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Abstract. It is shown that for the inclusion of factors ðB � AÞ :¼ ðW �ðS ; !Þ �
W �ðR; !ÞÞ corresponding to an inclusion of ergodic discrete measured equivalence

relations S � R, S is normal in R in the sense of Feldman-Sutherland-Zimmer ([9]) if

and only if A is generated by the normalizing groupoid of B. Though this fact has been

already obtained in [3], we reprove it here by a quite different method.

1. Introduction.

Feldman and Moore obtained a beautiful result in [8] which states that, if a

(separable) von Neumann algebra A contains a so-called Cartan subalgebra D, then

there exist a discrete measured equivalence relation R on a standard Borel probability

measure space ðX;�Þ and a normalized 2-cocycle ! on R in such a way that the given

inclusion ðD � AÞ is identified with ðL1ðX;�Þ � W �ðR; !ÞÞ, where W �ðR; !Þ is roughly
the matrix algebra over R twisted by !, and L1ðX;�Þ is regarded as the algebra of

diagonal matrices. Hence this result completely characterizes von Neumann algebras

admitting Cartan subalgebras as those that arise from discrete equivalence relations.

Moreover, Aoi showed in [1] that, for such an inclusion ðD � AÞ as above, every

intermediate von Neumann subalgebra B between D and A has the form B ¼ W �ðS ; !Þ
for a (unique) Borel subrelation S of R. This adds yet another evidence of the close

connection between von Neumann algebras with Cartan subalgebras and discrete

equivalence relations.

In the meantime, Feldman, Sutherland and Zimmer introduced in [9] a notion

of normality for an inclusion of (ergodic) discrete equivalence relations, which is

regarded as a groupoid analogue of normal subgroups in group theory.

Given the results of Feldman-Moore and Aoi mentioned above, we might expect

that every phenomenon that occurs in equivalence relations can be in principle

‘‘translated’’ into the one in von Neumann algebras with Cartan subalgebras, and vice

versa. Thus we might ask ourselves the following question: what kind of notion does

‘‘normality’’ correspond to in the framework of operator algebras? The purpose of this
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paper is to give a satisfactory answer to this question in the case where an intermediate

subalgebra is a factor. Namely, we will characterize the normality in the sense of [9] in a

purely operator-algebraic term.

We should remark that an answer to the above question has already been obtained

in [3, Theorem 6.5]. The proof given there has an ‘‘ergodic theory’’ nature (partial Borel

transformations, full groups, etc.) and was obtained by ‘‘going back and forth’’ between

a von Neumann algebra and its associated equivalence relation. We will reprove

this theorem in this paper, but our strategy here is quite different from the one adopted

in [3]. We will try to avoid measure-theoretic complicated arguments and to remain

inside of the operator-algebraic framework as much as we can. In addition, it seems of

independent interest. Therefore, we believe that it is worth presenting our proof here.

The organization of the paper is as follows. Section 2 is for preparations. We recall

the definitions of von Neumann algebras associated with discrete equivalence relations,

group coactions and the Jones basic extension. In Section 3, we characterize the

normality in terms of minimal coactions of discrete groups. This is the first operator-

algebraic characterization of normality. In Section 4, we first introduce a notion of the

normalizing groupoid for an inclusion of von Neumann algebras. Then we characterize

the normality by using this normalizing groupoid. In Appendix, we discuss some

properties of the assignment established in Section 4.

The author is grateful to the referee for suggesting some improvement in the

previous version of the article.

2. Notation and terminology.

Throughout this paper, we assume that all von Neumann algebras have separable

preduals.

For a faithful normal semifinite weight � on a von Neumann algebra M, we set

n� :¼ fx 2 M : �ðx�xÞ < 1g; m� :¼ n
�
�n�; m

þ
� :¼ m� \Mþ:

More generally, for an operator valued weight T ([10], [11], [17]) from a von Neumann

algebra M to a von Neumann subalgebra N , we set

nT :¼ fx 2 M : T ðx�xÞ 2 Nþg; mT :¼ n
�
TnT ; m

þ
T :¼ mT \Mþ:

The Hilbert space obtained from � by the GNS-construction will be denoted by H�, and

we let �� : n� ! H� stand for the natural injection. As usual, we use the symbols J�, ��

to denote the modular conjugation and the modular operator associated with �. The

automorphism group of M is denoted by AutðMÞ.

2.1. Discrete measured equivalence relations.

Throughout this paper, we fix a discrete measured equivalence relation R on a

standard Borel probability space ðX;B; �Þ in which � is quasi-invariant for R. For a

general theory for discrete measured equivalence relations, refer to [7] and [8]. We

denote by � the (�-finite) measure on R given by
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�ðEÞ :¼
Z
X

jr�1ðxÞ \ Ej d�ðxÞ ðE: Borel subset of RÞ;

where r : R ! X is the projection onto the first coordinate, and jSj in general stands for

the cardinality of a (countable) set S. The Radon-Nikodym derivative associated with

this measured equivalence relation will be denoted by �.

We also fix a (normalized) Borel 2-cocycle ! from R into the one-dimensional torus

T in what follows. We then write W �ðR; !Þ for the von Neumann algebra on the Hilbert

space L2ðR; �Þ obtained by the Feldman-Moore construction from R and ! ([7]).

Briefly, the construction is as follows. We first define the subspace AI of L2ðR; �Þ by

AI :¼ f� 2 L2ðR; �Þ : � is �-bounded and k�kI < 1g:

See [12] and [23] for the definition and properties of AI and for the terminology used

above. We then introduce a product and an involution on AI as follows:

ðf � gÞðx; zÞ :¼
X
y�x

fðx; yÞgðy; zÞ!ðx; y; zÞ; f]ðx; zÞ :¼ �ðx; zÞ�1fðz; xÞ;

where
P

y�x stands for the sum taken over all y equivalent to x. By the same argument

as in [12] and [23], one can show that AI is a left Hilbert algebra (in fact, a Tomita

algebra) in L2ðR; �Þ. The left von Neumann algebra of AI is denoted by W �ðR; !Þ. The
modular operator �, the modular conjugation J are given by

�� :¼ ��; fJ�gðx; yÞ ¼ �ðx; yÞ�1=2�ðy; xÞ; ð� 2 AI Þ:

