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Hypersurfaces of E4
s with proper mean curvature vector

By Andreas Arvanitoyeorgos, Filip Defever, and George Kaimakamis

(Received Nov. 16, 2006)

Abstract. Submanifolds satisfying ∆ ~H = λ ~H are named by B. Y. Chen sub-
manifolds with proper mean curvature vector. We prove that a hypersurface of the

pseudo-Euclidean space E4
s with ∆ ~H = λ ~H and diagonalizable shape operator, has

constant mean curvature.

1. Introduction.

Let x : Mm → En
s be an isometric immersion of an n-dimensional connected sub-

manifold of a pseudo-Euclidean space Em
s . If we denote by ~x, ~H, and ∆ the position

vector field, the mean curvature vector field, and the Laplace operator respectively of M ,
with respect to the induced metric of M , then it is well known that (e.g. [Ch1])

∆~x = −n ~H. (1)

In particular, equation (1) shows that M is a minimal submanifold of En
s if and only if

its coordinate functions are harmonic. We also observe that every minimal submanifold
satisfies

∆ ~H = ~0. (2)

Submanifolds of En
s which satisfy condition (2) are said to have harmonic mean curva-

ture vector field. These submanifolds are often called biharmonic since, in view of (1),
condition (2) is equivalent to ∆2~x = ~0. Equation (2) is a special case of the equation

∆ ~H = λ ~H. (3)

Submanifolds of Em
s which satisfy condition (3) are said to have proper mean curva-

ture vector field. Equations (2) and (3) can be related to the theory of harmonic and
biharmonic maps as explained at the end of the present work (Section 3).

A conjecture of B. Y. Chen ([Ch2]) states that “the only biharmonic submanifolds
of Euclidean spaces are the minimal submanifolds”. For hypersurfaces in E3 and E4 the
conjecture is supported by the work of several authors ([Ch1], [Di1], [Di2], [Ha-Vl],
[De1]). However, it is not true in general for submanifolds in pseudo-Euclidean spaces
Em

s . Counterexamples were presented in [Ch-Is1] and [Ch-Is2]. In contrast, there is
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strong evidence that the conjecture is true for hypersurfaces in pseudo-Euclidean spaces.
More precisely, in [Ch-Is1] is was shown that every biharmonic surface in E3

s is mini-
mal, in [De-Ka-Pa] that every biharmonic hypersurface M3

r of E4
s whose shape oper-

ator is diagonal is minimal, and in [Ar-De-Ka-Pa] Chen’s conjecture was proved for
Lorentz hypersurfaces in E4

1 . Recently a “generalized Chen’s conjecture” was posed in
[Ca-Mo-On], stating that the only biharmonic submanifolds of a manifold with non-
positive sectional curvature are the minimal ones.

Equation (3) was first appeared in [Ch6] where surfaces in E3 satisfying (3) were
classified. Also, in [Ch7] it was shown that a submanifold M of a Euclidean space
satisfies (3) if and only if M is biharmonic or of 1-type or of null 2-type. Hypersurfaces
in E4 satisfying (3) with the additional condition of conformal flatness were classified
in [Ga], and in [De2] it was proved that every hypersurface of E4 satisfying (3) has
constant mean curvature. For various other results about submanifolds satisfying (3) in
Euclidean spaces, and more generally in space forms, contact, and Sasakian manifolds,
we refer to [Ch4], [Ch5], [Ek-Ya], [In1], [In2].

The study of equation (3) for submanifolds in pseudo-Euclidean spaces was originally
studied in [Fe-Lu1], where the authors classifed surfaces M2

r (r = 0, 1) in the Lorenz-
Minkowski space E3

1 . One of the possibilities for M2
r is that it is a submanifold of zero

mean curvature H. The case of hypersurfaces Mn−1
r (r = 0, 1) in En

1 satisfying (3)
and such that the minimal polynomial of the shape operator is at most of degree two,
was stydied in [Fe-Lu2], showing that Mn−1

r has constant mean curvature. Also in
[Ch8] various classification theorems for submanifolds in a Minkowski space-time were
presented.

The results of the previous paragraph suggest a further study of hypersurfaces of
En

s (0 ≤ s ≤ n) satisfying equation (3). Towards this direction we prove the following:

Theorem. Let M3
r (r = 0, 1, 2, 3) be a nondegenerate hypersurface of the pseudo-

Euclidean space E4
s with diagonal shape operator. If the mean curvature vector field ~H

of M3
r satisfies ∆ ~H = λ ~H, then M3

r has constant mean curvature.

