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Abstract. Let G be an exponential solvable Lie group, and 7 be an irreducible
unitary representation of G. Then by induction from a unitary character of a connected
subgroup, = is realized in an L?-space of functions on a homogeneous space. We are
concerned with C*vectors of 7 from a viewpoint of rapidly decreasing properties. We
show that the subspace & consisting of vectors with a certain property of rapidly
decreasing at infinity can be embedded as the space of the C*vectors in an extension of m
to an exponential group including G. Using the space .#&, we also give a description of
the space &7.7& related to Fourier transforms of L'-functions on G. We next obtain an
explicit description of C*vectors for a special case. Furthermore, we consider a space of
functions on G with a similar rapidly decreasing property and show that it is the space of
the C*vectors of an irreducible representation of a certain exponential solvable Lie group
acting on L*(G).

1. Introduction.

Let G be an exponential solvable group with Lie algebra g, and 7 be an irreducible
unitary representation of G. According to the orbit method, there exist a linear form
l € g* and a real polarization h at I such that the representation 7 is realized as the
induced representation indgxz from x; of H, where H = exph is the connected and
simply connected subgroup with Lie algebra h and x; is the unitary character of H
defined by y;(exp X) = ¢! for X € b.

Suppose that G is nilpotent, and realize 7 on L?(R™) by taking a supplementary
Malcev basis to h and identifying G/H with R™. Then by results of Kirillov [5] and
Corwin-Greenleaf-Penney [4], it is well known that the action of the enveloping algebra
% (g) forms the algebra of differential operators with polynomial coefficients, and the
space of the C®vectors is precisely the Schwartz space .(R™).

However, when G is a general exponential solvable Lie group, the space of the
C>vectors does not have such simple characterizations. For example, the action of %(g)
may involve multiplications of exponential functions which require C*vectors to have a
property of rapidly decreasing at infinity in one direction but do not necessarily require
such property in another direction.

In this paper, we investigate structures of the C*vectors from a viewpoint of some
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rapidly decreasing properties. In section 2, under a standard realization of m, we are
concerned with the subspace #&(G,n,lh) consisting of functions with a rapidly
decreasing property defined in Definition 2.3. We shall show that it can be embedded as
the space of the C*°vectors in a space of irreducible representation m;, of an exponential
solvable group F' D G such that the restriction of 7, to G is equivalent to 7. By using
this space S&(G,n,lh), we also describe the space &/ S&(G,n,l, k) introduced by
Ludwig [7], which is included in the image of Fourier transforms of L!-functions on G of
finite ranks. In section 3, we shall give an explicit characterization of C*vectors when G
can be described as G = N'N, where N and N' are the subgroups corresponding to the
nilradical of g and its stabilizer for [, respectively. In section 4, we are also concerned
with the space S&(G), a space of functions on G with a similar property of rapidly
decreasing at infinity, and we shall show that it is the space of C*®vectors of an
irreducible representation of a certain exponential solvable Lie group acting on L*(G).

2. The space Y& (G,n,l,b).

Let G be an exponential solvable Lie group with Lie algebra g (for details on the
theory of exponential solvable Lie groups see [6] and [3]). Let n be a nilpotent ideal
including [g,g]. (For instance we can take the nilradical of g.) Let 7€ G be an
irreducible unitary representation of G, and [ € g* be a real linear form such that the
coadjoint orbit G -1 corresponds to 7. We denote by g' = g(I) and n! the stabilizers
defined as follows:

g =a() = {X eg U([X,g]) = {0}},
n' = {X € g; I([X,n]) = {0}}.

DEFINITION 2.1 (see [9]). We say that a polarization b at [ € g* is adapted to n, if

1. hNnis a polarization at [,
2. [nhbnn]chnn.

Then b is a Pukanszky polarization and there exists a polarization b, C n' at ljw such
that b = b, + (hNn) and b, = hNnl.

REMARK 2.2. (1) For any [ and n, there exists a polarization adapted to n. For
example, a Vergne polarization associated with a refinement of the series of ideals
{0} C n C g is adapted to n.
(2) Let b, be a polarization at [}, such that

[0, 5,] C By
If b, C n! denotes any polarization at [, then
h:= h(] + bn

is a Pukanszky polarization at I. Let m := n’ NnNker(l). Then m is an ideal of n'
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and n'/m is either abelian or a direct sum of a central ideal and a Heisenberg
algebra. In particular any polarization b, C n' at ljw 1s a Pukanszky polarization,
since n'/m is at most nilpotent of step 2.

Let b be a polarization at [ adapted to n, H =exph, x; a unitary character of H
such that dy; =il. Let 2(G/H) be the space of all continuous functions f: G — C
with compact support modulo H, such that f(gh) = ﬁZEZ; f(g) for all h € H and g € G.
On this space there exists a unique positive left invariant linear functional

fre f(9)dpc/u(g) (2.1)
G/H

(see [3]). Then we realize 7 as m = m 5 = ind%y; in 2y, where 7, = L*(G/H, x;) is the
completion with respect to the norm || ||, of the space 2(G/H, x;) of the continuous
functions ¢ with compact support modulo H on G such that

1. ¢(gh) = xu(h) 'A1%(R)¢(g) for all h € H, g € G.

2. 6112 = $uypr 6(9) Pdpicym,
where Ag and Apy are the modular functions of G and H, respectively, and A}fg =
(Am/Ag)". |

Taking coexponential bases {T1,---,T,} for n' +nin g, {T,41,---,T)n} for n+ b in

n'+n, {R,---,R,} for b in n+ b, we identify G/NH with R™, NH/H with R’ by
t=(t1, -, tm) — E(t) :=exptyTy - - -expt,, T, modulo HN, r = (r1,---,1,) — E(r) :=
expri Ry -+ expr,R, modulo H, respectively, and G/H with R™"" by (¢,7) — E(t,r) :
= E(t)E(r) modulo H.
We can now express the integral (2.1) as an integral on R™"":

f(g)d:uG/H(g) = ) f(E(tv T))dtd?", S Q(G/H)ﬂ
G/H R

(see [6]).

DEFINITION 2.3. Let ©,, be the space of all differential operators on R™"" with
polynomial coefficients and let /& (G, n, 1, ) be the space of all functions ¢ € ', , such
that

1. ¢ is smooth,

Iz, = / eMID(g 0 E)(t,r)"dtdr < 0o, Va € R.,¥D €Dy,

R™

(Here ||t|| denotes a norm on R™*".)

