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Abstract. Let G be an exponential solvable Lie group, and � be an irreducible

unitary representation of G. Then by induction from a unitary character of a connected

subgroup, � is realized in an L2-space of functions on a homogeneous space. We are

concerned with C1vectors of � from a viewpoint of rapidly decreasing properties. We

show that the subspace SE consisting of vectors with a certain property of rapidly

decreasing at infinity can be embedded as the space of the C1vectors in an extension of �

to an exponential group including G. Using the space SE , we also give a description of

the space ASE related to Fourier transforms of L1-functions on G. We next obtain an

explicit description of C1vectors for a special case. Furthermore, we consider a space of

functions on G with a similar rapidly decreasing property and show that it is the space of

the C1vectors of an irreducible representation of a certain exponential solvable Lie group

acting on L2ðGÞ.

1. Introduction.

Let G be an exponential solvable group with Lie algebra g, and � be an irreducible

unitary representation of G. According to the orbit method, there exist a linear form

l 2 g� and a real polarization h at l such that the representation � is realized as the

induced representation indGH�l from �l of H, where H ¼ exp h is the connected and

simply connected subgroup with Lie algebra h and �l is the unitary character of H

defined by �lðexpXÞ ¼ eilðXÞ for X 2 h.

Suppose that G is nilpotent, and realize � on L2ðRmÞ by taking a supplementary

Malcev basis to h and identifying G=H with Rm. Then by results of Kirillov [5] and

Corwin-Greenleaf-Penney [4], it is well known that the action of the enveloping algebra

U ðgÞ forms the algebra of differential operators with polynomial coefficients, and the

space of the C1vectors is precisely the Schwartz space S ðRmÞ.
However, when G is a general exponential solvable Lie group, the space of the

C1vectors does not have such simple characterizations. For example, the action of U ðgÞ
may involve multiplications of exponential functions which require C1vectors to have a

property of rapidly decreasing at infinity in one direction but do not necessarily require

such property in another direction.

In this paper, we investigate structures of the C1vectors from a viewpoint of some
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rapidly decreasing properties. In section 2, under a standard realization of �, we are

concerned with the subspace SE ðG; n; l; hÞ consisting of functions with a rapidly

decreasing property defined in Definition 2.3. We shall show that it can be embedded as

the space of the C1vectors in a space of irreducible representation �l0 of an exponential

solvable group F � G such that the restriction of �l0 to G is equivalent to �. By using

this space SE ðG; n; l; hÞ, we also describe the space ASE ðG; n; l; hÞ introduced by

Ludwig [7], which is included in the image of Fourier transforms of L1-functions on G of

finite ranks. In section 3, we shall give an explicit characterization of C1vectors when G

can be described as G ¼ NlN, where N and Nl are the subgroups corresponding to the

nilradical of g and its stabilizer for l, respectively. In section 4, we are also concerned

with the space SE ðGÞ, a space of functions on G with a similar property of rapidly

decreasing at infinity, and we shall show that it is the space of C1vectors of an

irreducible representation of a certain exponential solvable Lie group acting on L2ðGÞ.

2. The space SE ðG; n; l; hÞ.

Let G be an exponential solvable Lie group with Lie algebra g (for details on the

theory of exponential solvable Lie groups see [6] and [3]). Let n be a nilpotent ideal

including ½g; g�. (For instance we can take the nilradical of g.) Let � 2 ĜG be an

irreducible unitary representation of G, and l 2 g� be a real linear form such that the

coadjoint orbit G � l corresponds to �. We denote by gl ¼ gðlÞ and nl the stabilizers

defined as follows:

g
l ¼ gðlÞ :¼ fX 2 g; lð½X; g�Þ ¼ f0gg;

n
l :¼ fX 2 g; lð½X; n�Þ ¼ f0gg:

DEFINITION 2.1 (see [9]). We say that a polarization h at l 2 g� is adapted to n, if

1. h \ n is a polarization at ljn
2. ½nl; h \ n� � h \ n.

Then h is a Pukanszky polarization and there exists a polarization h0 � nl at ljnl such

that h ¼ h0 þ ðh \ nÞ and h0 ¼ h \ nl.

REMARK 2.2. (1) For any l and n, there exists a polarization adapted to n. For

example, a Vergne polarization associated with a refinement of the series of ideals

f0g � n � g is adapted to n.

(2) Let hn be a polarization at ljn, such that

½nl; hn� � hn:

If h0 � nl denotes any polarization at ljnl , then

h :¼ h0 þ hn

is a Pukanszky polarization at l. Let m :¼ nl \ n \ kerðlÞ. Then m is an ideal of nl
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and nl=m is either abelian or a direct sum of a central ideal and a Heisenberg

algebra. In particular any polarization h0 � nl at ljnl is a Pukanszky polarization,

since nl=m is at most nilpotent of step 2.

Let h be a polarization at l adapted to n, H ¼ exp h, �l a unitary character of H

such that d�l ¼ il. Let DðG=HÞ be the space of all continuous functions f : G! C

with compact support modulo H, such that fðghÞ ¼ �HðhÞ
�GðhÞ fðgÞ for all h 2 H and g 2 G.

On this space there exists a unique positive left invariant linear functional

f 7!
I
G=H

fðgÞd�G=HðgÞ ð2:1Þ

(see [3]). Then we realize � as � ¼ �l;H ¼ indGH�l in H �, where H � ¼ L2ðG=H;�lÞ is the
completion with respect to the norm k k� of the space DðG=H;�lÞ of the continuous

functions � with compact support modulo H on G such that

1. �ðghÞ ¼ �lðhÞ�1�
1=2
H;GðhÞ�ðgÞ for all h 2 H, g 2 G.

2. k�k2� :¼
H
G=H j�ðgÞj2d�G=H ,

where �G and �H are the modular functions of G and H, respectively, and �
1=2
H;G ¼

ð�H=�GÞ1=2.
Taking coexponential bases fT1; � � � ; T�g for nl þ n in g, fT�þ1; � � � ; Tmg for nþ h in

nl þ n, fR1; � � � ; Rvg for h in nþ h, we identify G=NH with Rm, NH=H with Rv by

t ¼ ðt1; � � � ; tmÞ 7! EðtÞ :¼ exp t1T1 � � � exp tmTm modulo HN, r ¼ ðr1; � � � ; rvÞ 7! EðrÞ :¼
exp r1R1 � � � exp rvRv modulo H, respectively, and G=H with Rmþv by ðt; rÞ 7! Eðt; rÞ :
¼ EðtÞEðrÞ modulo H.

We can now express the integral (2.1) as an integral on Rmþv:I
G=H

fðgÞd�G=HðgÞ ¼
Z
Rmþv

fðEðt; rÞÞdtdr; f 2 DðG=HÞ;

(see [6]).

DEFINITION 2.3. Let Dt;r be the space of all differential operators on Rmþv with

polynomial coefficients and let SE ðG; n; l; hÞ be the space of all functions � 2 H �l;H such

that

1. � is smooth,

2.

k�k2a;D :¼
Z
Rmþv

eaktkjDð� � EÞðt; rÞj2dtdr <1; 8a 2 Rþ; 8D 2 Dt;r:

(Here ktk denotes a norm on Rmþv.)

Remark that this space is independent of the choice of coexponential bases (see [6]).
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2.1. SE -space and C1 vectors.

We shall define an exponential solvable group F � G such that its Lie algebra f is of

the form f ¼ gn a, where a is an abelian ideal and ½nþ h; a� ¼ f0g. We also show that

any linear functional l0 of f whose restriction to g equals l satisfies the condition

dimðfðl0ÞÞ ¼ dimðgðlÞÞ þ dimðaÞ, where fðl0Þ ¼ fX 2 f; l0ð½X; f�Þ ¼ f0gg, which implies

that G � l0 ¼ F � l0, and show that p :¼ hþ a is a polarization at l0 with the Pukanszky

condition.

