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Abstract. We consider the initial-boundary value problem
%u:Au7V(|w\)u in Qp, x (0,00),

uu—&-(l—u);uzo on 909 X (0,00),
v

u(-,0) = ¢() € LP(QL), p=1,

(P)

where Qp = {x € RV : |z| > L}, N >2, L > 0,0 <z < 1, v is the outer unit normal
vector to dQr,, and V is a nonnegative smooth function such that V(r) = O(r—2) as
r — oo. In this paper, we study the decay rates of the derivatives VZu of the solution
u to (P) as t — oo.

1. Introduction.

The linear heat equation, which has been studied for more than two centuries, is
still one of the main topics in the theory of partial differential equations. The decay rate
of the derivatives of a solution to the linear heat equation is one of worth challenging
problems and will give some insight to the behavior of solutions to the semilinear heat
equations.

We consider the initial-boundary value problem of the heat equation in the exterior
domain of a ball,

%u:Au—V(\xDu in Qp x (0,00),

pu+ (1 — u)%u =0 on 99 x (0,00), (1.1)

U(,O) = ¢() € LP(QL)v

where 0 < u<1,p>1,Q,={r e RY :|z| > L}, N>2,L>0,and v is the outer
unit normal vector to 9. Throughout this paper, we assume that V' = V(|z|) satisfies
the following condition (V') for some w > 0 and | € N:
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(0) V=V(z|)e CYRY), V >0in RV,
(i)  lim r*V(r) = w,

T—00

(V5) (ii) / o,
L

r?t ((Ziv) (r)

The purpose of this paper is to study the decay rates of the derivatives of the solution
of (1.1) under the condition (V!), as t — oc.

To explain the precedent works and our results, we introduce some notations. For
any set A and B, let f = f(\,v) and g = g(\, 1) be maps from A x B to (0,00). Then
we say

V() -

dr < oo,

(iii) st>1;L) < 00, ji=1...,L
=

fOyp) 2g(hp) forallxe A

if, for any pu € B, there exists a positive constant C' such that f(A, u) < Cg(\, p) for all
A € A. Furthermore, we say

Fup) <gAhp) forallxe A
if f(\,p) = g(Ap) and g(\, p) = f(A, p) for all A € A. We put
No=NuU{0}, Ny ={(ni,....nn):n; € Ng,i=1,...,N}.

Furthermore, for any j = (ji,...,jn) € N, we write |j| = 25\7:1 ji and VI =
ol joair ... 81:{(,"

Let Q be an unbounded domain in RY. Then, under the suitable assumptions on Q
and V, for any j € NJ, the solution u of (1.1) in the domain ) satisfies

N
2

H(viu)(Wt)HLoo(Q) =t % H¢”LP(Q) (1'2)
for all sufficiently large ¢. (See Theorem 10.1 of Chapters 3 and 4 in [5].) On the other
hand, for the case when Q = RY (or Q = Rf ) and V' = 0, the explicit representation of
the fundamental solution of the heat equation implies that, for any j € NV,

1(20) s 8) | e gy 25 2 [0l (13)

for all ¢ > 0. Furthermore, for the case when € is a convex domain in RY and V =0,
Li and Yau [6] studied the behavior of the nonnegative solution of (1.1) with ¢ = 0, and
obtained the inequality
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|Veul? O

o < % (1) € Q x (0,00). (1.4)
Then, by the standard arguments in the parabolic equations, we see that, for any j € NV
with |j] < 1, the inequality (1.3) holds for all ¢ > 0. (We remark that the inequality (1.4)
holds for all sufficiently small ¢ > 0 without the convexity of the domain  (see [10]).)
On the other hand, Grigor'yan and Saloff-Coste [2] studied the asymptotic behavior of
the Green function G}, = G}/ (x,y,t) of (1.1) for the case when € is the exterior domain
of a compact set, u = 1, and V = 0. They proved that, for any fixed z,y € €Q,

v|Z

GY (z,y,t) <t~

for all sufficiently large ¢ (see also [11]) if N > 3. This together with the mean value
theorem, the Dirichlet boundary condition, and (1.2) implies that

N
=t 7

||(VIG¥)('7 '7t)HLOO(Q><Q)

for all sufficiently large t. So we see that the solution of (1.1) with x4 = 1 does not
necessarily satisfy the inequality (1.3) even for the case |j| = 1. The first author of this
paper studied the asymptotic behavior of the solution of the heat equation under the
Neumann boundary condition in the exterior domain of a ball in [3]. His results imply
that, for the case p = 0 and V = 0 on €, the inequality (1.3) does not necessarily
hold for the case |j| = 2. Recently, Shibata and Shimizu [8] studied the decay properties
of the Stokes semigroup in the exterior domain of a compact set, under the Neumann
boundary condition. Their results are applicable to the heat equation, and we see that
the inequality (1.3) holds for the case when N > 3,  is the exterior domain of a compact
set, V=0 on Q, and = 0. (For further informations on the behavior of the derivatives
of the solutions of the heat equations, see [1], [7] and [9].)

Let uy = u}, (x,t : ¢) be a solution of the initial-boundary value problem (1.1) in
the exterior domain €y,. For any p > 1 and ¢ > 0, put

V26T O], e = sup {[ (V2w ) (o )| o, 2 N0NlEr(ry = 1,
where j € NY. In particular, for the case p = 1, we see that

[V26Y Ol = T2 Ol £ 0

Let Agn-1 be the Laplace-Beltrami operator on SV—1 and {wi}2, the eigenvalues of
~Agn1Q=wQ on SNT' Qe L*SNT, (1.5)

that is,

Wg = k(N + k- 2), k € Ny. (16)
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Furthermore, let {Qy;}* | and I, be the orthonormal system and the dimension of the
eigenspace corresponding to wy, respectively. Let UIY: .(r) be a solution of the initial
value problem for the ordinary differential equation,

N -1
DU+ =
(Ov) r

@ U)L) = p, UL)=1-p,

OU—-V(r)U=0 in (L,00),

where 0 < p < 1. Put

a(w)

glt:w)=(1+1¢)" 2

(1.7)

Here a@ = a(w) is a nonnegative root of the equation a(a + N — 2) = w, that is,

(N -2)+ /(N2 dw .

2

a(w) =
Then, under the condition (V!}), we see that
g(t:w) < [UZL(tl/Q)}_l

for all sufficiently large ¢ (see Proposition 3.1).

In this paper, we consider the initial-boundary value problem (1.1), and study the
decay rate of [|[VIG} (t)||p—oo as t — 0o, by using the asymptotic behavior of UKL (r) as
r — oo. Here, we give the main results of this paper for the case N > 3.

THEOREM 1.1. Let N > 3 and consider the initial-boundary value problem (1.1)
under the condition (V') with w >0 andl € N. Let p > 1. Assume either

277/ Won/
i+l 7 V(r) £ 2 on [L, 00) (1.9)

n#

for any n' € No with 2n’ <1+ 1. Then, for any j € N&¥ with |j| <1+1,

131

IViGy |, 27572 if |j| <aw), (1.10)

IVEGY O, =55 if |j] > alw) (1.11)

for all sufficiently large t.
If, for some n’ € Ny, the equalities hold in (1.9), we have another decay property.

THEOREM 1.2. Let N > 3 and consider the initial-boundary value problem (1.1).
Assume that there exists a nonnegative integer n’' such that
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_ / _ Wn, _ n
n=2n, V(r)= 3 on [L,00), p= -7 (1.12)
Let p > 1. Then, for any j € N,
; _N 6l . .
HV%GX(:S)HTHOO <t w2 if |j] < n, (1.13)
IVAGE O], = 757555 if 1] > (1.14)
2G, oo = if |jl>n .

for all sufficiently large t.

Here we remark that, under the condition (1.12), V satisfies the condition (V) for
all I € N and a(w) = a(w,) = n. Furthermore, as a corollary of Theorems 1.1 and 1.2,
we have

COROLLARY 1.1. Let N > 3 and ux = ux(x,t 2 @) be a solution of the initial-
boundary value problem (1.1) with ¢ € LP(2r,), under the condition (V) with w > 0 and
l€N. Let p>1 and j € N with |j| <1+ 1. Then there exist positive constants C
and T such that

] _ N _ il
[(V2u) (ot )| e,y < O 2 2 10llLrgan)
for all t > T and all ¢ € LP(2r) if and only if, either w > wy;| or
|.7|:13 V(T)EO on [L,OO)’ /,L:O

The latter case of Corollary 1.1 comes from Theorem 1.2 with n = 0. Indeed, in
this case, there hold wy =0, w; = N — 1 and a(wg +wy) = 1. By (1.14), the conclusion
follows. The former case is an immediate consequence of Theorems 1.1 and 1.2.