The left multiplication of f 2 AI will be denoted by L!ðfÞ: L!ðfÞ� :¼ f � �. Remark that

every element a 2 W �ðR; !Þ can be in fact written as a ¼ L!ðfÞ for some f 2 L2ðR; �Þ
([8]). The abelian von Neumann algebra L1ðX;�Þ is embedded into W �ðR; !Þ through
the representation f 2 L1ðX;�Þ 7�! f � r. We will always identity L1ðX;�Þ with its

image D under this representation. This algebra D is called a Cartan subalgebra of

W �ðR; !Þ.
We define ½R�� to be the set of all bimeasurable nonsingular transformations � from

a Borel subset Domð�Þ of X onto a Borel subset Imð�Þ of X satisfying ðx; �ðxÞÞ 2 R for

�-a.e. x 2 Domð�Þ. For any � 2 ½R��, set �ð�Þ :¼ fðx; �ðxÞÞ : x 2 Domð�Þg. Then, for

each measurable function g on X of absolute value one, L!ð��1=2ðg � rÞ��ð��1ÞÞ is a partial

isometry in W �ðR; !Þ whose initial and final projections are respectively �Domð�Þ and

�Imð�Þ. Here �E in general stands for the characteristic function of a set E. We denote by

GN ðDÞ the set all partial isometries in W �ðR; !Þ obtained in this way from � 2 ½R�� and
call it the normalizing groupoid of D in W �ðR; !Þ. It is known that GN ðDÞ coincides

with the set of all partial isometries v 2 W �ðR; !Þ satisfying v�v; vv� 2 D and

vDv� ¼ Dvv�.

If S is a Borel equivalence subrelation of R, then we may construct W �ðS ; !Þ
which is a von Neumann subalgebra of W �ðR; !Þ.
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A Borel map c from R into a (second countable) locally compact group K is said

to be a (Borel) 1-cocycle if it satisfies

cðx; yÞcðy; zÞ ¼ cðx; zÞ for all x � y � z:

For a Borel 1-cocycle c : R ! K, the essential range of c is the smallest closed

subset �ðcÞ of K such that c�1ð�ðcÞÞ has complement of measure zero. The asymptotic

range r�ðcÞ of c is by definition
T
f�ðcBÞ : Bð� XÞ: Borel and �ðBÞ > 0g, where cB stands

for the restriction of c to the reduction RB :¼ fðx; yÞ 2 R : x; y 2 Bg.
From this point on, assume that R is ergodic. Let S be a Borel subrelation of R.

By [9], we may choose a countable family f’igi2I of Borel maps from X into itself such

that (i) ðx; ’iðxÞÞ 2 R for all i 2 I and �-a.e. x 2 X; (ii) for �-a.e. x 2 X, fS ð’iðxÞÞgi2I
is a partition of RðxÞ, where RðxÞ :¼ fy 2 X : ðx; yÞ 2 Rg. The family f’igi2I is called

choice functions for S � R. Once choice functions f’igi2I are fixed, we can define the

index cocycle � : R ! �ðIÞ of the pair S � R, where �ðIÞ denotes the full permutation

group on I, by the following rule:

�ðx; yÞðiÞ ¼ j () ð’iðyÞ; ’jðxÞÞ 2 S :

We say (see [9, Theorem 2.2]) that S is normal in R if there are choice functions

f’igi2I for S � R such that ð’iðxÞ; ’iðyÞÞ 2 S for all i 2 I and a.e. ðx; yÞ 2 S .

According to [9, Theorem 2.2], there are several equivalent definitions for normality. If

S is ergodic, then one of them is phrased in terms of a 1-cocycle as follows: S is normal

in R if there exist a countable discrete group �, often denoted by R=S , and a Borel

1-cocycle c : R ! � such that (i) the subrelation KerðcÞ :¼ fðx; yÞ 2 R : cðx; yÞ ¼ eg
coincides with S ; (ii) the asymptotic range r�ðcÞ, which turns out to be the same as the

essential range �ðcÞ, equals �.

2.2. Group coactions on von Neumann algebras.

Let K be a (second countable) locally compact group. We denote by W �ðKÞ the

group von Neumann algebra of K, i.e., the von Neumann algebra generated by the left

regular representation 	K of K on L2ðKÞ. Remark that W �ðKÞ is the left von Neumann

algebra of the left Hilbert algebra CcðKÞ of all continuous functions on K with compact

support, where we consider on CcðKÞ the usual convolution and involution. The faithful

semifinite normal weight on W �ðKÞ associated with the left Hilbert algebra CcðKÞ is

denoted by ’K , the Plancherel weight on W �ðKÞ. It is well-known that the predual

AðKÞ of W �ðKÞ has a structure of a commutative involutive Banach algebra. It is called

the Fourier algebra of K (cf. [5], [16]).

There is a special unital normal �-isomorphism �K from W �ðKÞ into

W �ðKÞ �W �ðKÞ, called the coproduct of W �ðKÞ, defined by

�KðxÞ :¼ WKð1� xÞW �
K ðx 2 W �ðKÞÞ;

where WK is a unitary on L2ðKÞ � L2ðKÞ ¼ L2ðK �KÞ given by fWK�gðg; hÞ :¼ �ðhg; hÞ
ð� 2 L2ðK �KÞÞ.
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A coaction of K on a von Neumann algebra A is a unital normal �-isomorphism 


from A into W �ðKÞ � A satisfying ð�K � idAÞ � 
 ¼ ðidW �ðKÞ � 
Þ � 
.
Suppose that 
 is a coaction of K on a von Neumann algebra A.

(1) For each k 2 K, we define the subspace A
ðkÞ to be the set of elements a 2 A that

satisfies 
ðaÞ ¼ 	KðkÞ � a. We call A
ðkÞ the spectral subspace of 
 belonging to

k. Note that A
 :¼ A
ðeÞ, where e is the identity of K, is a von Neumann

subalgebra of A. It is called the fixed-point algebra of 
.

(2) The map T
 defined by T
ðaÞ :¼ ð’K � idAÞð
ðaÞÞ is an operator valued weight

from A to A
. The coaction 
 is said to be integrable if T
 is semifinite.

(3) The crossed product of A by 
 is the von Neumann algebra bKK 
o A :¼
ð
ðAÞ [ L1ðKÞ �CÞ00.

(4) We say that 
 is faithful if fðidW �ðKÞ � �Þð
ðaÞÞ : a 2 A; � 2 A�g00 ¼ W �ðKÞ.
(5) We say that 
 is minimal (see [13], [20]) if it is faithful and satisfies A \

ðA
Þ0 ¼ C. We say that 
 is strictly outer ([13], [21]) if bKK 
o A \ 
ðAÞ0 ¼ C.