For every l0, we have that the restriction �l0;P jG of �l0;P to G and �l;H are equivalent;

the G-equivariant unitary mapping Rl0 : H �l0 ;P
! H �l;H

Rl0� ¼ �jG

is a unitary intertwining operator and its inverse Sl0 is given by

Sl0 : H �l;H ! H �l0 ;P
; Sl0�ðg expAÞ :¼ e�il0ðAÞ�ðgÞ; g 2 G;A 2 a:

We obtain a new set of norms on the space SE ðG; n; l; hÞ by letting for every element

U 2 U ðfÞ,

k�kl0;U :¼ kd�l0;P ðUÞSl0�k�l0 :

It is easy to see that for every U 2 U ðfÞ, we have a 2 Rþ and an element D 2 Dt;r such

that

k�kl0;U � k�ka;D; for all � 2 SE ðG; n; l; hÞ:

Indeed, if we use the coordinates ðt; rÞ for G=H, then for any X 2 U ðgÞ we have that

d�l;HðXÞ is a differential operator with coefficients which are bounded by eaktkð1þ krkÞk
for some a; k 2 Rþ. This shows that

Sl0ðSE ðG; n; l; hÞÞ � H 1
�l0 ;P

: ð2:2Þ

THEOREM 2.4. Let G ¼ exp g be an exponential solvable Lie group, n be a nilpotent

ideal such that n � ½g; g�, l 2 g�, and h be a polarization at l adapted to n. Then there

exists an exponential solvable Lie group F with Lie algebra f ¼ gn a which satisfies the

following:

(1) a is an abelian ideal of dimension 2m ¼ 2 dimðg=ðnþ hÞÞ and ½nþ h; a� ¼ f0g,
and there exists a coexponential basis fXjg1�j�m for nþ h in g and a basis

fA1; � � � ; Am;B1; � � � ; Bmg of a such that

½Xj;Ak� ¼ �j;kAk; ½Xj;Bk� ¼ ��j;kBk; 1 � j; k � m:

(2) For all extension l1 2 f
� of l, we have dimðfðl1ÞÞ ¼ dimðgðlÞÞ þ dimðaÞ, and the

subalgebra p ¼ hþ a is a Pukanszky polarization at l1 adapted to nþ a.
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(3) There exists an extension l0 2 f
� of l such that the family of norms fk ka;D; a 2 Rþ;

D 2 Dt;rg is equivalent to the family of norms fk kl0;U ; U 2 U ðfÞg and we have that

SE ðG; n; l; hÞ ¼ Rl0ðH 1
�l0 ;P

Þ;

where P ¼ exp p.

PROOF. By (2.2), we have only to show thatSE ðG; n; l; hÞ � Rl0ðH 1
�l0 ;P

Þ. We make

an induction on the dimension of G. If g is abelian or n ¼ g, the statement is trivial.

Suppose that l ¼ 0 on an abelian ideal i 6¼ f0g. Then h � i. Let _gg ¼ g=i, _nn ¼ ðnþ iÞ=i,
_hh ¼ h=i, _GG ¼ exp _gg ¼ G=I, I ¼ exp i. Then, denoting quotient maps by q : g ! g=i,

Q : G! G=I, we have _�� 2 b_GG_GG such that _�� �Q ¼ �, and we have _�� ¼ ind
_GG
_HH
� _ll, where

_ll � q ¼ l. By the induction hypothesis for ð _GG; _nn; _ll; _hhÞ, there exist an exponential solvable

Lie group _FF ¼ exp _ff, _ff ¼ _ggn _aa and an extension _ll0 2 _ff� of _ll with the required properties.

Let f ¼ gn _aa defined by ½X; _AA� :¼ ½qðXÞ; _AA� forX 2 g, _AA 2 _aa, and an extension l0 2 f
�

of l be defined by l0j _aa ¼ _ll0. Then we have that f and l0 has the required properties for

ðG; n; l; hÞ.
Suppose l 6¼ 0 on any non-zero abelian ideal. Let g1 be a minimal ideal contained

in n.

Then there are following possibilities (see [6]):

(1) g1 is non-central. Then dimðg1Þ ¼ 1 or 2:

a) There exist Y 2 g1, � 2 g�, and X 2 g� such that g1 ¼ RY , lðY Þ ¼ 1,

½U; Y � ¼ �ðUÞY for all U 2 g;

�ðXÞ ¼ 1:

b) There exist Y1; Y2 2 g1, � 2 g�, ! 2 R n f0g and X 2 g� such that lðY1Þ 6¼ 0,

g1 ¼ RY1 	RY2, and

½U; Y1� ¼ �ðUÞðY1 � !Y2Þ; ½U; Y2� ¼ �ðUÞð!Y1 þ Y2Þ for all U 2 g�;

�ðXÞ ¼ 1:

(2) g1 is the center of g. Then g1 is one dimensional because of the assumption of l.

Let Z 2 g1 such that lðZÞ ¼ 1.

(2-1) Suppose first that g1 is properly contained in n. Let g2 be a minimal ideal

modulo g1 such that g2 � n. Then

a) g2 is two-dimensional and there exist Y 2 kerðlÞ \ g2, X 2 ½g; g� \ kerðlÞ;
T 2 kerðlÞ, �; � 2 g� such that

½U; Y � ¼ �ðUÞY þ �ðUÞZ for all U 2 g; ð2:3Þ

�ðT Þ ¼ 1; �ðXÞ ¼ 0; �ðT Þ ¼ 0; �ðXÞ ¼ 1:
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Then we have ½T;X� 2 �X þ ðkerð�Þ \ kerð�ÞÞ, and kerð�Þ þ n ¼ g.

b) g2 is two-dimensional and there exist Y 2 kerðlÞ \ g2, X 2 kerðlÞ; � 2 g�

such that

½U; Y � ¼ �ðUÞZ for all U 2 g; ð2:4Þ
�ðXÞ ¼ 1:

Then we have two subcases:

b-1) nþ kerð�Þ ¼ g.

b-2) nþ kerð�Þ 6¼ g (here � is necessarily 0).

c) g2 is 3-dimensional and there exist Y1; Y2 2 g2 \ kerðlÞ, X1; X2 2 ½g; g� \
kerðlÞ; T 2 kerðlÞ, �; �1; �2 2 g�; ! 2 R�, such that for all U 2 g

½U; Y1� ¼ �ðUÞðY1 � !Y2Þ þ �1ðUÞZ;
½U; Y2� ¼ �ðUÞð!Y1 þ Y2Þ þ �2ðUÞZ;

ð2:5Þ

�jðXiÞ ¼ �i;j; i; j ¼ 1; 2; �1ðT Þ ¼ �2ðT Þ ¼ 0;

0 ¼ �ðX1Þ ¼ �ðX2Þ; �ðT Þ ¼ 1:

Then we have nþ kerð�1Þ \ kerð�2Þ ¼ g.

(2-2) Suppose now that RZ ¼ g1 ¼ n. Then nl ¼ g. Since the center is one

dimensional, our g is the Heisenberg algebra, if g is not abelian, which we

assume. We can take a basis fX1; � � � ; Xn; Y1; � � � ; Yn; Zg such that ½Xi; Yj� ¼
�i;jZ (i; j ¼ 1; � � � ; n) and so that h is spanned by fY1; � � � ; Yn; Zg.

CASE (1): Let k :¼ kerð�Þ. Then k is an ideal, k � nþ nl, and g1 � h � k. We have

� ¼ indGK�1, where �1 ¼ indKH�l, K ¼ exp k.

By the induction hypothesis for ðK; n; ljk; hÞ, there exists ~FF ¼ exp~ff such that

kn ~aa ¼ ~ff, where ~aa is an abelian ideal such that ½nþ h; ~aa� ¼ f0g, with the required

properties: For all extension l1 2 ~ff� of ljk, we have dimð~ffðl1ÞÞ ¼ dimðkðljkÞÞ þ dimð~aaÞ, and
the subalgebra ~pp ¼ hþ ~aa is a Pukanszky polarization at l1. And there exists an extension
~ll 2 ~ff� of ljk such that the corresponding family of norms are equivalent and such that

SE ðK; n; ljk; hÞ ¼ R~llðH
1
�~ll; ~PP

Þ:

We have in case (1) a) that ½X; Y � ¼ Y , and in case (1) b) that ½X; Y1� ¼ Y1 � !Y2,

½X; Y2� ¼ !Y1 þ Y2, and in both cases that ½g1; k� ¼ f0g.
Let a ¼ ~aa	RA	RB be an abelian Lie algebra, and f ¼ gn a defined by

f ¼ g	 a ¼ RX 	 k	 ~aa	RA	RB;

½A;~ff� ¼ ½B;~ff� ¼ f0g; ½X;A� ¼ A; ½X;B� ¼ �B; ½~aa; X� ¼ f0g:

1086 J. INOUE and J. LUDWIG



Let e ¼ ~ff	RA	RB ¼ k	 ~aa	RA	RB, E ¼ exp e, F ¼ exp f.

