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Abstract. Let M be a complete glued surface whose sectional curvature is
greater than or equal to k and 4pqr a geodesic triangle domain with vertices p, q, r
in M . We prove a compression theorem that there exists a distance nonincreasing map

from 4pqr onto the comparison triangle domain e4pqr in the two-dimensional space
form with sectional curvature k. Using the theorem, we also have some compression
theorems and an application to a circular billiard ball problem on a surface.

1. Introduction.

The compression theorem of Rubinstein and Weng ([9]) is stated as follows.

Theorem 1 (Compression theorem). Suppose 4piqiri(i = 1, 2) are two triangles
on spheres Si with radii r1, r2 (r1 < r2) respectively. Suppose the circular measures
of the sides of 4piqiri (i = 1, 2) are less than π. If d(p1, q1) = d(p2, q2), d(q1, r1) =
d(q2, r2), d(r1, p1) = d(r2, p2), then there exists a map h of 4p1q1r1 onto 4p2q2r2 so
that d(x1, y1) ≥ d(h(x1), h(y1)) for any points x1, y1 in 4p1q1r1 where d(·, ·) denotes
the distance function. Moreover, if x1, y1 are not on the same side, then the inequality
strictly holds.

They claim that the radius of the inscribed circle and the circumscribed circle of
a triangle can be compared to the one of a comparison triangle, and introduce other
applications ([9]). Moreover, they have stated that the Steiner ratio of a sphere in
the minimal network problem is

√
3/2 as an application of this theorem. Weng and

Rubinstein ([13]) have stated the compression theorems for convex surfaces. We will
study these theorems in a wider class of surfaces.

Let M be a glued surface. Here we say that a two-dimensional topological manifold
M without boundary is by definition a glued surface if a surface M has a decomposition
M = ∪α∈ΛMα such that

(1) Mα is a two-dimensional smooth complete Riemannian manifold with piecewise
smooth boundary for any α ∈ Λ.

(2) IntMα ∩Mβ =∅ if α 6= β ∈ Λ, where IntMα is the interior of Mα.
(3) If S is the set of points p ∈ M such that p belongs to the boundary of some

component Mα and it is not smooth at p, then inf{d(p, q) | p, q ∈ S, p 6= q} is
positive, where d(·, ·) is the natural distance function associated with the Rieman-
nian metric. Furthermore, for a point p ∈ S there exist finitely many α ∈ Λ with
p ∈ Mα.
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The surfaces of objects are sometimes like glued surfaces. The boundary of a domain
in the Euclidean space E3 which is given by some inequalities fj(x, y, z) ≤ cj is also
sometimes a glued surface. A glued surface is a two-dimensional Riemannian manifold
with piecewise smooth metric such that the set of non-differentiable points is a graph
consisting of differentiable curves as its edges. Jacobi vector fields along geodesics in
glued Riemannian manifolds have been studied in [6], [8], [10], [11] and [12]. We call a
point p in the interior of a component Mα a regular point, a point in the boundaries of
just two components Mα and Mβ a smooth gluing point if the boundaries ∂Mα and ∂Mβ

are differentiable at the point p, and other points singular points.
We say that a glued surface M is with curvature ≥ k if the Gaussian curvature

is greater than or equal to k at any regular point, the sum of geodesic curvature of
gluing boundaries is nonnegative at any smooth gluing point and the sum of angles at
any singular point is less than 2π. Here the geodesic curvature κ(p) at a point p in
the boundary Bα of Mα is given by ∇XNα = −κ(p)X where Nα is the inward unit
normal vector field to Bα of Mα and X is a tangent vector to Bα at p. Let M(k)
denote a complete simply connected surface with constant Gaussian curvature k. If k

is positive, zero and negative, then M(k) is isometric to a sphere with radius 1/
√

k, a
Euclidean plane and a hyperbolic plane with curvature k, respectively. Let T (p, q) denote
a minimal geodesic segment connecting p and q for points p, q ∈ M . We say that 4pqr

is a geodesic triangle domain for points p, q, r ∈ M if 4pqr is a simply connected domain
bounded by T (p, q)∪T (q, r)∪T (r, p), and that a triangle 4̃pqr in M(k) is a comparison
triangle domain to 4pqr if the lengths of its sides are the same as the ones of 4pqr.
The points p̃, q̃, r̃ denote the corresponding vertices of 4̃pqr to p, q, and r, respectively.
Namely, 4̃pqr = 4p̃q̃r̃.