For the decay rates of the derivatives of the solution for case N = 2, see Section 7.

Now, we give a rough sketch of the proof of the upper estimates in Theorems 1.1
and 1.2, which will be discussed in-depth in Section 5. Under the suitable assumptions
on the initial data ¢, the solution uy of (1.1) is written by

ac) in Qp x (0,00).
x

Here 0% is a radial solution of (1.1) with V(r) replaced by Vi (r) = V (r)+-wy/r?. Assume
(V') and let j € NV with 1 < |j| <I. Then, roughly speaking, we see that there exists
a function (j ; = (i (t) such that

v (2,) = Gra (U, (), (1.15)

Vv (@, )] = Gea(O)| VAU (J2])] = Gri(t) || =] (1.16)
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for all z € Qy, and all sufficiently large t with |z| < t'/2. By (1.16), we have

(ViuY) (1) ZZ@Z HV7, {UX’“L(1|)Q;“<| |)”
k=0 1=1
oo g
N Gt |w[teten) =l (1.17)
k=0 1:=1

for all z € Q and all sufficiently large ¢ with |z| < t'/2. Furthermore, by (1.7) and
(1.15), we have

Grat) = (U (/2] o 1) oy = 902 2 @+ @)t 18] 2oy

for all sufficiently large ¢ (see also (2.12)). By (1.7) and (1.17), for any sufficiently small
€ > 0, we have

N‘Z

|(V] V) (z, t

E

oo g
ZZ (t:w -+ wp) 2] ]| 1o
k=0 i1=1

oo g
<t B3 elateron bl {g(t Cw + W), ¢ %}HéﬁHLv(QL
k=0 i=1
N
<t max{g(t w),t” }||¢||Lp(QL (1.18)

for all € Qr and all sufficiently large ¢ with |z| < et'/2, where [a]; = max{a,0}. On
the other hand, by using the standard arguments in the parabolic equations, we see

: _ N _lil
|(V3u ) (@, )| 27252 6] Lo (o) (1.19)

for all (z,t) € Qp x (0, 00) with |2| > et'/? > L+2 (see Lemma 2.3). By (1.18) and (1.19),
we have the upper estimates of HV%GZ(t)Hp_,OO in Theorem 1.1. (For more details, see
the proof of Proposition 5.1.)

Next, for the case (1.12), we see that VAUY = 0in Qp, for all j € Ng¥ with |j| > n+1
(see Proposition 3.3). Then, in a similar way to (1.17) and (1.18), we have

’(V] vy (z,t)]

S S v o denens(2))]

k=111=1

_N Fil
<t™% max {g(t:w+w),t % o)) (1.20)

for all z € Qp, and all sufficiently large ¢ with |z| < et'/2, where € is a sufficiently small
positive constant and j € N with |j| > n + 1. This together with (1.19) implies the
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upper estimates of ||V§;GZL/(15)||,Hoo in Theorem 1.2. (For more details, see the proof of
Proposition 5.2.) Note that the lower estimates in (1.11) and (1.14) are essential parts
of this paper and will be discussed in Section 6.

The rest of this paper is organized as follows: In Section 2, we give preliminary
lemmas in order to study the decay rates of the derivatives of the solution (1.1) for the
case N > 3. Section 3 is devoted to the study of the asymptotic behavior of U /Y - In
Section 4, by using the similar arguments to in [3] and [4], we study the large time
behavior of derivatives of the solution v of the initial-boundary value problem (PJ):

0w = Av — <V(x|) + wk)v in Qr, x (0,00),

|z[?

o — (1= p)ov=0 on 90y x (0,00),
(-, 0) = 9() € LP(Q),

(Py)

where 0 < p < 1, p > 1, k € Ny, and 9 is a radial function in 7. However, it
seems difficult to obtain optimal decay rates of the derivatives of the solution vl]j for

all k = 0,1,2,... by using the arguments in [3] and [4] directly. So we construct a
k
o

give upper estimates of the derivatives of the solution u of (1.1). Lower estimates of the
derivatives of the solution u,‘f for some initial data ¢ are given in Section 6, and complete
the proofs of Theorems 1.1 and 1.2 there. Furthermore, as corollaries of Theorems 1.1
and 1.2, we give two results on the decay rates of derivatives of u}f In Section 7, we
study the decay rate of the solutions for the case N = 2.

super-solution of (Pl’f), and obtain estimates of the derivatives of v. In Section 5, we

2. Preliminaries.

In this section, we give preliminary lemmas in order to study the decay rates of the
derivatives of the solution (1.1) for the case N > 3. For any p € [0,1], R > L, and w > 0,
let U, p be the solution of

N-1
U+ ——9,U—2U=0 in (R o0),
(O.,) r 72

O U)R)=p, UMR)=1-p.

Put

Uﬁ@ﬁ(E)a@{ Uf@)(i)ﬁwi (2.1)

where f(w) = N — 2 4 a(w). Then the functions U{(r) and U*(r) are solutions of the
ordinary differential equation

N-1
£U+—7—&U7%U:0m(mmy (2.2)
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and UY(r) # U“(r) on (0,00). So, by the uniqueness of the solution of (O,,), there exist

constants ¢; and ¢y such that
/;),R(T) = ClUi‘(T) + CQUU_J(’I"), r > R.

Therefore, by Uy r(R) =1 — p and 0,U} g(R) = p, we obtain

w (T)_OéuozRu(r>_ﬁ+3uﬁu+ﬂ<r>°‘
RV o R a+p R

where a = a(w) and 8 = f(w). In what follows, we put

2E(r) = ULt (r),

USp(r) = Uk (r), USMr) =UgT(r), U

for simplicity. Then we have the following lemma on U} .

LEMMA 2.1. Let L< R< S anda, b>0. Assume N > 3. Then
ak ;N _ 7rbk
Uy r(r) = U, R(r)

for allr € [R,S], u€[0,1], and k € Ny,

a(a+wy)
a H r
Urkir)y = | = +1- -
wr (") [kJrl - ’“‘] (R)

forallr > S, ue|0,1], and k € Ny, and
Ugip(r) = UL* (r)

for allr > R and k € Ny. Furthermore
d a,k
0 < %U,U,,R(T) - R

. " r a(atwk)
0< U () < | t1-4 (L
< Ulr(r) = [k+1 + “} (R) ’

forallr >R, 0< <1, and k € Ny.

ot (k+1)(1 - p) ( >‘*<“+“’k“
R b

(2.4)

(2.6)

ProOOF. Let a, b > 0. Put ax(a) = ala + wi) and Br(a) = B(a + wi). Then we

have

lim k& 'og(a) = Jim k718 (a) =1,

k—o0

(2.9)
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klim klag(a) — ag(b)] = 2|a —b). (2.10)

Then, by the Cauchy mean value theorem and (2.3), for any r € (R,S) and k =1,2,...,
there exists an 7 € (R, r) such that

U{L,,IIIC{(T) Oék(b) + ﬂk(b) <T)ak(a)—ak(b) 1— (T/R)*ak(a)*ﬁk(a)
nr)  ar@) + Bi(a) 1= (/) ® ()

R
r\ 2@ —ak(®) /s 2k (b)tak(a) g\ ~lex(a)—ax(®)]
=(= — > (= :
<R) (R) _<R)

This together with (2.10) implies (2.4) for the case p = 1. Similarly, we have (2.4) for
the case u = 0. Therefore, since

USR(r) = (1= UG R(r) + pUS R (r), v >R, (2.11)

we have (2.4). On the other hand, by (2.3), we have (2.5)—(2.8), and the proof of Lemma
2.1 is complete. O

Next we recall the following two lemmas on the decay rate of the solutions of the
initial-boundary value problem (1.1) under the condition (V).

LEMMA 2.2, Let w), be a solution of (1.1) under the condition (V,}) withw > 0. Let
1<p<qg<ooandi=1,2,.... Then there exists a positive constant C, independent of
V', such that

1

_N¢1_ 1
<Ot 2G| ¢ll ooy (2.12)

[ACDI La(Qr) =

for allt > 0.