By the assumption of l and ½g1; k� ¼ f0g, we have that dimðg1=ðgðlÞ \ g1ÞÞ ¼ 1 and

dimðgðlÞÞ þ 1 ¼ dimðkðljkÞÞ. Let l0 2 f
� be an extension of l and l1 ¼ l0j~ff. We also have

that dimðg1=ðfðl0Þ \ g1ÞÞ ¼ 1 and dimðfðl0ÞÞ ¼ dimð~ffðl1ÞÞ þ 1. In fact, suppose first that

l0jRAþRB 6¼ 0. If l0ðAÞl0ðBÞ 6¼ 0 and C ¼ 	Aþ 
B 2 kerðl0Þ n f0g, where 	; 
 2 R, then

C0 :¼ 	A� 
B =2 kerðl0Þ, ½X;C0� ¼ C, ½X;C� ¼ C0, and the mapping ~ffðl1Þ 	RC0 3 V 7!
V � ððl0ð½X; V �ÞÞ=ðl0ðC0ÞÞÞC 2 fðl0Þ gives a linear isomorphism of ~ffðl1Þ 	RC0 and fðl0Þ.
If l0ðAÞ ¼ 0 and l0ðBÞ 6¼ 0, then taking Y0 2 g1 n fðl0Þ, we have ~ffðl1Þ 	RA	RB ¼
fðl0Þ 	RY0. Similarly, if l0jRAþRB ¼ 0, then fðl0Þ � RA	RB and taking Y0 2 g1 n fðl0Þ,
we have ~ffðl1Þ 	RA	RB ¼ fðl0Þ 	RY0. Since dimð~ffðl1ÞÞ ¼ dimðkðljkÞÞ þ dimð~aaÞ, we

have

dimðfðl0ÞÞ ¼ dimð~ffðl1ÞÞ þ 1 ¼ dimðkðljkÞÞ þ dimð~aaÞ þ 1

¼ dimðkðljkÞÞ þ dimðaÞ � 1 ¼ dimðgðlÞÞ þ dimðaÞ:

Since ~pp ¼ hþ ~aa is a Pukanszky polarization at l0j~ff adapted to nþ ~aa and RA	RB

is central in e, we also have that p ¼ ~pp	RA	RB is a Pukanszky polarization at l0
adapted to nþ a. Letting l0 be an extension of ~ll such that l0ðBÞ 6¼ 0, and ~�� ¼ �~ll; ~PP ¼
ind

~FF
~PP
�~ll, we realize � ¼ �l0 ¼ indEP�l0 in H ~�� by �ð~xxaÞv ¼ �l0ðaÞ~��ð~xxÞv for v 2 H ~��, ~xx 2 ~FF ,

a 2 expðRAþRBÞ.
Now, we realize �l0;P ¼ indFP�l0 as indFE�l0 on L2ðR;H ~��Þ. Then for � ¼ �ðxÞ 2

L2ðR;H ~��Þ, we have in case (1) a)

d�l0;P ðXÞ�ðxÞ ¼ �
d

dx
�ðxÞ;

d�l0;P ðAÞ�ðxÞ ¼ il0ðAÞe�x�ðxÞ;
d�l0;P ðBÞ�ðxÞ ¼ il0ðBÞex�ðxÞ;
d�l0;P ðY Þ�ðxÞ ¼ ie�x�ðxÞ;
d�l0;P ðV Þ�ðxÞ ¼ d~��ðAdðexpð�xXÞÞV Þð�ðxÞÞ; V 2 ~ff

ð2:6Þ

and in case (1) b)

d�l0;P ðXÞ�ðxÞ ¼ �
d

dx
�ðxÞ;

d�l0;P ðAÞ�ðxÞ ¼ il0ðAÞe�x�ðxÞ;
d�l0;P ðBÞ�ðxÞ ¼ il0ðBÞex�ðxÞ;
d�l0;P ðY1Þ�ðxÞ ¼ ie�x lðY1Þ cosð!xÞ þ lðY2Þ sinð!xÞð Þ�ðxÞ;
d�l0;P ðY2Þ�ðxÞ ¼ ie�x �lðY1Þ sinð!xÞ þ lðY2Þ cosð!xÞð Þ�ðxÞ;
d�l0;P ðV Þ�ðxÞ ¼ d~��ðAdðexpð�xXÞÞV Þð�ðxÞÞ; V 2 ~ff:

ð2:7Þ

Since we can regard

G=H ¼ ðG=KÞðK=HÞ ¼ ðG=KÞðK=NHÞðNH=HÞ;
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we can use the coordinates t; r for K=H, and for G=K we use the coordinate x. We show

that for a 2 R and D ¼ @n

@xn

Dt;r, Dt;r 2 Dt;r there exists a finite family fU1; � � � ; UNg

in U ðfÞ, such that k ka;D �
PN

j¼1 k kl0;Uj . Indeed, by the induction hypothesis, there

exists a finite family f ~UU1; � � � ; ~UU ~NNg in U ð~ffÞ, such thatZ
K=H

eaktkjDt;r�ðexpðxXÞEðt; rÞÞj2dtdr

�
X~NN
j¼1

Z
~FF= ~PP

jd~��ð ~UUjÞS~ll�ðexp ðxXÞkÞj2d� ~FF= ~PP ðkÞ
 !1=2

0@ 1A2

� ~NN2 sup
j¼1;���; ~NN

Z
~FF= ~PP

jd~��ð ~UUjÞS~ll�ðexp ðxXÞkÞj2d� ~FF= ~PP ðkÞ

for all � 2 SE ðG; n; l; hÞ.
Let di be the degree of ~UUi in U ð~ffÞ and let fV i

1 ; � � � ; V i
Mi
g be a basis of U ð~ffÞdi , the

subspace of U ð~ffÞ consisting of the elements of degree � di. Then AdðexpðxXÞÞ ~UUi ¼PMi

j¼1  
i
jðxÞV i

j ; x 2 R, where the functions  ij are C
1 and are bounded by exponential

functions. Therefore

~UUi ¼ Adðexpð�xXÞÞðAdðexpðxXÞÞ ~UUiÞ ¼
XMi

j¼1

 ijðxÞAdðexpð�xXÞÞV i
j ð2:8Þ

and so

k�k2a;c;D

¼
Z
R

Z
K=H

ecjxjeaktk
@n

@xn
Dt;r�ðexpðxXÞEðt; rÞÞ

���� ����2dxdtdr
�
Z
R

ecjxj ~NN2 sup
i¼1;���; ~NN

Z
~FF= ~PP

d~��ð ~UUiÞS~ll

@n

@xn
�ðexpðxXÞkÞ

���� ����2d� ~FF= ~PP ðkÞdx

�
Z
R

~NN2ecjxj

X~NN
i¼1

M2
i

Z
~FF= ~PP

j ijðxÞj
2
XMi

j¼1

d~��ðAdðexpð�xXÞÞV i
j ÞS~ll

@n

@xn
�ðexpðxXÞkÞ

���� ����2d� ~FF= ~PP ðkÞdx

� ~NN2
X~NN
i¼1

XMi

j¼1

M2
iZ

R

Z
~FF= ~PP

ecjxjj ijðxÞj
2 d~��ðAdðexpð�xXÞÞV i

j ÞS~ll

@n

@xn
�ðexp ðxXÞkÞ

���� ����2d� ~FF= ~PP ðkÞdx

� ~NN2
X~NN
i¼1

XMi

j¼1

M2
i

Z
R

Z
~FF= ~PP

Ci;je
	i;jjxj d�l0;P ðV i

j Þ
@n

@xn
Sl0�ðexp ðxXÞkÞ

���� ����2d� ~FF= ~PP ðkÞdx
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with some constant Ci;j; 	i;j 2 Rþ. It follows now from the formulas in (2.6) and (2.7),

that there exists a finite family U1; � � � ; UN in U ðfÞ, such that

k ka;c;D �
XN
j¼1

k kl0;Uj

and so

SE ðG; n; l; hÞ ¼ Rl0ðH 1
�l0 ;P

Þ:

CASE (2-1) a), b), c): g1 6¼ n. Let k ¼ kerð�Þ in case a) and b), resp. k ¼ kerð�1Þ \
kerð�2Þ in case c), and k0 ¼ fU 2 g; ½U; g2� ¼ f0gg. We remark that g2 \ gðlÞ ¼ g1 and

kðljkÞ ¼ gðlÞ þ g2 because of our assumption. Thus we have dimðkðljkÞÞ ¼ dimðgðlÞÞ þ 1

in cases a) and b), resp. dimðkðljkÞÞ ¼ dimðgðlÞÞ þ 2 in case c).

