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Abstract. We describe several classes of Montesinos links up to mutation and
5-move equivalence, and obtain from this a Jones and Kauffman polynomial test for
a Montesinos link.

1. Introduction.

k-moves are a family of natural operations on knot and link diagrams. They were
introduced by Nakanishi, and were studied first more systematically by Przytycki [P].
The following picture shows as an example the move for k = 5:

. (1)

We call two links k-move equivalent, or simpler k-equivalent, if they are related by a
sequence of k-moves (or their inverses). The case k = 2 is the usual crossing change. The
cases k = 3, 4 were connected to two long-standing problems. The 3-move conjecture
stated that all links are 3-move equivalent to a trivial link. It was refuted only recently
in [DP]. The conjecture is known to be true for many links, for example 3-algebraic
links [PT], links of braid index 4 and 5 [Ch] (latter with the exception of one equiva-
lence class, which later provided a counterexample), and knots of weak genus two [St3].
The 4-move conjecture states that all knots are 4-move equivalent to the unknot. This
conjecture remains open, though partial confirmations exist, and (in the general case)
counterexamples are suspected (see [As], [P2], and also [St3]).

The difficulty with the cases k = 3, 4 is that, while equivalence classes are rather few
and large, (possibly exactly because of this) it is impossible to obtain essential information
on them using polynomial (or other easy to compute) invariants.

However, the case k = 5 is different. Now there are some invariants that come
from the Jones V and Kauffman F polynomial. Unfortunately, the equivalence classes
become many, and their intersection with a meaningful family of links is difficult to
describe. Recently, Przytycki-Da̧bkowski-Ishiwata (see [I]) succeeded in determining the
classes for rational (or 2-bridge) links. The aim of this paper is to extend their result to
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Montesinos links (up to mutation). Theorem 3.2 gives representatives of all equivalence
classes of Montesinos links L, and in Theorem 4.2 we distinguish most of these classes.
In particular, we can completely determine the 5-move equivalence classes under the
condition that V (41) - V (L), or when L is a pretzel link (see Remark 4.2).

The motivation for our work is to gain a condition on the polynomial invariants
of Montesinos links. A few such conditions were obtained for partial classes, but all
conditions for a general Montesinos link we have so far are inefficient, or not easy to test.

In [LT] semiadequate links were introduced. It was observed that Montesinos links
are semiadequate, and that for such links one of the leading or trailing coefficients of the
Jones polynomial V must be ±1. (In [St4] we understood also coefficients 2 and 3, and
in particular proved that the Jones polynomial is non-trivial.) However, this property
is not helpful as a Montesinos link test, because it is satisfied for many (other) links.
Similarly impractical is the semiadequacy condition on the Kauffman F polynomial of
[Th]. (The simplest knots whose polynomial shows negative “critical line” coefficients
on either side have 15 crossings; see [St4].) For the Alexander polynomial no conditions
whatsoever are known, that is, it is possible that every admissible Alexander polynomial
is realized by a Montesinos link. In [LT] it was shown how to determine the crossing
number of a Montesinos link from the V and F polynomial, but a(n extensive, though
systematic) diagram verification is not promising either as a Montesinos link test.

Now, in contrast, since we can evaluate the 5-move invariants of the Jones and
Kauffman polynomial on the classes of Montesinos links we obtain (Theorems 4.1 and
6.1), we gain a condition on these polynomials, which turns out easy to verify. (It makes
no assumption on the diagram we perform it on, except, of course, that one can evaluate
the polynomials.) We will give some examples that show how to apply our test. We
also show how it can be sharpened for unknotting number one knots, using the result of
Motegi [Mo].

2. Preliminaries.

2.1. Polynomial invariants.
Let V be the Jones polynomial [J], Q the BLMH polynomial and F the Kauffman

polynomial [Kf ]. We give a basic description of these invariants.
Recall first the construction of the Kauffman bracket in [Kf 2]. The Kauffman

bracket [D] of a diagram D is a Laurent polynomial in a variable A, obtained by summing
over all states the terms

A#A−#B(−A2 −A−2)|S|−1. (2)

A state is a choice of splittings of type A or B for any single crossing (see Figure 1), #A

and #B denote the number of type A (resp. type B) splittings and |S| the number of
(disjoint) circles obtained after all splittings in a state.