Proor. Let GZ be the Green function of (1.1). By the comparison principle, we
see that

0<GZ(x,y,t)§G8(x,y,t), x,y € Qr, t>0. (2.13)

Furthermore, there exists a positive constant C' such that

_ 2
Gg(x,y,t)gCt_gexp(—la:ng), x7yEQLa t>0

(see [10] and [11]). This together with (2.13) implies (2.12), and the proof of Lemma
2.2 is complete. O

LEMMA 2.3.  Let u), be a solution of (1.1) under the condition (V) with w >0 and
1> 1. Then, for any e € (0,1) and p > 1, there exists a positive constant C such that
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|0 Viuy )z, t)| < Ct™ 22~ Nl (2.14)

for all (x,t) € Qp x (0,00) with |z| > et'/? > L4+ 2 and all i € Ny and j € N with
2+ |j| <1+1.

PROOF.  Let (20, o) € Q x (0,00) with |zo| > ett/? > L+2. Let k = et/?/2 > 1
and put

1
a(x,t) = e M(m0+kmto+k2)
for (xz,t) € @ = B(0,1) x (—1,1). Then u satisfies
ot = A —V(z)a in Q,

where V(z) = k2V (| + kz|). Furthermore, by (V})-(iii) and |zo| > 2k, there exist
constants Cq and Cy such that

5] km+2

Ch < Cq

HVgCVHLOO(B(O,l)) = wEB 0 1) 4 Z W =

for all j € NJ with |j| < I. Therefore, by Theorem 10.1 of Chapter 4 in [5] and Lemma
2.2, there exist constants C3, C4, and C5 such that

K22 (0w ) (2o, 1) | = \(6ZV€;@)(0,0)| < Csllafl oo

< Ogk 72 sup [y ) 1o,y < Csk™ 7 2 léll oo

for all i € Ny and j € N with 2i + |j| < 1+ 1. This implies (2.14), and the proof of
Lemma 2.3 is complete. O

3. Behavior of UKL(’I’) as r — oo.

In this section, we study the behavior of the solution UX,L(T‘) of (Oy) under the
assumption (V). Put

k € Ny.
In what follows, for k € Ny and A € R, we put
ap=o(w+wr), =N-2+a, h\(r)=V()-—=

for simplicity. We first prove the following lemma.
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LEMMA 3.1. Let R>L,a>0, and k € Ny. For any g € C([R,0)), put

R

HE g](r) = U (r) / TslN[Uf’k(S)]2< / ) TNlUf’k(T)g(T)dT>d8.

Then

(1) H;z’k[g](r) is a solution of the ordinary differential equation

U,,+N;1U,_a+wk

=g i (Ro0),
with U(R) = U'(R) = 0. In particular,

UYia(r) = U (r) + HE [Py ra—w, U] (1)

forallr > R, k€ Ny, and 1 =0,...,k.
(ii) Ifg(r) >0 on [R, R1] with Ry > R, then

H% gl(r) >0, HY*[gl'(r) >0, R<r<R,.
(iii) Assume that there exists a positive constant A such that

l9(r)| < Alha(n)|USR(r), v = R.

871

(3.2)

Then there exist positive constants C7 and Cs, independent of R and k, such that

[HE () ()] < CLAr Uk () /R rlha(7)|dr,
(o) ()] < Co AU (1) /R lha(r)dr

forallrT > R.

(3.3)

(3.4)

PROOF. The statement (i) comes from the variation of constants for the second
order ordinary differential equations for (Oy ). Furthermore, we can switch the role of

Uk o Ui’k in the definition of H;é,"k and we have

r

HE (o)) = U (r) /

R

sITN[USE(s)] ‘2( / ) TNlUf:’“(T)g(T)dT) ds.

R

This implies the statement (ii). Next we prove (iii) for the case p = 0. Put

U, (r) = r 5@ /R SO@OFI=N (s T (s) = /R FAmer @ g(r)dr,
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where ag(a) = ala + wg) and Bi(a) = B(a + wg). Then Hf%’k[g](r) = Uy(r) for r > R.
By (2.6) and (3.2), there exists a constant Cy such that

T ag(a)
< 1—ax(a) [ T
s 1,0)] < oA [ - () ojar

< Oy AR—+(@) / rlha(7)]dr- (3.5)
R

By (3.5) and Bi(a) > 0, we have
Uy (r)] < Br(a)r= Pt /R SOOI (s)]ds + rP DTN 1 ()|

< |:1+ ﬁk(a') ],r,ak(a)—l

ax(a) + Br(a)

gzclArl(%)“““)/ Tlha(r)|dr
R

and

—Br(a) " 28(a) 1N
U] < s (1,)] [ s ds

<S5

for all » > R and k € Ny. These inequalities together with (2.6) imply (3.3) and (3.4)
for the case y = 0. Next we consider the case y = 1. Then

r —ayg(a) Wk R R —ag(a)—Pr(a)
(R) ViRl = @+ Bu(@) ~ an(@) + Bela) <R)

is a monotone increasing function, and we have

o\ —on(@ S N ela)
max |Ig(s)|§A<R) Uf;,’;(r)/ Tlakm(R) (ha(7)]dr

R<s<r R

AR—ak(a) r —a(a) ok s
Smwra@(R) U [ o

Therefore, by the same argument as in the proof of (3.3) and (3.4) for the case y = 0,
we have (3.3) and (3.4) for the case u = 1. Finally, by (2.11), we have (3.3) and (3.4) for
the case 0 < p < 1, and the proof of Lemma 3.1 is complete. O

In view of Lemma 3.1, we have the following proposition on the behavior of U ;YIZ(T)
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as r — 00, by using the function U;’f(r) = U/i(L“"W’“)(r).

PROPOSITION 3.1.  Assume (V.}) with w >0 and N > 3. Then

r arp—1
0< (O UY)(r) = (k+ 1)<L> (3.6)

forallr > L, 0<pu<1, and k € Ny. Furthermore
Uy (r) <USE(r), 0<p<l, (3.7)
Uy (r) < UL (r) (3.8)

for allr > L and k € Ny. In particular,

Vi - H w,k
U, (r) = L‘H‘l +1—M}U+ (3.9)

for all sufficiently large v, 0 < pu <1, and k € Ny.

PROOF. By UX"L(L) =1—p, (U:L/’“L)'(L) = u, and the continuity of UK’“L, there
exists a constant 1o > L such that U;Y]i(r) > 0 for all » € (L,rp). Assume that there
exists a constant r1 > rg such that

UX’“L(T) >0, re(L,rm), UK’“L(H) =0.

By ho(r) = V(r) > 0, we see ho(r)U;/fL(r) >0 on [R,r1]. So, by Lemma 3.1-(i), (ii), we
have

UV (r) = UL (r) + HY (B -0, U ) (0) 2 UG (r) > 0

for all » € (L,71] and [ = 0,...,k. This contradicts U:L/,kL(Tl) — 0. So we see that
U;/,kL(T) > 0 on (L, ), and obtain

Uy (r) = Ui (r)+ HYP VU () > U (r) >0, 7> L. (3.10)
Furthermore, by Lemma 3.1-(ii), (2.7), and (3.10), we see that

(.U )(r) >0, r>L. (3.11)

Let S be a constant to be chosen later such that S > L. Put wg

)

S%maxz<,<s V(r). Then hyg(r) <0in (L, S). So, by (3.10), we have hy,, (r)UZ’CL(r
in (L, S). Hence, by Lemma 3.1-(i), (ii), we have

<0
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Uply (r) = Ups () + Hp* ¥ [ho U (r) < U () (3.12)
for all » € [L, S]. By (2.4), (3.10), and (3.12), we have

UV (r) < UE(r), r€[L,S], 0<p<1, ke Ny (3.13)

Furthermore, by (2.5), we have

U (S) < U F(S) < [“ +p— 1] @)a (3.14)
for all k € Ny and 0 < g < 1. On the other hand, by Lemma 3.1-(i), we have

Ul (r) =USF(r) + Hy P [h UK ] (), 7> L. (3.15)

Then, by (V!)-(ii), Lemma 3.1-(iii), and (3.13), we have

0 LUk et e na-wl(F) (3.16)

for all r € [L, S] and k € Np.
Let € > 0 be a sufficiently small constant to be chosen later. By (V!)-(ii), we may
take a sufficiently large S so that

oo
/ Tlhe (7)|dT < €. (3.17)
s
By Lemma 3.1-(i), we have
Ul(r) =UZE(r) + HE® [h U] (r), 7> 8.

Put

Ul(T’) = U;i’g(?"), Uj+1(7") = U;:’g(T) + Hg’k[hij](T), j € N. (318)
Then there exists Cy > 0 independent of j such that

UV = Upni| < Coel U — Uy, jeN.

