia | o € AT(sl(4, C),b)}

= {—i >

1§m<n§4}

m<k<n (5.1.1)
. —iay, —i(ay +a), —i(on + o+ az),
| —iee, —i(ae 4 as), —ias .
gy = su(4): o—-0——0
—i0 71‘0&2 71‘&3
HAeening = -0, —i(a1 + ag)}, (5.1.2)
t=s0(4): o 0
—id —i(@1 + a2)
where —idt, 1= —icy, for each —ia; € A(g,,ibg) and 1 < s < 2. In the settings, we

are going to prove Proposition 5.1.

PROPOSITION 5.1.  For any elliptic element T € sl(4, R), there ezists an inner
automorphism of sl(4, R) which isomorphically maps Cai(4,R) ( ) onto one of the following:

si(2,C)at, ¢eR', sl(2,Ret'®R', sl(4,R).

Here, the above four terms are given as follows:
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‘ csi(,r) (1) ‘ r ‘
sl(2,C) o t! w1 - i(Zy — Zo+ Z3) or o 17
o R' p1 -2y — Zy + Z3) + po - 12 with py # o
sl(2,R)ot' © R! w1 - i(Zy + Z3)
sl(4, R) 0

where {Z;},_, is the dual basis of {ou}}_| = HA(sia,0)5) and pia, p2 > 0.

PROOF. The proof of this proposition requires many arguments. For the reason,
we divide it into three processes. In the first process, we will provide a (positive) Weyl
chamber 20; with respect to A e enip, and we will verify that, Proposition 5.1 can
be proved by studying four Cases (a) T =y -i(Z1—Zo+Z3), (b) T =
- (Zy — Za+ Z3) + pg - 12, (¢) T = pg - iZ3 and (d) T =0 (u1, p2 > 0). In the second
process, we will investigate Case (a) T = 1 -i(Z) — Za+ Z3) and get cqur)(T) =
s[(2,C) @ t'. Finally in the third process, we will study Case (b) T = -
i(Zy — Zy + Z3) + pa - iZ2. However, Case (b) need be further divided into two Cases
(b-1) g1 # po and (b-2) py = pe. We consider Case (b-1) (resp. (b-2)) and have
i ry(T) =2 & R (resp. sl(2,R) & t' & R').

NOTICE 5.2.  Without otherwise statements, we suppose that

g=sl(4R), g,=su(), t=s0(4),
0= 01 0exp 27riad5u(4)h2a

{Z,}?_: the dual basis of {a,}_| = A (s1(1,0).9)
on the proof of Proposition 5.1.

PROCESS I. We aim to verify that, Proposition 5.1 can be proved by studying four
Cases (a) T'= - i(Z1 — Zs+ Z3), (b) T =1 - i(Zy — Zo + Z3) + po - iZs, (¢) T = po -
iZy and (d) T =0 (g1, 2 > 0).

Since o = 07 0 exp 2miadgy(4)he and ihy € ihg, one deduces that o = o1 on ihg; and
thus Lemma 4.3 implies that

tNibg = spang{i(Z1 + Z3), iZ> }, (5.1.3)
pNibg = spang{i(Z; — Zs)}. (5.1.4)

Now, let {iT3,iTb} be the dual basis of TIx e, = {—id1, —i(@1 + a2)} (cf. (5.1.2)).
From (5.1.3), it is clear that

{ Ty =i(Zy — Zy + Z3), (5.15)

Iy =12,

because {Zt}f:1 is the dual basis of {a;} | = HA(sia,¢),5)- Denote a Weyl chamber with
respect to IL (g nip,) DY
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Wy = {H € tnibg | —icu(H) >0, —i(a& + a»)(H) > 0}.

For any elliptic element T € g, Remark 3.1 enables us to assume that T" € €. Then,
since ¢ = s0(4) is compact semisimple, there exists an inner automorphism of ¢ (C g)
which maps T into QII% Consequently, one may suppose that T" belongs to Qﬁé from the
beginning, as far as clarifying c¢g(7) up to inner automorphism of g=sl(4, R).
Accordingly, we suppose that T € QIT% henceforth. This supposition allows us to
describe T' as follows:

T = M1 - ZTI + M2 - ’LTQ (: M1 - Z(Zl - Zg + Zd) + Mo - ’LZQ) with M1, U2 Z 0 (516)

since {iT},iT5} is the dual basis of {—iay, —i(&; + a&2)}. For the coefficient of (5.1.6), the
following four cases only occur:

(a) 1 >0and pp =0,

(b) g1, p2 >0,
(¢) p=0and py >0,
(d) 1 =p2=0.

Consequently, this proposition can be proved by studying four Cases (a) T = py - 4T}
(=m-i(Zy— Zy+ Z3)), (b) T =py-iTy+ po-iTo (= p-i(Zy — Zo+ Z3) + po - i),
(¢) T=po-iTs (=po-iZy) and (d) T =0 (1,2 >0). From now on, we devote
ourselves to investigation of two Cases (a) and (b), because the other Cases (¢) and (d)
are similar.

PROCESS IL. CASE (a): T = puy - iTy € 20, (1 > 0). First, let us study ¢ (7). Recall
that T e, = 1—i0, —i(d1 +ag)} (cf. (5.1.2)). For any root a = —n;-iG; —ny-
i(@ + ) € AL, €Nihg) (n1,ne € Z), it is obvious that

o(T) = p-m
since {iT1,iT5} is the dual basis of {—idy, —i(&; + G2)}. Therefore, « = —ny - id; — ng -

i(a + az) € A(E,€Nibhg) is a oot of ¢(T) if and only if a(T) = 0 if and only if n; = 0.
Accordingly, it follows that

A7), wnipg) = {=i(a1 + aa)}, (a.i)
where we note that €N ihg is a maximal abelian subalgebra of not only € but also c¢(7)

because T € 2W; C ENihg. Lemma 3.3-(2) implies that rkce(7T) = rk € = rkso(4) = 2.
This, together with (a.i), leads the following:

¢(T) = su(2) @ t'. (a.ii)

Next, let us determine ¢ (7). By virtue of (5.1.5), we can rewrite T' = p; - i1} as
follows:
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T= M1 Z(Zl —ZQ —|—Zg)
Therefore, for all positive roots in A(g,,ihg) (see (5.1.1)), direct calculations give us

—ial(T) = M1, —i(Oél + Olg)(T) = 07 —i(ozl + oo + Olg)(T) = M1, (a 111)
—i(T) =—-m, —i(lea+a3)(T) =0, —ia3(T) = .
because {Z;}2_, is the dual basis of A sia,000) = {a;}?_,. This (a.iii) shows that

A (g, (T),ibg) = {o € A (g,,ibg) | (T) = 0}
= {—i(a1 + a2), —i(a2 + a3)}

since p; > 0. In particular, it follows that
HA(CBU (T),ihg) = {_i(al + Olg), _i(a2 + 013)}

because (a1 + a2) and (a2 + a3) are linearly independent. The Dynkin diagram of
U, (1), 15, is as follows:

Case (a) ¢4, (T): o o

—i(a1 + a2) —i(ag + ag).

Consequently, since rk¢, (T') = rkg, = rksu(4) = 3, we obtain
¢, (T) = su(2) B su(2) & t' (a.iv)
(cf. Lemma 3.3-(1)). Hence, Corollary 3.6, (a.ii) and (a.iv) imply that
cs[(4,R) (T) = Cg(T) = 5[(2, C) (&) tl
in Case (a).