We have two possibilities: either i): g2 � h, or ii): g2 6� h.

CASE (2-1) a), b), c); i): We begin with case i). Then h must be contained in k.

If not, there exists X0 2 h n k. But then X0 ¼ 	T þ 
X þX0 where 
 2 R, 
 6¼ 0, X0 2 k0

(in case a), X0 ¼ 	X þX0 with X0 2 k, 	 6¼ 0 (in case b), X0 ¼ 	T þ 
X1 þ �X2 þX0

where 	; 
; � 2 R, 
2 þ �2 6¼ 0, X0 2 k0 (in case c) and so by (2.3), (2.4) and (2.5),

f0g ¼ lð½X0; g2�Þ ¼ lð½X0;RY1 þRY2�Þ ¼ lðð
Rþ �RÞZÞ 6¼ f0g;

since g2 � h in case c) and similarly in the other two cases. This contradiction tells us

that h � k.

Hence we have � ¼ indGKðindKH�lÞ, and by the induction hypothesis for

ðK; k \ n; ljk; hÞ, there exists ~ff ¼ kn ~aa such that ½~aa; ~aa� ¼ f0g, ½~aa; ðk \ nÞ þ h� ¼ f0g, and
having the required properties: dimð~ffðl1ÞÞ ¼ dimð~aaÞ þ dimðkðljkÞÞ holds for any extension

l1 2 ~ff� of ljk, the subalgebra ~pp ¼ hþ ~aa is a polarization at ~ll, and there exists an extension
~ll such that

SE ðK; k \ n; ljk; hÞ ¼ R~llðH
1
�~ll; ~PP

Þ:

We first treat case a), b-1), and c). Recalling g ¼ RX 	 k in case a) and b-1), resp.

g ¼ RX1 	RX2 	 k, in case c), we define a ¼ ~aa, and f ¼ gn a by ½RX; a� ¼ f0g, resp.
½RX1 þRX2; a� ¼ f0g. Let p ¼ hþ a ð¼ ~ppÞ. Then, for an extension l0 2 f

� of l and

l1 ¼ l0j~ff, we have dimð~ffðl1ÞÞ ¼ dimðfðl0ÞÞ þ 1 in case a) and b-1) and dimð~ffðl1ÞÞ ¼
dimðfðl0ÞÞ þ 2 in case c), and, by the induction hypothesis dimð~ffðl1ÞÞ ¼ dimðaÞ þ
dimðkðljkÞÞ, we have

dimðfðl0ÞÞ ¼ dimð~ffðl1ÞÞ � 1 ¼ dimðaÞ þ dimðkðljkÞÞ � 1 ¼ dimðaÞ þ dimðgðlÞÞ

in a) and b),

dimðfðl0ÞÞ ¼ dimð~ffðl1ÞÞ � 2 ¼ dimðaÞ þ dimðkðljkÞÞ � 2 ¼ dimðaÞ þ dimðgðlÞÞ
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in case c). Thus p is a polarization at l0, and p is adapted to nþ a.

Let l0 be an extension of ~ll, and we realize in case a) and b-1), �l0;P ¼ indFP�l0 as

indF~FF ~��, where ~�� ¼ ind
~FF
P�l0 , on L

2ðR;H ~��Þ. For � ¼ �ðxÞ 2 C1ðR;H ~��Þ, we have

d�l0;P ðXÞ�ðxÞ ¼ �
d

dx
�ðxÞ; ð2:9Þ

d�l0;P ðT Þ�ðxÞ ¼
1

2
þ x

d

dx
þ d~��ðT þ P ðxÞÞ

� �
�ðxÞ; ð2:10Þ

d�l0;P ðV Þ�ðxÞ ¼ d~��ðAdðexpð�xXÞÞV Þð�ðxÞÞ; V 2 k0 þ a; ð2:11Þ
d�l0;P ðY Þ�ðxÞ ¼ �ixð�ðxÞÞ; ð2:12Þ

where P ðxÞ is a k0-valued polynomial in x, in case a). In case b-1) we have (2.9), (2.11)

and (2.12). In case c) we have G ¼ expRX1 expRX2K and we realize �l0;P ¼ indFP�l0 as

indF~FF ~��, where ~�� ¼ ind
~FF
P�l0 , on L

2ðR2;H ~��Þ. For � ¼ �ðx1; x2Þ 2 C1ðR2;H ~��Þ, we have

d�l0;P ðX1Þ�ðx1; x2Þ ¼ �
@

@x1
�ðx1; x2Þ;

d�l0;P ðX2Þ�ðx1; x2Þ ¼ �
@

@x2
�ðx1; x2Þ þ d~��ðQðx1; x2ÞÞ�ðx1; x2Þ;

d�l0;P ðT Þ�ðx1; x2Þ ¼ 1þ ðx1 � !x2Þ
@

@x1
þðx1!þ x2Þ

@

@x2
þd~��ðT þ Rðx1; x2ÞÞ

� �
�ðx1; x2Þ;

d�l0;P ðV Þ�ðx1; x2Þ ¼ d~��ðAdðexpð�x2X2Þ expð�x1X1ÞÞV Þð�ðx1; x2ÞÞ; V 2 k0 þ a;

d�l0;P ðY1Þ�ðx1; x2Þ ¼ �ix1ð�ðx1; x2ÞÞ;
d�l0;P ðY2Þ�ðx1; x2Þ ¼ �ix2ð�ðx1; x2ÞÞ;

where Qðx1; x2Þ; Rðx1; x2Þ are k0-valued polynomial in x1; x2. Remarking that

Adðexpð�x2X2Þ expð�x1X1ÞÞV is also a polynomial in x1; x2 since X1; X2 2 ½g; g�, we

can show similarly as in case (1), that the family of norms fk ka;D; a 2 Rþ; D 2 Dt;rg
is equivalent to the family of norms fk kl0;U ; U 2 U ðfÞg and so we have that in case a),

case b-1) and c)

� 2 Rl0ðH 1
�l0 ;P

Þ () � 2 SE ðG; n; l; hÞ:

We next treat case b-2). We define a ¼ ~aaþRAþRB and f ¼ gn a with

½X;A� ¼ A; ½X;B� ¼ �B; ½A;~ff� ¼ ½B;~ff� ¼ f0g;

and p ¼ hþ a ¼ ~ppþRAþRB. Let l0 2 f� be an extension of l. Then it can be deduced

as in case (1) that dimðfðl0ÞÞ ¼ dimðgðlÞÞ þ dimðaÞ and p is a polarization at l0 adapted to

nþ a. Let e ¼ ~ff	RA	RB, and E ¼ exp e. We take an extension l0 of ~ll such that

l0ðAÞ 6¼ 0 and l0ðBÞ 6¼ 0, and realize � ¼ indEP�l0 in H ~�� by �ðkaÞ� ¼ �l0ðaÞ~��ðkÞ� for

� 2 H ~��, k 2 K, a 2 expðRAþRBÞ. As in case (1), we realize �l0;P ¼ indFP�l0 ¼ indFE� in
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L2ðR;H ~��Þ, and we have

d�l0;P ðXÞ�ðxÞ ¼ �
d

dx
�ðxÞ;

d�l0;P ðAÞ�ðxÞ ¼ il0ðAÞe�x�ðxÞ;
d�l0;P ðBÞ�ðxÞ ¼ il0ðBÞex�ðxÞ;
d�l0;P ðV Þ�ðxÞ ¼ d~��ðAdðexpð�xXÞÞV Þð�ðxÞÞ; V 2 ~ff;

d�l0;P ðY Þ�ðxÞ ¼ �ix�ðxÞ:

We can also show similarly as in case (1) that

� 2 Rl0ðH 1
�l0 ;P

Þ () � 2 SE ðG; n; l; hÞ:

CASE (2-1) a), b), c); ii): We come now to case ii). Now h 6� k. We take

h
0 :¼ h \ kþ g2. Since nl � gl2 ¼ k, and h is adapted to n, which implies h ¼ ðh \ nÞ þ

ðh \ nlÞ, we may choose subspaces X � n \ kerðlÞ and Y � g2 \ kerðlÞ so that h ¼
X 	 ðh \ kÞ and h

0 ¼ Y 	 ðh \ kÞ. We remark that h0 is a polarization at l adapted to n

and dimðX Þ ¼ dimðY Þð� 2Þ. Applying the result i) above to ðG; l; n; h0Þ, we have f ¼
gn a with an abelian ideal a with the required properties; ½nþ h

0; a� ¼ f0g, dimðfðl0ÞÞ ¼
dimðgðlÞÞ þ dimðaÞ for any extension l0 2 f

� of l, and there exists an extension l0 such that

� 2 Rl0ðH 1
�l0 ;P 0 Þ () � 2 SE ðG; n; l; h0Þ;

where p0 ¼ h
0 þ a, P 0 ¼ exp p0.