Remark that this space is independent of the choice of coexponential bases (see [6]).
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2.1. &-space and C* vectors.

We shall define an exponential solvable group F' D G such that its Lie algebra f is of
the form §f = g x a, where a is an abelian ideal and [n + b, a] = {0}. We also show that
any linear functional [y of f whose restriction to g equals [ satisfies the condition
dim(§(lp)) = dim(g(1)) + dim(a), where f(ly) = {X € f; lo([X,f]) = {0}}, which implies
that G -ly = F' - Iy, and show that p := h + a is a polarization at [y with the Pukanszky
condition.

For every ly, we have that the restriction m, pg of m, p to G and 7, 5 are equivalent;
the G-equivariant unitary mapping Ry, : 75, , — ' ,

Ry, = ¢

is a unitary intertwining operator and its inverse Sy, is given by
Syt Homy = Homypr Sudlgexp A) = e Wo(g), ge G, Aca.

We obtain a new set of norms on the space .#&(G,n,l, h) by letting for every element
Ue«(),

16l = ldmi o (U) Sl -

It is easy to see that for every U € %(f), we have a € R, and an element D € ©;, such
that

16l < [0llop, forall g € SE(G,n,1h).

Indeed, if we use the coordinates (¢,7) for G/H, then for any X € %(g) we have that
dm; i (X) is a differential operator with coefficients which are bounded by e®ll(1 + ||7|)*
for some a,k € R, . This shows that

S, (LE (G, 1)) C >

g (2.2)

THEOREM 2.4. Let G = expg be an exponential solvable Lie group, n be a nilpotent
ideal such that n D [g,g], | € g*, and b be a polarization at | adapted to n. Then there
exists an exponential solvable Lie group F with Lie algebra f = g X a which satisfies the
following:

(1) a is an abelian ideal of dimension 2m = 2dim(g/(n+b)) and [n+bh,a] = {0},
and there exists a coexponential basis {X;}i<;c,, for n+b in g and a basis
{A1, -+, Ay, By, -, B} of a such that

(X, A] = 66 Ar,  [Xj, Bi] = =6;xBr, 1< j,k<m.

(2) For all extension ly € f* of I, we have dim(f(ly)) = dim(g(l)) + dim(a), and the
subalgebra p = bh + a is a Pukanszky polarization at ly adapted to n+ a.
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(3) There exists an extension ly € f* of | such that the family of norms {|| ||, p,a € Ry,
D € Dy} is equivalent to the family of norms {|| ||, 7, U € %(f)} and we have that

SE(G,n, 1 h) = Ry, (A ),

Tly.P

where P = expp.

PROOF. By (2.2), we have only to show that & (G,n,1,§) D Ry, (%”frf P) We make
an induction on the dimension of G. If g is abelian or n = g, the statement is trivial.
Suppose that [ =0 on an abelian ideal i # {0}. Then h > i. Let g =g/i, n = (n+1i)/i,
h=h/i, G=expg=G/I, I =expi. Then, denoting quotient maps by q g — g/i,
Q G — G/I, we have 7 € G such that on =m, and we have W—lndHXl, where
log=1 By the induction hypothesis for (G 1,1, h), there exist an exponential solvable
Lie group F = exp f, f = g X a and an extension Iy e f of [ with the required properties.

Let § = g x @ defined by [X, A] := [¢(X), A] for X € g, A € &, and an extension [, € §*
of | be defined by ly|, = [;. Then we have that f and [y has the required properties for
(G,n,1,h).

Suppose [ # 0 on any non-zero abelian ideal. Let g; be a minimal ideal contained

la

in n.
Then there are following possibilities (see [6]):

(1) g, is non-central. Then dim(g,) =1 or 2:
a) There exist Y € g, A € g*, and X € g* such that g, = RY, (V) =1,

[U,Y] =ANU)Y for all U € g,
AX) =1.
b) There exist ¥7,Y2 € g;, A€ g*, we R\ {0} and X € g* such that {(Y7) # 0,
— RY; @ RY,, and
U, Y1] = AU) (Y1 —wYs), [U,Ys] = AU)(wY1+Ys) forall U € g,
AX) =1

(2) g, is the center of g. Then g, is one dimensional because of the assumption of [.
Let Z € g, such that [(Z) =1

(2-1) Suppose first that g, is properly contained in n. Let g, be a minimal ideal
modulo g; such that g, C n. Then

a) go is two-dimensional and there exist Y € ker(l) Ng,, X € [g,g] Nker(]),
T € ker(l), A,y € g* such that
[U,Y] = NU)Y +~(U)Z forall U € g, (2.3)
AT) =1, A(X) =0, v(T) =0, v(X) =L
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Then we have [T, X] € —X + (ker(\) Nker(y)), and ker(y) + n = g.
b) g, is two-dimensional and there exist Y € ker(l) Ng,, X € ker(l),y € g*
such that

[U,Y]=~U)Z forallU € g, (2.4)
Y(X) =1

Then we have two subcases:

b-1) n+ker(y) =g.
b-2) n+ ker(y) # g (here X is necessarily 0).

c) g9 is 3-dimensional and there exist Y3,Ys € g, Nker(l), X1,X> € [g,g] N
ker(l),T € ker(l), A\, 71,72 € g*,w € R*, such that for all U € g

U, 1] = MU)(Y1 — wY2) + n(U)Z,
[U,Ys] = AMU)(wY1 + Y2) +2(U)Z,

%‘(Xz‘) = 51',]', t,7=1,2, ’Yl(T) = ’YQ(T) =0,
0=A(X1) = \NXs), N(T) = 1.

Then we have n + ker(y,) Nker(y2) = g.

(2-2) Suppose now that RZ =g, =n. Then n'=g. Since the center is one
dimensional, our g is the Heisenberg algebra, if g is not abelian, which we
assume. We can take a basis {Xi,---,X,,Y1,---,Y,, Z} such that [X;, V)] =
6,;Z (i,j=1,---,n) and so that b is spanned by {Y¥1,---,Y,, Z}.

CASE (1): Let € := ker(\). Then ¢ is an ideal, ¢ D n+n', and g, C h C £&. We have
T= indgm, where m = indgxl, K =expt. . .