PROCESS I1I. CASE (b): T = py 4Ty + po - iT5 € Wy (p1, 2 >0). In the first
place, we will investigate c(T). Since {iT1,iT>} is the dual basis of e, =
{—it1, —i(a1 + &2)}, we have —iaq(T)=p >0 and —i(d + &)(T) = pe > 0; and
hence T € €N ihg is a regular element of € = s0(4), so that

It is obvious from (5.1.3) that £€Nihp is a 2-dimensional abelian subalgebra of .
Accordingly we deduce that
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T) =%,
(1) , (b.i)
(7)) ={0}, (1), =t

In the second place, let us consider ¢g (T'). By virtue of (5.1.5), one can rewrite
T = py -iT1 + pe - i15 as follows:

T = ’i(/,él A (,u1 — /,[/2) - Zo + 1 - Zg) (bll)

Thus, for all roots in A*(g,,ihg) (see (5.1.1)), we provide

—ioy(T) =, —i(on + a2)(T) = po,
—i(al —+ a9 + Otg)(T) = U1 -+ M2, —iOZQ(T) = — U1 + 2, (blll)
—i(ag + a3)(T) = pa, —ia3(T) = i

because {Z;}7_, is the dual basis of A eia,0)0) = {a;}?_,. This (b.iii) means that

A (eq,(T),ibg) = {o € A (g, ibp) | o(T) = 0}
. {0 if 1251 7é M2, (blV)
N {71‘062} if M1 = 2.

From (b.iv), we separate Case (b) “T = py - ¢T1 + po - i1 (p11, pt2 > 0)” into the following
two cases:

(b-1) py # po and py, p2 > 0;
(b-2) pg = pg > 0.

CASE (b-1): T = py - i1y + po - i1 € QU% (1 # po and py, pe > 0): It follows from
(blV) that HA(cgl(T)A,if_)R) = @ Thus, Cg“ (T) = ZER = (E N ZER) @ (p n ’LBR) Thereby, from
(5.1.3) and (5.1.4) we conclude that

cgu (T) = t37

cgu(T)ss = 0}72 CQH<T)Z - tS’ ' (b—ll)
¢, (T),Nt=t (z spang{i(Z1 + Z3), ng}),

¢, (T),Np = t! (: spang{i(Z1 — Zg)}).

Consequently, Theorem 3.4-(A), (b.i) and (b-1.i) allow us to get
i ry(T) = ¢o(T) =t* & R

in Case (b-1).
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CASE (b-2): T =y -iTy + po - iTy € Wy (w1 = pa > 0): By (b.iv) we see that
Op(e, (1)ihy) = {—ice}. Thus, Lemma 3.3-(1) and rkg, =rksu(4) =3 imply that
¢g,(T) = su(2) @ t%, so that

{ ¢g, (1) = su(2) @ £, 2.

Cq, (T)ss = 511(2), Ca, (T)L = t2'

Now, let us prove Lemma 5.3.

LEMMA 5.3.  With the assumptions and notation stated above; in Case (b-2), the
structures of ¢g (1), N € and ¢g (T), Np are as follows:

¢, (T), Nt = spang{i(Z, + Z3)},
¢g,(T), Np = spang{i(Z1 — Z3)}.

PROOF. Since u; = pe and (b.ii), one obtains T = ;- i(Z; + Z3). Therefore
i(Z1 + Z3) belongs to ¢g (T'), because y; > 0 and T'is an element of ¢; (7'),. On the other
hand, it is natural from (5.1.3) that i(Z; + Z3) € €. These deduce that

i(Zl + Zg) S Cg, (T)z ne. (b—Qll)
Now, we want to show
i(Z1 — Z3) € ¢, (T),Np. (b-2.1ii)

Let us apply the root-space decomposition (4.1.1) to ¢ (T). Since AT (cq (T),ibg) =
{a € A (g,,ibg) | a(T) =0} = {—ias} and T = py - i(Z1 + Z3) € ihg, we perceive that

cgu (T) = iER D SpanR{Xﬂz - X*az} D SpanR{i(Xaz + X*DQ)}

(recall Remark 4.1). Thus, any element X € ¢g (T') can be written as X = H + -
(X = X o) +v-i(Xo, + X_0,) (HEibgp; \veR). It follows from (5.1.4) that
i(Z1 — Z3) € ihg; and hence

[i(Zy — Z3), X] = [i(Z1 — Z3), H+ X (Xoy — X)) + v i(Xa, + X_0,)]
= [Z(Zl - Z3)7 A (X(l'2 - Xfﬂz) +uv- i(X(!z + X*az)]
=X\ OéQ(Zl - Z3) . ’L'()(O[2 + X,az) — V- OéQ(Zl - Z3) . ()(a2 — X,az)
=0

because {Z;};_, is the dual basis of II, (s(4,C) 6 —{af}t 1- This implies that
i(Zy — Z3) € ¢g,(T),. On the other hand, we obtaln i(Z1 — Z3) € p since (5.1.4).

For the reasons, we have shown (b-2.iii). It is obvious from (b-2.i) that dim((cg (T), N
8) & (¢, (T),Np)) =dimey, (T), =2. This, together with (b-2.ii) and (b-2.iii),
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concludes Lemma 5.3. O

By Lemma 5.3 and (b-2.i), we deduce that

¢, (T) = 5u(2) ® ¢,

cQu(T)ss = 511(21), cgu (T)z = tz’ (b—21V)
¢, (T),NE=t (= spang{i(Z1 + Z3)}),

¢, (T),Np = t! (: spang{i(Z; — Zg)}).

Thus, Theorem 3.4-(B), together with (b.i) and (b-2.iv), means that
i) (T) = ¢(T) =sl(2, R) & t' @ R

in Case (b-2).

Now, let us collect the results obtained above. For T = -1} + us - 15
(: w1 - (7 — Zo+ Z3) + 2 -iZg) € QB% (see (5.1.6)), we investigated Case (a) by
means of Process IT and Case (b) by means of Process III. Then, we had

sl(2,C) e t! in Case (a) u1 > 0 and pp =0,
Csi(4,R) (T) = 12 D IZ1 in Case (b—l) 1, o > 0 and 1 # M2,
sl(2,R)ot' @ R' in Case (b-2) py = o > 0.

By investigations similar to those into Cases (a) and (b), we are able to confirm that

sl(2,C) @ t! in Case (c) y =0 and pp > 0,
sl(4, R) in Case (d) 1 = p2 =0

(see Cases (a), (b), (c¢) and (d) on page 1150). Consequently, we have completed the
proof of Proposition 5.1. ]

REMARK 5.4. Let us explain that the four terms in Proposition 5.1 are concretely
obtained by use of matrices

‘ csi(a,r)(T) ‘ T  (matrix) ‘
sl(2, C) @ t! A - (=Ey — Es3 + E3p + Eyy) or Ay - (B — Esz + E3p — Eyy)
o R (A1 + X)) - (B — En) — (A1 + Xa) - (Faz — E32) with A\ # Ay
sl(2,R)et' @ R AL+ (= E3 + E3)
s((4, R) 0

where E,, denotes the matrix of degree 4 whose (¢, d)-th entry is 6. - 654, and where
)\17 Ay > 0.

For the purpose, we will have matrices corresponding to the dual basis {Zt};‘;l of
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{a} = HAgsiam)p) (-e. (5.1.9)). To do so, it is necessary to concretely determine a
compact simple Lie algebra g, which satisfies two conditions (I) it is a compact real form
(4.1.1) of sl(4, C), and (IT) symmetric pair (g,, o) is related with (g, €) = (sl(4, R),s0(4))
as in the formulae (F1) g=t®ip, (F2) g, =¢t@®p and (F3) t={K eg,|o(K) =K}
and p = {P € g, | 0(P) = —P}. Here 0 = 01 0 exp 2miadgy)he is the involution given in
the first part of this section.

Denote by b’ the set of diagonal matrices in s[(4, C)—that is,

b = {H/ = diag(&1, &2, &3,&1)

ool

a=1

Then, b’ is a Cartan subalgebra of s[(4, C), and it follows that [H', Ex] = (£, — &) - Ea
for H' = diag(&1,&,&,&) €)' (1 < a,b < 4); so that a root o, : ' — C is defined by

o (H) =& — & for H' =diag(&1,&,65,8) €0

(cf. Helgason [6, pp. 186-187]). In this case, the set of simple roots in A(sl(4, C),§’) =
{al ;11 <c#d<4} can be

/ ! !/
HA(sK(4,C),E’) = {ay, aby, a,}.