By the standard arguments in the ordinary differential equations, we see that

Unls(r) = Jim Uy(r), 2. (3.19)
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By (3.4), (3.17), and (3.18), there exists a positive constant C' such that

U (r) — U“”’S’?(r)| < CUE(r) / 7| he (7)]dr < ceU;j;g(r)
S

I =~"p,
for all » > S. Similarly, we have

|Us(r) — U:g(r)’ < (Ce+ CQGZ)U:,’!;(T), r>S.

875

(3.20)

Let € be a sufficiently small positive constant such that Ce < 1/4. By repeating this

argument, we have

and obtain
UV (ry=UE(r) r>8, ke N,
w,S ,S = &y 0-
Then, by (2.5), (2.6), (3.14), and (3.16), we have
Uyl (r) = U, (S)Ugs(r) + (8:U,1 ) (S) Uy s (r)
p SN (™ _ e
> 00l = | ra-n| () (5) =t

for all » > S and k € Ny. Furthermore, by (2.3) and (2.9), we have

w S r\ ¢ 1 r\ &
wtsn =vito < 55 (5) < (5)

and obtain

UV (r) = UV (S)UYs(r) + (8,U0Y7) ()0 (r)

(3.21)

(3.22)

U (S)U % (r) + L;L +(1— u)} <L>ar1 (;)a <USF(r)  (3.23)

for all > S and k € Ny. Therefore, by (2.5), (2.6), (3.13), (3.22) and (3.23), we have
(3.7)—(3.9). Furthermore, by Lemma 3.1, (2.7), (2.8), (3.7), and (3.16), we have (3.6),
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and the proof of Proposition 3.1 is complete. O
Furthermore, by Proposition 3.1, we have the following proposition.
PROPOSITION 3.2.  Assume (V}) with w >0 and N > 3. For any g € C([L,0)),
put

FY [o)(r) = UL o(r) /

L

sV [UY L ()] 2( /L ) NV (n)g(T) dT) ds.

Then, for any k € No, FY*[g](r) is a solution of

N -1
U'+—U -Vi(r)U=g 1n (L,00),
r (3.24)
U(L)=U'(L)=0.
If there exist constants A > 0 such that
lg(r)| < AUGG(r), r 2> L,
then there ezists a positive constant C, independent of k, such that
|F*[g](r)] < CA(k + 1)~'r2Uy% (r), (3.25)
‘FX’“ [g]’(r)| < CATUXICL (r), (3.26)

for allr > L.

PrROOF. Asin Lemma 3.1, by the definition of F}f’“, we see that FX’C satisfies (3.24).
Put

I(r) = / SN O ()] ( /L N U () dT) ds.

L

By (3.8), there exists a constant C; such that

1J(r)| < C4 /L SN UL ()] ‘2( /L N () d7-> ds
<Ci /T 520"“+1N(/S raktN-1 d7‘> ds < 701 r2, (3.27)

|/ (r)] < Clrl_N[Urk(r)]_Q /LT -1 [Uf:’k(T)]2 dr

C]
< C r 200, +1 N/ 7_20¢k+N 1d7' <
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for all > L. By (2.9) and (3.27), we have (3.25). Furthermore, by (3.6) and (3.28), we
have

FEIOl 20 ”(Z)W'J(’") * (D%M'(rn < <L>

Therefore, by (3.8), we obtain (3.26), and the proof of Proposition 3.2 is complete. O
Next we consider the condition (1.12).

PROPOSITION 3.3.  Assume (V) withw >0 and | € N. Furthermore assume that
there exists a multi-index J € NI with |J| =n+ 1 <1+ 2 such that

(V;U,YL)(M) £01in Qp, forallje NY with|j| <n,

(3.29)
(VgUXL)(|x\) =0 in Q.
Then there exists a nonnegative integer n' such that (1.12),
UY () = S @2 o a2)” = S e, s e (3.30)
/"')L x — Ln le Z‘N — Ln X 5 x L, .
and
(ViU L) (j2)) =0 in Qp (3.31)

hold for all j € N with |j| > n + 1.

PrOOF. Let J = (Jy,---,Jy) € N with [J| = SN, J; = n+1 < [+ 2 such
that (VIUY)(z) =0 in Q. Put
Z(J)={j=0rin) €Ny :0<ji < i, i=1,...,N},
1
T

QOO(T) = UX,L(T)v (Pk—i-l(”‘) = (3r<Pk)(T)a k=0,...,n

Then we have

Z;

0 .
5,2l = @) la) g = puna (e, i=1,.., N

So there exist radial functions {f;};ez(s)\ (s} such that
0= (Vigo)(2) = nir(lzha’ + > fi(la))a’
JjeZ(ND\{J}

"o (zhy’ + Y |2V (al)y
JEZINLI}

:|{L’
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for all z € Qp and y € SV~ with y = 2/|z|, and we have
"o () =0, r>L. (3.32)

This implies that U/Y) 1(r) is a polynomial at most of 2n degree, that is, there exist a
natural number /(< 2n) and constants {a; }\_, such that a; # 0 and

Uyp(r)=>Y ar', r>L. (3.33)

Then, by (Oy) and (3.33), we have
Zz(z — Da;r™2+ (N -1) Ziair“z - wZair“z = hw(r)UKL(r)
i=2 i=1 i=0
for all » > L. Let
b() = —waop, b1 = (N — 1)0,1 —was,

b =i(i — 1)a; + (N — 1)ia; — wa;. (3.34)

Then, by (V!)-(i), we have
rzhw(r)UxL(r) = Z bir' = Z aihy, (r)rit? = o(1) Z a;r’ (3.35)

for all sufficiently large r. So we have b; = 0, and by a; # 0, we obtain
w=Ill-1)+(N-1l=uw. (3.36)

By (3.34) and (3.36), for any ¢ = 0,1,...,1 — 1, if b; # 0, then a; # 0. However, since
(3.35) holds identically, we see that

ap=a=--=a-1=0, h,=0 on [L,0). (3.37)

Therefore UKL(T) = a7, and by (3.32), we have

n

" oni(r) = a < H(l - 2k)>7°l(n+1) =0, r>L.
k=0

So there exists a nonnegative integer n’ € N U {0} such that [ = 2n’, and we have

’
n

UY () = ar(af + -+ + 2%y)
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Then, by (3.29), we have n = 2n/ = [ and (3.31). Furthermore, by (3.36), (3.37), and the
boundary condition, we have (1.12). Finally, by U/Y:L(L) =1 — pu, we have (3.30), and
the proof of Proposition 3.3 is complete. O

4. Derivatives of the solutions of (Pl’f)

In this section, we consider the radial solution v of the initial-boundary value problem

0w = Av — Vi (|z])v in Qr, x (0,00),
(P/’f) po — (1= p)ow =0 on 90 x (0,00),
v(,0) = ¥() € LP(Q),

where 0 < pu < 1, p > 1, k € Ny, and v is a radial function in ;. For any positive ¢
and T, put

D.(T) = {(z,t) € Q x (T, 00) : |z| < e(1+1)"/2},
PU(T) = {(2,1) € QU x (T,00) : 2] = e(1 +£)1/2}
U{(z,T) 1z €Qy, |z| <e(l +T)1/2}‘
In this section, we construct a super-solution of (P}) in D (T) for some positive constants

e and T, and give some estimates on the derivatives of the solution v} of (P¥) in D (T).
In what follows, under the assumption (V!), we put

Uk(r) = U(YIX(T)a ge(t) = g(t : w + wy)

for simplicity. We first construct a super-solution of (P,’f)

LeEMMA 4.1.  Assume N > 3 and (V) with w > 0 and k € Ny. Let v > 0. Then
there exist positive constants T, €, and C, which are independent of k, and a function
W =W (x,t) in Qr x (0,00) such that

oW > AW — Vi(|z))W i D(T), (4.1)
pW (2, 8) + (1 — u)a%vv(x,t) >0 on 90 x (T,00), (4.2)
W(z,t) > C™% (14 )~ on T.(T), (4.3)
and
0< W(a,t) < (1+t) Yge(®)Us(z]) in De(T). (4.4)

PROOF. Let A and € be constants to be chosen later such that A > 0and 0 < e < 1.
Let T, be a positive constant such that (1 +7.)'/? = L 4+ 1. Put
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W (z,t) = (1+ 1) 7 gx(t) [Us(|2]) — AL+ k)(1+ )7 F* [Ug)(|=])]

for all (x,t) € Qp x (T¢,00). Then, by (1.7) and (2.9), there exists a constant C; = C1(7)
such that