Let D be a domain in a glued surface M . We say that D is convex if there exists
a minimal geodesic segment T (p, q) contained in D for any points p, q ∈ D. Let D and
D̃ be closed convex domains in a glued surface M and M(k), respectively, such that the
boundaries ∂D and ∂D̃ are rectifiable curves and their lengths are equal. We say that a
surjective map h : D −→ D̃ is a compression map from D onto D̃ if d(x, y) ≥ d(h(x), h(y))
for any points x, y ∈ D and the restriction map h : ∂D −→ ∂D̃ preserves the length of
any subarc of ∂D.

In the present paper we will prove some compression theorems for glued surfaces
with curvature ≥ k.

Theorem 2. Let M be a glued surface with curvature ≥ k and 4pqr an arbitrary
convex geodesic triangle domain in M . Let 4̃pqr be a comparison triangle domain in
M(k). Then there exists a compression map from 4pqr onto 4̃pqr.

Let p be a point in a glued surface M and let a positive number a be less than
the diameter of M . Let C ′(p, a) = {x ∈ M | d(p, x) = a}. The set C ′(p, a) divides M

into at least two parts. In general, C ′(p, a) is not connected. We say that a connected
component C(p, a) of C ′(p, a) is a circle with center p and radius a. If the domain
bounded with C ′(p, a) is convex, then C ′(p, a) is connected and at least of class C1.

Let n be an integer greater than 2. Let p1, . . . , pn be points in C(p, a) which are in
this order and pn+1 = p1. We say that ∪n

i=1T (pi, pi+1) is a regular n-gon if d(pi, pi+1) =
d(pi+1, pi+2) for all i = 1, . . . , n − 1. A regular n-gon ∪n

i=1T (pi
′, pi+1

′) in M(k) with
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vertices p1
′, . . . , pn

′ and d(p1
′, p2

′) = d(p1, p2) is called a comparison regular n-gon to
∪n

i=1T (pi, pi+1). In general, the radius of the circle in which the vertices p1
′, . . . , pn

′ lie
is not equal to a.

Theorem 3. Let M be a glued surface with curvature ≥ k and let C be a circle in
M . Assume that a regular n-gon P with vertices in C bounds a simply connected convex
domain D containing the center of C. If D̃ is the domain bounded by a comparison
regular n-gon to P in M(k), then there exists a compression map from D onto D̃.

Let C be a circle in a glued surface M with length L. A circle C̃ in M(k) with
length L is called a comparison circle to C. If a circle C in M is convex, then the domain
D bounded by C is simply connected and has at most one singular point which is the
center of C.

Theorem 4. Let M be a glued surface with curvature ≥ k and let C be a circle in
M . Assume that C bounds a convex domain D containing the center of C. If D̃ is the
domain in M(k) bounded by a comparison circle to C, then there exists a compression
map from D onto D̃.

We will apply compression theorems to a Steiner minimum tree problem and a
circular billiard ball problem. Let M be a glued surface. Let P be a finite set of points
in M . A shortest network interconnecting P is called a Steiner minimum tree which is
denoted as SMT(P ). An SMT(P ) may have vertices which are not in P . Such vertices
are called Steiner points. The Steiner minimum tree problem is an interesting subject to
study (cf. [5], [9]). The following is a direct application of compression theorems which
was used in computing the Steiner ratio of spheres by Rubinstein and Weng ([9]).

Theorem 5. Let M be a glued surface with curvature ≥ k and D a convex domain
in M . Assume that there exist a comparison domain D̃ in M(k) and a compression map
from D onto D̃. Let P be a finite set of points {pi} in the boundary of D and P̃ the set
{p̃i} with p̃i = h(pi). Then, L(SMT(P )) is greater than or equal to L(SMT(P̃ )) where
L(SMT(P )) is the length of SMT(P ).