Remark that a Weyl basis {X./ | aj, € A(sl(4, C),h)} of sl(4, C) (cf. Subsection 4.1)
and the dual basis {7}, Z;, Z3} of Il (g4, 0 ) = {019, @3, @, } are as follows:

Xaf‘d:Ecd for 1 <c#d<4;

7 = ding( -, )
Zy = dlag(%,%, —%, —%), (5.1.7)
Z3 = dlag(iia iv _%)

Now, let g/, be a compact real form (4.1.1) of s((4, C) provided by this Weyl basis
{Xo, | aly € A(s1(4, C),H')}. Then, g, accords with su(4) = {A €sl(4,C) |'A = —A}.
Denote the canonical decomposition of symmetric pair (g/, o) by

g, =@y,

where € (resp. p’) is the +1 (resp. —1)-eigenspace of o in g/, = su(4). This gives us a real
form ¢’ of sl(4, C) defined by

g =taip.

Notice that the above g’ = & @ ip’ (resp. ¥') is isomorphic to sl(4, R) = {B € gl(4, R) |
TrB =0} (resp. so(4) = {C € gl(4, R) | 'C = —C?}), but does not accord with it. Indeed,
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¥ and ip’ are as follows:

bi1 -1 a2 +bia-i a3 +biz-t 0
¥ — —ajz + b2 l by - 1 0 | a3 + b3 Z torby € R,
—a13 + bz -1 0 —byy -1 a2 + b1 -1
0 —aiz3+biz-1 —ap+bip-i —byy -
—ci1 —cig+dia-i —ciz+diz-i —ciu+dig-t
in = —c12 — dip Z 11 | —Co3+doz i 13 —dig- l ooy € R
—ci3—diz-t —co3—do3 -1t C11 ci2 —dig -1
—ciy—dyy-t cagt+diz-i cptdiai —c11
For the reason, we define an automorphism ¢ of sl(4, C) by
¢ = Ad(g), (5.1.8)

where go is an element of GL(4, C) such that

0 1 —i o0
-1 0 0 —2
D=1 0 0 1
0 i -1 0

This automorphism ¢ satisfies that ¢(g') = sl(4, R) and p(¥') = so(4). Therefore, g, :=
©(g),) is a compact simple Lie algebra satisfying the two conditions (I) it is a compact
real form (4.1.1) of sl(4, C) provided by Weyl basis {X,,, | aea € A(s1(4, C),H)}, and
(IT) symmetric pair (g,,0) is related with (g,€) = (s[(4, R),s0(4)) as in the formulae
(F1), (F2) and (F3), where we identify o with @ooop ! Here, h:= p(f), au =
ot and X,, = p(Xo,) (1< c#d<4). Notice that {Z1:=¢(Z]), Z> == p(Z3),
Z3 := p(Z3)} is the dual basis of Tl g4, ¢)5) = {12, 23, @34} and is the following:

Zl = idlag(—l, 17 17 _1) + %(Egg B E32))
Zy =4 —Ewu + Ex — E3 + Eq), (5.1.9)
Z3 = —%dlag(_17 17 17 _1) +%(E23 - E32>

(see (5.1.7) and (5.1.8)). By using this dual basis {Zt}i’:17 the arguments on the end of
the proof of Proposition 5.1 lead the following:
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coiar)(T) = sl(2, C) & t',
T = (1/2) - (—E14 — Ey3 + E32 + Ey);
ciar)(T) =t ® R,
T = (—pr+p2)/2- (B — Ex) — (p1 + p2)/2 - (Eaz — E3p) with puy # po;
ciar)(T) =sl(2,R) @ t' & R',
T = py - (—Ey3 + E3);
i, r)(T) = s1(2, C) o t!,

T = (u2/2) - (B4 — Eoz + E30 — Eyy);

(1, w2 > 0). Therefore, we have obtained the four terms in Proposition 5.1 by means of
matrices F.

5.2. Other results.

Let g =g, ® - ® g, be areal semisimple Lie algebra, where all g, are simple ideals
of g (1 <a<n). Take any elliptic element T € g, and write it as T=T"+--- + 1"
(T € g,). Then, one sees that ¢;(T) = ¢q (T") @ -+~ ®cg (I"), and that each T is an
elliptic element of g, because adg7'(g,) C g, and adgT'|; = ad, 7. Consequently, study
on the structure of ¢4(7") can be reduced to that of ¢g (7). For every real simple Lie
algebra g, and any elliptic element 7° € g,, we can determine ¢, (7) up to inner
automorphism of g,, by utilizing arguments on this section. For example, we get the
following:

PROPOSITION 5.5.  For any elliptic element T € gy, there exists an inner
automorphism of gy which isomorphically maps Cay0 (T') onto one of the following:

su(2) @t sl R)at, gy

Here, gy(5) 1s determined by involution o = exp 2miadg, hy (see List of Murakami [12, p.
297, type G| and our Notice 4.8) and the above four terms are given as follows:

’ Cgo10) (T) ‘ T ‘
su(2) & t! A1 (221 — 3Z3) or Ny - iZy
t? A1 i(2Z) — 3Z5) — Ny - iZy with 3\; # 3Xg, Ao
sl(2,R) & t! M - i(Zy — 225) or Ay - i(Zy — 325)
92(2) 0

where {Z1,Z5} is the dual basis of HA(EQC‘ﬁ) ={a1,as} and A\, A > 0.

PROPOSITION 5.6.  For any elliptic element T € su*(2l), there exists an inner
automorphism of su*(2l) which isomorphically maps cs-(21y(T) onto one of the following:
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k
@EI(ja - ja,fla C) @5[(1 - jk7 C) S thrl @ Rka

a=1

D si(a — ja-1, ©) ® 50 (20 - 2ji) © t* @ R,

a=1

where 1>2, 0<k<l—-1, 1<ji<--<jpr<l—1, and jy:=0. Here su*(2l) is
determined by involution oy in Lemma 4.3 (see List of type AlIl in [12, p. 305]; also
see Remark 4.7) and the above terms are given as follows:

k

cour2)(T) = @D 51(ja — Jo1, C) B sl(1 = jx, C) & "' @ R,

a=1
k
T = Z vj, i(ij + Zzlfjp) + v -4y
p=1

k

cﬁu*(Z[)(T) = @5[(]0 - ja—h C) D 5u*(2l - 2.]k) S tk S¥ Rka
a=1
k
T = Z V]'p . Z.(ij =+ Zz[_]'p);
p=1
where {Zj}fl;ll denotes the dual basis of ILx g, c) ) = {aj}?l;ll and vj,, ...V, v > 0.

6. The H-elements in pseudo-Hermitian symmetric Lie algebras.

Our aim in this section is to determine the H-element in each simple irreducible
pseudo-Hermitian symmetric Lie algebra. First, let us introduce the notion of simple
irreducible pseudo-Hermitian symmetric Lie algebra.

DEFINITION 6.1 (Shapiro [14]). A simple symmetric Lie algebra (g,t) is called
irreducible pseudo-Hermitian if g€ is also simple, and if there exists an elliptic element
T € g such that ¢y(T') coincides with the isotropy subalgebra v. It is said to be reducible
pseudo-Hermitian, if g admits a structure of complex Lie algebra and t is not
semisimple. Remark that every semisimple pseudo-Hermitian symmetric Lie algebra is a

finite direct sum of simple irreducible or simple reducible pseudo-Hermitian symmetric
Lie algebras (cf. [14]).

We will illustrate the way of finding the H-elements in two simple irreducible
pseudo-Hermitian symmetric Lie algebras (g,t) = (sp(3, R),su(2,1) & t!) and (s0(3,5),
50(3,3) @ t!). These two examples correspond to the two cases where a maximal
compact subalgebra of g admits a non-trivial center (see Subsection 6.1) and admits no
centers (see Subsection 6.2). Lastly in Subsection 6.3, we will accomplish our aim (see
Theorem 6.16 on page 1171).