In [20], the term ‘‘outer’’ is used for ‘‘strictly outer’’. Due to [20, Proposition 6.2],

minimality is equivalent to strict outerness when the action is integrable.

For the spectral theory for coactions such as the (Arveson) spectrum, the Connes

spectrum and so on, we refer the readers to [16].

Let c be a Borel 1-cocycle from R into a (second countable) locally compact group

K. Then one can construct, without the assumption thatR is ergodic, a coaction 
c ofK

on W �ðR; !Þ whose fixed-point algebra W �ðR; !Þ
c is exactly W �ðKerðcÞ; !Þ (see [2,

Section 4]) for the details). In particular, W �ðR; !Þ
c contains the Cartan subalgebra D.

We succeeded in proving in [2] that the converse of this statement is also true:

THEOREM 2.1 ([2]). Let 
 be a coaction of a (second countable) locally compact

group K on W �ðR; !Þ, where R is not necessarily ergodic. If the fixed-point algebra

W �ðR; !Þ
 contains the Cartan subalgebra D, then there exists a Borel 1-cocycle

c : R ! K such that 
 ¼ 
c.

2.3. Basic extension.

Let B � A be an inclusion of factors with a faithful normal conditional expectation

EB. (In our situation considered in the following sections, such an expectation always

exists uniquely.) Fix a faithful normal state � on B and set � :¼ � � EB. Then the

equation eB��ðaÞ :¼ ��ðEBðaÞÞ defines a projection eB 2 BðH�Þ onto ½��ðBÞ�, where ½S� is
in general the closed subspace spanned by a set S. We call eB the Jones projection of the

inclusion B � A. The basic extension of this inclusion (by EB) is the factor, denoted by

A1, acting on H� generated by A and eB. It is known that A1 ¼ J�B
0J�.

According to [14] (see also [13, Section 2]), there exists a faithful normal semifinite

operator valued weight ÊEB, called the operator valued weight dual to EB, from A1 to A.

It satisfies ÊEBðeBÞ ¼ 1 [14, Lemma 3.1], so that AeBA � mÊEB
.

3. Characterization of normality in terms of coactions.

Throughout this section, we fix an ergodic Borel subrelation S of R. We then set

A :¼ W �ðR; !Þ and B :¼ W �ðS ; !Þ for some !.
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THEOREM 3.1. The subrelation S is normal in R if and only if there exist a

countable discrete group � and a minimal coaction 
 of � on A such that A
 ¼ B.

PROOF. Suppose thatS is normal. Hence there exist a countable discrete group �

and a Borel 1-cocycle c : R ! � such that (i) KerðcÞ ¼ S ; (ii) r�ðcÞ ¼ �. Let 
 be the

coaction of � on A obtained from c by the construction mentioned just before Theorem

2.1. Since KerðcÞ ¼ S , it follows that A
 ¼ B. By the ergodicity of S , we have

A \ B0 ¼ C. In the meantime, by (the proof of) [2, Theorem 6.3], we know that the

essential range �ðcÞ of c equals the (Arveson) spectrum Spð
Þ of 
, and that r�ðcÞ
coincides with the Connes spectrum �ð
Þ of 
. Since A
 ¼ B is a factor, we deduce that

Spð
Þ ¼ �ð
Þ ¼ r�ðcÞ ¼ �. From [2, Lemma 6.1], we now see that 
 is faithful.

Consequently, 
 is minimal.

Conversely, suppose that there exist a countable discrete group � and a minimal

coaction 
 of � on A such that A
 ¼ B. By Theorem 2.1, there is a Borel 1-cocycle

c : R ! � such that 
 ¼ 
c. Since A
 ¼ B, it follows that KerðcÞ equals S . The

minimality of 
 implies its strict outerness by [20, Proposition 6.2]. In particular,

the crossed product b��
nA is a factor. From [16], the Connes spectrum �ð
Þ is �. By

the fact mentioned in the previous paragraph, we have r�ðcÞ ¼ �. Therefore, S is

normal in R. �

4. Characterization of normality using normalizing groupoids.

As in the preceding section, let us fix an ergodic Borel subrelation S of R. Put

A :¼ W �ðR; !Þ and B :¼ W �ðS ; !Þ for some !. Let A1 be the Jones extension of the

inclusion B � A. We denote by EB the unique faithful normal conditional expectation

from A onto B and by eB the Jones projection determined by EB.

Before we proceed, we think it proper to mention the result of [15] in relation to the

subject treated in this section (see also [18], [6], [4] and the papers therein). In [15],

Kosaki studied an irreducible subfactor N of a properly infinite factor M with the

condition that (i) N is of finite Jones index and of depth 2; (ii) N 0 \ hM; eNi is abelian.
His main result states that there exist a finite group G and an outer action of 
 of G on

N such that M is the crossed product of N by 
. Particularly, N is the fixed-point

algebra of an outer coaction of G on M. In this case, G can be obtained as the so-called

Weyl group of M 	 N , that is, the normalizer group N ðNÞ of N in M modulo the

unitary group of N. Then a key observation is that G is in bijective correspondence with

the minimal projections in N 0 \ hM; eNi. This observation seems suggestive even in our

case, since B0 \ A1 is also abelian. We however note that, because B � A is in general of

infinite index, the Weyl group of A 	 B is no longer useful to our situation, as Example

(1) of [3] shows (namely, S � R can be normal even if the Weyl group is trivial).

Therefore, we need to find a good substitute for a normalizer group, which is the

following.

DEFINITION 4.1. Consider a von Neumann algebra P and a von Neumann

subalgebra Q of P . Define

GN ðQÞ :¼ fv 2 P : v : partial isometry; vQv� � Q; v�Qv � Qg:
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We call this set the normalizing groupoid of Q in P .

PROPOSITION 4.2. Let B � A be as above. For any v 2 GN ðBÞ n f0g, there exists a
unique minimal projection zv in A1 \B0 such that veBv

� ¼ zvvv
�. The projection zv equals

eB if and only if v belongs to B. Moreover, we have bEEBðzvÞ ¼ 1.