We are going to show a theorem concerning a circular billiard ball problem on
surfaces. Let C be a simple closed curve of class C1 with length L in a glued surface
M which bounds a domain D. We require that a geodesic line in D is reflected on the
boundary C under the law that the angle of reflection with C is equal to the angle of
incidence. Then such a geodesic line is called a reflecting geodesic line. The reflecting
geodesic lines may be considered to be billiard ball trajectories. Let γ : (−∞,∞) −→ D

be a reflecting geodesic line with unit speed such that it hits C at · · · < ti−1 < ti <

ti+1 < · · · . Let L(γ(ti), γ(ti+1)) be the arclength of C from γ(ti) to γ(ti+1) measured
with anticlockwise rotation for all i. We say that

α = lim inf
n→∞

1
n

n∑

i=1

L
(
γ(ti−1), γ(ti)

)

is the slope (or α/L the rotation number) of γ. Then, the inequality 0 ≤ α ≤ L holds.
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Theorem 6. Let M be a glued surface with curvature ≥ 0 and let C be a convex
circle with length L. Then given α with 0 < α < L there exists a reflecting geodesic line
γ : (−∞,∞) −→ D with slope α such that

lim inf
n→∞

1
n

n∑

i=1

d
(
γ(ti−1), γ(ti)

) ≥ L

π
sin

πα

L
.

The right hand side of the inequality above is the average such as in the left hand
side for a reflecting line with slope α in a comparison circle in a Euclidean plane M(0).
We will see how to find γ in Section 8.

2. Preliminaries.

Alexandrov spaces: Le M be a glued surface with curvature ≥ k. Then, M is an
Alexandrov space with curvature ≥ k. Hence, M satisfies the following properties ([3],
[4], [8]).

Any minimal geodesic segment does not pass through a singular point in M , except
for its endpoints. Two minimal geodesic segments with the same endpoints do not
intersect at any other point.

Let 4pqr be a geodesic triangle in M and 4̃pqr a comparison triangle to 4pqr in
M(k). If k is positive we assume that the perimeter of 4pqr is less than 2π/

√
k.

(1) If x ∈ T (q, r), x̃ ∈ T (q̃, r̃) with d(q, x) = d(q̃, x̃), then d(p, x) ≥ d(p̃, x̃).
(2) If x ∈ T (p, q), y ∈ T (p, r), x̃ ∈ T (p̃, q̃) and ỹ ∈ T (p̃, r̃) with d(p, x) = d(p̃, x̃) and

d(p, y) = d(p̃, ỹ), then d(x, y) ≥ d(x̃, ỹ).
(3) ∠pqr ≥ ∠p̃q̃r̃, ∠qrp ≥ ∠q̃r̃p̃ and ∠rpq ≥ ∠r̃p̃q̃.

Convex circles: Let C be a circle in a glued surface with curvature ≥ k and let p

be the center of C.

Lemma 7. If the domain D bounded by C is convex, then C is of class C1, the
domain D is simply connected and any point in D other than the center of C cannot be
singular.

Proof. Suppose there exists a point q ∈ C such that there exist two minimal
geodesic segments from p to q. Then, C is not differentiable at q and the outer angle
of C at q is less than π. Hence, there exist points q1 and q2 in C near q such that the
unique minimal geodesic segment T (q1, q2) is not contained in D, contradicting that D is
convex. Since T (p, x) depend continuously on x ∈ C, we see that D = ∪x∈CT (p, x), and,
hence, D is homeomorphic to a disk in an Euclidean plane. This completes the proof. ¤

Circular billiards: Let c : (−∞,∞) −→ M be a parametrization of a con-
vex circle C with length L by arclength and let γ : (−∞,∞) −→ D be a reflect-
ing geodesic line where D is the domain bounded by C. Let s = (si)i∈Z be a se-
quence such that γ(ti) = c(si), 0 < si+1 − si < L for all i ∈ Z where Z is the
set of all integers. Then,