For the sake of Subsections 6.1.4 and 6.2.4, we are going to prove Lemma 6.2.
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LEMMA 6.2. Let (g,t) be a semisimple pseudo-Hermitian symmetric Lie algebra,
let T be a semisimple element of g satisfying ¢g(T) = t, and let hC be a Cartan subalgebra
of g€ such that T € h©. Then, the following three items (i), (ii) and (iii) hold:

(i) g is decomposed as
g=t@q (=¢(T) @ [T,g]),

where q := [T, g]. In particular, v and q satisfy [t,t] C¢, [t,q] Cq and [q,q] C t;
and thus the above decomposition is the canonical one of symmetric Lie algebra
(9.%).

(ii) The following three conditions (cl), (c2) and (c3) are mutually equivalent:

(cl) T is the H-element in (g,t);

(c2) adgeT|y ge) is a complex structure of [T, g¢);

(c3) B(T) = +i for all B € {B € Aa®,H) | B(T) # 0}
(iii) If T is the H-element in (g,t), then an inner automorphism p := exp wradyT of g is
involutive and the +1 (resp. —1)-eigenspace of p in g coincides with t (resp. q).

PROOF.
(i) Since (g, t) is symmetric Lie algebra, there exists an involutive automorphism p
of g such that

gy =vandg=g9,, gy, (6.0.1)
where we denote by g;, the xl-eigenspace of p in g. Then, it is natural that
[9:1,011] C a1, [900,81] Cgy and [g 4,9 4] Cgyy. Therefore, the item (i) holds if

g_1 =[T,g] (=q). Hence we will be devoted to showing that g_, = [T, g] from now on.
The non-degeneracy of By, combined with By(g.;,9_;) = {0} and g, = t, implies that

g1 ={X €g|By(X,R) =0 for all R € t}.
Accordingly, it follows from v = ¢;(T) that
T.glCg,. (6.0.2)

Since T is semisimple, g is decomposed as g = ¢;(T) & [T, g]. Besides from ¢;(T) =t =
g.1, one obtains

g=0.19[T, g (6.0.3)

Consequently, we have g_; = [T, g] by (6.0.1), (6.0.2) and (6.0.3). Thus, the item (i)
holds.

(ii) (c1)«>(c2): In the first place, let us verify that two conditions (c1) and (c2) are
equivalent to each other. The hypothesis of t = ¢;(T), together with (i), enables us to
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T is the H-element in (g, t) if and only if

- (6.0.4)
adyT, is a complex structure of q = [T, g].
Furthermore, we see that
adyT'|, is a complex structure of q = [T', g] if and only if ( )
6.0.5

adgeT 7 4oy is a complex structure of [T, a¢]

because a vector space [T, gc} coincides with the complex vector subspace of g€
generated by [T, g]. Consequently, it follows from (6.0.4) and (6.0.5) that two conditions
(c1) and (c2) are equivalent to each other.

(¢2)<(c3): In the second place, we will prove that two conditions (c2) and (c3) are
equivalent to each other. First, let us clarify the structure of [T, g¢]. Define A¢(g%,H%)
and A (g%, 5¢) by

{ No(g%,h%) == {¢ € AgC,9°) | ¢(T) = 0},
N (g% %) = {B€ A% b | B(T) #0}.

Then, the root-space decomposition of g€ with respect to h is rewritten as follows:

=0 P spane{Xa}

a€N (g€, h%)
=y°e P spanc{XJe P  spanc{Xs}
¢eNo(8%,59) BN (89,59)
=M e @ spanc{Xs},
Ben1(9€,5°)

where X,, a € A(g€, hc), are given in Subsection 4.1. Therefore, we perceive that

T.6°= @B spanc{X;} (6.0.6)
Bet (g, )

because [T, X5] = B(T) - X5 # 0 for all € A1(g€, 5%) and semisimple element T € h¢
splits g€ into ¢, (T) @ [T, g¢]. Since (6.0.6) and since (adgcT)Q(Xﬂ) = (B(T))* - X3, we
conclude that adgeT'| 7 4¢) is a complex structure of [T, g€ if and only if B(T) = =i for all
B e Ni(g%,6%). Accordingly, two conditions (c2) and (c3) are equivalent to each other.
For the reasons, three conditions (c1), (c2) and (c3) are mutually equivalent.

(iii) If T is the H-element in (g, t), then it follows from (6.0.4) that (ad,T)*(Q) =
—Q for every @ € q. Hence, we deduce that
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HQ) = expradyT(Q) = 3 ll, (radyT)'(Q)

>0

2m 1 2n+1
= Z 7Tad T) )+ Z m (Wad T) (@)

m>0 n>0
2m 2r1+1
:mzz:o( n"- Q-f-z m T, Q]
=cosm-Q +sin7- [T,Q]
=-Q

for all @ € gq. On the other hand, it is clear that
p(R) = exprmadyT(R) = R for any R € ¢

since t = ¢4(T). These, combined with (i), imply that p is an involutive automorphism of
g, and that t={X e g| p(X) =X} and q={Y € g| p(Y) = —Y}. Consequently, we
have proved Lemma 6.2. |

NOTICE 6.3. If T is the H-element in pseudo-Hermitian symmetric Lie algebra
(g,v), then —T is also its H-element. Therefore, the H-element has irregularity with
respect to +-sign. We determine the H-element T in (g,t) up to *-sign.

Now, let us illustrate the way of finding the H-element T in simple irreducible
pseudo-Hermitian symmetric Lie algebra (sp(3, R),su(2,1) @ t!).

REMARK 6.4. On discussions stated in Subsections 6.1 and 6.2; simple Lie
algebra g, maximal compact subalgebra ¢ of g, compact symmetric pair (g,, o) related
with (g, ) as in the formulae (F1), (F2) and (F3), and so forth are determined by List of
Murakami [12] (read Subsection 4.3).

6.1. (g,v) = (sp(3, R),su(2,1) & th).

In Subsection 6.1.1, we will give two necessary conditions (N-1.1) and (N-1.2)
for T €t to satisfy ¢;(T) =su(2,1) & t'. In order to easily find T € € with ¢,(T) =
su(2,1) @ t!, we will prove Lemmas 6.7 and 6.8 in Subsection 6.1.2. By direct
calculations, we will attempt to find 7 € ¢ with ¢(7) =su(2,1) @ t' in Subsection
6.1.3. Finally in Subsection 6.1.4, we will demonstrate that element T, found in
Subsection 6.1.3, is the H-element in (sp(3, R),su(2,1) @ t').

NOTICE 6.5. In Subsection 6.1, we assume that

g=sp(3,R), g,=5p(3), Et=su3)at,
{Za}izl: the dual basis of {%}Z:l = UA(sp(3,0).6)-
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6.1.1. Two necessary conditions.
First, we suppose that T € € satisfies ¢y(T') = su(2,1) @ t!, and we will obtain two
necessary conditions (N-1.1) and (N-1.2). For su(2,1) @ t', one deduces that

su(3) @ t! is its compact dual, (6.1.1)

su(2) @ t? is its maximal compact subalgebra. (6.1.2)
Since ¢4(T) = su(2,1) @ t!, the following is immediate from (6.1.1) and Lemma 3.2-(vi):
¢, (T) = su(3) & t". (N-1.1)

On the other hand, Lemma 3.2-(iv) and (6.1.2) imply that
ce(T) = su(2) @ . (N-1.2)

Accordingly, we have got two necessary conditions (N-1.1) and (N-1.2).

REMARK 6.6. Corollary 3.6 implies that these two conditions (N-1.1) and (N-1.2)
are also a sufficient condition for T' € € to satisfy ¢4(T) = su(2,1) & t'.

6.1.2. Existence zone.

In order to find an element T € € with ¢y(T) = su(2,1) & t', we want to restrict its
existence zone. By the arguments mentioned below, one will be able to expect that an
element 7T = 22:1 Ao+ 1Z, € ihp CE with “A;, A > 07 satisfies ¢y(T) = su(2,1) @ t',
where b denotes a Cartan subalgebra of g¢ = sp(3, C). Note that ihp is a maximal
abelian subalgebra of g, = sp(3) and of & = su(3) & t'.