Let p ¼ hþ a ¼ X 	 ðh \ kÞ 	 a and P ¼ exp p. Since X � n, we have ½nþ h; a� ¼
f0g, and the subalgebra p is also a Pukanszky polarization at l0 adapted to nþ a. We

take a subspace M � n such that n ¼ M 	X 	 ðn \ kÞ. (We regard M ¼ f0g if

hþ k ¼ g.) Then we have

NH=H ¼ ðexpM expX ðN \KÞH=G2HÞðG2H=HÞ
¼ ðexpM ðN \KÞ=ðN \K \HÞG2ÞðexpY Þ;

NH 0=H 0 ¼ expX expM ðN \KÞH 0=H 0

¼ expX ðexpM ðN \KÞ=ðN \K \HÞG2Þ:

Remarking that n \ k ¼ n \ k0, we can take coexponential bases fYi; Rjg for n \ h in n

and fXi;Rjg for n \ h
0 in n so that fXigi¼1;dimðX Þ is a basis of X , fYigi¼1;dimðY Þ is a basis

of Y , and fRjgj¼1;���;w is a coexponential basis for n \ h
0 ð¼ ðn \ k \ hÞ þ g2 ¼ ðn \ k0 \

hÞ þ g2Þ in M 	 ðn \ kÞ ð¼ M 	 ðn \ k0ÞÞ, where w :¼ dimððM 	 ðn \ kÞÞ=ðh0 \ nÞÞ. We

identify NH=H ¼ Rw 	 Y by ðr; yÞ 7! EðrÞEðyÞ, and NH 0=H 0 ¼ X 	Rw by ðx; rÞ 7!
EðxÞEðrÞ, where EðrÞ :¼ exp r1R1 � � � exp rwRw, EðxÞ :¼ expðx1X1Þ, EðyÞ :¼ expðy1Y1Þ
(for the case of dimðX Þ ¼ 1), EðxÞ :¼ expðx1X1Þ expðx2X2Þ, EðyÞ :¼ expðy1Y1Þ expðy2Y2Þ
(for the case of dimðX Þ ¼ 2.)
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The intertwining operator u between the space of indGH�l and indGH 0�l is given by

u�ðgÞ ¼
I
H 0=H 0\H

�ðgyÞ�lðyÞ��1=2
G;H 0 ðyÞdy; � 2 H �l;H

(see [2]), which is in our coordinates ðx; rÞ for NH 0=H 0, ðr; yÞ for NH=H, and t for

G=NH 0 ¼ G=NH given by

u�ðt; x; rÞ ¼
Z
RdimðY Þ

�ðt; rðxÞ; yÞe�il ½x;y��½x;gðxÞ�þhðxÞð Þdy;

where rðxÞ is aRw-valued polynomial, hðxÞ is an h \ n \ k0-valued polynomial and gðxÞ is
a Y -valued polynomial in x such that EðxÞEðrÞEðxÞ�1 ¼ EðrðxÞÞ exp gðxÞ exphðxÞ.
Hence the operator u maps SE ðG; n; l; hÞ onto SE ðG; n; l; h0Þ. Therefore,

SE ðG; n; l; hÞ ¼ u�1ðuðSE ðG; n; l; hÞÞÞ
¼ u�1ðRl0ðH 1

�l0 ;P 0 ÞÞ

¼ Rl0ðH 1
�l0 ;P

Þ:

CASE (2-2): n ¼ g1. We define f ¼ gn a, where a is an abelian ideal spanned by

fA1; � � � ; An; B1; � � � ; Bng, by ½Xj;Ak� ¼ �j;kAj, ½Xj;Bk� ¼ ��j;kBj, ½Yj; Ak� ¼ ½Yj; Bk� ¼ 0

ðj; k ¼ 1; � � � ; nÞ. Let p :¼ hþ a. Then for all extension l0 2 f� of l we have that fðl0Þ is

spanned by fZ; Aj � l0ðAjÞYj; Bj þ l0ðBjÞYj; 1 � j � ng and dimðfðl0ÞÞ ¼ dimðgðlÞÞ þ
dimðaÞ since gðlÞ ¼ RZ. Thus p is a polarization at l0 adapted to nþ a. We choose an

extension l0 such that l0ðAjÞ 6¼ 0, l0ðBjÞ 6¼ 0 for all j ¼ 1; � � � ; n, and realize �l0;P as

indFP�l0 on L
2ðRnÞ. Then for smooth functions � ¼ �ðx1; � � � ; xnÞ 2 L2ðRnÞ, we have

d�l0;P ðXjÞ�ðx1; � � � ; xnÞ ¼ �
@

@xj
�ðx1; � � � ; xnÞ;

d�l0;P ðAjÞ�ðx1; � � � ; xnÞ ¼ il0ðAjÞe�xj�ðx1; � � � ; xnÞ;
d�l0;P ðBjÞ�ðx1; � � � ; xnÞ ¼ il0ðBjÞexj�ðx1; � � � ; xnÞ;
d�l0;P ðYjÞ�ðx1; � � � ; xnÞ ¼ iðl0ðYjÞ � xjÞ�ðx1; � � � ; xnÞ; j ¼ 1; � � � ; n:

Noting that G=NH ¼ G=H, we get

SE ðG; n; l; hÞ ¼ Rl0ðH 1
�l0 ;P

Þ:

�

2.2. SE1-space and ASE -space.

Using our SE -space, we shall describe the ASE -space introduced in [7], where it

is denoted by ES (see Remark 2.7). Let G ¼ exp g, n, l 2 g� be as above, h be a

polarization at l adapted to n, and hn ¼ h \ n. Let PðhÞ be the set of all the polarizations

1092 J. INOUE and J. LUDWIG



�hh at l such that �hh \ n ¼ hn and �hh is adapted to n. By Remark 2.2, a polarization �hh belongs

to PðhÞ if and only if �hh ¼ h0 þ hn, where h0 � nl is a polarization at ljnl . Let �HH ¼ exp �hh,

and we denote by T h�hh : H �l; �HH
! H �l;H the intertwining operator of indG�HH�l and indGH�l;

T h�hh�ðgÞ ¼
I
H=ðH\ �HHÞ

�ðgyÞ�lðyÞ��1=2
G;H ðyÞd�H=ðH\ �HHÞðyÞ; � 2 H �l; �HH

(see [2]).

DEFINITION 2.5. We define

SE1ðG; n; l; hÞ :¼ \�hh2PðhÞT h�hhðSE ðG; n; l; �hhÞÞ:

We also define the space ASE ðG; n; l; hÞ ([6], [7]). Recall that for defining

SE ðG; n; l; hÞ, we regard G=H ¼ ðG=NHÞ � ðNH=HÞ ¼ Rmþv; now we decompose

G=H as

G=H ¼ ðG=NlNÞ � ðNlN=NHÞ � ðNH=HÞ ¼ R�þuþv;

where m ¼ � þ u, taking coexponential bases fT1; � � � ; T�g for nl þ n in g, fS1 :¼
T�þ1; � � � ; Su :¼ T�þug for nþ h in nl þ n, fR1; � � � ; Rvg for h in nþ h, and letting

R� 3 t = ðt1; � � � ; t�Þ 7! EðtÞ = exp t1T1 � � � exp t�T�, Ru 3 s = ðs1; � � � ; suÞ 7! EðsÞ =

exp s1S1 � � � exp suSu, Rv 3 r ¼ ðr1; � � � ; rvÞ 7! EðrÞ ¼ exp r1R1 � � � exp rvRv, and R�þuþv 3
ðt; s; rÞ 7! Eðt; s; rÞ ¼ EðtÞEðsÞEðrÞ.