The idea of the proof is the following. Equation (3) reduces to the equations

S(∇H) = −ε
3H

2
(∇H)

∆H + εH trS2 = λH. (*)

From the above equations together with Codazzi and Gauss equations we eliminate all
derivatives. In this way we obtain a polynomial equation with constant coefficients which
is satisfied by H, therefore H must be constant.

Acknowledgements. The authors wish to express their gratitute to Professor
B. J. Papantoniou for several useful discussions.
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2. Preliminaries.

Hypersurfaces in E4
s .

Consider the 4-dimensional vector space R4 with the standard basis {e1, e2, e3, e4}.
Let 〈 , 〉 denote the indefinite inner product on R4 whose matrix with respect to the
standard basis is a diagonal matrix of index s ∈ {0, 1, 2, 3, 4}. The space R4 with one of
these metrics is called the 4-dimensional pseudo-Euclidean space, and is denoted by E4

s .
A vector X ∈ E4

s is called space-like, time-like, or light-like if 〈X, X〉 is positive, neg-
ative, or zero respectively. Let x : M3

r → E4
s be an isometric immersion of a hypersurface

M3
r (r = 0, 1, 2, 3) in E4

s (s = 0, 1, 2, 3, 4). The hypersurface M3
r can itself be endowed

with a Riemannian or a pseudo-Riemannian metric structure, depending on whether the
metric induced on M3

r from the pseudo-Riemannian metric on E4
s , is positive-definite or

indefinite.
Let ~ξ denote a unit normal vector field on M3

r . Then 〈~ξ, ~ξ〉 = ε, where ε = −1
(time-like) or ε = +1 (space-like). The mean curvature vector ~H = H~ξ with H = 1

3ε trS

is a well-defined normal vector field of M3
r in E4

s . Denote by ∇ and ∇̃ the Levi-Civita
connections of M3

r and E4
s respectively. For any vector fields X, Y tangent to M3

r , the
Gauss formula is given by

∇̃XY = ∇XY + h(X, Y )~ξ, (4)

where h is the second fundamental form. If S is the shape operator of M3
r associated to

~ξ, then the Weingarten formula is given by

∇̃X
~ξ = −S(X), (5)

where 〈S(X), Y 〉 = εh(X, Y ). The Codazzi equation is given by

(∇XS)Y = (∇Y S)X, (6)

and the Gauss equation by (cf. [ON])

R(X, Y )Z = 〈S(Y ), Z〉S(X)− 〈S(X), Z〉S(Y ). (7)

Our convention for the curvature tensor is

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The equation ∆ ~H = λ ~H.
We now consider a hypersurface M3

r of E4
s satisfying the condition

∆ ~H = λ ~H, λ ∈ R \ {0}. (8)

Here the Laplace operator ∆ acting on a vector-valued function ~V is given by



800 A. Arvanitoyeorgos, F. Defever and G. Kaimakamis

∆~V =
3∑

i=1

(∇̃∇ei
ei

~V − ∇̃ei
∇̃ei

~V
)
,

with respect to a local orthonormal frame {ei}3i=1.
The shape operator S of a Riemannian hypersurface of E4

s is always diagonalizable,
but for pseudo-Riemannian hypersurfaces there may be other forms for S as well (e.g.
[Ma]). In the present work we assume that the shape operator of the hypersurface M3

r in
E4

s is diagonalizable, i.e. S = diag{λ1, λ2, λ3}. Here the λ′is are known as the principal
curvature functions of M3

r . The other possibilities for the shape operator need a separate
investigation. The following proposition can be found in various forms (e.g. [Ch1],
[Ch-Is1], [Fe-Lu2]), but we give a proof here adjusted to our problem.

Proposition 1. For an isometric immersion x : M3
r → E4

s with diagonal shape
operator, the following formula holds:

∆ ~H = {2S(∇H) + 3εH(∇H)}+ {∆H + εH trS2}~ξ.

Proof. Let {X1, X2, X3} be an orthonormal frame such that ∇XiXj(P ) = 0, at
some point P ∈ M3

r . From the relation

∇̃Xi
∇̃Xi

~H = XiXi(H)~ξ − 2Xi(H)SXi −H(∇Xi
S)Xi −Hh(SXi, Xi)~ξ

and summing with respect to i, we obtain that

∆ ~H = {2S (∇H) + Htr∇S}+ {∆H + εHtrS2}~ξ.