In the first place, let us enumerate the set of positive roots in A(g,,ihg); the set
of simple roots in A(f, &sNihg) (see Notation 2.3 (n5) for £); and the Dynkin
diagrams of Il 5, and Ilxnsg,) (ref. List of Murakami [12, p. 297, type CI]).

A (g ihg) = {—ia | o € A7(sp(3, C),b) }

—iqy, —i(ag + an),

—i(ag + 200 + a3), —iag, (6.1.3)
=< —i(ag +as + az), —i(ag + ag),

—i(2a1 + 200 + a3), —i(2as + 3),

—iQg
HA(EDS,E“NER) = {_ial B Nibg? —100 ES,OiER}' (6.1.4)
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2 2 1
gu = 5p(3): O———O&——0
—iay —iag —iQg.
t=su@3)at: o—o0 X
—ia —ia

Here, we recollect Remark 4.1, and refer to Plate III in [4, p. 269].7 In the second place,
let us demonstrate the following:

LEMMA 6.7.  With the assumptions in Subsection 6.1; for any T € € = su(3) @ t!,
there exists an inner automorphism ¢ of g = sp(3, R) such that

Y(Ty) € Qﬂ? and (T,) =T,.

Here Ty (resp. T,) denotes the by (resp. £,)-component of T € €, and Qﬂg denotes a Weyl
chamber with respect to ¢ i, (see (6.1.4)) defined by

W, = {H €ty Nibg | —ioy(H') >0, —iay(H') > 0}.

PROOF. Since Ty € t, and since £ is compact semisimple, there exists an
element K’ € ¢ such that expade K'(Ty) € QH? Since £ C g, we can define an inner
automorphism ¢ of g by ¢ := expadyK’. Then, it is clear that Y(Tys) € Qﬁf, and that
W(T,) = T, because T, belongs to the center of ¢&. Therefore, we have completéld the proof
of Lemma 6.7. O

Lemma 6.7 means that an element T, which we want to find, should exist in the
following set:

{H=Hys+H, €ibg | —ioy(Hy) >0, —icz(Hg) > 0}
_ 6.1.5
(: {H=Hy+H, €ibp | H emﬁn}), (619

where Hy (resp. H,) is the & (resp. £,)-component of H € ihp C €. We here note that
£, Cibg.

Now, put an element T € i as 22:1 Ao+ 1Zy (Aq € R). In the third place, we will
research a condition for T' = 22:1 Ao -2, € ihg to belong to the set (6.1.5). We perceive
that

ts={Ket=su@3)at' | By (K,K") =0 forall K" € £,} (6.1.6)

because By, is negative-definite, € = £, @ ¢, is the direct sum and By (€, ¢,) = {0}. By
use of (6.1.6), we will prove Lemma 6.8.

TErratum: p. 269, line 10 on [4], read “2¢; =23, o + o” instead of “2¢; = >, ap + o
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LEMMA 6.8.  With the settings in Subsection 6.1; for T = 22:1 N - iZ, € ibg, it
belongs to the set (6.1.5) if and only if “A\1, g > 0.”

PROOF. We confirm that
t, = spangp{iZ;} (6.1.7)

because £=su(3)@®t' is determined by involutive inner automorphism o=
exp 2miadg, by of g, = sp(3) (see List of Murakami [12, p. 297, type CI]), hs € b is
defined by a,(h3) = 634/2 for a, € la(gs,0)5) = {aa}?_,, namely hy = (1/2) - Zs, and
the coefficient of —icg with respect to maximal root in A*(g,,ihg) is one (recall (6.1.3)).
Let us rewrite T' = Z?z,:l A, - 17, as follows:

2 By (12y,i753) (iZy,i73)
T=>S \Nlizg, - 222707 A Ao B, (@2, i Zs.
Z ’ (Z ’ By, (iZ3,173) ' 3) < ot Z By (iZ;, ZZ3)) ’ )

u

Since iZ, € ihg C &, and since (6.1.6) and (6.1.7), we see that the first term and the
other term of right-hand side in equation () are an element of £y and of ¢,, respectively.
Hence, it follows that T = Z 1 Ao+ 1Z, belongs to the set (6.1.5) if and only if
“A1, A2 > 07 because {Z,}”_, is the dual basis of HA(sps,008) = = {a,}?_,. For the reasons,
we have obtained the conclusion. ]

6.1.3. The way of finding an element T € ¢ with ¢;(T) = su(2,1) @ t'.

Suppose that T € & = su(3) @ t' satisfies ¢g(T) = su(2,1) & t'. Then, we confirmed
that it satisfied two conditions (N-1.1) ¢ (T') = su(3) @ t' and (N-1.2) ¢(T) = su(2) @& t*
(see Subsection 6.1.1). Moreover, we concluded that there existed an inner auto-
morphism of g=sp(3, R) which mapped T to an element 22:1 N\ - 12, € ihp with
“A, A2 > 07 (see Subsection 6.1.2). For the reasons, we will search the set {22:1 A
iZ, €ibg } AL, Ao > O} for an element T which satisfies two conditions (N-1.1) and
(N-1.2). The search depends only on direct calculations, but it is not too hard.

Let T be an element Za a2, € i g with “X;, Ay > 07 (recall that {Z,}2_, is the
dual basis of TIx (g3 005 = = {@,}?_)). Necessary condition (N-1.2) c(T) = su(2) @ ¢
implies that

either case “A\; > 0 and Ao = 0” or case “A; = 0 and A2 > 0” only occurs (6.1.8)
because c(T) =13 (resp. su(3) @t') if A, A >0 (resp. A\j =X =0) (see Dynkin
diagram of ¢ = su(3) & t' on page 1163). It follows from (N-1.1) ¢4, (T') = su(3) @& t* and
(6.1.8) that

A3 <0

because ¢g, (T) = su(2) @ 2 if “\; >0, A2 =0 and A3 >0,” or if “\; =0, A2 >0 and
Az > 07 (see Dynkin diagram of g, = sp(3) on page 1163). Furthermore, we see that
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A3 <0 (6.1.9)

by virtue of (N-1.1) and (6.1.8). It is natural that c¢y(T) = ¢g(y-T) for any non-zero
scalar v € R; and thus, since (6.1.8) and (6.1.9), one may assume that

(I) “A; >0, Ay =0 and A3 = —17 or (IT) “A; =0, Ay > 0 and A3 = —1.”

Case (I) T =i(M - Z1 — Z3) (A > 0): In this case, it is clear that T satisfies the
condition (N-1.2), namely ¢ (7T) = su(2) @ t>.

CE(T)., T:Z(Al 'Z1 —Zg)l O

—ia

For any root in A*(g,,ihg) (see (6.1.3)), direct calculations give us

—iay (T) = Ay, —i(ag + a9)(T) = Ay,
—i(a; + 200+ a3)(T) =M — 1, —iag(T) =0,
il tartaz)(T) =M —1, —i(as+a3)(T) = 1, (6.1.10)
—i(2a1 + 200+ a3)(T) =20 — 1, —i(2a0 + a3)(T) = -1,
—iag(T) = -1

because T' = i(\; - Z) — Z3) and {Z,}>_, is the dual basis of {a,}>_,. This (6.1.10) means
that the set At (cq, (T),ibg) = {o € A (g,.1hg) | a(T) = 0} consists of three-elements if
A1 =1, two-elements if Ay =1/2, and one-element if A\ #1,1/2 (because A; > 0).
Therefore by necessary condition (N-1.1) ¢g () = su(3) @ t', we anticipate that A = 1.
Suppose that T = i(Z, — Z3), namely Ay = 1. Then, it is obvious from (6.1.10) that

A (e, (T),ibg) = {a € £7(g,,ibg) | (T) = 0}
_ { —i(Oél + 200 + 043), —iQo, }

—i(a1 + as + ag)

Accordingly, we get Il (1), = {—ic2; —i(a1 + as + a3)}. Therefore, the Dynkin

diagram of II( (75, is as follows:

Cgu(T), T = Z(Zl — Zg): O O

—ia —i(al + ag + Ozg).