By the induction hypothesis for (K,n,l|,,h), there exists F'=expf such that
Ex d=1f, where @ is an abelian ideal such that [n+ bh,d] = {0}, with the required
properties: For all extension ; € §* of I,, we have dim(§(/;)) = dim(¢(l|,)) + dim(&), and
the subalgebra p = b + a is a Pukanszky polarization at I;. And there exists an extension
le f* of I|, such that the corresponding family of norms are equivalent and such that

LEK,n |, b) = R(AY ).

TP

We have in case (1) a) that [X,Y] =Y, and in case (1) b) that [X,Y}] = Y] — w3,
[X,Y3] = wY] + Y3, and in both cases that [g,, €] = {0}.
Let a=a® RA® RB be an abelian Lie algebra, and f = g x a defined by

f=g®a=RX®tdad RAD RB,
[A7ﬂ:[B’ﬂ :{0}7 [XaA]:Av [X’B]:_B’ [a’X]:{O}



C>-vectors of irreducible representations 1087

Lete=f® RA® RB=t®a® RA® RB, E =expe, F = expf.

By the assumption of [ and [g;,¥] = {0}, we have that dim(g,/(g(l) Ng;)) =1 and
dim(g(l)) + 1 = dim(&(l[;)). Let ly € * be an extension of [ and l; = lp|;. We also have
that dim(g,/(f(lo) Ng;)) = 1 and dim(f(ly)) = dim(f({1)) + 1. In fact, suppose first that
lolgasrp # 0. If lg(A)lp(B) # 0 and C = oA + BB € ker(lp) \ {0}, where o, § € R, then
C":=aA - B¢ ker(ly), [X,C"] = C, [X,C] =", and the mapping f(I;) ® RC' 5V —
V — ((lo([X, V])/(1o(C")))C € §(ly) gives a linear isomorphism of f(I;) @ RC" and f(ly).
If Io(A) =0 and Ily(B) # 0, then taking Y; € g; \ f(lp), we have §(I,) ® RA® RB =
f(lo) ® RYy. Similarly, if lo| 4, g = 0, then §(ly) D RA@® RB and taking Y; € g; \ f(lo),
we have §(I;) ® RA® RB = f(ly) ® RY;. Since dim(f(l;)) = dim(¢(],)) + dim(a), we
have

dim(f(ly)) = dim(§(1,)) + 1 = dim(¢(l|,)) + dim(a) + 1
= dim(¢(l],)) + dim(a) — 1 = dim(g(!)) + dim(a).

Since p =bh +a is a Pukanszky polarization at lo|f adapted to n+a and RA® RB
is central in e, we also have that p =p ® RA ¢ RB is a Pukanszky polarization at [,
adapted to n+ a. Letting Iy be an extension of [ such that Iy(B) # 0, and 7 = Tip =
indgxi, we realize 7 = 7, = indBy;, in S5 by T(Za)v = x3,(a)7(&)v for v € H5, & € F,
a € exp(RA+ RB).

Now, we realize 7, p = indby;, as indfm, on L?(R,#:). Then for ¢ = ¢(x) €
L*(R, #;), we have in case (1) a)

) = ilo(A)e " d(x),

) = ilg(B)e" (), (2.6)
) =ie "(z),

) = dit(Ad(exp(—zX))V)(¢()), V €f

and in case (1) b)

Since we can regard

G/H = (G/K)(K/H) = (G/K)(K/NH)(NH/H),
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we can use the coordinates ¢, for K/H, and for G/K we use the coordinate x. We show
that for a € R and D = d” ) Dtr, D,, € D, there exists a finite family {U3,---,Un}
in %(f), such that || ||aD < ZJ 1 I ly,0,- Indeed, by the induction hypothesis, there
exists a finite family {U, - -, Uy} in %( ), such that

/ 11Dy, ploxp(aX) E(t, 7)) Pdtr
K/H

N } 1/2\ 2
< (; </F/P|dﬁ'(Uj)Sl~¢(eXp (xX)k;)|2d,uF/p(k;)> )

<K sup / (R (0,)Si(exp (e X)k) 2y p(k)
j=1,- F/P

for all ¢ € SE(G,n,l,h).

Let d; be the degree of U; in % (f) and let {V,---, Vi } be a basis of %(f),,, the
subspace of %(f) consisting of the elements of degree < d;. Then Ad(exp(:z:X))Ui =
Zﬁl Yi(x)V}, © € R, where the functions ¢/, are C* and are bounded by exponential
functions. Therefore

U; = Ad(exp(—zX))(Ad(exp(zX)) Zw‘ )Ad(exp( xX))VJ’ (2.8)

and so

19150
" 2
—— Dy, p(exp(zX)E(t,7))

_ / / oelal galtl | 9
RJK/H Oz
§/ec‘x‘1\72 sup /

R i=1,..NJF/P
S/NQGCM
R

dxdtdr

n 2

~ 0
(U)Sl 6 n

¢(exp(zX)k)

dppyp(K)dz

" 2

25 g (Ad (exp(— 2X)V))Sp5—

s ¢(exp(zX)k)

dppyp(k)dz

n 2

= dlexp (@XM

2| dr(Ad(exp(—2X))V))S; dyizyp (k) de

2
dpyp(k)d

1

dmy p (V1) 2 5, $(exp (2 X)R)

oz’

SN2§:i / C’ e?JH
i=1 j= F/P
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with some constant C;;, a;; € Ry. It follows now from the formulas in (2.6) and (2.7),
that there exists a finite family Uy, ---, Uy in %(f), such that

N
|| ||(l,C7D S Z H ||l[)7U]
=1

and so

SE(G o, Lb) = Ry, (7 ).

CASE (2-1) a), b), ¢): g; # n. Let € = ker(y) in case a) and b), resp. € = ker(y;) N
ker(vys2) in case ¢), and & = {U € g;[U, g,] = {0}}. We remark that g, Ng(l) =g, and
£(ll,) = g(l) + g, because of our assumption. Thus we have dim(¢(l|,)) = dim(g(l)) +1
in cases a) and b), resp. dim(¢(l|,)) = dim(g({)) + 2 in case c).

We have two possibilities: either i): g, C b, or ii): g, Z b.