PROOF. Let v 2 GN ðBÞ n f0g and p :¼ vv�. For any b 2 B, we have

veBv
�pbp ¼ veB 
 v�v 
 v�bv 
 v� ¼ v 
 v�v 
 v�bv 
 eBv�

¼ pbveBv
� ¼ pbpveBv

�:

Hence we obtain

veBv
� 2 pA1p \ ðpBpÞ0 ¼ pA1p \ ðB0Þp ¼ ðA1 \B0Þp:

It follows that there exists an element zv 2 A1 \ B0 such that veBv
� ¼ zvp. This zv is

unique, since the induction y 2 B0 7�! yp 2 ðB0Þp is an isomorphism due to the

factoriality of B. Because of this, we also see that zv is a projection.

Suppose that e is a projection in A1 \ B0 such that e � zv. Then we get

v�ev � v�zvv ¼ v�zvpv ¼ v�veBv
�v ¼ v�veB: ð4:1Þ

In the meantime, by the same argument as in the previous paragraph, we find that there

is a unique projection q 2 A1 \ B0 such that v�ev ¼ qv�v. By (4.1), we have qv�v � eBv
�v.

Since the induction y 2 B0 7�! yp 2 ðB0Þp is an isomorphism, it follows that q � eB.

Because eB is minimal in A1 \ B0, we must have either q ¼ 0 or q ¼ eB. If q ¼ 0, then

v�ev ¼ 0, which implies that ep ¼ 0. By the induction B0 ! ðB0Þp being an isomorphism,

we get e ¼ 0. If q ¼ eB, then v�ev ¼ eBv
�v. So we have

ep ¼ vðv�evÞv� ¼ vðeBv�vÞv� ¼ zvp:

Hence e ¼ zv. Therefore, zv is minimal in A1 \B0.

If v belongs to B, then, by the uniqueness of zv, we have zv ¼ eB. Conversely,

if zv ¼ eB, then we have veB ¼ zvv ¼ eBv. Namely, v commutes with eB. Hence v belongs

to B.

Since A \ B0 ¼ C, bEEBðzvÞ is in ð0;1�. But, since veBv
� ¼ zvvv

� and bEEBðeBÞ ¼ 1, we

have bEEBðzvÞvv� ¼ bEEBðveBv�Þ ¼ v bEEBðeBÞv� ¼ vv�. Hence bEEBðzvÞ ¼ 1. �

COROLLARY 4.3. The set fzv : v 2 GN ðBÞ n f0gg coincides with feBg if and only if

GN ðBÞ00 ¼ B.

LEMMA 4.4. Let v1; v2 2 GN ðBÞ n f0g. Then zv1zv2 ¼ 0 if and only if EBðv�1Bv2Þ ¼
f0g. Moreover, zv1 ¼ zv2 if and only if v�1Bv2 � B.

PROOF. Suppose first that zv1zv2 ¼ 0. Then, for any b 2 B, we have
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EBðv�1bv2ÞeB ¼ eBv
�
1bv2eB ¼ v�1zv1bzv2v2 ¼ 0:

Hence EBðv�1bv2Þ ¼ 0.

Conversely, suppose that EBðv�1Bv2Þ ¼ f0g. By the computation in the previous

paragraph, one has v�1bzv1zv2v2 ¼ 0 for any b 2 B. If zv1 ¼ zv2 ð¼: zÞ, we have v�1bzv2 ¼ 0,

that is, zv1v
�
1bv2v

�
2 ¼ 0 for all b 2 B. Since the map x 2 B 7! xz 2 Bz is an isomorphism

as noted before, it follows that v1v
�
1Bv2v

�
2 ¼ f0g. But this cannot happen, because B is

a factor. Therefore, we conclude that zv1zv2 ¼ 0.

If zv1 ¼ zv2 , then we have, for any b 2 B:

v�1bv2eB ¼ v�1bzv2v2 ¼ v�1zv1bv2 ¼ eBv
�
1bv2:

Hence v�1bv2 belongs to B.

Conversely, assume that v�1Bv2 � B. Since B is factor, v1v
�
1Bv2v

�
2 never equals f0g.

In particular, v�1Bv2 is nonzero. So, by assumption, we have EBðv�1Bv2Þ ¼ v�1Bv2 6¼ f0g.
Therefore, we obtain zv1 ¼ zv2 . �

In what follows, let �0 stand for the cyclic and separating unit vector �D 2 L2ðRÞ
for A, where D :¼ fðx; xÞ : x 2 Xg. We denote by � the faithful normal state on A

determined by the unit vector �0.

LEMMA 4.5. For any v 2 GN ðBÞ n f0g, zv is the projection onto the closure of the

subspace BvB�0.

PROOF. Let z be the projection onto the closed subspace K :¼ ½BvB�0�. Since K is

B-invariant, z is in B0. If b 2 B, then we have JbJ�0 ¼ ��
�i=2ðb�Þ�0. From this, we see that

K is JBJ-invariant. Hence z belongs to ðJBJÞ0 ¼ A1. Consequently, we obtain

z 2 A1 \ B0. If b1; b2 2 B, then we have

vv�ðb1vb2�0Þ ¼ vðv�b1vb2Þ�0 ¼ vEBðv�b1vb2ÞeB�0
¼ veBv

�b1vb2eB�0 ¼ vv�zvðb1vb2�0Þ:

This shows that vv�jK ¼ vv�zvjK , i.e., vv�z ¼ vv�zvz. Since x 2 B 7! xz 2 B0z is an

isomorphism, it follows that z ¼ zvz. By the minimality of zv, zvz is either 0 or zv.

If zvz ¼ 0, then vv�z ¼ 0. Because x 2 B 7! xz 2 B0z is an isomorphism again, we would

get vv� ¼ 0, a contradiction. So we must have zvz ¼ zv. In this case, we easily see

that z ¼ zv. �

LEMMA 4.6. Let x 2 A. Then the following are equivalent:

(1) There are projections z1; z2 in B0 such that xeB ¼ z1x and x�eB ¼ z2x
�.

(2) Both x�Bx and xBx� are contained in B.

If one of the above conditions holds true, then we can take z1 (resp. z2) to be the

proejction onto ½BxB�0� (resp. ½Bx�B�0�).

1000 T. YAMANOUCHI



PROOF. (1) ) (2): For any b 2 B, we have, by assumption:

x�bxeB ¼ x�bz1x ¼ x�z1bx ¼ eBx
�bx:

This shows that x�bx belongs to B. Similarly, we obtain xbx� 2 B.

(2) ) (1): Let z1 (resp. z2) be the projection onto ½BxB�0� (resp. ½Bx�B�0�). As we

have seen in the proof of Lemma 4.5, both z1 and z2 belong to A1 \ B0.