This, together with rkey (T) =r1kg, = rksp(3) = 3, shows that ¢y (T') = su(3) &t (cf.
Lemma 3.3-(1)); and so T = i(Z; — Z3) satisfies the condition (N-1.1). Therefore, we
conclude that element T' = i(Z; — Z3) € ihp C € satisfies two conditions (N-1.1) ¢; (T) =
su(3) @ t! and (N-1.2) ¢¢(T) = su(2) @ t2. Thus by using Corollary 3.6, the centralizer of
T =i(Z, — Z3) in g = s5p(3, R) coincides with su(2,1) @ t'. Consequently, we have found
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an elliptic element 7' =i(Z; — Z3) € g with ¢;(T) = su(2,1) & t.

REMARK 6.9. An element T =i(Z,— Z3) in Case (II) satisfies ¢y(T) =
su(2,1) @ t', too. Thereby, we can obtain ¢j(T) =su(2,1) @ t' by using not only
T =1i(Z, — Z3) but also T = i(Zy — Z3) (see Cases (I) and (II) on page 1165).

6.1.4. The H-element T = i(Z; — Z3) in (g,t) = (sp(3, R),5u(2,1) @ t!).

In Subsection 6.1.3, we verified that element T =i(Z; — Z3) € ihgp C t satisfied
¢g(T) = su(2,1) @ t'. In this subsection, we will demonstrate that 7' = i(Z; — Z3) is the
H-element in (sp(3, R),su(2,1) @ t!).

Define Af (sp(3, C),h) by

A (sp(3,C),b) = {B € AT (sp(3, C),b) | B(T) # 0}.

Then, Lemma 6.2-(ii) allows us to conclude that 7' = i(Z; — Z3) € ihp is the H-element
in (sp(3, R),su(2,1) @ t!) if B(T) = +i for all B € A (sp(3, C),h). Therefore, we will
show that B(T) = +i for all € Af(sp(3,C),p). It follows from (6.1.3) and T =
i(Zl — Zg) that

aq, (€3] +0127
Af(ﬁp(?), C)v 6) = Qs + g, 2C¥1 + 20&2 + Qg,

200 + a3, Q3
because {Z,}>_, is the dual basis of {a,}>_, = HA(sp(3,¢),5)- This provides

B(T)=1ior —i

for any 3 € A (sp(3, C),p). For the reasons, we have shown that T = i(Z; — Z3) is the
H-element in (sp(3, R),su(2,1) @ t!).
Summarizing the statements in Subsection 6.1, we get the following table:

PROPOSITION 6.10.

(g,v) | (sp(3, R), su(2,1) & t)
T W(Z) — Zs)

ce(7T) su(2) @ t?

¢, (T) su(3) e t!

o(T) su(2,1) ot

6.2. (g,v) = (s0(3,5),50(3,3) O th).

Let us recall Remark 6.4. We will illustrate the way of finding the H-element 7" in
simple irreducible pseudo-Hermitian symmetric Lie algebra (s0(3,5),50(3,3) @ t'). Our
arguments on this subsection are similar to those on Subsection 6.1—that is, we obtain
two necessary conditions (N-2.1) and (N-2.2) for T' € € to satisfy ¢;(T) = 50(3,3) & t! (in
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Subsection 6.2.1); and show Lemmas 6.12 and 6.13, in order to easily find an element
T € t which satisfies (N-2.1) and (N-2.2) (in Subsection 6.2.2). Moreover in Subsection
6.2.3, direct computations enable us to find T € & with ¢;(T) = s0(3,3) & t'. Lastly in
Subsection 6.2.4, we verify that element 7', found in Subsection 6.2.3, is the H-element
in (s0(3,5),50(3,3) @ th).

NOTICE 6.11.  In Subsection 6.2, we utilize the following settings:

g =50(3,5), g, = s0(8), t=50(3) ®s0(5),
{Zj}§:1: the dual basis of {aj}?:l = A (eos,c),5)-

6.2.1. Two necessary conditions.
Let T be an element of € such that ¢;(7) = s0(3,3) @& t'. Two necessary conditions
which T should satisfy are as follows:

¢g,(T) = 50(6) @ ', (N-2.1)
(T) =s50(3) @so(3) @ t! (N-2.2)

(apply arguments on Subsection 6.1.1).

6.2.2. Existence zone.

In order to find an element T € £ with ¢;(T) = 50(3,3) & t', we want to restrict
its existence zone. By discussions stated below, we will search the set {1/1 <121 + vy -
iZy 4 vs - i(Zs + Zs) € €Nibg | 11, (v2 +v3), v3 >0} for an element T which satisfies
two conditions (N-2.1) and (N-2.2), in Subsection 6.2.3.

First, let us notice that &= s0(3) ®so(5) is determined by an involution o =
03 0 exp 2miadgs)he of g, = s0(8) (cf. List of type DI in the paper [12] on page 305;
Remark 4.7). Here, o5 is defined in Lemma 4.4 and hy € hg is defined by a;(hs) = 625/2
for aj € I p(s0(s,0)5) = {aj}?zl. Lemma 4.4 means that

tNihg = spang{iZi, iZo, i(Zs + Z4)} (6.2.1)

because o = 0y on iER.

Now, let us enumerate the set of positive roots in A(g,,ihg), the set of
simple roots in A(€,€Nihg), and their Dynkin diagrams (cf. List of Murakami
[12, p. 305, type DI]).
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At(g,,ibg) = { — i | a € AT (s0(8, C),E)}

—i(Oél +0¢2), —i(al + o +043), —7:(042 —|-043),
B —iasg, —i(og + 200 + a3 + aq), —iag,
—i(ar + oo+ a3+ ay), —io, —i(ar + oo + ay),
—i(ag + a3 + CY4>, —i(ag + 044)7 —t0y
(6.2.2)
HA(B,Eﬂif]R) = {—idl, —1i0i3, —7:(072 + 643)}, (623)
where —ic, 1= —iow |y, for —ic, € A(g,, ibgr) (1 < b < 3). Here, recall Remark 4.1, and

see Plate IV in [4, p. 271].F
—iag
g = 50(8): ©—<><z
—ia —iag oy,

t=s50(3) ®so(h): o————=0 ¢

—id —i(az +d3) —ia3.

Let {iT},iT5,7T3} be the dual basis of Il enp,) = {—id1, —ids, —i(az + &3)}. Then, it
follows from (6.2.1) that

iTy =iZ1,
iTy = i(—Zy + Z3 + Zy), (6.2.4)
iTy = i 2,

because {Zj}?zl is the dual basis of Il (s s,¢c)5) = {aj}?zl.
Next, we give the following:

LEMMA 6.12.  With the assumptions in Subsection 6.2; let QH? be a Weyl chamber
with respect to L enp,,) (see (6.2.3)) defined by

m?:{ Heenibg | —ia(H) >0, —idas(H) >0, }

—i(G2 + as)(H) 2 0

For any element of ¢ = 50(3) ® s0(5), there exists an inner automorphism of g = s0(3,5)
which maps it into QU?

PROOF. Refer to the proof of Lemma 6.7. O

Erratum: p.271, line 8 on [4], read “& — ¢; = >, o instead of “e; —¢; = >,
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For any element vy -iZ; +vg-iZy +v3-i(Z3 + Zy) of ENihg (see (6.2.1)), we
comprehend

I/1'iZl+V2'iZQ+V3'i(Zg+Z4) (625)
=uv -1 +v3-iTo + (1 +v3) - i3 -
by virtue of (6.2.4). Since (6.2.5), and since {iTy};_, is the dual basis of A eenip,), We
obtain Lemma 6.13.

LEMMA 6.13.  In the settings in Subsection 6.2; for an element vy -iZy + vy - 125 +
vs - i(Z3 + Zy) of ENib g, it belongs to Wy if and only if “v1, (va + v3),v3 > 0.” Here, QUE is
defined in Lemma 6.12.