The Jones polynomial of a link L is related to the Kauffman bracket of some diagram
D of L by

VL(t) = (−t−3/4)−w(D) [D]∣∣∣
A=t−1/4

. (3)
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Figure 1. The A- and B-corners of a crossing, and its both splittings. The corner
A (resp. B) is the one passed by the overcrossing strand when rotated counter-
clockwise (resp. clockwise) towards the undercrossing strand. A type A (resp. B)
splitting is obtained by connecting the A (resp. B) corners of the crossing.

The Kauffman polynomial [Kf ] F is usually defined via a regular isotopy invariant
Λ(a, z) of unoriented links.

We use here a slightly different convention for the variables in F , differing from
[Kf ], [Th] by the interchange of a and a−1. Thus in particular we have the relation
F (D)(a, z) = aw(D)Λ(D)(a, z), where w(D) is the writhe of a link diagram D, and Λ(D)
is the writhe-unnormalized version of F . Λ is given in our convention by the properties

Λ
( )

+ Λ
( )

= z
(
Λ

( )
+ Λ

( ))
,

Λ
( )

= a−1Λ
( )

; Λ
( )

= aΛ
( )

, (4)

Λ
(©)

= 1.

The BLMH polynomial Q is most easily specified by Q(z) = F (1, z).

2.2. Families of links.
In the following we define rational, pretzel and Montesinos links according to Conway

[Co].

Definition 2.1. A tangle diagram is a diagram consisting of strands crossing each
other, and having 4 ends. A rational tangle diagram is the one that can be obtained
from the primitive Conway tangle diagrams by iterated left-associative product in the

∞ 0 1 −1 4

sum P, Q product P Q closure P −2 − 3 4 2

Figure 2. Conway’s tangles and operations with them. (The designation ‘prod-
uct’ is very unlucky, as this operation is neither commutative, nor associative, nor
is it distributive with ‘sum’. Also, ‘sum’ is associative, but not commutative.)
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way displayed in Figure 2. (A simple but typical example is shown in the figure.)

Let the continued (or iterated) fraction [[s1, . . . , sr]] for integers si be defined induc-
tively by [[s]] = s and

[[s1, . . . , sr−1, sr]] = sr +
1

[[s1, . . . , sr−1]]
.

The rational tangle T (p/q) is the one with Conway notation c1 c2 . . . cn, when the ci are
chosen so that

[[c1, c2, c3, . . . , cn]] =
p

q
. (5)

One can assume without loss of generality that (p, q) = 1, and 0 < |q| < p. A rational
(or 2-bridge) link S(p, q) is the closure of T (p/q).

Montesinos links (see e.g. [LT]) are generalizations of pretzel and rational links and
special types of arborescent links. They are denoted in the form M( q1

p1
, . . . , qn

pn
, e), where

e, pi, qi are integers, (pi, qi) = 1 and 0 < |qi| < pi. Sometimes e is called the integer part,
and the qi

pi
are called fractional parts. They both together form the entries. If e = 0, it

is omitted in the notation. A pretzel link is a Montesinos link with all |qi| = 1.
To visualize the Montesinos link from a notation, let pi/qi be continued fractions of

rational tangles c1,i . . . cni,i with [[c1,i, c2,i, c3,i, . . . , cli,i]] = pi

qi
. Then M( q1

p1
, . . . , qn

pn
, e) is

the link that corresponds to the Conway notation

(c1,1 . . . cl1,1), (c1,2 . . . cl2,2), . . . , (c1,n . . . cln,n), e0.

The defining convention is that all qi > 0 and if pi < 0, then the tangle is composed so
as to give a non-alternating sum with a tangle with pi±1 > 0. This defines the diagram
up to mirroring.