W = [=y(1+6)7gr(t) + (1 + 1) g, (5)] Uk(|])
> —Cr(1+k)(1+6) 7" g (t)U(|2]) (4.5)

and by (3.24), we have
AW = Vi(le)W = AL + k) (1 + )7 g () Ur(|a]) (4.6)
in Qp x (Te,00). Let A = C;. Then, by (4.5) and (4.6), we have
OW > AW — Vi (|Jz)W in Qp x (T¢, 00). (4.7)

On the other hand, by Proposition 3.2, there exists a positive constant Cs, independent
of €, such that

0 < AL+ k)1 +8) " FE[U)(J)
< CoA(L + )7V 22U(|2]) < CoAeUs(|z])

for all (z,t) € D(T,). Let 0 < e <min{l,1/2C3A}. Then we have

%gk(t)Uk(lffD S A +8)TW(a,t) < gr(t)Uk(l2]) (4.8)

for all (z,t) € D.(T¢). Then, by the definition of W, we have

,uW—&—(l—,u)%W:,uWEO on 99 x (0,00). (4.9)

By Proposition 3.1 and (1.7), we see that
1/2\ _ prw.k 1/2
Uk(e(L+6)'2) < UE (e(141)'?)
[ e(LF1)/2\ e\ _
ey () 2w () et o)

for all t > T, and k € Ny. By (4.8) and (4.10), there exists a positive constant C3 such
that
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(4 () > SonUs(la]) = 5O ((1 +1)/2)

€

> 031(k+1)—1<L>ak (4.11)

for all (z,t) € T.(T.) with t > T.. Furthermore, by (3.6), (4.8), and €(1 +T.)"/? = L +1,
there exists a positive constant Cy such that

W(a,T,) >

(1+Te)—v—?Uk(L):;(1+TE)_7< ¢ >ak

1
2 L+1

> 1+ T (4.12)

for all (x,T¢) € T(T:) and k € Ny. By (4.7), (4.9), (4.11), and (4.12), we have (4.1)—
(4.4), and the proof of Lemma 4.1 is complete. O

Next we give the following lemmas on the estimates of derivatives of vl’j. First, we
estimate v and its time derivatives.

LEMMA 4.2.  Assume that v is a radial function in Qp such that ||[¢| r,) = 1
with p > 1. Let N >3 and v be a solution of (P}) with v(-,0) = ¢(-) under the condition
(VYY) with w > 0. Put

Vi
w(z,t) = Fr*[(0) (-, 8)](|])-
Then there exist positive constants T, €, and n, independent of k, such that

|0Fo(z, t)| < ™t 5 g (UL (Ja)), (4.13)

3 -1 w
|Ofwa, )] < n*t= 2 7 g () 2 PUL* (J2]) (4.14)

for all (z,t) € D(T') and all i € Ny with 20 <1+ 1.

PROOF. Let i € Ny and put v; = d{v. Let T and € be positive constants given in
Lemma 4.1. Let W be the function constructed in Lemma 4.1 with v = N/2p + 4. For
any 11 > 0, we put

vz, t) = n*W(x,t)

for all (z,t) € D(T). Then, taking a sufficiently large T and 7 if necessary, by Lemma
2.3, we have

|vi(z,t)| < Ti(x,t) on T(T).
So, by the comparison principle, we have

|Ui(z7t)‘ Sfi(xat) in De(T)
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This inequality together with (2.8), (3.7), and (4.4) implies
[oila, )] < e~ gi(6)Up (|2
=B g (U (12]) < ni B g (DU ()
for all (z,t) € D.(T), and we obtain the inequality (4.13). On the other hand, since
(Ow)(@,t) = F* [0 0) (-, )] (|2]) (4.15)

for all (x,t) € Qr x (0,00), by (3.8), (3.25) and (4.13), we have (4.14), and the proof of
Lemma 4.2 is complete. g

Furthermore we have the following lemma on the time derivatives of d,v and 0,w.

LEMMA 4.3. Assume the same assumptions as in Lemma 4.2. Then there exist
positive constants T, n, and €, independent of k, such that

|00, 0(x, 8)| < okt~ 2 gy (6) |2 T ULF(|a)), (4.16)
|00, w(, £)] < ™51 g ()| UL () (4.17)

for all (z,t) € D(T') and all i € Ny with 20 <1+ 1.

PrROOF. By (3.8), (3.26), (4.13), and (4.15), we have (4.17). So we prove (4.16).
Put v; = d{v and w; = dfw. Then v; and w; satisfy

Ov; = Aw; — Vi(|x])w;

by the definition of F’ X *. By the uniqueness of the initial value problem for the ordinary
differential equation, there exists a function ¢(¢) in (0, c0) such that

vila, ) = (U (Ja]) + wilx, 1) (4.18)

for all (z,t) € Qr x (0, 00). Furthermore, by (3.8), (3.25), (4.13), (4.14), and (4.18), there
exist constants C7, Cy, T, m1, and € such that

C(H)|Uk(e(1+ 8)/2) < Jvi(x,1)] + [wi(x, 1)
e =c(144)1/2

e =e(144)1/2

< Oyt~ 5 T 4 Ot 5 gy (8) 22U ()

el =e(144)1/2

< Oyt 4 Oyt 3 g (UL F (e(1 4+ 1))
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for all ¢ > T. This together with (4.10) implies that there exists a constant 72 such that
) <mg*t 5 gult). ¢ =T, ke No. (4.19)
In addition, by (3.6), (4.17), and (4.18), there exists a constant 73 such that
|(0rvi) ()] < [CO](0-UY%) () + [0rwi(J], 1)]
ag - |1‘| ot app— 2 —i—1 w,k
St (k+ 1)t et 7 + =T gk ()2 |UE (|2])
<t B g (UL ()|

for all (z,t) € D.(T) and k € Ny. So we obtain (4.16), and the proof of Lemma 4.3 is
complete. O

We give upper estimates on the spatio-temporal derivatives of v and w.

LEMMA 4.4. Assume the same assumptions as in Lemma 4.2. Then there exist
positive constants T, 1, and €, independent of k, such that

0030 (@, )] < n**t” 5 gi(t)]2] UL (|al), (4.20)
007w, t)] < n**t™ 5 g (#)]al> UL (|a)) (4.21)

for all (z,t) € D(T), i € No with2(i+1) <Il+1, and j=2,...,1+2.

PrROOF. Let i € Ny with 2(i +1) <1+ 1. As in the proof of Lemma 4.3, put
v; = Ojv. Then, by (V})-(iii) and (P}), v; satisfies

N-1
|020:] = | — 80 + V(| )vs + vy + Doy
r ]
N-1 C, L 1+
§ ” |6Tvi| + 7“72‘,01| + |l‘|2 |Ui+1‘ (422)

for all (x,t) € D1(T), where C is a positive constant. This inequality together with
Lemmas 4.2 and 4.3 implies the inequality (4.20) with j = 2. Furthermore, since v;
satisfies

N -1 N -1

v = —5—0rv; — ——0%v; + (v' - 2“);“)@1 + VO,v; + 0,0,v; (4.23)
T T T

in Qp, x (0, 00), we may obtain the inequality (4.20) with j = 3. Repeating this argument,
we obtain the inequality (4.20). Furthermore, by (3.24), (4.14), (4.17), and (4.20), we
obtain (4.21), and the proof of Lemma 4.4 is complete. U
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Finally, we give estimates on the derivatives of v for the case (1.12).

LEMMA 4.5.  Assume that ¢ is a radial function such that ||Y| e,y = 1 with
p > 1. Let v be the solution of (PZf) with v(-,0) = ¥(-) and k = 0, under the condition
(1.12). Then, for any j € NY with |j| > n+1 and i € Ny, there exist positive constants
C, T, and € such that

|0iViv(z, t)| < Ct~ 33778 (4.24)

for all (z,t) € D(T).
ProOOF. By (1.12), we have

N

o =(X7) " v =(5) sew=aen

i=1

where n = 2n’ and ¢ is a positive constant. (See also Proposition 3.3). Put v;(z,t) =
Oiv(z,t) and w;(x,t) = F) [vi11](|z]). Let j € N with |j| > n+1. Then ViU, " Vo(lz|) =

0 in Qz, and by (4.18), we have Viv;(x,t) = Viw;(x,t) for all (z,t) € Qp x (0, 00).
Therefore, by the radial symmetry of w; and the inequality (4.21) with & = 0, there exist
positive constants T" and ¢ such that

1]
](Vjvl Z | amwl .’L‘ t)| <t —1—i— 7‘x|n+2 141

for all (z,t) € D.(T), and the proof of lemma 4.5 is complete. O

REMARK 4.1. If the LP-norm of the initial value is not 1, then all the right-hand
terms in the estimates in Lemmas 4.2, 4.3 and 4.4 must be multiplied by [|9||»(q,)-
5. Upper bounds of derivatives of solutions.