By definition, we have z1xb�0 ¼ xb�0 for all b 2 B. It follows that z1xeB ¼ xeB. Let

� 2 ½B�0�? and � 2 L2ðRÞ. Then we may choose sequences fbðn; iÞ : n 2 N ; 1 � i � kng
and fcn : n 2 N ; 1 � i � kng in B such that z1� ¼ limn!1

Pkn
i¼1 bðn; iÞxcðn; iÞ�0. Since

x�bðn; iÞxcðn; iÞ is in B by assumption, we have

ðz1x� j �Þ ¼ lim
n!1

�
Xkn
i¼1

x�bðn; iÞxcðn; iÞ�0

�����
 !

¼ 0:

So we obtain z1x� ¼ 0. Thus z1xð1� eBÞ ¼ 0. Consequently, z1x ¼ xeB. A similar

argument yields x�eB ¼ z2x
�. �

LEMMA 4.7. Let x 2 A be a nonzero element satisfying xBx� � B and x�Bx � B.

If x ¼ wjxj be the polar decomposition of x, then w belongs to GN ðBÞ. Moreover, zw
equals the projection onto ½BxB�0�.

PROOF. Since x�x and xx� are in B, their support projections w�w and ww� both

belong to B. Moreover, due to Lemma 4.6, we have xeB ¼ z1x and x�eB ¼ z2x
�, where z1

(resp. z2) is the projection onto ½BxB�0� (resp. ½Bx�B�0�).
Since jxj is in B, it is easy to see that xeB ¼ ðweBÞ 
 ðjxjeBÞ is the polar

decomposition of xeB. From this, we have

ðweBÞðweBÞ� ¼ the range projection of xeB

¼ the range projection of z1x

¼ z1 
 ðthe range projection of xÞ ¼ z1ww
�:

Thus weBw
� ¼ z1ww

�. In particular, weB ¼ z1w.

Next note that x� ¼ w� 
 wjxjw� is the polar decomposition of x�. Now, by applying

the arguments made in the preceding paragraphs to x� and z2 this time, we obtain

w�eB ¼ z2w
�. From Lemma 4.6, it follows that w�Bw and wBw� are contained in B.

Therefore, w belongs to GN ðBÞ, and it satisfies zw ¼ z1. �

Suggested by Lemma 4.5, we define, for any a 2 A, za to be the projection onto the

closed subspace ½BaB�0�. Since ½BaB�0� is both B-invariant and JBJ-invariant, za
belongs to A1 \B0.

PROPOSITION 4.8. We have JzaJ ¼ za� for any a 2 A.

PROOF. Let a 2 A. Since za 2 A1 \ B0 � L1ðRÞ, there exists a Borel subset E of
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R such that za ¼ �E . Then we have JzaJ ¼ �E�1 , where E�1 :¼ fðx; yÞ : ðy; xÞ 2 E g.
Note that JzaJ is the projection onto T :¼ J½BaB�0�. Since Jx�0 ¼ ��

�i=2ðx�Þ�0 for all
x 2 A, it follows that T ¼ ½B��

�i=2ða�ÞB�0�. By the previous paragraph, we particularly

have �E�1��
�i=2ða�Þ�0 ¼ ��

�i=2ða�Þ�0. Since ��
�i=2ða�Þ�0 ¼ �1=2a��0, we get �E�1�1=2a��0 ¼

�1=2a��0. Because the Radon-Nikodym derivative � is nonzero everywhere, it follows that

�E�1a��0 ¼ a��0. Namely, JzaJa
��0 ¼ a��0. From this, we easily deduce that JzaJ � za� .

Replacing a by a� in this inequality, we get Jza�J � za. Thus JzaJ ¼ za� . �

COROLLARY 4.9. Let v1; v2 2 GN ðBÞ n f0g. Then the following are equivalent:

(1) zv1 ¼ zv2 .

(2) v�1Bv2 � B.

(3) v1Bv�2 � B.

PROOF. We have already proven the equivalence of (1) and (2) in Lemma 4.4. By

Proposition 4.8, (1) is equivalent to the condition zv�
1
¼ zv�

2
. But this condition is

equivalent to (3) due to Lemma 4.4. �

We denote by fz
g
2� the set of all distinct projections z in A1 \ B0 obtained as

z ¼ zv for some v 2 GN ðBÞ n f0g. Let us denote by 
0 the element 
 2 � satisfying

z
 ¼ eB.

Thanks to Proposition 4.8, for any 
 2 �, the equation

Jz
J ¼ z
�1

defines a unique element 
�1 of �. It is obvious that the mapping 
 2 � 7�! 
�1 2 � is a

period two bijection on �.

Next we will define a product on � which turns � into a (countable) group.

Fix any 
1; 
2 2 �. Then choose v1; v2 2 GN ðBÞ satisfying z
i ¼ zvi (i ¼ 1; 2Þ. Since
B is a factor, there exists a nonzero partial isometry u 2 B such that u�u � v2v

�
2 and

uu� � v�1v1. Then v :¼ v1uv2 is a nonzero partial isometry in A. It is easy to check that v

in fact belongs to GN ðBÞ. So there is a 
3 2 � such that z
3 ¼ zv. We will call 
3 the

product of 
1 and 
2, and write 
3 ¼ 
1
2. Now we have one thing to prove in order to

ensure that this product is in fact well-defined.

LEMMA 4.10. The product 
3 obtained above is independent of the choices of v1,

v2 2 GN ðBÞ and u 2 B satisfying z
1 ¼ zv1 , z
2 ¼ zv2 , u
�u � v2v

�
2 and uu� � v�1v1.

PROOF. Let ðw1; w2; sÞ be another triple enjoying the same properties as

ðv1; v2; uÞ does. Thanks to Corollary 4.4, it suffices to show w�
2s

�w�
1Bv1uv2 � B. But,

from Corollary 4.9, we have w�
2s

�w�
1Bv1uv2 � w�

2s
�Buv2 � w�

2Bv2 � B, as desired. �

THEOREM 4.11. The index set �, equipped with the map 
 2 � 7! 
�1 2 � and the

product defined above, is a (countable) group, where 
0 is the identity.

PROOF. Thanks to Lemma 4.10, the product on � introduced above is in fact well-

defined.
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For each 
 2 �, choose a nonzero v
 2 GN ðBÞ with zv
 ¼ z
. We agree that v
0 ¼ 1.