CASE (2-1) a), b), ¢); i): We begin with case i). Then h must be contained in &.
If not, there exists X’ € b \ €. But then X' = oT + X + Xy, where € R, 3 #0, Xy € &
(in case a), X' = aX + Xy with Xy € ¢, a #0 (in case b), X' = oT + X1 + 6 X3 + X
where a, 3,6 € R, * + 8% # 0, X € € (in case c) and so by (2.3), (2.4) and (2.5),

{0} = I([X", g,]) = U([X', RY; + RY3)) = ((BR+ 6R)Z) # {0},

since g, C b in case ¢) and similarly in the other two cases. This contradiction tells us
that b C €.

Hence we have 7= indIG\,(inngl), and by the induction hypothesis for
(K,eNn,l,b), there exists f =€ x @ such that [a,a] = {0}, [a, (¢Nn) +p] = {0}, and

having the required properties: dim(f(l;)) = dim(a) + dim(¢({|,)) holds for any extension

I, € §* of l];, the subalgebra p = h + @ is a polarization at [, and there exists an extension
I such that

SEK, e, 1y, h) = R(A ).

We first treat case a), b-1), and ¢). Recalling g = RX @ ¢ in case a) and b-1), resp.
g=RX; ® RX,®¢t, in case ¢), we define a =a, and f =g x a by [RX, a] = {0}, resp.
[RX, + RXy,a] = {0}. Let p=H+a (=p). Then, for an extension [y € f* of | and

li =, we have dim(§(l)) = dim(f(lp)) + 1 in case a) and b-1) and dim(f(l;)) =
dim(§(ly)) + 2 in case c), and, by the induction hypothesis dim(f(l;)) = dim(a) +
dim(¢(l],)), we have

dim(f(lp)) = dim(f(}1)) — 1 = dim(a) + dim(#(l|,)) — 1 = dim(a) + dim(g(l))
in a) and b),

dim(f(lp)) = dim(f({1)) — 2 = dim(a) + dim(€(l],)) — 2 = dim(a) + dim(g({))



1090 J. INOUE and J. LUDWIG

in case ¢). Thus p is a polarization at ly, and p is adapted to n+ a.
Let Iy be an extension of I, and we realize in case a) and b-1), 7, p = indby;, as
indf;ﬁ', where 7 = indby;,, on L?(R, #;). For ¢ = ¢(zx) € C°(R, .#;), we have

i p(X)9(2) =~ o(a), (29)
i, (T)o(e) = (5 + 0+ GH(T + Pla) o). (210
dmy, p(V)g(z) = da(Ad(exp(—2X))V)(é(x)), V €t +a, (2.11)
dr o (V)0(z) = ~i(6(2)), (2.12)

where P(z) is a £-valued polynomial in z, in case a). In case b-1) we have (2.9), (2.11)

and (2.12). In case c) we have G = exp RX; exp RX> K and we realize m, p = indbx;, as
ind?ﬁ where 7 = indgxlo, on L*(R?, 7). For ¢ = ¢(x1,x5) € CF°(R?, H;), we have

0
dmy, p(X1) (21, 12) = — 8—;101 (a1, 22),

O bar,0) + dr(Q(ar, 22))(er, 22),

 Ox,

dmy, p(T)p(x1, 22) = (1 + (21 — wxo) Bixl + (r1w + 22) (’%Q +d7(T + R(z, acg))) o(x1, ),

dmy, p(X2) (w1, 29) =

dm, p(V)o(21, 22) = dit(Ad(exp(—z2X2) exp(—21.X1))V)(o(21,22)), V €ty +q,
dﬂ-lo,P()/l)d)(‘T’lv $2) = —ix; ((JS(ZL‘l, 1‘2)),
dmy, p(Y2)p(21, 22) = —iza(@(21, 22)),

where Q(z1,x9), R(x1,22) are p-valued polynomial in x1,z2. Remarking that
Ad(exp(—z2X2) exp(—x1X1))V is also a polynomial in x1,zy since X3, Xs € [g, 4], we
can show similarly as in case (1), that the family of norms {|| ||, p.a € Ry,D € Dy, }
is equivalent to the family of norms {|| [|; ;,U € %(f)} and so we have that in case a),
case b-1) and c¢)

¢ € R (7 )= ¢ SEG, D).

Ty, P

We next treat case b-2). We define a =a+ RA+ RB and f = g x a with
[X’ A] = A, [Xv B] = —B, [Aaﬂ = [Bvﬂ - {O}a

andp=h+a=p+ RA+ RB. Let Iy € f* be an extension of [. Then it can be deduced
as in case (1) that dim(f(ly)) = dim(g(l)) + dim(a) and p is a polarization at [y adapted to
n+a Let e=f® RA® RB, and E =expe. We take an extension Iy of [ such that
Io(A) # 0 and Iy(B) # 0, and realize 7= ind5y;, in 7 by 7(ka)d = xy,(a)7(k)¢ for
¢ € Hr k€K, acexp(RA+ RB). As in case (1), we realize m, p = indhy;, = ind7 in
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L*(R, %), and we have

dmi, p(X)p(z) = ——¢( )s

dmi, p(A)p(x) = ilo(A)e "¢ (z),

dmy, p(B)o(x) = ilo(B)e"¢(z),

dm, p(V)¢(z) = dit(Ad(exp(—2X))V)(d(x)), V€T,
dmi, p(Y)9(x) = —izg(z).

We can also show similarly as in case (1) that

o€ RZO(%”?:; )= ¢ e SEG D).

CASE (2-1) a), b), c); ii): We come now to case ii). Now h ¢ &. We take
h :=hNE+g, Since n' Cghb==¢ and b is adapted to n, which implies h = (hNn) +
(hNnl), we may choose subspaces 2 Cnnker(l) and % C g, Nker(l) so that h =
2 ®(hNE)and b = Z & (hNE). We remark that b’ is a polarization at | adapted to n
and dim(2") = dim(#%)(< 2). Applying the result i) above to (G,l,n,§’), we have f =
g X a with an abelian ideal a with the required properties; [n + b, a] = {0}, dim(§(ly)) =
dim(g(!)) + dim(a) for any extension Iy € §* of [, and there exists an extension Iy such that

b€ Ry(H,) = 6 € SEG,n,LY),
where p' = b’ +a, P =expyp’.