In this section, we prove the following two propositions, which are mentioned in
Section 1 as upper estimates, by using lemmas given in the previous sections.

PROPOSITION 5.1.  Assume the same assumptions as in Theorem 1.1. Then, for

any p > 1 and j € N& with |j| <1+1,

<t"mo (5.1)

p—0o0 —

||V?CGX(t)|| N _ min{o(w),|j[}

for all sufficiently large t.

PROPOSITION 5.2.  Assume the same assumptions as in Theorem 1.2. Then, for
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any p>1 and j € N with |j| >n+1,

a(wntwy)
2

VG D], <57 (5.2)

for all sufficiently large t.

PROOF OF PROPOSITION 5.1.  Let ), be the solution of (1.1) with ¢ € Co(€z).
By the same arguments as in [3] and [4], ¢ can be expanded in the Fourier series, that
is, there exist radial functions {¢y;} C L*(Q) such that

o0 lk
€ .
o) =3 D onsllahQus () in 20w (53
k=0 i=1
Let uf" be a solution of (1.1) with the initial data ¢y ;(|z|)Qk,i(2/]z|) and v}* a radial

solution of (P,’f ) with the initial data ¢y ;. By the uniqueness of the solution of (1.1), we
see that

uﬁ’i(ﬂ%t) = vﬁ’i(xat)Qk,i <;|)7 (‘T,t) € x (0’ OO)’ (54)

where kK € Ny and i = 1,...,l;. On the other hand, by the standard elliptic regularity
theorem and ||Qg i r2(sv-1) = 1, for any n € N, we have

[Qk,illczn(sn-1) = (1 + wi)[[Agn-1Q,illc2tn-1 (sn-1)

< (14 wp)"™ =< (k4 1)%"+2 (5.5)

for all k € Ny and i = 1,...,l;. Furthermore the eigenspace of Agn-1 corresponding to
w is spanned by the functions VZ|z| for j € N with |j| = I, and we have

Iy < N*. (5.6)
By the orthogonality of {Qk.;},i, we have
/Q uﬁl’“ (x, t)uﬁ”2 (x,t)dx =0 (5.7)
L

for all ¢ > 0 if (k1,41) # (k2,i2). On the other hand, for any ¢ > 0,

m
ul‘f(m, t) = ﬂ}gnoo Z Z vﬁ’i(ac, ) Qi <f;|) (5.8)

k=0 i=1

holds uniformly for all z € Q7. Hence we have
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u (z,0)Q i( )da—vk x,t/ ’Q l(gj>
/3B(O,z|) n (@00, |z| () 9B(0,|z)) B\ ]

= a¥ i, 1)

2
do

for all (z,t) € Qf x (0,00). Then, by (5.5) and the Jensen inequality, we have

p
‘mlN—l‘Uﬁ,i(x’t)‘P < m|(N—1)(1_p)</ ‘UX(x,t)“Qk,i(x> da)
8B(0,]z|) |z|

=< (k+ 1>2"/ |u) (,1)|"do
9B(0,]z)

for all (z,t) € Qp x (0,00) and k € Ny. So, by (2.12), we have

. o0 . 1/p
[op GO o,y = (/L rN—1|v’lj,Z(r,t)‘Pdr>

< kA Dl () iy < B+ leyy  (59)

for all t > 0 and k € Ny.
Let j € NV with [j| <I+1. Let k € Nandi=1,...,l;. By (1.6), (5.4), and (5.5),
we have

|71 m .k,
vt (z,t)|

vj kv 1+3 |r “w ’

| CUIEICESVAD | liT=m

m=0

. (m,t) € Qp x (0,00). (5.10)
Since D, (T) C D, (T) if €1 < €2, by Lemmas 4.2, 4.3, 4.4, Remark 4.1 and (5.9), there

exist positive constants 11, 12, 13, T%, and €, such that

|07 v (.t + to)|

|(L'||j|*m

/I 21’%( )Uuk(|$\)|3«”\ m””’“ (> to HLP(QL)

_N_ %k —1|q
< (k41 22 |2 Loy

. @ [ \J\
< (k+ 1)26[ak—b|]+n?kt—%—7kt e H¢||LP(QL)
an—|4 ap N M
< (k+ 1)26[ k \]|]+n3kt 2p H¢||LP Q1)

for all (z,t) € D (T\) with0 < € < €4, t9 > 0,andm = 0,1,...,|j|, where ap = a(w+ws).
Letting tg — 0, we obtain

min{o,|jl}

oMk (g, ¢ )
w < (k+ 1)2€[ak_‘]‘]+77?kt_%_7H¢||LP(QL)

|z[lil=m
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for all (x,t) € D (Ty) with 0 < ¢ < ¢, and m = 0,1,...,|j|. This inequality together
with (5.10) implies that

nnn{ak 141}

. . . ap —N al. ZAVARS
|ijuﬁ’l(x,t)| < (k+1)l+5€[ak*\3‘]+n3kt 2p ||¢||LP(QL) (5]_]_)

for all (z,t) € D (T,) with 0 < € < €. Let 0 < € < ¢, and T, be a positive constant such
that T, > T, and e(1 + T,)'/? > L + 2. By (2.9) and (5.11), taking a sufficiently small e
if necessary, we see

1 N _ min{ag,[i[}

SNk w2 6l (5.12)

|V9 e )] =
for all (x,t) € D.(T), k € N,and i = 1,...,l;. Similarly, for the case k = 0, we have

) 1 om0 L) (z,t
| ZK W) (@, 1)

0,1 _ 0,1
IVJ x,t)| = |V§cvu (z,t)] = . PR
,A,w
=t 91l ey (5.13)

for all (z,t) € D.(T¢). By (5.6), (5.12), and (5.13), we obtain

|(V3zu:f)(xt <11msupZZ| Viu ’“ )(, 1)

m—0o0

k=0 i=1
N _ min{ag.lil} < By
_ N min{ag,lj
<t 2 2 ||¢HLP(QL)ZZW
k=0 1=1
& _ minfao.ljl}
<t ol ey (5.14)

for all (x,t) € D.(T¢). On the other hand, by Lemma 2.3, we have

i _N il
|(V§:UX)($7t)| =t 9l ey (5.15)
for all (z,t) & D.(T.). Therefore, by (5.14) and (5.15), we obtain

N mm{a(w) 171}

|(Vjuv)(9€7t)| =t @ ol ey (5.16)

for all (x,t) € Qp with t > T, where ¢ € Cy(Qr). Since Cy(€2r) is a dense subset of
L?(Qyr), the inequality (5.16) holds for all ¢ € LP(€2r), and the proof of Proposition 5.1
is complete. O

PROOF OF PROPOSITION 5.2. By (1.12), V satisfies the condition (V) with w =
wyand 1 =0,1,2,.... Let j € Ny with [j| >n+1=2n'+1. Let u}f be the solution of
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(1.1) with ¢ € Co(€2) and uj* a function given in the proof of Proposition 5.1. By the
same argument as in the proof of (5.13) and Lemma 4.5, for any sufficiently small € > 0,
there exists a positive constant T, such that

N n+

; _N _ng1
|[(Viug ) (@, t)| <7272 |4llocar) (5.17)
for all (x,t) € D(T¢).

On the other hand, as discussed in Section 1 (see (1.20)), by the same argument as
in the proof of (5.14), taking a sufficiently small e > 0 if necessary, we have

m g
N

: j i _ N min{a(wntwi),|il}
hmsupzz {(Véuﬁ’)(w,t)‘ <t 2 PR )l e (or) (5.18)

M=o p=1i=1

for all (z,t) € D(T¢). Since a(w, + w1) is the nonnegative root of the equation, a(c +
N —-2)=n(N+n—-2)+ N —1, we see that a(w, + w1) < a(w,) +1 =n+ 1. Therefore,
by (5.17), (5.18), and |j| > n + 1, we have

_ a(wntwr)

(Vi) (@, t)] 2722 |¢ll oy (5.19)

for all (x,t) € D.(T¢). Furthermore, by (5.15) and (5.19), taking a sufficiently small € if
necessary, we have

a(wntwy)

(Vi) (@, t)] 27272 |gll oy (5.20)

for all (z,t) € Qp x (T¢,00), where ¢ € Cp(2r). Furthermore, since Cy(€21) is a dense
subset of LP(€Q), we have the inequality (5.20) for all ¢ € LP(Qr), and the proof of
Proposition 5.2 is complete. g

6. Proofs of Theorems 1.1 and 1.2.

In this section we consider the asymptotic behavior of the derivatives of the radial
solution v of (1.1) for some initial data ¢» € Cy(€2) and complete proofs of Theorems
1.1 and 1.2.