∑n
i=1 L(γ(ti−1), γ(ti)) = sn − s0 for all positive integers

n. Let a0 < an < a0 + nL be given. Let H(u1, . . . , un−1) be a function given by
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H(u1, . . . , un−1) = −∑n
i=1 d(c(ui−1), c(ui)) for 0 < ui − ui−1 < L where u0 = a0 and

un = an. Then, there exists a sequence a1, . . . , an−1 where H assumes the minimum
and a broken geodesic ∪n

i=1T (c(ai−1), c(ai)) makes a reflecting geodesic. We say that a
reflecting geodesic line γ is minimal if any subsegment γ | [ti, tj ] of γ is given as above
for all i < j. Given α with 0 < α < L there exists a minimal reflecting geodesic line
γ : (−∞,∞) −→ D with slope α (see [1], [7]). For a circle C̃ with length L in the Eu-
clidean plane E2 a reflecting geodesic line ∪∞i=−∞T (c̃(α(i− 1)), c̃(αi)) is always minimal
where c̃ : (−∞,∞) −→ E2 is a parametrization of C̃ by arclength.

3. Contraction map.

Throughout this section let M be a glued surface. Let p, q, r, s be points in M

such that d(p, q) = d(s, r). Let A (or B, resp.) be a simple curve connecting q and
r (or s and p, resp.). Assume that d(p,A) = d(p, q), d(s,A) = d(s, r) and that K =
T (p, q) ∪ A ∪ T (r, s) ∪ B is a simple curve which divides M into two parts. Let D be a
domain bounded by K.

Lemma 8. There exists a map g : D −→ T (p, q) such that

(1) d(x, y) ≥ d(g(x), g(y)) for any x, y ∈ D,
(2) d(x, y) = d(g(x), g(y)) for any x, y ∈ T (s, r),
(3) g(x) = x for any x ∈ T (p, q).

Proof. Let g : D −→ T (p, q) be a map given as follows. If d(x,A) ≥ d(p, q) for
x ∈ D, then g(x) = p. If d(x,A) < d(p, q) for x ∈ D, then g(x) is the point in T (p, q)
such that d(g(x), q) = d(x,A). We prove that the map g satisfies the condition. Let
x, y ∈ D. We can assume without loss of generality that d(x,A) ≥ d(y, A). Let w, z be
the feet of x, y on A, respectively, i.e., d(x,w) = d(x,A) and d(y, z) = d(y, A) hold with
w, z ∈ A. Then we have the inequality

d(x, y) ≥ d(x, z)− d(y, z) ≥ d(x,w)− d(y, z)

≥ d(g(x), q)− d(g(y), q) = d(g(x), g(y)).

If x, y ∈ T (s, r), then w = z = r and the equalities hold. This completes the proof. ¤

We call a map satisfying the properties in this lemma a contraction map of D to
T (p, q). We will need 2 special cases to make a compression map.

Lemma 9. Let D be a sector with vertex p whose boundary is T (p, q)∪C(p)∪T (p, r)
where C(p) is a subarc of a circle connecting q and r with center p. Then there exists a
contraction map g of the sector D to the radius T (p, q).

Any geodesic biangle is a kind of a sector.

Lemma 10. Let D be a geodesic biangle domain whose boundary consists of 2
minimal geodesic segments connecting p and q. Then, there exists a contraction map of
D to a minimal geodesic segment T (p, q).
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4. Basic partition and map for triangles.

In this section we show how to divide a triangle domain into two thinner triangle
domains and other domains. The method will be used for all triangle domains which will
appear in the proof of Theorem 2 in Section 5.

Let 4pqr be a convex geodesic triangle domain in a glued surface with curvature
≥ k and 4̃pqr a comparison triangle domain in M(k). Let s̃i

n be the point in T (q̃, r̃)
with d(q̃, s̃i

n) = nd(q̃, r̃)/2i in M(k) for any n = 0, 1, . . . , 2i and let Si = {T (p̃, s̃i
n) | n =

0, 1, . . . , 2i} ∪ T (q̃, r̃) be sets in M(k) for all positive integer i.
Let m be the midpoint between q and r in T (q, r). Then, by (2) in Section 2, we have

that d(p,m) ≥ d(p̃, m̃). If d(p,m) = d(p̃, m̃), then we set D = T (p, q)∪T (p,m)∪T (p, r)∪
T (q, r) and define a map g : D −→ S1 as the union of isometric maps of corresponding
sides. Then, the map g is distance nonincreasing as was seen in Section 2.