An easy exercise shows that if qi > 0 resp. qi < 0, then

M(. . . , qi/pi, . . . , e) = M(. . . , (qi ∓ pi)/pi, . . . , e± 1), (6)

i.e. both forms represent the same link (up to mirroring).
Note that our notation may differ from other authors’ by the sign of e and/or

multiplicative inversion of the fractional parts. For example M( q1
p1

, . . . , qn

pn
, e) is denoted

as m(e; p1
q1

, . . . , pn

qn
) in [BZ, Definition 12.28] and as M(−e; (p1, q1), . . . , (pn, qn)) in [Mo]

and the tables of [Kw].
Our convention chosen here appears more natural – the identity (6) preserves the sum

of all entries, and an integer entry can be formally regarded as a fractional part. Theorem
12.29 in [BZ] asserts that the entry sum, together with the vector of the fractional parts,
modulo Z and up to cyclic permutations and reversal, determine the isotopy class of a
Montesinos link L. So the number n of fractional parts is an invariant of L; we call it
the length of L.
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Figure 3. The Montesinos knot M(3/11,−1/4, 2/5, 4) with Conway notation
(213, 214, 22, 40).

If the length n < 3, an easy observation shows that the Montesinos link is in fact
a rational link. Let us then write rational links as Montesinos links of length 1. For
example, M(1) = M(∞) is the unknot, and M(0) is the 2-component unlink, while
M(2/5) = M(5/2) is the Figure-8 knot. We can also formally incorporate the connected
sum of some number of rational links into our Montesinos link notation by replacing
qn/pn by ∞. So for example M(1/2,∞,∞) = M(1/2,∞,∞, 1) = M(1/2)# M(∞),
which is a Hopf link with an extra trivial split component. While such links fit into our
notation, they are nonetheless not to be regarded as genuine Montesinos links.

In the following the mirroring convention in the notation M(q1/p1, . . . , qn/pn, e) will
be so that a +1 integer twist in e is a crossing whose A-splicing gives an ∞-tangle. So
for example, the positive (right-hand) trefoil is M(−3). (If e = 0, use (6) to make it ±1,
and specify the mirroring accordingly.)

Geometric properties of Montesinos links are discussed in detail in [BZ]. A typical
example is shown on Figure 3.

3. 5-equivalence of Montesinos links.

Definition 3.1. We denote the equivalence of polynomials in Z[t±1/2] modulo
X = (t5+1)/(t+1) and multiplication with ±tk/2 by .=. By V̄ we denote the equivalence
class of a polynomial V under .=. For c ∈ C, we denote by c̃ the set of complex numbers
obtained from c by multiplication with a 20-th root of unity. If c̃1 = c̃2, we write also
c1 ' c2.

Proposition 3.1 (Przytycki-Ishiwata [I]). V̄ is an invariant of 5-moves.

The roots of X = (t5 + 1)/(t + 1) are the primitive 10-th roots of unity. These
are two pairs of conjugate complex numbers. Since, when working with real coefficients,
conjugate complex numbers are equivalent, we have two roots to work with, eπi/5 and
e3πi/5. In particular we obtain from the previous proposition:

Corollary 3.1 (Przytycki-Ishiwata). For a link L and n = 1, 3, let xn(L) =
VL(enπi/5). Then the quantities γn = x̃n, and in particular vn = |xn| are invariants of
5-moves.

Remark 3.1. The powers of t in V are either all integral (for odd number of
components) or half-integral (for even number). This implies that if xn(L) = xn(L′) ·
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ekπi/10 6= 0 for n = 1 or 3 (and k ∈ Z), then k is even resp. odd if L,L′ have the same
resp. opposite component number parity. So the indeterminacy of x̃n is really just up to
10-th roots of unity.

Concerning Q, we have the following easy to show fact (see for example Lemma 6.1
below).

Proposition 3.2. Q(2 cos 2π/5) and Q(2 cos 4π/5) are invariants of 5-moves.