PROPOSITION 6.1.  Let R > 0, w > 0, and ¥(# 0) be a nonnegative, radial function

belonging to Co(Qr). Let v be a radial solution of

O = Av — #v in Qg x (0,00),
v(z,t) =0 on 00r x (0,00), (6.1)

v(x,0) = ¢¥(x) in Qg.

Then, for any p € [1,00],
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,%(1,%),M

lo(, )l Lrr) <t ’ (6.2)

holds for all sufficiently large t. Furthermore there exists a positive constant €, such that,
for any 0 < € < e,

N+a(w)
2

v(z,t) = @@= t>T (6.3)
|z =e(14£)1/2
holds with suitably chosen T = T(e).
Proor. Put
2(y,8) = (1 +1) N;av(x,t), y=1+t)"2z, s=1log(l+t), (6.4)
where o = a(w). Then the function z satisfies
1 N+« w
O0sz = —div (pVy2) + ——2 — —52z in W,
P I
z=0 on OW, (6.5)
2(y,0) = ¥(y) in Qg,

where p(y) = exp(Jy|>/4) and

Q(s) = e*?Qr, W= U (Qs) x {s}), oW = U (09(s) x {s}).

0<s< o0 0<s<o0

Put
e(y) = coly|*™ exp(—y|?/4),

where cg is a positive constant such that |||z 2(r~ pay) = 1. Then, since

,pdy
/ v(:r,t)U{fR(|x|)dz = / qS(a:)UfR(\dex >0, t>0,
QR QR

by the same argument as in the proof of Lemma 6.1 in [4], we see that

a= /Q o(x)Uy g(Jz|)dxr = lim 2(y, 8)e(y)p(y)dy > 0. (6.6)

§—00 Q(S)

Furthermore, by the same argument as in the proof of Lemmas 3.3 and 3.4 in [4], for any
r1 and ro with 0 < r1 < ro, we have
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sup 12 )l L2 (2(s),pdy) < 00, (6.7)
sup [[2(+, 8) | Loy : [y|>m}) < OO, (6.8)
s>0

Sll{rolo”z(75) 7a90HC({y:T1§|y\§T2}) =0. (69)

By (6.6), (6.7) and (6.9), we have ||z(-,s)||11(q(s)) < 1 for all sufficiently large s. So, by
(6.8) and (6.9), for any p € [1,00], we have [|z(-, s)| Lr(qes)) =< 1 for all sufficiently large
s, and obtain (6.2).

On the other hand, by the same argument as in (4.18), there exists a function ¢ in
(0, 00) such that

v(z,t) = C()Uy p(lz]) + F1 [(9pv) (-, )] (|2]) (6.10)
for all (x,t) € Qg x (0,00) with V = w/r?. By (6.2) with p = 0o, we may apply the same
arguments as in the proof of Lemma 4.2 with v = (N + «a(w))/2 to v. Then we see that
there exist positive constants €, and T, such that

|EY [(@r0) (D)) (J])| = 172 ) s (6.11)

for all (z,t) € D, (T). Therefore, by (3.9), (6.9), (6.10), (6.11), and the same arguments
as in the proof of (4.19), we may take a sufficiently small € so that

C(t) = [Ugp(&(+ )] o(@,1) = FY [00](|a])]

|z|=&(1+t)1/2

N+a N+a

< e i [T o) =<

o2

- (6.12)

for all sufficiently large ¢. Then, by (6.10)—(6.12) and the similar argument as in (6.12),
we have (6.3), and the proof of Proposition 6.1 is complete. O

PROOF OF THEOREM 1.1. Assume (V!). Let @ be a constant such that & > w
and

a(@) < a(w) + 1. (6.13)
Then, by (V!)-(i), we may take a sufficiently large R so that

Vi< =, r>R

ﬁm‘ St}

Let p > 1 and ¥ (3 0) be a nonnegative, radial function belonging to Cy(2g). Let v be a
solution of (6.1) with w replaced by @. For any T > 0, let uY. be a solution of (1.1) with
the initial data ¢(-) = v(-,T)/|lv(-, T)| Lr(y)- Here we remark that
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Hu¥(-,O)HLD(QL) =1. (6.14)

By the comparison principle, (6.2), and (6.3), for any sufficiently small € > 0, there exists
a positive constant T, such that

a(@)
2

o
up (e T) 2 o vw2l) _ pra-pe

__vw,2l) o(x, 2T)
('7T)HLP(QR)

= @35 (6.15)

for all (z,T) € Qp, x (T.,00) with |z| = e(1 +2T)"/? > max{R, 2L + 2}.
On the other hand, there exists a function ¢y (¢) such that

uy (@, t) = (U (o)) + FY [0pur] (|z)) (6.16)

for all z € Q. By Lemmas 4.2-4.4 and (6.14), taking a sufficiently small ¢ and sufficiently
large T, if necessary, we have

109 FY [0u¥)(ja])| < ¢ 3515 g2 il o) (6.17)

for all (z,t) € D(T.) and j € Ny with |j| <[+ 2. Furthermore, by (6.13) and (6.15)—
(6.17), there exist positive constants C;, Co, and C3 such that

(D)UY L(|2]) 2 uy (2, T) — |FY [y ](|a])|

> CLe@ T35 — Cre® T2~ 3 = @t

for all € Qp with L+ 1 < |z| = €(1 4 2T)Y?/2 < (1 + T)"/? and T > T.. Therefore,
by (2.5) and (3.7), we have

v(T) =T 22 (6.18)

for all sufficiently large T'. Therefore, by (6.16)—(6.18), there exist positive constants C3
and Cy such that

|51
[Viuy (2, T)| = (v (T)| VAU ()| = Ca Y |07 FY 0wy )(|]) ||
m=1

a(w) a(

> O T 55 [VIUY ()| - CuT™ 571 pPre@=lil (6.19)

for all L < |z| < e(1+T)Y2, T >T., and j € N with |j| <.
Let j € N&¥ with |j| <. By the assumption of Theorem 1.1 and Proposition 3.3,

there exists a point xg € Qr such that (V{,UKL)(QCO) # 0. Then, by (6.19), there exist
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positive constants Cs and Cg such that
(Viuy) (20, T)| > CsT 5~ "5 — e~ 5 "5 = 55 (6.20)

for all sufficiently large T". This inequality together with (6.14) implies

|VigY ()|, =T (6.21)

p—oo

for all sufficiently large T'. This together with Proposition 5.1 implies (1.10) and (1.11),
and the proof of Theorem 1.1 is complete. O

PROOF OF THEOREM 1.2. Let u¥1 be a function given in the proof of Theorem
1.1 with V(r) = (w, +w1)/r% Put

. X
iy (z,t) = uy’ (x,t)m

Then @Y. is a solution of (1.1) with V(r) = w, /r?.
Let j = (ji,---,jin) € N with [j| > n+ 1. Put j' = (j1 + 1, j2,...,5~) and

Ot 0) = [ Uit (s
Then, by (2.5), we see that (Nflfff“’l (r) < rol@nte)tl for all sufficiently large r. If
Vi ﬁl‘j”‘*‘“l (Jz]) = 0 in Qp, then, by the same argument as in the proof of (3.33), we see

that U;J’"L'*'wl (r) is a polynomial. This contradicts a(w, +w1) € N if n > 1. If n =0, by
(1.12),

r —(N-1) N -1
LN

w 1 w ]‘
Uu,nL—W (r) = UO,IL(T) = N (L
and ffﬁ’“*”l (r) is not a polynomial. So we have

L2

VIO ) = V[0 () ] 0 i

By the similar arguments in (6.16)—(6.20) and w = w,, + w1, there exist positive constants
(1 and C5 such that

(V4a¥) (20, T)| = C1T— 55554 gy ¥ —elenton 1

N _ a(wntwy)
2

=Tz

for all sufficiently large T'. Furthermore, since [|@Y. (-, 0)||1r(q,) = 1, we obtain
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H N _ a(wntwi)
2

i AV
V3G (T)
for all sufficiently large T'. Therefore, this inequality together with Propositions 5.1 and
5.2 implies (1.13) and (1.14), and the proof of Theorem 1.2 is complete. O

Next, we give a result on the estimates of the decay rates of LS -norm of the deriva-
tives of the solutions to (1.1). For any R > L, we put

IVAGE Ol oo = S0P {l(VEW) 5t )| e 30,1y ) T [9llLo(20) = 1}

Then we have the following result on the decay rate of [|[VLG) ()]l r:p—oo as t — oo.