We need to find an expression for tr∇S. If {ei}, i = 1, 2, 3 be an orthonormal basis of
eigenvectors of the shape operator S such that Sei = λiei, then

tr∇S =
3∑

i=1

εi(∇ei
S)ei

=
[
ε1e1(λ1) + ε2(λ2 − λ1)ω1

22 + ε3(λ3 − λ1)ω1
33

]
e1

+
[
ε2e2(λ2) + ε1(λ1 − λ2)ω2

11 + ε3(λ3 − λ2)ω2
33

]
e2

+
[
ε3e3(λ3) + ε1(λ1 − λ3)ω3

11 + ε2(λ2 − λ3)ω3
22

]
e3,

where εi = 〈ei, ei〉 = ±1. From the Codazzi equation (∇e1S)e2 = (∇e2S)e1 it follows
that

εi(λi − λj)ω
j
ii = εjej(λi)

with i, j = 1, 2, 3. Therefore,
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tr∇S = ε1e1(λ1 + λ2 + λ3)e1 + ε2e2(λ1 + λ2 + λ3)e2

+ ε3e3(λ1 + λ2 + λ3)e3 = 3ε∇H,

and this completes the proof. ¤

Due to Proposition 1 condition (8) is equivalent to

{2S(∇H) + 3εH(∇H)}+ {∆H + εH trS2}~ξ = λH~ξ. (9)

Therefore we obtain the following necessary and sufficient conditions for a hypersurface
M3

r of E4
s to satisfy ∆ ~H = λ ~H:

S(∇H) = −ε
3H

2
(∇H) (10)

∆H + εH trS2 = λH, (11)

where the Laplace operator ∆ acting on a scalar-valued function f is given by (e.g.
[Ch-Is1])

∆f = −
3∑

i=1

εi(eieif −∇ei
eif). (12)

Here {e1, e2, e3} is a local orthonormal frame of TpM
3
r with 〈ei, ei〉 = εi = ±1. Noting

from equation (10) that ∇H is an eigenvector of the shape operator S, without loss of
generality we can choose e1 in the direction of ∇H, and therefore the shape operator of
M3

r takes the form

S =



−ε 3H

2

λ2

λ3


 . (13)

In the special case in which all principal curvatures are equal, using the relation
trS = 3εH, it follows immediately that H = 0. Therefore it suffices to examine the
case where all principal curvatures are different, and the case when the two principal
curvatures are equal.

3. Proof of the theorem.

Three mutually different principal curvatures.
We need to show that if ∆ ~H = λ ~H, and the shape operator has three mutually

different principal curvatures, then H is constant. Suppose on the contrary that M3
r

(r = 0, 1, 2, 3) does not have constant mean curvature H. Then ∇H 6= ~0, and (10) shows
that ∇H is an eigenvector of S with corresponding eigenvalue λ1 = − 3εH

2 . Expressing
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∇H as ∇H = e1(H)e1 + e2(H)e2 + e3(H)e3, and since e1 is in the direction of ∇H it
follows that

e1(H) 6= 0, e2(H) = e3(H) = 0. (14)

By assumption, we have that ε 3H
2 + λ2 6= 0, ε 3H

2 + λ3 6= 0, λ3 − λ2 6= 0.
We write ∇eiej =

∑3
k=1 ωk

ijek, we take into account the action of S on the basis
{e1, e2, e3}, and use the Codazzi equation (6). Then the relations

〈(∇e1S)e2, e1〉 = 〈(∇e2S)e1, e1〉 〈(∇e2S)e3, e3〉 = 〈(∇e3S)e2, e3〉
〈(∇e1S)e3, e3〉 = 〈(∇e3S)e1, e3〉 〈(∇e2S)e3, e2〉 = 〈(∇e3S)e2, e2〉
〈(∇e1S)e2, e2〉 = 〈(∇e2S)e1, e2〉 〈(∇e1S)e3, e3〉 = 〈(∇e3S)e1, e3〉

imply that ω1
12 = ω1

13 = 0, and that

ω1
21 =

e1(λ2)
−ε 3H

2 − λ2

, ω3
31 =

e1(λ3)
−ε 3H

2 − λ3

, ω2
23 =

e3(λ2)
λ3 − λ2

, ω3
32 =

e2(λ3)
λ2 − λ3

. (15)