[Associativity] Let 
1; 
2 and 
3 be in �. First, choose a nonzero partial isometry u 2 B

such that uu� � v�
1v
1 and u�u � v
2v
�

2
. Next we choose a nonzero partial isometry v 2 B

such that vv� � ðuv
2Þ
�ðuv
2Þ and v�v � v
3v

�

3
. Since u and v belong to B, it follows

that zuv
2 ¼ z
2 and z
3 ¼ zvv
3 . By definition, we have z
1
2 ¼ zv
1uv
2 and z
2
3 ¼ zuv
2 vv
3 .

So we have

zð
1
2Þ
3 ¼ zðv
1uv
2 Þvv
3 ¼ zðv
1 Þðuv
2 vv
3 Þ ¼ z
1ð
2
3Þ:

Hence the product is associative.

[Identity] Since v
0 ¼ 1, it immediately follows that z

0 ¼ z
0
 ¼ z
 for all 
 2 �.

Namely, 

0 ¼ 
0
 ¼ 
. Hence 
0 is the identity of �.

[Inverse] Let 
 2 �. By definition and Proposition 4.8, we have z
�1 ¼ zv�
 . So we have

z

�1 ¼ zv
v�
 ¼ z
0 :

This means that 

�1 ¼ 
0. Similarly, one can prove that 
�1
 ¼ 
0. This completes

the proof. �

Recall that A1 \ B0 is contained in L1ðRÞ. So, for each 
 2 �, there is a Borel subset

E 
 of R such that z
 ¼ �E 

. We agree that fE 
 : 
 2 �g is a disjoint family, and that

E 
0 ¼ S .

LEMMA 4.12. We have A ¼ GN ðBÞ00 if and only if
P


2� z
 ¼ 1.

PROOF. Assume that A ¼ GN ðBÞ00. Suppose then that 1�
P


2� z
 is nonzero.

In this case, we have �ðR n
S


2� E 
Þ > 0. So there exists a map � 2 ½R�� such

that �ðDomð�ÞÞ > 0 and �ð��1Þ � R n
S


2� E 
, where �ð��1Þ stands for the graph of

��1. Put v :¼ L!ð��1=2��ð��1ÞÞ. Since z
v�0 ¼ 0 for all 
 2 �, we have, for any a; b 2 B;

z
av�
�
�i=2ðb�Þ�0 ¼ az
vJbJ�0 ¼ aJbJz
v�0 ¼ 0:

This shows that z
zv ¼ 0 for all 
 2 �.

Since the linear span of nonzero monomials in elements of GN ðBÞ is �-weakly dense

in A, there exists a nonzero x 2 A, expressed as a product of finite number of elements in

GN ðBÞ, such that EBðx�vÞ 6¼ 0. It is easy to see that xBx� and x�Bx are both contained

in B. If x ¼ wjxj is the polar decomposition of x, then, by Lemma 4.7, w belongs

to GN ðBÞ. Hence zw ¼ z
1 , that is, z
1L
2ðRÞ ¼ ½BwB�0� for some 
1 2 �. Since

EBðw�vÞ 6¼ 0, there are vectors �; � 2 L2ðRÞ such that ðEBðw�vÞeB� j �Þ 6¼ 0. So we

may choose b0 2 B such that ðEBðw�vÞb0�0 j �Þ 6¼ 0. We have

0 6¼ ðeBw�vb0�0 j �Þ ¼ ðvb0�0 j weB�Þ:
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Again, we may choose b1 2 B such that ðvb0�0 j wb1�0Þ 6¼ 0. This means that zv is not

orthogonal to z
1 , a contradiction.

Conversely, assume that
P


2� z
 ¼ 1. Set C :¼ GN ðBÞ00 and consider the Jones

projection eC of the inclusion C � A. For any 
 2 �, choose a v
 2 GN ðBÞ such that

z
 ¼ zv
 . Then we clearly have ½Bv
B�0� � ½C�0�. This implies that z
 � eC . So 1 ¼P

2� z
 � eC , i.e., eC ¼ 1. Therefore, C coincides with A. �

In what follows, we assume that A ¼ GN ðBÞ00. From Lemma 4.12 and the fact that

A1 \ B0 is abelian, it follows that A1 \ B0 is generated by the minimal projections

fz
g
2�. So A1 \B0 is isomorphic to ‘1ð�Þ.

Let us fix a 
 2 �. Put T :¼ EB � ÊEB. As we saw in Proposition 4.2, one has

ÊEBðz
Þ ¼ 1. So T ðz
Þ ¼ 1. In the meantime, by [14, Lemma 1.3], we have T�1 ¼
ðÊEBÞ�1 � E�1

B ¼ EBðJ E�1
B ð 
 Þ JÞ. From this and z
�1 ¼ Jz
J, we obtain

T�1ðz
Þ ¼ EBðJE�1
B ðz
ÞJÞ ¼ EBðÊEBðz
�1ÞÞ ¼ 1:

From these results and [13, Lemma 2.7], it follows that the index IndTz
 of the

conditional expectation Tz
 from z
A1z
 onto Bz
 is 1. In other words, we have

z
A1z
 ¼ Bz
. Keeping in mind that b 2 B 7�! bz
 is an isomorphism, we find from this

result that, for any a 2 A, there exists a unique element S
ðaÞ 2 B such that

z
az
 ¼ S
ðaÞz
. Since z
az
 ¼ az
 for all a 2 B, it follows that S
 is a normal projection

of norm one from A onto B. By [17, Proposition 10.17], we obtain S
 ¼ EB. Thus we

have proven

LEMMA 4.13. For any 
 2 �, we have z
az
 ¼ EBðaÞz
 for all a 2 A.

LEMMA 4.14. For any 
 2 �, the subfactor Q
 of A1 generated by A and z

coincides with A1.

PROOF. It suffices to show that eB belongs to Q
. By Lemma 4.13, the �-weak

closure of Aþ Az
A coincides with Q
. From this, it results that the �-weak closure of

Az
A is a �-weakly closed two-sided ideal of Q
, and hence coincides with Q
. So Az
A is

�-weakly dense in Q
. From this, we see that, if T
 is the restriction of ÊEB to Q
, then T


is still semifinite, because T
ðz
Þ ¼ 1. In particular, the restriction of �̂� :¼ � � ÊEB to Q


is semifinite. Moreover, since ��̂�
t ðz
Þ ¼ z
 for all t 2 R, we have ��̂�

t ðQ
Þ ¼ Q
. It follows

from [19] that there exists a unique faithful normal conditional expectation F from A1

onto Q
 such that �̂� � F ¼ �̂�.