THEOREM 6.1. Let N > 3 and consider the initial-boundary value problem (1.1)
under the condition (V') withw >0 andl € N. Letp>1 and R > L.

(i) Assume (1.9) for any n’ € Ny with 2n’ < I+ 2. Then, for any j € N with

jl <142,
i _N_ o)
IV2GH )] e <7272 (6.22)
for all sufficiently large t.
(ii) Assume (1.12). Then, for any j € N,
ViGY (t =% <o 6.23
H T ,U‘()HR:p—n)oA v Zf |j|— n, ( . )
i N olwte;) .
”szGZ(t)HR:pﬂoo = t_g’ T if |j| >2n +1 (6.24)

for all sufficiently large t.

PROOF. By the condition (V!), UL e C'*2([1,00)). Then, by (2.9), in a similar
way to the proof of Theorem 1.1, for any R > L, there exist constants n and T' such that

N 2k

o N _ep)
(Viup(z, )] 2 (k4 1D)FPn %75 16| 1o ay)

zn

N _a()  apw)—a(w)
2

< (k+ 1) I6llzr(22)

1 _N _aw
S gyet 77 el

forallz € Q,NB(0,R),t >T, k€ N,andi=1,...,1, instead of (5.11). Therefore, by
the same argument as in the proof of Proposition 5.1, we have (6.22) with =< replaced by
=. Furthermore, by the same argument as in the proof of (6.21), we have (6.22) with =<
replaced by >, and obtain (6.22). Similarly, we obtain (6.23) and (6.24), and the proof
of Theorem 6.1 is complete. O
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Next, for the solution u,, of (1.1), we put

@Y (r,0,t) = u¥ (x,1), r=|a], 9=£? (6.25)
and consider the decay rate of r"j‘VgaZ ast — oo. For any £ = 0,1,... and ¢ =
1,...,lk, Qk,i is a polynomial in the variable 6 of the degree k, and so we see that there

exists J € N@¥ with |J| = k such that Vng,i # 0 in SV~ and that V{;Qk,i =0 on
SN=1 for all j € N with |j| > k + 1. Therefore, in a similar way to the proof of
Theorem 1.2, we have the following result.

THEOREM 6.2. Let N > 3 and consider the initial-boundary value problem (1.1)
under the condition (V) with w >0 andl € N. Let p > 1. Then, for any j € N with
il <i+1,

—|q i AV _ N _ il
Ir= VG O], St
for all sufficiently large t. Here

[r= NG O], o = sup Ll PTG (0,8 O] e (1oyxsn—ry * N0llLran) = 1}

By Theorem 6.2, we have

i N _ il
sup |(V;u5)(x*7t : ¢)| <t w2 ||¢||LP(QL)
z.=(21,0,...,0)€Q

for all j = (0,j2,...,jn) with |j] <1+ 1.

7. Decay rate of the derivatives of the solution for the case N = 2.

In this section, we treat the two dimensional case. We first consider the cases either
N=2 and w>0 (7.1)

or
N=2 pu=0, and V=0 on [L,00). (7.2)

For these cases, by the same arguments as in the proof of Proposition 3.1, we see that

—pa—L 7 Lu— @
et () e )

for all » > L, where @ = a(w) and f(w) = N — 2+ a(w) = a(w). Furthermore, applying
the same arguments as in the previous sections, we have the following theorems.
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THEOREM 7.1.  Assume either (7.1) or (7.2). Then Theorems 1.1, 1.2, 6.1, and
6.2 hold true.

Next, we consider the cases either
(N,w)=1(2,0) and >0 (7.3)
or
(N,w, ) =(2,0,0) and V #0 on [L,00). (7.4)

Then we see that
0 r
Upp(r) =1-p+ plog )

For these cases either (7.3) or (7.4), we say that the function V satisfies the condition
(VL) if V satisfies the condition (V}) with the condition (ii) replaced by

0 w 2r e 2r
/L ’V(’/‘) = rlog <L)dr = /L V(r)rlog (L>dr < 00.

We assume (V) instead of (V!), and study the decay rate of the derivatives of the
solution of (1.1). We first prove the following proposition, instead of Proposition 3.1 for
the case k = 0.

PROPOSITION 7.1.  Consider the cases either (7.3) or (7.4). Assume (V). Then,
forany 0 <p <1,

d _
0< %U/Y)L(T)jr t (7.5)
r
UKL(’I“) =<1—p+log (L) (7.6)

forallr > L.

PROOF. For the case (7.3), we have UKL(’I“) = U, 1(r) on [L,00), and, by u > 0,
we obtain (7.5) and (7.6). So we consider the case (7.4), and assume that V' # 0 on
[L,00). Put

U (r) = log (;) US(r) =1, r)=rlog (2;)

instead of (2.1). Then, by the same arguments as in the proof of Lemma 3.1, we see that
Lemma 3.1 holds with (3.25) and (3.26) replaced by
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1300 ()] < o [ ol (7.7)
|H%O[g](7”)‘ < CiAlog <;) / () |ho(7)|dT, (7.8)
R

respectively, where R > L and g is a continuous function satisfying
T
901} < Anor) (1 4105 (1) )

On the other hand, by Lemma 3.1-(i), (ii), and V' > 0, U/KL(T) >0 on [L,00), and we
have

UYL (r)=U2 (r)+ Hy [hUY L] (r) > U L (7) (7.9)

H, -

for all » > L. Then we have

UYL(r) > Uy (r) + H [hoUS ] (r)

>1— i+ plog (2) +( —u)/LTS_1</LSTV(T)dT>ds

>1— p+ plog (2) >0 (7.10)

for all » > L. Let S be a positive constant to be chosen later such that S > L. By the
same arguments as in the proof of (2.4) and (3.13), for any 0 < u < 1, we have

UKL(T‘)XUB,L(T’)Xl—M—FlOg <£>, L<r<S§. (7.11)
Furthermore, since Hg’o[hoUS,L]'(T) > 0on [L,00), by (7.7), (7.9), and (7.11), we obtain

0<0,U (r)=r™", L<r<Ss. (7.12)

Let € be a sufficiently small positive constant. By V # 0 on [L,00) and (V}), we
may take a constant S > L such that

/00 o(T)|ho(T)|dT = /00 )V (r)dr < €, (7.13)

S S

/S TV (7)dr > 0. (7.14)
L

For r > S, put
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Put
Ui(r) = Ups(r),  Uja(r) = Up s(r) + HS' VU )(r), j = 1,2,....
Then, by (7.8) and (7.13), there exists a constant Cy such that
[Ua(r) = US 5(r)] < Chi(r) log < Cai(r)U{ s(r).
Furthermore we have
[Us(r) = URs(r)] < [Cilr) + (Cai(r)?] log .

By the same argument as in the proof of (3.21), taking a sufficiently small ¢’ if necessary,
we have

|U/Y,S(r) — U37S(r)| < Cyi(r) log% =< log (;), r>_5. (7.15)

By (7.11), (7.12), and (7.15), there exists a positive constant C5 such that

S r r
UKL(S)UXS(T‘) = (1 —u—l—logL) (l—i—CglogS) <1 —,u+logz,

r

S

r

+C’310g5> = log%

(aTU;Y,L) (S)st(T) <S8! (log

for all r > S. So we have

Uy (r) = Uy ($)Ug s(r) + (0:UY ) (S)Uy s(r)

= 1—u+log% (7.16)
for all » > S. Furthermore, by (7.10) and (7.14), we have

r
U L(r) = 1= p+log 7 (7.17)

for all » > S. Therefore, by (7.11), (7.16), and (7.17), we have (7.6). Furthermore, by
(7.6), (7.7), and (7.9), we have (7.5), and the proof of Proposition 7.1 is complete. O

Furthermore, we see that Proposition 3.1 for the case k¥ > 1 and Proposition 3.2
hold. Therefore, by the same arguments as in the proof of Theorems 1.1, 6.1, and 6.2,
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we have the following theorem.

THEOREM 7.2.  Let N = 2 and consider the initial-boundary value problem (1.1)
under the condition (V) withw =0 andl € N. Let p > 1, and R > L. Assume either
(7.3) or (7.4). Then, for any j € NV with |j| <1+ 1,

[viGy @l .. =< [Ivie =t 7 (logt)"!,

F‘L/(t)HR:p—M)c

gl

I G @, <

for all sufficiently large t.

Finally, by Theorems 7.1 and 7.2, we see that Corollary 1.1 holds true for the case
N =2.
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