These values of Q are studied by Jones [J2] and Rong [R], who show that they are

equal to ±√5
d(L)

, where d(L) := dimZ5 H1(DL,Z5) is the number of torsion numbers
divisible by 5 of the homology of the 2-branched cover DL. This special form makes
the Q values of limited use as detectors of 5-move (in)equivalence, but nonetheless one
should not write them off. In particular the sign can be useful in some cases.

Ishiwata [I] succeeded in determining the 5-move equivalence classes of rational
tangles.

Theorem 3.1 (Ishiwata). Rational tangles are 5-move equivalent to one of the 12
basic tangles

0, ∞, ±1, ±2, ±1/2, ±3/2, 2/5, 5/2.

One obtains immediately from that the result for rational (2-bridge) links.

Corollary 3.2 (Ishiwata). Rational links are 5-move equivalent to one of the
unknot, 2-component unlink, Figure-8 knot or Hopf link.

This means in particular that v1 and v3 take only 4 values on rational links. (They
are indeed different for the 4 classes, so the classes are distinct.) Nonetheless, some
very strong conditions on polynomial invariants of 2-bridge links are known. For the
Alexander polynomial such a condition is formulated in [Mu]. The test of Kanenobu
[K] using V and Q is particularly efficient; see also [St]. Here we use some of Ishiwata’s
work to extend her result to Montesinos links. Our goal is to obtain conditions on the
polynomial invariants of Montesinos links (which are much fewer in previous literature,
and less efficient).

Theorem 3.2. A Montesinos link is equivalent up to 5-moves and mutations to
one of

1. M(−1/2, . . . ,−1/2, 1/2, . . . , 1/2) with k ≥ 0 entries 1/2 and 0 ≤ l ≤ 4 entries
−1/2, s.t. l + k ≥ 3,

2. M(1/2, . . . , 1/2, 2/5, . . . , 2/5) with k ≥ 0 entries 1/2, and 1 ≤ l entries 2/5, s.t.
l + k ≥ 3,

3. the connected sum of some number (possibly no) of Hopf links, with possible trivial
split components,

4. the connected sum of some number (at least one) of Figure-8 knots with a link of
Form 3, or

5. M(1/2, 1/2, 1/2, 1).
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Proof. We apply first Theorem 3.1 to reduce all tangles to the 12 basic ones. If
one of the tangles is ∞, we are down to the connected sum of rational links, and with
Corollary 3.2 have the third or fourth form.

So we assume henceforth that we have no ∞ tangle. Then the 11 remaining basic
tangles have non-integer parts ±1/2 and 2/5. We assume that at least three non-integer
parts occur, otherwise we have again a rational link.

Now assume that at least one tangle 2/5 occurs. Then we use the observation of
Ishiwata (made in the proof of Theorem 3.1) that the 2/5 tangle acts (up to 5-moves)
as an “annihilator” of integer twists. Since one can make all −1/2 to 1/2 up to integer
twists, we have the second form.

So assume below that we have only ±1/2 and possible integer twists. It is an easy
observation that 5 copies of 1/2 are 5-move equivalent to 5 copies of −1/2, so we can
always make the −1/2 to be at most 4. Moreover, the normal form of Montesinos links
teaches that if have n 6= 0 integer twists, then we can assume that all ±1/2 have the sign
of n. (If n = 0 we have the first form.)

Assume first n > 0. Clearly we can achieve that n < 5. Now if the number l of
‘1/2’ satisfies l ≥ 5− n, we can make the n integer twists to 5− n of opposite sign, and
annihilate them making 5− n of the l copies of 1/2 to −1/2. Since 0 < n < 5 and l ≥ 3,
there is only one case where this procedure does not work, namely when l = 3 and n = 1.
In this case we have the link of the fifth form. Otherwise we achieve the first form.

If n < 0 we can apply the same argument, since the family of links of the first form
is invariant (by making the −1/2 to be < 5 under 5-equivalence) to the family of their
mirror images. Also, the link in the fifth form (as well as all links of Forms 2, 3 and 4)
is equivalent to its mirror image. ¤

Remark 3.2. Note that for pretzel links, Form 2 does not occur, and the only link
of Form 4 is 41.