DEFINITION 2.6. Let Dt;s;r be the space of all differential operators on R�þuþv with

polynomial coefficients and let ASE ðG; n; l; hÞ be the space of all functions � 2 H �l;H

such that

1. � is smooth,

2.

k�k2a;b;D :¼
Z
R�þuþv

eaktkebkskjDð� � EÞðt; s; rÞj2dtdsdr <1; 8 ða; bÞ 2 R2
þ; D 2 Dt;s;r:

3. The same conditions 1 and 2 hold for the partial Fourier transform �̂�s of � in s,

where

�̂�sðt; s; rÞ ¼
Z
Ru
� � Eðt; x; rÞeihx;sidx:

REMARK 2.7. The space ASE is also independent of the choice of coexponential

bases. We have SE ðG; n; l; hÞ � ASE ðG; n; l; hÞ; A function � 2 SE ðG; n; l; hÞ belongs
to ASE ðG; n; l; hÞ if and only if � satisfies the condition 3 above. In the paper [7] this

space has been denoted by ES ðG; n; l; hÞ. We write here the letter A in front to indicate

that the functions � contained in ASE ðG; n; l; hÞ are analytic in the direction x. It has
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been shown in [7] and [1] that for � and  in ASE ðG; n; l; hÞ there exists a function

f 2 L1ðGÞ and more precisely in the subalgebra SE ðGÞ (see section 4), such that

�l;Hfð�Þ ¼ h�;  i�; � 2 H �l;H :

THEOREM 2.8. Let G ¼ exp g, n, l, h be as above. Then we have

SE1ðG; n; l; hÞ ¼ ASE ðG; n; l; hÞ:

PROOF. The proof is by induction on dimðgÞ. We shall use the framework of

induction in the proof of Theorem 2.4.

If n ¼ f0g, the statement is trivial. Suppose that l ¼ 0 on an abelian ideal i 6¼ f0g,
and let _GG; _nn; _ll; _hh; _�� be as in the proof of Theorem 2.4. Then we get the conclusion by

the induction hypothesis for ð _GG; _nn; _ll; _hhÞ and _�� because we can naturally identify

SE1ð _GG; _nn; _ll; _hhÞ with SE1ðG; n; l; hÞ and ASE ð _GG; _nn; _ll; _hhÞ with ASE ðG; n; l; hÞ.
Suppose l 6¼ 0 on any non-zero abelian ideal. Taking a minimal ideal g1 contained in

n, we use the same notations as those in the proof of Theorem 2.4.

CASE (1): Letting k :¼ kerð�Þ, K ¼ exp k, we have �hh � k for all �hh 2 PðhÞ and

SE1ðK; n; ljk; hÞ ¼ ASE ðK; n; ljk; hÞ

by the induction hypothesis. Since k is an ideal including nl þ n, we have

G=NlN ¼ ðG=KÞðK=NlNÞ;

and obtain the conclusion SE1ðG; n; l; hÞ ¼ ASE ðG; n; l; hÞ.

CASE (2-1) a),b),c): g1 6¼ n. Let k ¼ kerð�Þ in case a) and b), resp. k ¼ kerð�1Þ \
kerð�2Þ in case c).

CASE (2-1) a),b),c); i): g2 � h. Then any polarization �hh 2 PðhÞ is contained in k. We

have nþ k ¼ g in cases a),b-1),c), n � k in case b-2). Since

ðk \ nÞljk ¼ n
l þ g2;

and

G=NlN ¼
K=ðK \NÞljkðK \NÞ cases a),b-1),c)

ðG=KÞðK=NlNÞ ¼ ðG=KÞðK=ðK \NÞljkðK \NÞÞ case b-2),

(

NlN=NH ¼ NlðK \NÞ=ðK \NÞH ¼ ðK \NÞljkðK \NÞ=ðK \NÞH

we can deduce the conclusion from the induction hypothesis
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SE1ðK; k \ n; ljk; hÞ ¼ ASE ðK; k \ n; ljk; hÞ:

CASE (2-1) a),b),c); ii): g2 6� h. Then �hh 6� k for any polarization �hh 2 PðhÞ. Let

h
0 ¼ ðh \ kÞ þ g2, and according to the notations in case (2-1) a),b),c) ii) of the proof

of Theorem 2.4, we have h ¼ X 	 ðh \ kÞ, X � n \ kerðlÞ and h
0 ¼ ðh \ kÞ 	 Y , Y �

g2 \ kerðlÞ, and we identify NH=H ¼ Rw 	 Y by ðr; yÞ 7! EðrÞEðyÞ, and NH 0=H 0 ¼
X 	Rw by ðx; rÞ 7! EðxÞEðrÞ. Then the intertwining operator T h0h is given by

T h
0
h�ðt; s; x; rÞ ¼

Z
RdimðY Þ

�ðt; s; rðxÞ; yÞe�ilð½x;y��½x;gðxÞ�þhðxÞÞdy; ð2:13Þ

where rðxÞ, hðxÞ and gðxÞ are polynomials whose values are in Rw, h \ n \ k0 and Y ,

respectively. Thus we have

T h
0
hðASE ðG; n; l; hÞÞ ¼ ASE ðG; n; l; h0Þ:

For any polarization �hh ¼ h0 þ hn 2 PðhÞ, letting �hh0 ¼ ð�hh \ kÞ þ g2, we also get the

expression of T �hh0�hh as (2.13), and we have

T �hh0�hhðSE ðG; n; l; �hhÞÞ ¼ SE ðG; n; l; �hh0Þ:

Applying the result i) above, we have

SE1ðG; n; l; h0Þ ¼ ASE ðG; n; l; h0Þ:

The set Pðh0Þ consists of polarizations h1 ¼ h0 þ ðh0 \ nÞ ¼ h0 þ ðh \ k \ nÞ þ g2, with

some polarization h0 � nl � k at ljnl . Thus we have Pðh0Þ ¼ fð�hh \ kÞ þ g2; �hh 2 PðhÞg.
Writing �hh0 ¼ ð�hh \ kÞ þ g2 for each �hh 2 PðhÞ, we have

T h
0
hðSE1ðG; n; l; hÞÞ ¼ \�hh2PðhÞT h

0
h �T h�hhðSE ðG; n; l; �hhÞÞ

¼ \�hh2PðhÞT h0h �T h�hh0 �T �hh0�hhðSE ðG; n; l; �hhÞÞ ¼ \�hh2PðhÞT h0h �T h�hh0 ðSE ðG; n; l; �hh0ÞÞ

¼ \�hh02Pðh0ÞT h0�hh0 ðSE ðG; n; l; �hh0ÞÞ ¼ SE1ðG; n; l; h0Þ

¼ ASE ðG; n; l; h0Þ ¼ T h
0
hðASE ðG; n; l; hÞÞ:

Thus we have SE1ðG; n; l; hÞ ¼ ASE ðG; n; l; hÞ.

CASE (2-2): n ¼ g1 whence n
l ¼ g. We can take a basis fX1; � � � ; Xn; Y1; � � � ; Yn; Zg of

g such that ½Xi; Yj� ¼ �i;jZ, lðZÞ ¼ 1, lðXiÞ ¼ lðYiÞ ¼ 0 ði; j ¼ 1; � � � ; nÞ, and h is spanned

by fY1; � � � ; Yn; Zg. Let h2 be a subalgebra spanned by fX1; � � � ; Xn; Zg. Then h2 2 PðhÞ.
We identify G=H with X :¼ RX1 	 � � � 	RXn and G=H2 with Y :¼ RY1 	 � � � 	RYn,

and realize indGH�l and indGH2
�l, respectively. Then the intertwining operator T hh2

is

described by
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T hh2
�ðx1; � � � ; xnÞ ¼

Z
Y

�ðy1; � � � ; ynÞe�iðx1y1þ���þxnynÞdy1 � � � dyn; � 2 H �l;H2
:

Let �0 2 SE ðG; n; l; hÞ \ T hh2
ðSE ðG; n; l; h2ÞÞ. Then �0 ¼ T hh2

� with � 2 SE ðG; n;
l; h2Þ, and we have that � is obtained by Fourier transform of �0, � ¼ c�̂�0 with some

constant c, and � satisfies the conditions 1 and 2 of Definition 2.6, which implies that

�0 2 ASE ðG; n; l; hÞ. Conversely, let h0 be a polarization at l. Taking subspaces Y , W ,

V such that h ¼ Y 	 ðh \ h
0Þ, h

0 ¼ W 	 ðh \ h
0Þ, W � kerðlÞ, and g ¼ V 	W 	 Y 	

ðh \ h
0Þ, we identify G=H with V 	W by ðV ;W Þ 7! expV expW , G=H 0 with V 	 Y by

ðV ; Y Þ 7! expV expY . Then we have

T hh
0�ðV ;W Þ ¼

Z
Y

�ðV ; Y Þe�ilð½W;Y �ÞdY ; � 2 H �l;H0 :

If �0 2 ASE ðG; n; l; hÞ, then the function  :¼ �0 � E has the property that all its

partial Fourier transforms are exponentially decreasing. Hence �0 ¼ T h;h0T
�1
h;h0�0 with

� :¼ T �1
h;h0�0 2 SE ðG; n; l; h0Þ. Thus we have ASE ðG; n; l; hÞ � T hh

0 ðSE ðG; n; l; h0ÞÞ,
and therefore, we have the conclusion SE1ðG; n; l; hÞ ¼ ASE ðG; n; l; hÞ. �

3. The case G ¼ NlN.

Let n again be the nilradical of g and suppose that g ¼ nl þ n. Let hn be a

polarization at ljn, such that ½nl; hn� � hn. and let h0 � nl be any polarization at ljnl . As we

have seen in section 2, the subalgebra h :¼ h0 þ hn is a Pukanszky-polarisation at l.