Let p=h+a=2@(hNEt) @ aand P =expp. Since Z" Cn, we have [n+h,a] =
{0}, and the subalgebra p is also a Pukanszky polarization at Iy adapted to n+ a. We
take a subspace .# Cn such that n=.#®& 2 & (nnNt). (We regard .# = {0} if
h+ € =g.) Then we have

NH/H = (exp # exp Z(NNK)H/G,H)(G.H/H)
=(exp#Z(NNK)/(NNKNH)Gy)(exp¥),
NH'/H =exp Z exp.#(NNK)H'/|H'
=exp Z(expZ(NNK)/(NNKNH)Gs).

Remarking that nN € =nN¥), we can take coexponential bases {Y;, R;} for nNh in n
and {X;, R;} for n0h" in nso that {Xi},_; g (s is a basis of 27, {Yi},_; gim(s) Is a basis
of &, and {R;},_, ., is a coexponential basm for nNh (=mNenh)+g,=mNEN
h) +gy) in A S (n NE) (=4 @ (nNky)), where w:=dim((.#Z & (nNE€))/(h Nn)). We
identify NH/H = R* & % by (r,y) — E(r)E(y), and NH'/H' = 2" ® R" by (z,r) —
E(x)E(r), where E(r):=expriR;---expryRy, E(x):=exp(z1X1), E(y) = exp(yiY1)
(for the case of dim(2") = 1), E(x) := exp(z1X1) exp(z2X2), E(y) := exp(y1Y1) exp(y2Y2)
(for the case of dim(Z2") =2.)
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The intertwining operator u between the space of ind$ rx; and de,Xl is given by

W= AR o€,

(see [2]), which is in our coordinates (z,7) for NH'/H', (r,y) for NH/H, and t for
G/NH' = G/NH given by

ult,z,r) = / (tr(x), e el lnal ) gy
Rdnn(’i)

where r(z) is a R"-valued polynomial, h(x) is an h N n N ¢-valued polynomial and g(x) is
a #-valued polynomial in z such that E(z)E(r)E(z)”" = E(r(z))exp g(z) exp h(z).
Hence the operator u maps .&(G,n,1,h) onto .Z&(G,n,1,4'). Therefore,

FEG 1, h) =u 't (u(SE(G,n,1,h)))

=u (R (7] ,))

Ty, P!

= R[U (%WU )

CASE (2-2): n=g,. We define f = g x a, where a is an abelian ideal spanned by
{A1, -+, Ap, By, -+, Bu}, by [Xj, Al = 850, [Xj, Be] = —6.B), [Yj, Arl = [V}, Bi] =0
(j,k=1,---,n). Let p:= b+ a. Then for all extension [, € f* of [ we have that f(ly) is
spanned by {Z, A; —y(A,)Y;, Bj +1(B))Y;, 1 <j<n} and dim(f(ly)) = dim(g({)) +
dim(a) since g(I) = RZ. Thus p is a polarization at ;, adapted to n+ a. We choose an
extension [y such that ly(A;) #0, lo(B;) #0 for all j=1,---,n, and realize m, p as
ind5x;, on L?(R"). Then for smooth functions ¢ = ¢(z1,---,x,) € L*(R"), we have

dﬂ—la (X])¢($17'--,xn) = __¢($17 s T )

dﬂ-la (AJ)¢(x1a"'7x7L) = (A ) J¢(x1>"';xn);
dmo, (B])Qb(xla"'axn) = (B ) ’¢(m1,-~-,$,,),
dm, p(Y)o(x1, -+, @) = i(lo(Y)) — ) p(@1, -+, 2p), j=1,---,n.

Noting that G/NH = G/H, we get

y(ga(Ga Il, la h) Rlﬂ ('%pﬂ'lu )

2.2. Y& -space and & ¥&-space.

Using our .&-space, we shall describe the «7.7&-space introduced in [7], where it
is denoted by &% (see Remark 2.7). Let G =expg, n, | € g* be as above, ) be a
polarization at [ adapted to n, and h, = h N n. Let Z(h) be the set of all the polarizations
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b at I such that hNn = b, and h is adapted to n. By Remark 2.2, a polarization § belongs
to 2(h) if and only if h = b, + b,, where b, C n' is a polarization at ljat- Let H =exph,
and we denote by g« H'r , — Hr, the intertwining operator of indg)g and ind%x;;

T.H

Tyolo) = § o OG0, 6 € o,

(see [2]).

DEFINITION 2.5. We define
yéaOO(G, n, l7 b) = mﬁe@(h)ghﬁ(yg(Gv n, ly 6))

We also define the space &.S&(G,n,l,h) ([6], [7]). Recall that for defining
SE(Gyn,l,h), we regard G/H = (G/NH)x (NH/H) = R"""; now we decompose
G/H as

G/H = (G/N’N) X (N’N/NH) x (NH/H) = RVuty

where m = v +u, taking coexponential bases {T,---,T,} for n'+n in g, {S;:=
Tyity-o Sy =Ty} for n+b in n'+n, {Ry,---,R,} for b in n+bh, and letting
R'>t = (t1,-,t,) — E(t) = expty Ty ---expt, Ty, R*D s = (s1,--+,8,) — E(s) =
exp 5151 - exp s, Sy, RS r=(r,--+,7,) — E(r) =expri Ry ---expr,R,, and R"""*" 3
(t,s,7) — E(t,s,r) = E(t)E(s)E(r).

DEFINITION 2.6. Let D, ,, be the space of all differential operators on R**"*" with
polynomial coefficients and let &7.7&(G,n,l,h) be the space of all functions ¢ € #,,,
such that

1. ¢ is smooth,

||¢||i’b7D = /RMM el D(p o E)(t, s, )P dtdsdr < 0o,V (a,b) € R>,D €D,

3. The same conditions 1 and 2 hold for the partial Fourier transform ¢, of ¢ in s,
where

Qgs(ty S, T) = ¢o E(t7 z, T)ei@’s)dx,
R

REMARK 2.7. The space /. & is also independent of the choice of coexponential
bases. We have .Z&(G,n,l,h) D o/ SE(G,n,l,h); A function ¢ € ./&(G,n,l,h) belongs
to & SE(G,n,l,h) if and only if ¢ satisfies the condition 3 above. In the paper [7] this
space has been denoted by &(G,n, 1, ). We write here the letter o in front to indicate
that the functions ¢ contained in &.7& (G, n,l,h) are analytic in the direction . It has
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been shown in [7] and [1] that for ¢ and ¢ in &/ .Z&(G,n,l,h) there exists a function
f € LY(G) and more precisely in the subalgebra .#&(G) (see section 4), such that

ﬂ-l,Hf(g) = <£7 1/’)‘157 g € ’%ﬂﬂl.H'

THEOREM 2.8. Let G =expg, n, [, h be as above. Then we have
FEX (Gl h) = A SE(G,n ).