We assume that d(p,m) > d(p̃, m̃). Since 4pqr is simply connected, the connected
component C(q) (and C(r), resp.) of the circle passing through m with center q (and
r, resp.) and radius d(m, q) divides the triangle 4pqr into two parts. We have two
possibilities. Both C(q) and C(r) intersect the same side of the triangle 4pqr, say
T (p, r). Or C(q) intersects T (p, q) and C(r) intersects T (p, r). In the former case, the
intersection point s ∈ T (p, r) with C(q) satisfies the inequality

d(p, s) = d(p, r)− d(r, s) < d(p, r)− d(r,m)

= d(p̃, r̃)− d(r̃, m̃) < d(p̃, m̃),

since C(q) is in the same side as q with respect to C(r). We can take a point r′ ∈ C(q)
such that d(p, r′) = d(p̃, m̃) and d(p, x) > d(p̃, m̃) for any x ∈ C(q) where x is between
m and r′. In the same way, we can take a point q′ such that d(p, q′) = d(p̃, m̃) and
d(p, x) > d(p̃, m̃) for any x ∈ C(r) where x is between m and q′. In the latter case, the
intersection point s ∈ C(q) satisfies the inequality

d(p, s) = d(p, q)− d(q, s)

= d(p̃, q̃)− d(q̃, m̃) < d(p̃, m̃).

We can take a point r′ ∈ C(q) such that d(p, r′) = d(p̃, m̃) and d(p, x) > d(p̃, m̃) for any
x ∈ C(q) where x is between m and r′. In the same way, we can take a point q′ such that
d(p, q′) = d(p̃, m̃) and d(p, x) > d(p̃, m̃) for any x ∈ C(r) where x is between m and q′.
Thus we have two convex geodesic triangle domains 4pqr′ and 4prq′ in 4pqr in both
cases. In fact, the convexity of 4prq′ is proved as follows. Let T (x, y) be a minimal
geodesic segment connecting x ∈ 4prq′ and y ∈ 4prq′. If T (x, y) is contained in 4prq′,
then we have nothing to prove. Suppose T (x, y) is not contained in 4prq′. We may
assume without loss of generality that x ∈ T (p, q′) and y ∈ T (q′, r) and T (x, y) intersect
C(r) at some point z which is between m and q′. Then, we have

d(x, y) = d(x, z) + d(z, y)

≥ d(x, q′) + d(q′, y),
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since

d(x, z) ≥ d(p, z)− d(p, x)

≥ d(p, q′)− d(p, x) = d(x, q′)

and

d(z, y) ≥ d(r, z)− d(r, y)

= d(r, q′)− d(r, y) = d(q′, y).

Since the inner angle of 4prq′ at q′ is less than or equal to π, there exists a curve in
4prq′ which connects x and y and whose length is less than or equal to d(x, q′)+d(q′, y).
Thus, we can find a minimal geodesic segment connecting x and y in4prq′, contradicting
that T (x, y) is a minimal geodesic segment. This shows that 4prq′ is convex.

Let D = 4pqr − (Int4pqr′ ∪ Int4prq′). We will make a map g : D −→ S1. Let
x ∈ D. If x ∈ T (p, q) (and x ∈ T (p, r), resp.), then g(x) is the point in T (p̃, q̃) (and
T (p̃, r̃), resp.) such that d(p, x) = d(p̃, g(x)). Assume that x 6∈ T (p, q) ∪ T (p, r). Set
p0 = p, p1 = q, p2 = r, p̃0 = p̃, p̃1 = q̃, p̃2 = r̃ for convenience. Assume that the nearest
vertex of 4pqr to x is pj . If d(pj , x) ≤ d(p̃j , m̃), then g(x) is the point in T (p̃j , m̃) with
d(pj , x) = d(p̃j , g(x)). Otherwise, g(x) = m̃.