Taking a subspace x � nl such that g ¼ x	 ðnþ hÞ, and a coexponential basis

fT1; � � � ; Tmg for hn in n, we identify G=H with Rm � x through the mapping

ðt1; � � � ; tm;XÞ 7! Eðt; XÞ ¼ exp t1T1 � � � exp tmTm expX:

Let H ¼ exp h; Hn :¼ expðhnÞ; H0 ¼ exp h0. The invariant linear functional
H
G=H d�G=H is

given in these coordinates byI
G=H

fðgÞd�G=HðgÞ ¼
Z
Rm�x

fðEðt;XÞÞ�G=HðexpXÞdtdX; ð3:14Þ

where �G=HðexpXÞ :¼ e�trn=hn ðadXÞ; X 2 x.

In order to see this, let us denote by �ðfÞ the concrete expression on the right of

equation (3.14). Since hn is nl-invariant, we see that the positive functional � is N-

invariant. If we take Y 2 nl, denoting by �ðgÞ, g 2 G, left translation by g, then
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�ð�ðexpY ÞfÞ ¼
Z
Rm�x

fðexpð�Y ÞEðtÞ expðXÞÞ�G=HðexpXÞdtdX

¼
Z
Rm�x

�G=Hðexpð�Y ÞÞfðEðtÞ expð�Y Þ expðXÞÞ�G=HðexpXÞdtdX

¼
Z
Rm�x

fðEðtÞ expð�Y Þ expðXÞÞ�G=Hðexpð�Y þXÞÞdtdX

¼ �ðfÞ:

The uniqueness of
H
G=H d�ðgÞ tells us that equation (3.14) is valid. In particular, for

every � in the Hilbert space H �l;H ¼ L2ðG=H;�lÞ, the L2-norm of � is given by

k�k22 ¼
I
Rm�x

j�ðEðt;XÞÞj2�G=HðexpXÞdtdX:

Let �l be the unitary character of H whose differential is the linear functional iljh
and let � ¼ �l;H ¼ indGH�l.

DEFINITION 3.1. Let Dt;x be the space of all differential operators on Rm � x with

polynomial coefficients and letS t;x ¼ S ðG; n; l; hÞ be the space of all functions � 2 H �l;H

such that

1. � is smooth,

2.

k�k2D :¼
Z
Rm�x

jDð� � EÞðt;XÞj2�G=HðexpXÞdtdX <1; 8D 2 Dt;x:

Denote by S ðV Þ the Schwartz space of rapidly decreasing smooth functions on the

real finite dimensional vector space V . With this notation, we see that

S t;x ¼ f� : G! C ; ð�G=H � �Þ � E 2 S ðRm � xÞg;

since the mapping D 7!M� �D �M�1
� , D 2 Dt;x, where M� denotes multiplication with

the function �G=H , is a bijection of Dt;x.

THEOREM 3.2. Let G ¼ exp g be an exponential solvable Lie group, let n be the

nilradical of g and let l 2 g�. Suppose that g ¼ nl þ n. Choose a polarization hn at ljn, such

that ½nl; hn� � hn. Then the space H 1 :¼ H 1
�l;H

of the C1 vectors of the representation

� :¼ �l;H and the Fréchet space S t;x coincide.

PROOF. By a theorem of [8], the C1 vectors of the representation � are smooth

functions. For fixed X 2 x and � 2 H 1, we see that the function

N 3 n 7! �XðnÞ ¼ �ðn expðXÞÞ
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satisfies the covariance condition

�XðnhÞ ¼ �lðh�1Þ�XðnÞ; h 2 Hn; n 2 N;

since �lðexpðXÞh expð�XÞÞ ¼ �lðhÞ for all X 2 nl and all h 2 Hn. Therefore, multiplying

� with a smooth function ’ 2 C1
c ðG=HÞ, we obtain an element 
 :¼ ð’�ÞX 2 H 1

�n
(where

�n :¼ indNHn
�ljn) and hence by Kirillov’s theorem, for any element D in Dt, there exists a

uD in the enveloping algebra U ðnÞ such that D ¼ d�nðuDÞ on H 1
�n
. Now, if we let run ’

through an approximate unit, we see that

Dð�Þ ¼ d�ðuDÞ�; � 2 H 1: ð3:15Þ

Hence Dt � d�ðU ðgÞÞ. For Y 2 nl, we have that

�ðexpðY ÞÞ�ðEðt;XÞÞ
¼ �ðexpðt1Adðexpð�Y ÞT1ÞÞ � � � expðtmAdðexpð�Y ÞTmÞÞ expð�Y Þ expðXÞÞ;

for t 2 Rm;X; Y 2 nl: This shows that

ðd�ðY Þð’�ÞÞ � Eðt;XÞ ¼ DY ð’� � EÞðt;XÞ þ d�0ðY Þðð’�ÞtÞðexpðXÞÞ;

where DY is some element in Dt (acting only on the variable t), where ð’�Þt is the

function ð’�ÞtðexpXÞ :¼ ’�ðEðtÞ expðXÞÞ, which is contained in the Hilbert space H 0 of

the representation �0 :¼ indN
l

H0
�ljnl . Together with the relation (3.15) and the fact that

Dx ¼ d�0ðU ðnlÞÞ this shows that Dx is contained in d�ðU ðgÞÞ and finally that

Dt;x ¼ d�ðU ðgÞÞ: ð3:16Þ

In particular, the function ð�G=H�Þ � E is contained in S ðRm � rÞ. Conversely, because
of (3.16) every smooth function 
 defined on G satisfying the covariance condition for H

and �l, such that �G=H
 � E is in S ðRm � rÞ is also contained in H 1. �

4. The space SE ðGÞ.

Let again G ¼ exp g be an exponential solvable Lie group. We shall introduce

special coordinates on G, which will allow us to write the product in G in a particularly

simple way. Let n again be the nilradical of g. Take an element T of g which is in general

position with respect to the roots of g. This means that for any two distinct roots �; �0 of

g we have that �ðT Þ � �0ðT Þ 6¼ 0. This means that the mapping �! �ðT Þ is an injection.

For a root � let

g�;C ¼ fX 2 gC ; ð�ðT ÞI gC
� adðT ÞÞdðXÞ ¼ 0; for some d 2 N �g:

By the usual rules we have that
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½g�;C ; g�0;C � � g�þ�0;C

for two roots �; �0. Then g0 :¼ g0;C \ g is thus a nilpotent Lie subalgebra of g. Since by

Jordan’s theorem

gC ¼ g0;C þ
X
� 6¼0

g�;C

and since g�;C , � 6¼ 0, is contained in ½gC ; gC � � nC , we see that

g ¼ g0 þ n:

Let us choose a subspace t � g0, such that

g ¼ t 	 n:

We can now define a Lie group structure on the Lie algebra k :¼ t 	 nC . We use on

the complexification nC of n the Campbell-Baker-Hausdorff multiplication �C and we can

write for S; S0 2 t

S �C S0 ¼ S þ S0 þ
1

2
½S; S0� þ � � � ¼ ðS þ S0Þ �C mðS; S0Þ;

where m : t � t ! n \ g0 is a polynomial mapping.