PROOF. The proof is by induction on dim(g). We shall use the framework of
induction in the proof of Theorem 2.4.

If n = {0}, the statement is trivial. Suppose that { = 0 on an abelian ideal i # {0},
and let G, A 6,7’7 be as in the proof of Theorem 2.4. Then we get the conclusion by
the induction hypothesis for (G, i,0,h) and 7 because we can naturally identify
SEX(G, 1,1, H) with .ZE%(G,n,1,h) and &Z.SE (G, 1,1, §) with . S&(G,n,1,h).

Suppose [ # 0 on any non-zero abelian ideal. Taking a minimal ideal g; contained in
n, we use the same notations as those in the proof of Theorem 2.4.

CASE (1): Letting € := ker(\), K = exp, we have h C ¢ for all h € Z(h) and
S EX(K,n, g, b) = o SE(K,n, i, b)
by the induction hypothesis. Since £ is an ideal including n’ + n, we have
G/N'N = (G/K)(K/N'N),
and obtain the conclusion & (G,n,l,h) = o SE(G,n,1,h).

CASE (2-1) a),b),c): g; #n. Let € =ker(y) in case a) and b), resp. € = ker(y;) N
ker(72) in case c).

CASE (2-1) a),b),c); i): gy C h. Then any polarization h € 2(h) is contained in £. We
have n+ £ = g in cases a),b-1),c), n C £ in case b-2). Since

(N ")l‘e =n'+g,,

and

K/(KNN)"*(KnNN) cases a),b-1),c)

G/N'N = {
(G/K)(K/N'N) = (G/K)(K/(KNN)"(KNN)) caseb-2),

N'N/NH = N(KNN)/(KNN)H = (KNN)"(KNN)/(KNN)H

we can deduce the conclusion from the induction hypothesis
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SEX(K, eNn, g, b) = o SE(K, ENn, g, b).

CASE (2-1) a),b),c); ii): go ¢ h. Then h ¢ € for any polarization h € 2(h). Let
h' = (hNE) + gy, and according to the notations in case (2-1) a),b),c) ii) of the proof
of Theorem 2.4, we have h = 2@ (hNt), Z Cnnker(l) and h' = (hne&) ¥, ¥ C
g, Nker(l), and we identify NH/H=R"® % by (r,y) — E(r)E(y), and NH'/H =
2 @ R" by (x,r) — E(x)E(r). Then the intertwining operator 7y is given by

Tyy(t, s,2,7) = / o(t, s, 7(x), y)e rl=lra@Thi)) gy, (2.13)

Rim(#)

where r(z), h(x) and g(z) are polynomials whose values are in R, hNnnN¢; and %/,
respectively. Thus we have

Ty (A S E (G, 1Y) = o SE(G 0,1 b).

For any polarization b = b, +b, € 2(h), letting b’ = (h NE€) +g,, we also get the
expression of Jy; as (2.13), and we have

T (LE(Gn,1,h)) = SE(G,n, L Y).
Applying the result i) above, we have
FEX(GnLY) = SEGnLY).

The set Z(h') consists of polarizations h; = b, + (h' Nn) =h, + (hN€Nn) + g,, with
some polarization by Cn' C £ at [y. Thus we have 2(b') = {(hN€) +go5h € 2(h)}.
Writing §’ = (h N €) + g, for each h € 2(h), we have

yh/h(‘yoﬁw(Gv n, l? h)) = mﬁe@(h)gh/h ° ybﬁ(yg(Ga n, la 6))
= mﬁ@:@(h)yh,h o yhﬁl 9] ys/ﬁ(yéa(G,n, l7 6)) = mﬁey(h)yh/h 9] yhf]/(yéa(G,n7l7 6/))
= Nyeow) T vy (LE(G 0, 1LY)) = SE2(G, 1Y)
= A SEG L) = Ty (. FE(Gn, 1, 1)),

Thus we have & (G,n,l,h) = o SE(G,n,l, ).

CASE (2-2): n = g, whence n! = g. We can take a basis {X;,---, X,,,Y1,--+,Y,, Z} of
g such that [X;,Y;] =6,,Z, (Z2) =1, I(X;) =1(Y;) =0 (3, =1,---,n), and b is spanned
by {Y1,---,Y,, Z}. Let b, be a subalgebra spanned by {Xi,- -+, X,,, Z}. Then b, € Z(h).
We identify G/H with £ := RX; & ---® RX,, and G/H, with & := RY; & --- ® RY,,
and realize ind%; and ind, x;, respectively. Then the intertwining operator Ty, is
described by _
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ghhﬁb(xla Tt 'T'n) = / d)(yla o 7yn)eii(mlyl+m+x"yn)dy1 o dy’ll? ¢ S %WI,HZ .
o

Let ¢p € Yéo(G,n,l, h) N fhhz(yg(G,n,l,f)Q)). Then Py = 9hhz¢ with ¢ € Yéo(G,n,
l,h,), and we have that ¢ is obtained by Fourier transform of ¢q, ¢ = cdSO with some
constant ¢, and ¢ satisfies the conditions 1 and 2 of Definition 2.6, which implies that
¢o € @S E(G,n, 1, h). Conversely, let b’ be a polarization at [. Taking subspaces %, #/,
¥ such that h=Z @ (hnb), Y =# @ (hnb), # Cker(l), and g=7 ¥ &% &
(h Ny, we identify G/H with ¥ & # by (V,W) — expVexpW, G/H' with ¥ & % by
(V,Y) — expVexpY. Then we have

TLH

Ty SV, W) = / SV, Y)Y, pe
(74

If ¢y € ZSE(G,n,l,h), then the function 1 := ¢y o E has the property that all its
partial Fourier transforms are exponentially decreasing. Hence ¢g = 7 7 ,;;rqﬁo with
¢ =T ydo €.LE(G,n,LY). Thus we have &.8(G.n,l,h) C Ty (LE(G n,LY)),
and therefore, we have the conclusion &> (G, n, 1, ) = o SE(G,n, 1, h). O

3. The case G = N'N.

Let n again be the nilradical of g and suppose that g=n'+n. Let b, be a
polarization at I, such that [n’,h,] C b,. and let b, C n’ be any polarization at Ut~ As we
have seen in section2, the subalgebra b := b, + b, is a Pukanszky-polarisation at .
Taking a subspace rCn! such that g=r® (n+5), and a coexponential basis
{T1, -+, Ty} for b, in n, we identify G/H with R™ X ¢ through the mapping

(t1,-+ytm, X) — E(t,X) = expt1Th - - - exp t,, Th exp X.