6.2.3. The way of finding an element T € & with ¢;(T) = s0(3,3) & t'.

Let T be an element of £ such that ¢g(7) =s0(3,3) @ t'. Then, it satisfies two
necessary conditions (N-2.1) and (N-2.2) (see Subsection 6.2.1). On the other hand,
each element of € can be mapped into QB? (recall Lemma 6.12). Therefore, we are
going to search the set of elements vy -iZ) + vy -iZy +v3-i(Z3 + Z4) € ENihp with

“vi, (1o + 13),v3 > 0” for an element T which satisfies two conditions (N-2.1) and (N-2.2)
(see Lemma 6.13).

REMARK 6.14. Suppose that T € ¢ satisfies two necessary conditions (N-2.1)
¢g,(T) = s0(6) @ t' and (N-2.2) ¢(T) = s0(3) ®50(3) @ t'. Then, Corollary 3.6 implies
that ¢g(7) = s0(3,3) @ t'. Consequently, two conditions (N-2.1) and (N-2.2) become a
sufficient condition for 7' € ¢ to satisfy ¢;(T) = s0(3,3) & t'.

Let T=uvy-iZy+vy-iZy+v3-i(Z3+ Z;) be an element of ENihp with
“v, (ve +v3),v3 > 0.” Taking Dynkin diagram of ¢ into consideration (see Dynkin
diagram of € = s0(3) © s0(5) on page 1168), we perceive that

—ids, —i(a1 + ao + a3),
AT(e,€Nihg) = —idy, —i(&y + 2(G + a3)),
—i(ag + a3)

Thus, for all roots in A*(€,£Nibg), direct computations tell us

—ias(T) =
%@H@ﬁﬁﬂﬂ=1+w+m
—ia,(T) = (6.2.6)
(al +2(a + a3))(T) =1 + 215 + 2u3,
—i(@e + a3)(T) = v2 + 13
because fidb wq,|mm (1<bh< 3) =1 zZl + vy iZy+ 13- i(Z3 + Zy) € ENibg

and {Z; } _; is the dual basis of Il 4, ={a ]}j:l. Let us suppose that (v2 +v3) > 0.
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Then, both v; and v3 must be zero because of vy,v3 >0, (6.2.6) and the necessary
condition (N-2.2) ¢(T) =s0(3) ®s0(3) ®t'. Hence T =v; -iZy +vy-iZy +v3 i(Z3 +
Zy) = vy - iZy; and therefore ¢ (T') = s0(4) @ su(2) @ t' (see Dynkin diagram of g, =
50(8) on page 1168). Consequently, the necessary condition (N-2.1) ¢; (T') = s0(6) & t!
can not hold if (v2 +v3) > 0. For the reasons, we will consider the case (15 +v3) =0
from now on. It is immediate from (2 4+ v3) = 0 and (6.2.6) that

—ias(T) = vs,
(G + o + a3)(T) = 11,
—ia(T) = n, (6.2.7)
(a1 +2(an + ag))(T) =,
—i(as + a3)(T) = 0.

Therefore, we conclude that 4 >0 and v3 =0 by the necessary condition (N-2.2)
¢e(T) = s50(3) ®s0(3) dt'. Indeed, the other cases can not satisfy the necessary
condition (N-2.2) because ¢ (T) = s0(3) © s0(5) if v1 = v3 = 0; ¢o(T) = s0(5) @ t! if v =
0 and v3 > 0; and &(7T) = s0(3) @ t* if v1,v3 > 0. Accordingly, it follows from v; >
0,(Z/Q+V3):V3 =0 that Tzl/l-iZl+V2~iZQ+V3-i<Zg+Z4) :yl-iZl with 141 > 0.
This element 7' = vy - iZ; € & (11 > 0) satisfies two conditions (N-2.1) ¢ (7)) = 50(6) & t*
and (N-2.2) ¢(T) = 50(3) ® s0(3) & t'.

—iag
cgu(T), T = v - iZli 1‘3<z
2 7’i(¥44

cE(T),T:u1~iZ1: O O

—i(Ga + 543) —ia3.

Consequently, Remark 6.14 implies that T =1y -iZ; (1 >0) satisfies ¢y(T) =
50(3,3) @ t'. Thus, we have found an elliptic element T =v;-iZ; of g=s0(3,5)
satisfying ¢;(T) = s0(3,3) @ t'.

6.2.4. The H-element T =iZ; in (g,t) = (50(3,5),50(3,3) & t1).

In Subsection 6.2.3, we got an element 7' = v, - iZ; € ENihg with ¢(T) = 50(3,3) &
t! (11 > 0). In this subsection, we will verify that T =4iZ; is the H-element in
(50(3,5),50(3,3) @ t!).

Define A (s0(8, C),h) by

A (s0(8,C),h) :={B e AT(s0(8, C),h) | B(T) #0}.

Then, Lemma 6.2-(ii) means that T = iZ; € ihy is the H-element in (s0(3,5),50(3,3) &
t!) if B(T) = +i for every B € A (s0(8, C),h). Hence, the rest of our arguments are
devoted to showing that B(T) = +i for every 8 € Af(s0(8, C),h). Since (6.2.2) and
T =1iZ,, we have
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o) + ag, o) + g + oz,
AT(SO(S, C), 6) = a4+ 2a0 + ag + ay, aq,

ap oy oz t+og, o t+ortoy

and thus
B(T) =i for all B € Af(s0(8, C),h)

because {Zj}?:1 is the dual basis of IIx 45 ¢ = {%‘}?;y Consequently, T' = iZ; is the
H-element in (s50(3,5),50(3,3) @ t!).
Summarizing the statements in Subsection 6.2, we obtain the following table:

PROPOSITION 6.15.

(g,v) | (50(3,5), 50(3,3) @ t!)
T 121

ce(7T) 50(3) @ s0(3) @ t!

¢g, (1) 50(6) @ t!

(T 50(3,3) o t!

6.3. Results.
In Subsections 6.1 and 6.2, we have discussed the way of finding the H-elements T
in two simple irreducible pseudo-Hermitian symmetric Lie algebras (g, t). The way gives

us the following Table I which exhausts all simple irreducible pseudo-Hermitian
symmetric Lie algebras:

THEOREM 6.16.

Table I.
1 (g,v) (su*(20),sl(l,C) @ t") : 1>2
T iZ
ce(T) su(l) o t!
¢g, (T) su(l) @ su(l) e t!
co(T) sl(l, C) o t!
2 (g,t) (sl(2L, R),sl(l,C) ") : 1 >2
12
ce(T) su(l) @ t!
¢, (1) su(l) @ su(l) ® t!
(T sl(l, C) o t!

Continued on the next page.
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Continued.
55 (0.0) (su(l+1—j,5),su su(m, k) @su(l+1—j—m,j—k) & tll_)__.1
123, 1<j<[B+1L1<k<[B+1L,1<m< [EA+1
T W(Zk — Zj+ Zjvm)
ce(T) su(k) ®su(j — k) @ su(m) dsu(l+1—j—m)dt3
¢, (T) sum+ k) @su(l+1—-m—k) ot
o(T) su(m, k) @su(l+1—5—m,j—k) @t
4 (0,0) (su(l+1—j,5),su(j — k) @5g(l —Q—ZL— j. k)@t '
123, 1<j<[F]+1,1<k<j-1
T (Zh— 7))
ce(T) su(j — k) @ su(k) ®su(l+ 1 — j) @
¢, (1) su(j—k)@su(l+1+k—j) ot
() su(j—k)@su(l+1—j5,k ot
5 (0,0) (su(l+1—j,4),su(m) 695u(l'+ 1 S J.j) @) .
122, 1<j<[F]+1,1<m<l—
T 12— Zon)
ce(T) su(m) ®su(j) dsu(l+1—m—j) &+
¢, (1) su(m) @su(l+1—m)dt
() su(m) @ su(l+1—m—j,j) @t
6 (6.9) (su(l+1—7,7),5u(j) @su(l+1—j) @t L
1>21,1<5<[5+1
T iz,
1) su(j) @su(l+1-j) @t
¢y, (1) su(j) dsu(l+1—j) ot
() su(j) @su(l+1—75) ot
7 (9,%) (sp(—jog)ysu(l =g ) @) : 1>3, 1 << [HH+1
T i(Z; — Zy)
«e(T) su(j) dsu(l —j) o
¢, (T) su(l) @ t!
(T su(l —j,7) @t
8 (g,v) (sp(l,R),su(l — k, k) ®t') : 1>3, 1 <k<[F]+1
i(Ze— 20)
ce(T) su(k) @ su(l — k) @ t2
¢, (1) su(l) @ t!
(1) su(l — k, k) @ t!