We define now on k ¼ t 	 nC a multiplication � in the following way:

ðS þ UÞ � ðS0 þ U 0Þ :¼ S þ S0 þmðS; S0Þ �C ðeadð�S0ÞUÞ �C U 0; U; U 0 2 nC ; S; S
0 2 t: ð4:17Þ

In particular we have the relations

S � U ¼ S þ U; U � S ¼ S þ e�adðSÞU; S 2 t; U 2 nC :

It is easy to check that we obtain in this fashion a simply connected exponential

solvable Lie group K ¼ ðk; �Þ and that this new Lie group contains a closed subgroup

ðg; �Þ, which is isomorphic to G, since g � k. Denote also by NC the subgroup ðnC ; �CÞ of
the Lie group ðk; �Þ.

The Haar measure on the group ðg; �Þ is given by Lebesgue measure dx on the vector

space g. Indeed, for a continuous function � with compact support on g, we have thatZ
g

�ðxÞdx ¼
Z
t�n

�ðT � UÞdUdT

and the left-invariance of this measure follows from the multiplication rule (4.17).
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We define now a space of smooth functions on G, which will replace the well known

Schwartz space of nilpotent Lie groups.

DEFINITION 4.1. Let Dt;n be the space of all differential operators on t þ n with

polynomial coefficients and let SE ðGÞ be the space of all functions � : G! C such that

1. � is smooth,

2.

k�k2a;D :¼
Z
tþn

eaktkjDð�Þðtþ UÞj2dtdU <1; 8 a 2 Rþ; D 2 Dt;n:

The space SE ðGÞ is in fact independent of the choice of the subspace t. Indeed,

for any subspace s of g0 such that s	 n ¼ g, the mapping E : s� n ! g; EðS; UÞ :¼ S � U
is a diffeomorphism, whose coordinate functions are polynomials in U 2 n and all the

partial derivatives of them are exponentially bounded in S. This allows us to write

SE ðGÞ ¼
�
� : G! C ;� smooth;Z

s�n

eakSkjDð�ÞðS � UÞj2dSdU <1;

8 a 2 Rþ; D 2 Ds;n

�
:

We shall show in this section that the space SE ðGÞ is the space of the C1 vectors of an

irreducible representation of a certain exponential solvable Lie group G acting on L2ðGÞ.
Let T :¼ fT1; � � � ; Tmg be a basis of t. Choose a Jordan-Hölder basis B ¼

fT1; � � � ; Tm; U1; � � � ; Upg ¼: fX1; � � � ; Xng of k and for every i ¼ 1; � � � ; n, we choose a

Jordan-Hölder basis Bi ¼ fUi
1; � � � ; Ui

pg for the endomorphism adXi of nC . Then the

coefficients aik;lðtiÞ; ti 2 R, of the matrix of the endomorphism AdðexpðtiXiÞÞ with

respect to the basis Bi are polynomials in ti for i > m, are 0 for k > l and for k ¼ l they

are exponential functions of the form eti	ðTiÞ; i � m, where 	 denotes a root of g. Hence,

by replacing the basis Bi by the basis B, for T ¼
Pm

i¼1 tiTi in t and U 2 n, the

coefficients ak;lðT � UÞ of the matrix of AdðT � UÞ with respect to the basis B are

polynomials in ðt1; � � � ; td; UÞ multiplied by exponential functions �	 of the form

�	ðT � UÞ ¼ ea1t1þ���þamtm . We denote by R0 the family of all these complex valued linear

functionals 	 which appear in this way. Let also R00 be the family of complex linear

functionals of k obtained as sums of j elements of R0, with j � 2p and let

R ¼ f�
; 
 2 R00g

and let ER be the (finite) family of exponential functions of the form e	; 	 2 R.

DEFINITION 4.2. For a function f defined on a group K, let the left and right

translates of f be defined by
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�ðtÞfðgÞ :¼ fðt�1gÞ; �ðtÞfðgÞ :¼ fðgtÞ; g; t 2 K:

Let now W be the span of all the left and right translates by elements of NC of the

complex polynomial functions of degree 1 defined on nC . Then every element of W is of

total degree � 2 dimðnÞ ¼ 2p and so W is finite dimensional and left and right NC -

invariant. Let ðPjÞdj¼1 be a basis of W . For g 2 N we have that the matrix coefficients

ai;j; bi;j defined by

�ðgÞPj ¼
Xd
i¼1

ai;jðgÞPi; �ðgÞPj ¼
Xd
i¼1

bi;jðgÞPi

are also elements of W , hence they are polynomial functions of total degree � 2p. It

follows that for every P 2W , there exist two finite families of elements ofW , ðPiÞi; ðQiÞi,
such that

P ðU � U 0Þ ¼
X
i

PiðUÞQiðU 0Þ; U; U 0 2 nC : ð4:18Þ

We consider now the linear span V of the left translates of all linear functionals

l : k ! C . Since for every couple ðT; UÞ; ðT 0; U 0Þ the multiplication of these 2 elements is

given by

ðT 0 þ U 0Þ � ðT þ UÞ ¼ T þ T 0 þmðT; T 0Þ �C ðe�adðT ÞðU 0ÞÞ �C U;

it follows from (4.18) that the left translate of l 2 k
�
C is given by

�ððT 0 þ U 0Þ�1ÞlðT þ UÞ ¼ lðT Þ þ lðT 0Þ

þ
X
i;j

PiðmðT ; T 0ÞÞQi;jððe�adðT ÞðU 0ÞÞRi;j;ðUÞ;

where the different polynomial functions Pi;Qi;j and Ri;j are contained in W . Hence

�ððT 0 þ U 0Þ�1Þl is a finite linear combination of polynomial functions of degree � 2p in U ,

of degree � 4p2 in T multiplied by exponential functions in T , which are all contained in

ER. Hence V is a finite dimensional left invariant space of functions on k and so is the

vector space V of real valued functions on g, which is generated as a vector space by the

restrictions to g of the real parts of the elements of V and by the exponential functions

e�Re	, 	 2 R.

We obtain the group G as the semi-direct product of G with V , i.e G ¼ G� V with

the multiplication defined by

ðg0; ’0Þ � ðg; ’Þ :¼ ðg0g; �ðg�1Þ’0 þ ’Þ:
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This group acts on L2ðGÞ by left translations with the elements of G and by

multiplication with the functions �’ ¼ e�i’, i.e. for ðg; ’Þ 2 G, f 2 L2ðGÞ; s 2 G we let

�ðg; ’ÞfðsÞ :¼ e�i’ðg
�1sÞfðg�1sÞ:

It is easy to check that ð�; L2ðGÞÞ is a unitary representation of G in the Hilbert

space L2ðGÞ.

THEOREM 4.3. The representation ð�; L2ðGÞÞ of G is irreducible and the C1

vectors of � are the elements of SE ðGÞ.

PROOF. Since every real valued linear functional l is contained in V , it follows

that for � ¼ l;

�ð�Þ� ¼ e�il�; d�ð�Þ� ¼ �il�; � 2 L2ðGÞ1:

Furthermore, for any 	 2 R and � ¼ e�Re	 2 V , we have that

�ð�Þ� ¼ e�ie
�Re	

�; d�ð�Þ� ¼ �ie�Re	�; � 2 L2ðGÞ1:

This shows that any C1-vector of � is contained in our space SE ðGÞ. Conversely,
every function f 2 SE ðGÞ will be mapped by g into SE ðGÞ � L2ðGÞ and therefore

SE ðGÞ � L2ðGÞ1.

In order to prove that � is irreducible, let ð0Þ 6¼ H 0 be a closed �-invariant

subspace of L2ðGÞ and let �0 2 H ?
0 and 0 6¼ 
0 2 H 0. We replace �0 and 
0 by � ¼ �ð�Þ�0

resp. by 
 ¼ �ð�Þ
0, where � is a continuous function on G with a small compact support.

Then � and 
 are themselves continuous functions and we have that

h�ð’Þ�ðgÞ
;�ðg0Þ�i2 ¼ 0; for all g; g0 2 G;’ 2 V :

In particular for ’ ¼ l 2 g� we getZ
g

e�ilðxÞ�ðgÞ
ðxÞ�ðg0Þ�ðxÞdx ¼ 0:

Hence for every g; g0 2 G, we have that

�ðgÞ
ðxÞ�ðg0Þ�ðxÞ ¼ 0 for all x 2 G:

This shows that � ¼ 0 whenever 
 6¼ 0. Finally �0 ¼ 0 and � is irreducible.

�
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