Let H = exph, H, := exp(h,), Hy = exp b,. The invariant linear functional §G/H ducyp is
given in these coordinates by

f@)ducn(e) = [ FP( X)) Acsu(exp X)dbdxX, (3.14)

G/H
where Ag/g(exp X) 1= et (X)X e
In order to see this, let us denote by v(f) the concrete expression on the right of
equation (3.14). Since b, is nl-invariant, we see that the positive functional v is N-
invariant. If we take Y € n', denoting by A(g), g € G, left translation by g, then
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VDY) = [ J(exp(=Y)B() exp(X) Agulexp X)diaX

= o Agyu(exp(=Y)) f(E(t) exp(=Y) exp(X)) Ay n (exp X)dtd X

- /R J(E(#) exp(=Y) exp(X)) Agyu (exp(=Y + X))dtdX

= v(f)-

The uniqueness of fG/H du(g) tells us that equation (3.14) is valid. In particular, for
every ¢ in the Hilbert space #,,, = L*(G/H, x;), the L>norm of ¢ is given by

€2 = 7& IE(E(t, X)) P A (exp X)dtdX.

Let x; be the unitary character of H whose differential is the linear functional il
and let T=mp = indgxl.

DEFINITION 3.1. Let ©,, be the space of all differential operators on R™ x r with
polynomial coefficients and let ., = .(G, n,1, ) be the space of all functions ¢ € ', ,
such that

1. ¢ is smooth,
2.

lolfy = [ 1D(6 0 )t X)PAgym(exp X)dtdX < oo, VD € Dy

Denote by . (V) the Schwartz space of rapidly decreasing smooth functions on the
real finite dimensional vector space V. With this notation, we see that

T =16:G— C, (Ag/g-¢)o £ € S(R" xp)},

since the mapping D — Ma o Do M&l, D € ®,;, where Mx denotes multiplication with
the function Ag/y, is a bijection of Dy,.

THEOREM 3.2. Let G =expg be an exponential solvable Lie group, let n be the
nilradical of g and let | € g*. Suppose that g = n' +n. Choose a polarization b, at ljn, such
that [n',h,] C b,. Then the space > := HY . of the O wvectors of the representation
=T and the Fréchet space 7, coincide.

PROOF. By a theorem of [8], the C* vectors of the representation 7 are smooth
functions. For fixed X € ¢ and £ € S, we see that the function

N 5 n— &x(n) = &(nexp(X))
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satisfies the covariance condition
Ex(nh) = xi(h ")éx(n), h € Hyn € N,

since x;(exp(X)hexp(—X)) = xi(h) for all X € n’ and all h € H,,. Therefore, multiplying
¢ with a smooth function ¢ € C°(G/H), we obtain an element 7 := () x € A7 (where
Ty = indanl\n) and hence by Kirillov’s theorem, for any element D in ®;, there exists a
up in the enveloping algebra % (n) such that D = dm,(up) on 5". Now, if we let run ¢
through an approximate unit, we see that

D(§) = dr(up)§, £ € A (3.15)
Hence ©; C dm(%(g)). For Y € n!, we have that

m(exp(Y))E(E(t, X))
= &(exp(t1Ad(exp(=Y)T1)) - - - exp(tm Ad(exp(=Y)T)) exp(=Y) exp(X)),

for t € R™, X,Y € v!. This shows that
(dr(Y)(9€)) o E(t, X) = Dy (p§ 0 E)(t, X) + dmo(Y)((¢€),)(exp(X)),

where Dy is some element in ®, (acting only on the variable t), where (¢§), is the
function (p¢),(exp X) := @&(E(t) exp(X)), which is contained in the Hilbert space ¢ of
the representation my := ind]HV:)XI‘“,. Together with the relation (3.15) and the fact that
D, = dmo(%(n')) this shows that D, is contained in dr(%(g)) and finally that

Dy = dn(%(g)). (3.16)

In particular, the function (Ag/z€) o E is contained in .(R™ x t). Conversely, because
of (3.16) every smooth function 7 defined on G satisfying the covariance condition for H
and x;, such that Ag/gno E is in &/ (R™ x t) is also contained in . O

4. The space .7&(G).

Let again G =expg be an exponential solvable Lie group. We shall introduce
special coordinates on G, which will allow us to write the product in GG in a particularly
simple way. Let n again be the nilradical of g. Take an element 7" of g which is in general
position with respect to the roots of g. This means that for any two distinct roots A, X of
g we have that A(T) — X(T) # 0. This means that the mapping A — A(T) is an injection.
For a root A let

oo = {X €gc; NT)I,, —ad(T))*(X) =0, for some d € N*}.

By the usual rules we have that
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Brcr0v.cl Coive

for two roots A, X'. Then g, := gy ¢ N g is thus a nilpotent Lie subalgebra of g. Since by
Jordan’s theorem

gc =9o,ct ZQ,\,C
20

and since g, ¢, A # 0, is contained in [g¢, g¢] C ne, we see that
g=gpt+n
Let us choose a subspace t C g, such that
g=ton
We can now define a Lie group structure on the Lie algebra ¢ := t @ ng. We use on

the complexification ne of n the Campbell-Baker-Hausdorff multiplication -¢ and we can
write for 5,5 €t

S cS=8+85+-[5,9+ - =(S+95)-c¢m(S,5),

1
2
where m : t X t — nNg, is a polynomial mapping.

We define now on € = t & n¢ a multiplication - in the following way:

(S+U)-(S+U):=8+5+m(S,8) ¢ ().« U, UU eng, 5,58 et. (4.17)
In particular we have the relations

S U=S+U, U-S=S+e™9U, Set, Uene.
It is easy to check that we obtain in this fashion a simply connected exponential
solvable Lie group K = (¢,-) and that this new Lie group contains a closed subgroup
(g, ), which is isomorphic to G, since g C £. Denote also by N¢ the subgroup (ng, -¢) of
the Lie group (&, ).