We have to prove that the map g satisfies the condition: d(x, y) ≥ d(g(x), g(y)) for
any points x, y ∈ D and the equality holds if x, y are in the same sides of4pqr. We divide
4pqr into 6 parts in such a way that4pqr = 4pqr′∪4prq′∪B(q)∪B(r)∪B(p)∪E, where
B(q) is the domain bounded by T (q, r′) ∪ C(q) ∪ T (q, m), B(r) is the domain bounded
by T (r, q′)∪C(r)∪T (r,m), B(p) is the domain bounded by T (p, r′)∪C(p)∪T (p, q′) and
E is the remainder part. Here C(p) is the subarc of the circle connecting q′ and r′ with
center p and others. Then, D = ∂4pqr′ ∪ ∂4prq′ ∪ B(q) ∪ B(r) ∪ B(p) ∪ E where ∂K

is the boundary of any set K. It follows from the properties in Sections 2 and 3 that the
restrictions of g to those sets, g | ∂4pqr′, g | ∂4prq′, g | B(q), g | B(r), g | B(p), g | E,
satisfy the distance non-increasing condition which we are going to prove. Let x, y ∈ D.
Let T (x0, x1), T (x1, x2), . . . , T (xn−1, xn) be the subsegments of T (x, y) each of which is
contained in a single component of the decomposition of 4pqr where x0 = x and xn = y.
Thus we have

d(x, y) = d(x0, x1) + · · ·+ d(xn−1, xn)

≥ d(g(x0), g(x1)) + · · ·+ d(g(xn−1), g(xn))

≥ d(g(x), g(y))

In the next section we will divide these triangle domains into thinner triangle do-
mains successively in the same way as above and make a compression map h of 4pqr by
using this partition. Then we use the notation D and g given as above.
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5. Proof of Theorem 2.

We inductively make the subsets Di of 4pqr such that D1 ⊂ D2 ⊂ · · · ⊂ Di ⊂ · · ·
and the compression maps hi : Di −→ Si with hi | Dj = hj for all j < i.

Let D1 = D and h1 = g where D and g were made for 4pqr in the previous section.
Assume that Di and hi are constructed so that 4pqr −Di consists of 2i open triangle
domains. Each triangle domain is divided into two triangle domains and one set D as in
the basic partition of the previous section. Let Di+1 be the union of Di and 2i D’s. As
was seen in the previous section, each D is mapped onto the set T (p̃, s̃i

k)∪T (p̃, s̃i
k+1)∪

T (p̃, s̃i+1
`)∪ T (s̃i

k, s̃i
k+1) for some k by a compression map where s̃i+1

` is the midpoint
between s̃i

k and s̃i
k+1. We define a map hi+1 : Di+1 −→ Si+1 as follows. If x ∈ Di,

then hi+1(x) = hi(x). If x ∈ Di+1 −Di and x ∈ D where D is one of 2i D’s as in the
previous section, then hi+1(x) is by definition the point sent by the compression map g

defined on D.
Let X = ∪∞i=1Di and W = 4pqr − X. The length of opposite sides to p for

triangles in 4pqr − IntDi is d(q̃, r̃)/2i. Therefore, W consists of segments one of whose
endpoints is p, and geodesic biangle domains one of whose vertices is p. There exists the
isometric map from each of these segments T (p, s) to the segment connecting p̃ and the
point s̃ in T (q̃, r̃) corresponding to s. There exists also a contraction map from each of
these geodesic biangle domains to the segment connecting p̃ and the point s̃ in T (q̃, r̃)
corresponding to the other vertex than p. Now we define a map h : 4pqr −→ 4̃pqr by
combining these maps.