Also, in view of (14) it follows that ∇e2e3(H) − ∇e3e2(H) = [e2, e3](H) = 0.
Thus, together with the Codazzi equations for 〈(∇e1S)e2, e3〉 = 〈(∇e2S)e1, e3〉, and
〈(∇e1S)e3, e2〉 = 〈(∇e3S)e1, e2〉 we obtain that

ω2
13 = ω3

21 = ω1
32 = 0. (16)

We use Gauss equation (7) and the definition of the curvature tensor for 〈R(e2, e3)e1, e2〉,
〈R(e2, e3)e1, e3〉, and 〈R(e3, e1)e2, e3〉, to obtain that

e3

(
e1(λ2)

−ε 3H
2 − λ2

)
=

e3(λ2)
λ3 − λ2

(
e1(λ3)

−ε 3H
2 − λ3

− e1(λ2)
−ε 3H

2 − λ2

)
(17)

e2

(
e1(λ3)

−ε 3H
2 − λ3

)
=

e2(λ3)
λ2 − λ3

(
e1(λ3)

−ε 3H
2 − λ3

− e1(λ2)
−ε 3H

2 − λ2

)
(18)

e1

(
e2(λ3)
λ2 − λ3

)
= − e1(λ2)

−ε 3H
2 − λ2

e2(λ3)
λ2 − λ3

. (19)

If we combine relations (12) and (14), then equation (11) takes the form

ε1e1e1(H)+ε1

(
e1(λ2)

−ε 3H
2 − λ2

+
e1(λ3)

−ε 3H
2 − λ3

)
e1(H)−εH

(
45H2

2
−2λ2λ3

)
+λH = 0. (20)

Acting on (20) with e2 and e3 succesively, and combining the results with (17), (18) it
follows that
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e2

(
e1(λ2)

−ε 3H
2 − λ2

)
= − e2(λ3)

λ2 − λ3

(
e1(λ2)

−ε 3H
2 − λ2

− e1(λ3)
−ε 3H

2 − λ3

)

− 2εH

ε1e1(H)
(λ2 − λ3)2

e2(λ3)
λ2 − λ3

(21)

e3

(
e1(λ3)

−ε 3H
2 − λ3

)
= − e3(λ2)

λ3 − λ2

(
e1(λ3)

−ε 3H
2 − λ3

− e1(λ2)
−ε 3H

2 − λ2

)

− 2εH

ε1e1(H)
(λ3 − λ2)2

e3(λ2)
λ3 − λ2

. (22)

Similarly, using Gauss equation for 〈R(e1, e2)e1, e2〉 and 〈R(e3, e1)e1, e3〉 we obtain that

e1

(
e1(λ2)

−ε 3H
2 − λ2

)
+

(
e1(λ2)

−ε 3H
2 − λ2

)2

= ε1ε
3
2
Hλ2 (23)

e2

(
e1(λ3)

−ε 3H
2 − λ3

)
+

(
e1(λ3)

−ε 3H
2 − λ3

)2

= ε1ε
3
2
Hλ3. (24)

We will need the following:

Lemma 2. Let M3
r be a hypersurface of the pseudo-Euclidean space E4

s whose
shape operator has the form (13), and three mutually different principal curvatures. Then
e2(λ3) = e3(λ2) = 0

Proof. Relations (15) and (16) imply that

[e1, e2] =
e1(λ2)

−ε 3H
2 − λ2

e2. (25)

Applying both sides of (25) on e1(λ2)

−ε 3H
2 −λ2

, and using (21), (23), (24), and (19) we deduce
that

[
εH

ε1e1(H)

((
3

e1(λ2)
−ε 3H

2 − λ2

− e1(λ3)
−ε 3H

2 − λ3

)
(λ2 − λ3)2 + 2(λ2 − λ3)e1(λ2 − λ3)

)

+
(

e1(λ2)
−ε 3H

2 − λ2

− e1(λ3)
−ε 3H

2 − λ3

)2

+
ε

ε1
e1

(
H

e1(H)

)
(λ2 − λ3)2

]
e2(λ3)
λ2 − λ3

= 0.