Remark 3.3. The connected sum (of links) in Forms 3 and 4 is generally not well-
determined, but its ambiguity is removed under 5-equivalence. If L is a 2-component
rational link factor, make it into a knot by a 5-move, slide the other connected sum
factors into the (part of the former) other component, and undo the initial 5-move. The
(not very natural) distinction of Forms 3 and 4 will become clear with Theorem 4.1
below.

Remark 3.4. Taking into account in particular the previous remark, the problem
to remove mutation in the description of Theorem 3.2 is easily located to lie within the
links of Form 2. It is the permutability of the entries 1/2, 2/5, which is (basically) the
question whether the 1/2,2/5 Montesinos tangle (the one with Conway Notation 2,22) is
5-equivalent to its (mutant) 2/5,1/2 Montesinos tangle.

4. Jones polynomial of Montesinos links.

4.1. Formulas for the Jones polynomial.
We succeeded in evaluating V̄ on the representatives in Theorem 3.2, and so we have

Theorem 4.1. For a Montesinos link L, the reduced Jones polynomial V̄L equals
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one of

1. Form 1, with k + l ≥ 3, k, l ≥ 0, l ≤ 4:

V1(k, l) =
(−t− 1/t)k+l + (−1/t)l(1− t)k+l(t + 1 + 1/t)

−√t− 1√
t

2. Form 2, with k + l ≥ 3, k, l − 1 ≥ 0:

V2(k, l) =
(1− t2)l(1− t)k(t + 1 + 1/t)

−√t− 1√
t

3. Form 3, with k, l ≥ 0:

V3(k, l) =
(
−
√

t− 1√
t

)l(
− t− 1

t

)k

4. Form 4: 0
5. Form 5:

V5 =
(−t− 1/t)3 − (1− t)3t(t + 1 + 1/t)

−√t− 1√
t

The proof of this theorem bases on routine Kauffman bracket skein module calcula-
tion, and we omit it. (The reader may consult [St2] for some explanation on this kind of
calculation.) The given polynomials correspond (up to units) to the Jones polynomials
of the knots, except for Form 2, where the numerator was simplified by reducing modulo
X = (t5 +1)/(t+1). (For the calculation, we also used M(−1/2, . . . ,−1/2, 2/5, . . . , 2/5),
which is equivalent.) The fraction may therefore not be a genuine polynomial in Z[t±1].
Instead it should be considered lying in the field Z[t±1]/〈X〉 (where the division is pos-
sible).

Remark 4.1. We should remark the following relation of these forms to d(L).

1. Form 1: d(L) ≤ 1 (see the argument for Form 2 below). Whether d(L) = 0 or
1 can then be decided by looking at the (5-divisibility of the) determinant. By a
simple calculation we find

d(L) =

{
0 if 5 - k − l

1 if 5 | k − l

2. Form 2: |d(L) − l| ≤ 1. This follows because by a change from a 0 tangle to an
infinity tangle, d(L) is altered by at most ±1, and we can obtain the connected
sum L′ of k Hopf links and l Figure-8-knots, and d(L′) = l.

3. Form 3: l = d(L)
4. Form 4: d(L) > 0
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5. Form 5: By direct calculation the determinant is 20, so d(L) = 1.

For the following calculations, it is useful to compile a few norms of complex numbers
that will repeatedly occur.

norm of t = eπi/5 t = e3πi/5

1− t
√

5−1
2 ≈ 0.618034 1+

√
5

2 ≈ 1.618034

1 + t

√
2
√

5+10
2 ≈ 1.902113

√
5−√5

2 ≈ 1.175571

1 + t2
√

5+1
2 ≈ 1.618034

√
5−1
2 ≈ 0.618034

1− t2
√

5−√5
2 ≈ 1.175571

√
2
√

5+10
2 ≈ 1.902113

1 + t + t2
√

5+3
2 ≈ 2.618034 3−√5

2 ≈ 0.381966

(7)

Using this table, one easily sees

Corollary 4.1. The set

{(|V (eπi/5)|, |V (e3πi/5)|) : L is a Montesinos link
}

as a subset of R2 is discrete.