We show that the map h is a compression map of 4pqr onto 4̃pqr. Let W1 be the
set of all points x in W such that x is a limit point of a sequence of points in some sides
of triangles and let W2 be the set of all points x in W such that x is an interior point
of some geodesic biangle domain. Let x, y ∈ 4pqr. Case (1): If x, y ∈ Di for some i,
then d(x, y) ≥ d(hi(x), hi(y)) = d(h(x), h(y)). Case (2): If x, y ∈ W1, then d(x, y) ≥
d(h(x), h(y)), since x, y are limit points of sequences of points in some sides of triangles.
Case (3): Assume that x, y ∈ W2. Let x1, y1 be points in the boundaries of geodesic
biangle domains which contain x and y such that x1, y1 ∈ T (x, y), T (x, x1)−{x1} ⊂ W2,
T (y1, y)− {y1} ⊂ W2. Then, we have the inequality

d(x, y) = d(x, x1) + d(x1, y1) + d(y1, y)

≥ d(h(x), h(x1)) + d(h(x1), h(y1)) + d(h(y1), h(y))

≥ d(h(x), h(y)),

by using Case (2). For other cases the inequalities required are proved in the same way.
This completes the proof of Theorem 2.

6. Proof of Theorem 3.

Let p0 be the center of a circle C and D = ∪n
i=14p0pipi+1 a regular n-gon whose

vertices are in C. Let D̃ = ∪n
i=14p̃0pi

′pi+1
′. Notice that 4p̃0pi

′pi+1
′ may not be

comparison triangle domains to 4p0pipi+1 for i = 1, . . . , n. In general, 4p0pipi+1 may
not be convex. In such a case the distance di(·, ·) is defined as the infimum of the
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lengths of curves which are contained in 4p0pipi+1 and used instead of the distance
d(·, ·), and, then, the comparison theorems as in Section 2 and compression theorem are
true also. It should be noted that di(x, y) = d(x, y) for any points x, y ∈ 4p0pipi+1

such that a minimal geodesic segment connecting x and y is contained in 4p0pipi+1.
The triangle domain 4p0pipi+1 is mapped to an isosceles comparison triangle domain
4̃p0p1p2 by a compression map hi for every i = 1, . . . , n. Since

∑n
i=1 ∠pip0pi+1 ≤ 2π

and ∠pip0pi+1 ≥ ∠p̃1p̃0p̃2 for all i = 1, . . . , n, we have ∠p̃1p̃0p̃2 ≤ 2π/n = ∠p1
′p̃0p2

′.
It follows from Lemma 1 in [9] that for every i = 1, . . . , n there exists a map hi

′ :
4p̃0p̃1p̃2 −→ 4p̃0pi

′pi+1
′ such that d(x, y) ≥ d(hi

′(x), hi
′(y)) for x, y ∈ 4p̃0p̃1p̃2 and

d(x, y) = d(hi
′(x), hi

′(y)) for x, y ∈ T (p̃1, p̃2). Let h : D −→ D̃ be a map given by
sending x ∈ 4p0pipi+1 to hi

′hi(x) for all i = 1, . . . , n. Then, h is a compression map
from D onto D̃. This completes the proof.

7. Proof of Theorem 4.

In order that a convex circle C will be approximated by regular n-gons we first prove
the following lemma.

Lemma 11. Let n be any integer greater than 2. There exists a regular n-gon
∪n

i=1T (pi.pi+1) whose vertices are in C where pn+1 = p1. It satisfies that d(pi, pi+1) ≤
L/n for all i = 1, . . . , n where L is the length of C.

Proof. Let c : (−∞,∞) −→ M be a parametrization of a circle C with length L

by arclength such that c(0) = p1. For a point q = c(t) let q′ = c(a) = c(a + L) be the
antipodal point of q in C with a < t < a+L. Namely, the antipodal point q′ satisfies that
d(q, q′) = max{d(q, x) | x ∈ C}. Let p be the center of convex circle C and let x, y, z be
distinct points in C such that T (x, z) intersects T (p, y) at a point w. Then, it follows that
d(x, y) < d(x, z), since d(x, y) < d(x,w) + d(w, y) < d(x,w) + d(w, z) = d(x, z). This
means that there exists only one antipodal point q′, and, moreover, that either there
exists a unique minimal geodesic T (q, q′) connecting q and q′, or some biangle domain
with vertices q and q′ contains the center p of C. Hence, if f : [a, a + L] −→ R is a
function given by f(s) = d(q, c(s)) for s > t and f(s) = −d(q, c(s)) for s < t, then
the function f(s) is monotone increasing. In particular, it follows that for any b with
0 < b < d(q, q′) there exist just two points q1 = c(s1) and q2 = c(s2) in C such that
d(q, q1) = d(q, q2) = b and a < s2 < t < s1 < a + L.