We will show that if e2(λ3) 6= 0 we get a contradiction. Indeed, in that case we would
have that
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e1

(
H

e1(H)

)
= − H

e1(H)

((
3

e1(λ2)
−ε 3H

2 − λ2

− e1(λ3)
−ε 3H

2 − λ3

)
+ 2

e1(λ2 − λ3)
λ2 − λ3

)

− ε1
ε(λ2 − λ3)2

(
e1(λ2)

−ε 3H
2 − λ2

− e1(λ3)
−ε 3H

2 − λ3

)2

.

Acting with e2 on both sides of the above equation, and in view of (18), (21), (25), we
obtain that

2
(

e1(λ2)
−ε 3H

2 − λ2

− e1(λ3)
−ε 3H

2 − λ3

)
= − εH

ε1e1(H)
(λ2 − λ3)2. (26)

We apply e2 on (26) and obtain

(
e1(λ2)

−ε 3H
2 − λ2

− e1(λ3)
−ε 3H

2 − λ3

)
= −2

εH

ε1e1(H)
(λ2 − λ3)2.

From the above two equations it follows that λ2 = λ3, which is a contradiction. Hence,
we conclude that e2(λ3) = 0. In an analogous manner, it can be shown that e3(λ2) = 0.

¤

Coming back to the proof of the Theorem, we use Lemma 2 and Gauss equation for
〈R(e2, e3)e2, e3〉 to obtain that

−ε1

(
e1(λ2)

−ε 3H
2 − λ2

)(
e1(λ3)

−ε 3H
2 − λ3

)
− λ2λ3 = 0. (27)

Calculating e1e1(H) from (23) and (24), and combining with (20) and (27) it follows that

(
e1(λ2)

−ε 3H
2 − λ2

+
e1(λ3)

−ε 3H
2 − λ3

)
e1(H) = −54 + 135ε

8ε1
H3 +

6 + 3ε

2ε1
Hλ2λ3 +

3
4ε1

λH (28)

e1e1(H) =
54 + 315ε

8ε1
H3 − 6 + 7ε

2ε1
Hλ2λ3 − 7

4ε1
λH. (29)

Acting with e1 on both sides of (28) and using (23), (24), and (27) we deduce the
expression

(
e1(λ2)

−ε 3H
2 − λ2

+
e1(λ3)

−ε 3H
2 − λ3

)(
441H2 − 26λ2λ3 + 10λ

)
H

=
(
432H2 − 26λ2λ3 − 3λ

)
e1(H). (30)

If we apply e1 on (30) and use (28), (29), (30) we obtain the following algebraic relation
between H and λ2λ3 (notice that H and λ2λ3 are real functions in general):
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0 = a80H
8 + a60H

6 + a40H
4 + a20H

2 + a00

+ a61H
6(λ2λ3) + a41H

4(λ2λ3) + a21H
2(λ2λ3) + a01(λ2λ3) + a42H

4(λ2λ3)2

+ a22H
2(λ2λ3)2 + a02(λ2λ3)2 + a23H

2(λ2λ3)3 + a03(λ2λ3)3 + a04(λ2λ3)4

= f(H, λ2λ3), (31)

where aij are known constants. Acting in (31) with e1 twice, and using (28), (29), (30),
we obtain another algebraic relation of H and λ2λ3 of the form

g(H, λ2λ3) = 0. (32)

Using a computer algebra program, we eliminate λ2λ3 between (31) and (32), so obtain
an algebraic equation for H with constant coefficients. Thus, we have concluded that
the real function H satisfies a polynomial equation q(H) = 0 with constant coefficients,
therefore it must be a constant. This contradicts our original assumption, so the Theorem
is proved in this case.

Two equal principal curvatures.
We need to show that if ∆ ~H = λ ~H, and the shape operator has two equal principal

curvatures, then H is constant. Assume the contrary, and try to get a contradiction. As
in the previous case, e1 can be chosen in the direction of ∇H, yielding λ1 = − 3εH

2 and

e1(H) 6= 0, e2(H) = e3(H) = 0.