Continued on the next page.

§Erratum: p. 297, line 4 on [12], read “A; ; x A;_; x T” instead of “A; x A;_; 1 x T”.
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Continued.
9 (3.v) (sp(l, R),su(l) @ t'): 1 >3
T iZ
«(T) su(l) o t!
¢, (1) su(l) @t
¢o(T) su(l) @ t!
10 (8,) (s0(20+1 —25,25),80(20 + 1 —2j,2j — 2) D t') : .
1>2,1<5<1
T (Zj-1 — Zj) where Zy := 0
«(T) 50(2j —2) ®so(20 —2j+ 1) @ t!
¢, (T) so(2l—1) ot
co(T) s0(20+1—25,27—2) @ t!
11 (g,1) (so(20 — 25+ 1,2j), s0(20 —2j — 1,2)) D t!): 1 >2,1<j<1—1
i(Zj = Zjn)
«(7) 50(27) Dso(20 — 25— 1) @ ¢!
e, (1) s0(20—1) @ t!
¢o(T) 50(20 — 1 — 24,29) @ t!
12 (g,7) (s0(20 —25,25),50(2 — 25,2j —2) D t') : 1 >4, 1 < j <[
i(Zj_1 — Z;) where Zy :==0
«e(T) 50(2j — 2) ® s50(20 — 25) O !
¢, (7) s0(20 —2) @t
o(T) s0(20 — 24,25 —2) @ ¢!
13 (g,¢) (s0(20 — 24, 25),50(20 — 25 — 2,25) B t!) : 1 >4, 1 <j< [}
T i(Zj — Zin)
ce(T) 50(25) @ s0(20 — 25 —2) o t!
¢, (1) s0(20—2) @ t!
() 50(20 — 25— 2,27) @ t!
14 (8,7) (s0(20—2j— 1,25+ 1),50(20 —2j — 1,25 — 1) @ t') o
1>4,1<5<[3]
T iZ
«(T) 50(2j — 1) Pso(2 —2j—1) @ ¢!
¢, (1) s0(20—2) @ t!
¢g(T) s0(20—2j—1,25— 1)@t
15 (8,1) (50(21—2j—1,2j+1),50(2l—2j—3,2j-.i-1)@tl): l
1>4,0<j<min{l-3,[]}
T i(Z; — Zj1) where Zy:=0
ce(T) 50(25+1) @so(20 —2j—3) @ t!
¢, (1) s0(20 —2) @ t!
¢g(T) s0(20—25—3,2j+1) @t

Continued on the next page.
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Continued.
16 (g,v) (s0(20 — 24, 2j),su(l — j,j) ') : 1>4,1<j<[L]
T i(Z; — 7))
ce(T) su(f) @ su(l—j) @t
¢, (T) su(l) @t
¢o(T) su(l—7,j) @t
17 (g,1) (so*(2l),su(l —k,k)dt') : 1>4,1<k<[5H+1
T i(Z — 2)
ce(7T) su(k) @ su(l— k) o £
¢, (T) su(l) @ t!
() su(l — k, k) @ t*
18 (g,v) (s0*(20),su(l) & t') : 1 >4
7
ce(T) su(l) @ t!
¢, (T) su(l) @ t!
co(T) su(l) @ t!
19 (g,7) (s0*(20),50" (2l —2) @ ') : I >4
T 1z
ce(T) su(l—1) @ t2
¢, (T) s0(20—2) o t!
¢o(T) s0"(20—2) @ t!
20 (g,v) (e6(2), 50" (10) @ ')
(21 — Z3)
ce(T) su(5) @ t2
¢, (T) 50(10) @ t!
() 50%(10) @ t!
21 (g,v) (e5(2),50(6,4) @ )
T i(Zy — Z3)
ce(T) 50(6) @ so(4) @ t!
cg, (T) 50(10) @ !
¢o(T) 50(6,4) @ t!
22 (g,7) (e6(—14),50(8,2) @ t*)
12
ce(T) 50(8) @ t2
¢, (T) 50(10) @ t!
() 50(8,2) @ t!

Continued on the next page.
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Continued.
23 (g,t) (eg(—11), 50(10) & )
T iZ;
ce(T) 50(10) @ t!
¢, (1) s50(10) @ t!
(T) 50(10) @ ¢!
24 (g,v) (e6(—14), 507 (10) @ t')
T i(Zy — Z3)
«e(7) su(5) @ t2
¢, (1) 50(10) @ t!
(T 50 (10) @ '
25 (g,v) (e7(-5): e62) © t')
T iW(Z) — Z5)
«(7) su(6) @ su(2) @ t!
¢, (1) e @ t!
¢(T) e(2) © t!
26 (g,v) (e7-5): eo(-10) © ')
T i(Z1 — Z7)
c(T) 50(10) @ t2
¢, (T) s @t
¢(T) eg—14) B t'
27 (g7) (er(7), €2 @ t')
T i(Zy — Zg)
ce(T) su(6) @ su(2) @t
¢, (7) eg O t!
(1) e5(2) D !
28 (g,t) (e7(—25), 66 ® )
T iZ7
«(T) e @ t!
¢, (1) ¢ @t
o(7) e @t
29 (g,7) (e7(—25), €6(—14) D )
T i(Zs — Z7)
ce(T) 50(10) @
¢, (1) e @ t!
¢(7T) e6(-14) D t'
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REMARK 6.17. Let us comment on the above table of pseudo-Hermitian sym-

metric Lie algebra (g,t) = (g, ¢;(T)).

(i)

(if)
(iii)

(vii)

(1]

(12]

All simple irreducible pseudo-Hermitian symmetric Lie algebras in Table I are
taken from Berger’s classification of (affine) symmetric spaces (cf. Berger [1]).
The H-element T in (g, t) has irregularity with respect to +-sign (cf. Notice 6.3).
g, £ and g, are determined by two Lists of Murakami [12, p. 297 and p. 305] (read
Subsection 4.3). However, we utilize Dynkin diagrams given in the book of
Bourbaki [4] (recall Notice 4.8).

{Z,}, denotes the dual basis of {a,}, whose Dynkin diagram given in Bourbaki
[4], where {«a,}, is the set of simple roots, and where the type of Dynkin diagram is
determined by that of g€.

Denote by p an inner automorphism expmady7" of g. Then p is an involutive
automorphism of g such that t={X e g|p(X)=X} (cf. Lemma 6.2). In
particular, p is commutative with a Cartan involution ¢ of g defined in Subsection
3.1, because T' € £ and p = expmadyT.

Let g =t ® q be the canonical decomposition of symmetric pair (g, p). Define a
linear transformation I of g and a skew-symmetric form w on q by I := adgT|CI and
by w(X,Y) := By(T, [X,Y]) for X, Y € q, respectively. Then I is an adgt-invariant
complex structure of g, and w is an adgv-invariant symplectic form on g. Moreover,
w is I-invariant.

Pair g, with ¢, (7). Then, pairs (g,,¢g, (7)) exhaust all simple Hermitian
symmetric Lie algebras of compact type, and pairs (g€, cge(T)) = (8, (cq, (T)°)
exhaust all simple reducible pseudo-Hermitian symmetric Lie algebras. Moreover,
T is the H-element in (g,, ¢, (7)) and in (g€, cge(T)).
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