Let s0 ∈ [0, L] be such that for any s with 0 < s < s0 there exists a broken geodesic
∪n

i=1T (pi, pi+1) satisfying that the points p1, . . . , pn+1 are in this order in C, p1 = c(0),
pn+1 = c(s) and d(p1, p2) = · · · = d(pn, pn+1). Let u0 be the maximum of these s0. We
have to prove that u0 = L. Obviously, it follows that u0 > 0. Suppose that u0 < L.
If pi+1 is not the antipodal point of pi in C for every i = 1, . . . , n, then we can find a
number s0 with s0 > u0 such that it satisfies the condition. Hence, we suppose that there
exists at least one pi+1 which is the antipodal point of pi in C. Then, pi−1 is not the
antipodal point of pi in C or pi+2 is not the antipodal point of pi+1 in C. This implies
that d(pi−1, pi) < d(pi, pi+1) or d(pi, pi+1) > d(pi+1, pi+2), contradicting the choice of
u0. This completes the proof. ¤
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We prove Theorem 4. Let C be a convex circle as in Theorem 4. Let Pn be a regular
n-gon with vertices in C and hn : Dn −→ D̃n a compression map where Dn and D̃n

are the domains bounded by Pn and a comparison regular n-gon P̃n in M(k) to Pn with
center p̃0, respectively.

Let N be a countable dense set in IntD. Since M(k) is finitely compact and Dn

converges to D as n −→ ∞, there exists a subsequence {m} of {n} such that hm(q) is
defined for sufficiently large m and converges to a point h(q) as m −→∞ for any q ∈ N .
We make a compression map h : D −→ D̃ as follows. Let p be a point in IntD. For
any positive ε there exist a point q ∈ N with d(p, q) < ε/3 and an m0 such that both
hm(p) and hm(q) are contained in Dm for any m ≥ m0 and d(hm(q), hk(q)) < ε/3 for
any k, m ≥ m0. Then we have the inequality

d(hm(p), hk(p)) ≤ d(hm(p), hm(q)) + d(hm(q), hk(q)) + d(hk(q), hk(p)) < ε.

Since M(k) is complete, we see that hm(p) converges to a point h(p) as m −→ ∞.
Let p be a point in ∂D = C. Suppose a sequence {q`} with q` ∈ IntD converges to
p as ` −→ ∞. Since d(hm(q`), hm(qk)) ≤ d(q`, qk) for sufficiently large m, we have
d(h(q`), h(qk)) ≤ d(q`, qk). Hence, the sequence {h(q`)} is a Cauchy sequence, and,
therefore, converges to a point h(p). The map h is obviously a compression map. This
completes the proof of Theorem 4.

8. Proof of Theorem 6.

Let C be a convex circle as in Theorem 6 and let C̃ be a comparison circle in
the Euclidean plane. Let α be as in Theorem 6 and rj = m/n a sequence of ratio-
nal numbers converging to α/L. Then there exists a periodic and minimal reflecting
geodesic line γ̃j in D̃ with slope rjL, namely si+n = si + mL hold for all integers
i where c̃(si) = γ̃j(ti) as in Section 2 (see [1], [7]). Suppose γ̃j(t0) = c̃(0). Let
h : D −→ D̃ be a compression map given in Theorem 4. Then, the length of a bro-
ken segment ∪n

i=1T (h−1(c(si)), h−1(c(si+1))) is greater than or equal to (nL/π) sin πrj .
Thus, if γj : (−∞,∞) −→ D is a periodic and minimal reflecting geodesic with slope
rjL, then the average of lengths of γj is greater than or equal to (L/π) sin πrj , since
γj is periodic. The slope is continuous for minimal reflecting geodesic lines. We can
find a reflecting geodesic line with slope α satisfying the condition in Theorem 6. This
completes the proof of Theorem 6.
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