Then the shape operator of M3
r takes the form

S =



−ε 3H

2

µ

µ




for some function µ. From trS = 3εH if follows that µ = ε 9H
4 , and that trS2 = 99H2

8 .
Applying the Codazzi equation (6) it follows that 〈(∇e1S)e2, e2〉 = 〈(∇e2S)e1, e2〉 and
that 〈(∇e1S)e3, e3〉 = 〈(∇e3S)e1, e3〉, which in turn give that

ω2
21 = ω3

31 = −3
5

e1(H)
H

. (33)

The Gauss equation (7) applied to 〈R(e1, e2)e1, e2〉 implies that

e1(ω2
21) = ε1

27H2

8
− (ω2

21)
2. (34)

Equation (11) then reduces to
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−ε1e1e1(H)− 2ε1(ω2
21)

2e1(H) + ε
99H3

8
= λH. (35)

We act on (33) with e1 and use (34) to obtain that

e1e1(H) =
40
9

H(ω2
21)

2 − 45H3

8
ε1.

We substitute the above equation to (35) and get

H

[
ε1

10
9

(ω2
21)

2 + λ− 45 + 99ε

8
H2

]
= 0,

and as H 6= 0 it follows that

ε1
10
9

(ω2
21)

2 + λ− 45 + 99ε

8
H2 = 0.

Acting by e1 in the above equation and using (33) and (34), it follows that

ε1
10
3

(ω2
21)

2 − 945 + 165ε

8
H2 = 0.

If we eliminate the (ω2
21)

2 from the last two equations we obtain the relation

λ +
810− 132ε

24
H2 = 0,

that is H is constant, which contradicts our assumption.

4. Relation with biharmonic maps.

In this section we describe the relation of equation (3) to the theory of harmonic
and biharmonic maps. For relative background we refer to [Ca-Mo-On], [Ee-Le], and
[Ur]. Let (Mm, g) and (Nn, h) be Riemannian manifolds. A smooth map φ : M → N is
said to be harmonic if it is a critical point of the energy functional:

E1(φ) =
1
2

∫

M

|dφ|2dvg.

Denote by ∇φ the connection of the vector bundle φ∗TN induced from the Levi-Civita
connection ∇h of (N, h). The second fundamental form ∇dφ is defined by

∇dφ(X, Y ) = ∇φ
Xdφ(Y )− dφ(∇XY ), X, Y ∈ Γ(TM),

where ∇ is the Levi-Civita connection of (M, g). The tension field τ(φ) is a section of
φ∗TN defined by
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τ(φ) = trace(∇dφ).

It is well known that the map φ is harmonic if and only if its tension field vanishes. Now
assume that φ : M → N is an isometric immersion with mean curvature vector field ~H.
Then m ~H = τ(φ) (cf. [Ee-Sa, p. 119]), therefore the immersion φ is a harmonic map if
and only if M is a minimal submanifold of N .

A smooth map φ : (M, g) → (N, h) is called biharmonic if it is a critical point of the
bienergy functional:

E2(φ) =
1
2

∫

M

|τ(φ)|2dvg.

This is a special case of a more general set-up suggested in [Ee-Sa] on studying poly-
harmonic maps. In [Ji1] and [Ji2] G. Y. Jiang derived the first variation formula of the
bienergy showing that the Euler-Lagrange equation for E2 is given by

τ2(φ) = −Jφ(τ(φ)) = 0.

Here Jφ is the Jacobi operator of φ acting on sections V ∈ Γ(φ∗TN). It is defined by

Jφ(V ) = ∆̄φV −Rφ(V ),

∆̄φ = −
m∑

i=1

(∇φ
ei
∇φ

ei
−∇φ

∇ei
ei

)
, Rφ(V ) =

m∑

i=1

RN (V, dφ(ei))dφ(ei),

where RN is the curvature tensor of N , and {ei} a local orthonormal frame field of M . If
x : (Mm, g) → (En, canonical) is an isometric immersion, then ∆̄x is simply the Laplace
operator ∆ of M with respect to the induced metric, thus

τ2(x) = ∆τ(x) = ∆(m ~H) = m∆ ~H.

Therefore, Mm is a biharmonic submanifold of the Euclidean space En with the canonical
metric if and only if the immersion x : Mm → En is a biharmonic map. Finally, an
isometric immersion x : M → N is called λ-biharmonic if it is a critical point of the
functional

E2,λ(x) = E2(x) + λE(x), λ ∈ R.

The Euler-Lagrange equation for λ-biharmonic immersions is

τ2(x) = λτ(x).

This is equivalent to the equation ∆ ~H = λ ~H, i.e. the submanifold M has proper mean
curvature vector field.
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