Take a v 2 GN ðBÞ such that zv ¼ z
, and denote by � : B0 ! ðB0Þv�v the induction

�ðyÞ :¼ yv�v ðy 2 B0Þ. Note that F ðeBÞ belongs to B0 as well. Then we have

�ðF ðeBÞÞ ¼ F ðeBÞv�v ¼ F ðv�veBÞ ¼ F ðv�z
vÞ ¼ v�z
v:

By a similar calculation, we have �ðeBÞ ¼ v�z
v. Since � is an isomorphism, we get

eB ¼ F ðeBÞ 2 Q
. �
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PROPOSITION 4.15. For each 
 2 �, there exists a unique �-automorphism �
 of A1

such that �
jA ¼ idA and �
ðz
1Þ ¼ z
1
�1 . Moreover, � is an action of � on A1.

PROOF. Let us fix a 
 2 �. By Lemma 4.14, A1 is generated by A and z
. We

also have z
 2 ðA1 \ B0ÞEB�ÊEB
. By Lemma 4.13 and [13, Lemma 2.4], there exists a

�-automorphism �
 of A1 satisfying �
 jA ¼ idA and �
ðeBÞ ¼ z
 and ÊEB � �
 ¼ �
 � ÊEB.

Since �
 is an automorphism and �
jA ¼ idA, we have �
ðA1 \B0Þ ¼ A1 \ B0. From

this and the fact that fz
g
2� is the all minimal projections in A1 \ B0, there exists a

bijection �
 of � such that �
ð
0Þ ¼ 
 and �
ðz
1Þ ¼ z�
ð
1Þ for any 
1 2 �. Fix any 
1 2 �.

Choose v; w 2 GN ðBÞ satisfying zv ¼ z
1 and zw ¼ z
. Also take a suitable partial

isometry u 2 B such that z
1
 ¼ zvuw. We have veB ¼ z
1v. By applying �
 to this

identity, we get vz
 ¼ z�
ð
1Þv. From this, we have, for any b1; b2 2 B:

b1vz
uwb2�0 ¼ b1z�
ð
1Þvuwb2�0:

Since uwb2�0 belongs to the range of z
, the above identity can be rewritten as

b1vuwb2�0 ¼ z�
ð
1Þb1vuwb2�0:

Because the linear span of elements of the form b1vuwb2�0 ðb1; b2 2 BÞ forms a dense

subspace of the range of z
1
, we deduce that z
1
 � z�
ð
1Þ. Hence z
1
 ¼ z�
ð
1Þ. This

means that �
ð
1Þ ¼ 
1
. Consequently, �
ðz
1Þ ¼ z
1
 for all 
1 2 �. By setting

�
 :¼ ��1

 , we completes the proof. �

We use the same notation � for the map A1 ! ‘1ð�Þ � A1 defined by

f�ðxÞ�gð
Þ :¼ �
ðxÞ�ð
Þ ðx 2 A1; � 2 ‘2ð�Þ � L2ðRÞÞ:

Note that this � is the action of ‘1ð�Þop on A1 induced by the original action


 2 � 7! �
 2 AutðA1Þ. Here ‘‘the action of ‘1ð�Þop ’’ means the one in the framework of

locally compact quantum groups (see [20]). One can easily check that

�ðz
Þ ¼
X

12�

�
1 � z

�1
1

ð4:2Þ

for any 
 2 �, where �
 :¼ �f
g.

LEMMA 4.16. The fixed-point algebra ðA1Þ� of the action � defined above coincides

with A.

PROOF. By Proposition 4.15, ðA1Þ� contains A. Let P :¼ ðJðA1Þ�JÞ0, which is an

intermediate subfactor of B � A. Since ðA1Þ� is the basic extension of P � A, the Jones

projection eP induced by the (unique) faithful normal conditional expectation from A

onto P is in ðA1Þ� \ P 0 � A1 \ B0. So there is a subset �0 of � such that eP ¼
P


2�0
z
.

Since eP belongs to ðA1Þ�, it follows from Proposition 4.15 that we have, for any 
1 2 �:
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eP ¼ �
1ðeP Þ ¼
X

2�0

z

�1
1

¼
X


2�0

�1
1

z
:

Hence �0 ¼ �0

�1
1 for any 
1 2 �, which yields �0 ¼ �. Thus eP ¼ 1. Namely, P ¼ A.

Therefore, ðA1Þ� equals A. �

THEOREM 4.17. Let X :¼
P


2� 	ð
Þ
� � z
 2 W �ð�Þ �A1. Then the equation


ðaÞ :¼ X�ð1� aÞX ða 2 AÞ

defines a strictly outer coaction 
 of � on A. Moreover, if we set

�ðxÞ :¼ X��ðxÞX ðx 2 A1Þ

then the map � gives a �-isomorphism from A1 onto the crossed product b�� 
 n A

satisfying ðid� �ÞðXÞ ¼ ðW�Þ12, �ðaÞ ¼ 
ðaÞ ð8a 2 AÞ and 
̂
 � � ¼ ðid� �Þ � �.

PROOF. Note that the unitary W� introduced in Subsection 2.2 is given by

W� ¼
X

2�

	�ð
Þ� � �
:

By using this and Eq (4.2), one can easily check that

ðid� �ÞðXÞ ¼ ðW�Þ12X13:

We also have ð�� � idÞðX�Þ ¼ ðX�Þ23ðX�Þ13. Now, in order to obtain the assertion of this

theorem, we have only to apply [22, Proposition 1.22] to our situation above. �

LEMMA 4.18. The fixed-point algebra A
 of the coaction 
 obtained in Theorem

4.17 equals B.