The Haar measure on the group (g, -) is given by Lebesgue measure dx on the vector
space g. Indeed, for a continuous function § with compact support on g, we have that

/ §(x)dx = [ 8(T-U)dUdT
g txn

and the left-invariance of this measure follows from the multiplication rule (4.17).



1100 J. INOUE and J. LUDWIG

We define now a space of smooth functions on GG, which will replace the well known
Schwartz space of nilpotent Lie groups.

DEFINITION 4.1. Let ®¢, be the space of all differential operators on t +n with
polynomial coefficients and let .Z&(G) be the space of all functions ¢ : G — C such that

1. ¢ is smooth,

|wﬁD:1’wwwwm+UWﬁauumvaeR%De@w
+n

The space .#&(G) is in fact independent of the choice of the subspace t. Indeed,
for any subspace s of g, such that s & n = g, the mapping £ :s xn — g, E(S,U) :=S5-U
is a diffeomorphism, whose coordinate functions are polynomials in U € n and all the
partial derivatives of them are exponentially bounded in S. This allows us to write

SE(G) = {(b : G — C; ¢ smooth,
/ eI D(¢) (S - U)[PdSdU < oo,

VaeR.,De @}

We shall show in this section that the space .7&(G) is the space of the C* vectors of an
irreducible representation of a certain exponential solvable Lie group ¢ acting on L*(G).

Let 7 :={T1,---,T,,} be a basis of t. Choose a Jordan-Holder basis £ =
{1y, T, Uh,---,U,} = {X1,--,X,} of ¢ and for every i =1,---,n, we choose a
Jordan-Holder basis %; = {U{,--~,U;;} for the endomorphism adX; of ng. Then the
coefficients ay,(t;),t; € R, of the matrix of the endomorphism Ad(exp(t;X;)) with
respect to the basis %, are polynomials in ¢; for ¢ > m, are 0 for k > [ and for k = [ they
are exponential functions of the form ™) i < m, where « denotes a root of g. Hence,
by replacing the basis %, by the basis %, for T=>",¢T;, in t and U € n, the
coefficients ay (T - U) of the matrix of Ad(T-U) with respect to the basis Z are
polynomials in (¢i,---,¢4,U) multiplied by exponential functions y, of the form
Xa(T - U) = entit-+antn We denote by %’ the family of all these complex valued linear
functionals « which appear in this way. Let also %" be the family of complex linear
functionals of £ obtained as sums of j elements of %', with j < 2p and let

R ={+p,8€ %"}

and let Eg be the (finite) family of exponential functions of the form e*, a € Z.

DEFINITION 4.2. For a function f defined on a group K, let the left and right
translates of f be defined by
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M) f(g) = f(t9), p(t)f(9) = f(gt), 9.t € K.

Let now W be the span of all the left and right translates by elements of N¢ of the
complex polynomial functions of degree 1 defined on ne. Then every element of W is of
total degree < 2dim( ) =2p and so W is finite dimensional and left and right N¢-
invariant. Let (P, ) be a basis of W. For g € N we have that the matrix coeflicients
a; j, b; j defined by

d

P Za7] Rv P P Zb7](g)‘P7

i=1

are also elements of W, hence they are polynomial functions of total degree < 2p. It
follows that for every P € W, there exist two finite families of elements of W, (P;);, (Q:),,
such that

PWU-U) = ZP )Qi(UN, U, U" € ne. (4.18)

We consider now the linear span V of the left translates of all linear functionals
l:¢— C. Since for every couple (T,U), (T",U’) the multiplication of these 2 elements is
given by

(T'+U) (T+U) =T +T' +m(T,T') -c (e < U,
it follows from (4.18) that the left translate of [ € £ is given by

MN(T' +UY DT +U) = U(T) + (T
+ZP (m(T, T)Qi((e ™D (U") Ry (U),

where the different polynomial functions P, Q;; and R;; are contained in W. Hence
(T + U’)fl)l is a finite linear combination of polynomial functions of degree < 2pin U,
of degree < 4p? in T multiplied by exponential functions in 7', which are all contained in
Eg. Hence V is a finite dimensional left invariant space of functions on ¢ and so is the
vector space ¥ of real valued functions on g, which is generated as a vector space by the
restrictions to g of the real parts of the elements of V' and by the exponential functions
etRea o c 7.

We obtain the group G as the semi-direct product of G with ¥, i.e G = G x ¥ with
the multiplication defined by

(d,¢) - (g,0) = (dg. Mg )¢ + o).
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This group acts on L?*(G) by left translations with the elements of G and by
multiplication with the functions x, = ™%, i.e. for (g,¢) € G, f € L*(G), s € G we let

(g, ) f(s) := e #99) f(g71s).

It is easy to check that (I, L?(G)) is a unitary representation of G in the Hilbert
space L*(G).

THEOREM 4.3.  The representation (II,L*(G)) of G is irreducible and the C*
vectors of Il are the elements of S&(G).

PROOF. Since every real valued linear functional [ is contained in ¥/, it follows
that for ¢ =1,

(9)¢ = e "¢, dll(9) = —il¢, € € L*(G)™.

Furthermore, for any o € Z and ¢ = et € ¥, we have that

—i(fi Rea

()¢ = e £ dI(9)¢ = —ie*Feog, ¢ e LX(G)™.

This shows that any C*-vector of II is contained in our space .#&(G). Conversely,
every function f € .#&(G) will be mapped by g into #&(G) C L*(G) and therefore
SE(G) C L*(G)™.

In order to prove that II is irreducible, let (0) # 57, be a closed Il-invariant
subspace of L?(G) and let ¢ € #; and 0 # 1f € #,. We replace & and 1 by & = TI(6)¢’
resp. by n = I1(8)7/, where ¢ is a continuous function on G with a small compact support.
Then € and 7n are themselves continuous functions and we have that

(I()(g)n, 1(¢)€), =0, forallg,d € G,pe .

In particular for ¢ =1 € g* we get

[ & NN Ew s =0,

g

Hence for every g,¢ € G, we have that
Mg)n(z)A(g)é(x) =0 forall z € G.

This shows that £ = 0 whenever 1 # 0. Finally £ = 0 and II is irreducible.
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