PROOF. According to Theorem 4.17, the coaction 
 is given by


ðaÞ ¼
X


1;
22�
	�ð
1
�1

2 Þ � z
1az
2 ða 2 AÞ: ð4:3Þ

If b 2 B, then, by (4.3),


ðbÞ ¼
X


1;
22�
	�ð
1
�1

2 Þ � z
1bz
2 ¼
X


1;
22�
	�ð
1
�1

2 Þ � z
1z
2b

¼
X

12�

1� z
1b ¼ 1� b:
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Hence b belongs to A
. Conversely, if a 2 A
, then we have

1� a ¼
X


1;
22�
	�ð
1
�1

2 Þ � z
1az
2 ða 2 AÞ: ð4:4Þ

Applying ’� � id to both sides of (4.4), where ’� is the Plancherel state on W �ð�Þ, we
obtain a ¼

P

12� z
1az
1 . By Lemma 4.13, we haveX


12�
z
1az
1 ¼

X

12�

EBðaÞz
1 ¼ EBðaÞ:

Hence a ¼ EBðaÞ 2 B. Therefore, we completes the proof. �

THEOREM 4.19. The subrelation S is normal in R if and only if the normalizing

groupoid GN ðBÞ of B in A generates A.

PROOF. Suppose that S is normal in R. By Theorem 3.1, there exist a minimal

coaction 
 of a countable discrete group � on A satisfying A
 ¼ B. Since �ð
Þ ¼
Spð
Þ ¼ � and A
ð¼ BÞ is a factor, we find that the spectral subspace A
ð
Þ is

nonzero for all 
 2 �, and that the linear span of
S


2� A

ð
Þ is �-strongly* dense in A.

Let x 2 A
ð
Þ for some 
 2 �. If x ¼ ujxj be the polar decomposition of x, then jxj is in
A
 ¼ B and u is in A
ð
Þ. Note that both u�u and uu� belong to B. Moreover, uBu� and

u�Bu are contained in B. Hence u belongs to GN ðBÞ. In particular, x is in GN ðBÞ00.
Therefore, GN ðBÞ00 equals A.

Conversely, suppose that GN ðBÞ00 ¼ A. By Theorem 4.17 and Lemma 4.18, we now

know that there exists a strictly outer (hence minimal) coaction of a discrete group � on

A whose fixed-point algebra is B. From Theorem 3.1, S is normal in R. �

Appendix

A. The range of the mapping v 2 GN ðBÞ 7�! zv 2 A1 \B0

We saw that every nonzero element v 2 GN ðBÞ gives rise to a minimal projection

zv in A1 \ B0 satisfying ÊEBðzvÞ ¼ 1. In fact, by the arguments preceding Lemma 4.13, we

know that ÊEBðzvÞ ¼ E�1
B ðzvÞ ¼ 1. In particular, it follows (see [13]) that the index IndTzv

of the conditional expectation Tzv from zvA1z1 onto Bzv given by Tzv :¼ zvT ðzvÞ�1T jzvA1zv

is 1, where T : ¼ EB � ÊEB. In this Appendix, we will show that every minimal projection

z 2 A1 \ B0 with ÊEBðzÞ ¼ E�1
B ðzÞ ¼ 1 arises in this way.

Let us fix a minimal projection z 2 A1 \B0 satisfying ÊEBðzÞ ¼ E�1
B ðzÞ ¼ 1. Since we

particularly have IndTz ¼ T ðzÞT�1ðzÞ ¼ 1, it follows that zA1z ¼ Bz.

Meanwhile, choose a Borel subset E of R such that z ¼ �E . Then there is a � 2 ½R��
such that �ð��1Þ � E and �ð�ð��1ÞÞ > 0. Put v : ¼ L!ð��1=2��ð��1ÞÞ 2 GN ðDÞ. Denote by

z0 the projection onto the closed subspace ½BvB�0�. As we saw before, z0 is a projection

in A1 \ B0. Since zv�0 ¼ v�0 by the definition of v, we have, for any b; c 2 B:

zbvc�0 ¼ zJ��
�i=2ðc�ÞJbv�0 ¼ J��

�i=2ðc�ÞJzbv�0 ¼ J��
�i=2ðc�ÞJvc�0 ¼ bvc�0:
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From this, we see that z0 is majorized by z. By the minimality of z, we obtain z0 ¼ z. In

particular, we have

zveB ¼ veB: ðA:1Þ

LEMMA A.1. The partial isometry v 2 GN ðDÞ defined above belongs to GN ðBÞ.

PROOF. By (A.1), we have zveBv
� ¼ veBv

�. Thus veBv
� is a projection in A1

majorized by z. Since zA1z ¼ Bz, there exists a unique projection p in B such that

veBv
�ð¼ zðveBv�ÞzÞ ¼ pz. From this, we have veB ¼ ðveBv�Þv ¼ pzv ¼ zpv. So v�0 ¼

veB�0 ¼ zpv�0 ¼ pv�0. Since �0 is separating for A, we get v ¼ pv. Hence veB ¼ zv. By

(the proof of) Lemma 4.6, we obtain v�Bv � B.

Let z0 :¼ JzJ 2 A1 \ B0. Then z0 ¼ �E�1 , where F�1 :¼ fðx; yÞ : ðy; xÞ 2 Fg for a

subset F of R. Since �ð�Þ ¼ �ð��1Þ�1 � E�1, we have zv��0 ¼ v��0. From this, it follows

that z0 is the projection onto the closed subspace ½Bv�B�0�. So we get z0v�eB ¼ v�eB.

Meanwhile, we have z0A1z
0 ¼ Bz0. By the same arguments as in the case of the projection

z, we can deduce the inclusion vBv� � B. By Lemma 4.7, v belongs to GN ðBÞ. �

From the discussion made above, we now have the following.

THEOREM A.2. The mapping v 2 GN ðBÞ n f0g 7�! zv 2 A1 has the image which

consists exactly of the minimal projections z in A1 \B0 satisfying ÊEBðzÞ ¼ E�1
B ðzÞ ¼ 1.

REMARK. If z is a minimal projection in A1 \ B0 satisfying ÊEBðzÞ ¼ E�1
B ðzÞ ¼ 1, as

above, we obviously have IndTz ¼ 1. Conversely, if z 2 A1 \ B0 satisfies IndTz ¼ 1, then

zA1z ¼ Bz. Consider the partial isometry v constructed in the discussion preceding

Lemma A.1. By proceeding as in the proof of Lemma A.1, it can be verified that we have

veB ¼ zv and v�eB ¼ z0v�, where z0 ¼ JzJ. In particular, veBv
� ¼ zvv� and v�eBv ¼ z0v�v.

Since ÊEBðeBÞ ¼ 1, it follows that ÊEBðzÞ ¼ ÊEBðz0Þ ¼ 1. Therefore, we have proven that

IndTz ¼ 1 if and only if ÊEBðzÞ ¼ E�1
B ðzÞ ¼ 1.
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