Discrete is to be understood here so that the intersection with any ball is finite. (It
is in fact in size at most logarithmic in the radius of a ball centered at the origin (0, 0).)

Proof. We can treat the families V1,2,3 separately. In case of V1,3, the invariant
v1 diverges (exponentially) when k + l →∞. For V2 take v3. ¤

The pretzel links are those for which Form 2 does not occur, and so we have

Corollary 4.2. The set

{|V (eπi/5)| : L is a pretzel link
} ⊂ R

is discrete.

Note that this gives a very strong condition on the polynomials of pretzel or Mon-
tesinos links. For a general link, there is no particular feature of v1 or v3 to be expected.
For arbitrary links they will be dense in R+. Jones claimed in [J] (and I wrote down an
argument in [St3]) that v1 is dense in an interval on closed 4-braids. On the opposite
hand, while several other conditions on invariants of Montesinos links are known, these
are all difficult to test and/or assume additional properties of the diagram.

For example, for a Montesinos link L some properties of π1(DL) are known, where
DL is the double branched cover [BZ]. While it is easy to gain a presentation of π1(DL)
from any diagram of L, the decision problem of such properties from this presentation
seems highly difficult.
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Also, the work in [LT], [Th] implies that any Montesinos link has a minimal (in
crossing number) Montesinos diagram. However, it is not clear how to find this diagram
starting from a given (not mandatorily minimal) one. If the link is alternating, all
minimal diagrams will be Montesinos diagrams. However, for non-alternating knots
there may be even non-Montesinos minimal crossing diagrams; the knots 10145, 10146

and 10147 are examples.
In contrast, our result allows for a (not completely exact but) efficient test of the

Montesinos property. It is in fact this condition, arising from Ishiwata’s result and the
detection of 5-moves by the polynomials, that motivated the present work. We give some
examples of the application of our condition in Section 5. First we show, however, that
the invariants we have in hand suffice to distinguish most equivalence classes in Theorem
3.2.

4.2. Distinction of Forms.
Theorem 4.2. The links in Theorem 3.2 determine exactly the equivalence classes

of Montesinos links under mutation and 5-moves, except possibly 5-move equivalence of
different links of Form 4.

Links of Form 4 (originally overlooked by myself) seem difficult to distinguish, when
the Jones-Rong values of Q in Proposition 3.2 (and in particular d) fail. The sim-
plest examples are the pairs (41, 41#H#H) and (41#41, 41#U2#H), where U2 is the
2-component unlink and H the Hopf link. (The invariants of Section 6 seem not helpful
either.)

Mutations cause similar difficulties. The massive failure of polynomial invariants to
detect mutation results in a serious lack of tools to examine 5-equivalence of mutants.
While it is almost certain that such examples exist, probably no simpler invariants than
the (almost incomputable) Burnside groups [DP] could be applied to show it. However,
note that at least it is known that any mutant of a Montesinos link is again a Montesinos
link, so that the study of 5-equivalence classes of mutants among Montesinos links would
reduce to the mutants of the representative links in Theorem 4.1, as explained in Remark
3.4.

Remark 4.2. Note that by the Theorem, the links L of Form 4 are exactly those
whose Jones polynomial is divisible by the polynomial of the Figure-8 knot. So ambi-
guities will disappear if we assume V (41) - V (L). The problems with both Form 4 and
mutations become also trivial by Remark 3.2, when restricting oneself to pretzel links.
See Remark 5.1 for one more case.

Proof of Theorem 4.2. We check case by case possible duplications of V̄L and
d(L). Often v1 and v3, or sometimes at least γ1 and γ3, already suffice to distinguish
the forms. We will show that all these invariants coincide only if the links are identical
(except Form 4, and except the final case, where we are lead to apply the Q polynomial
to arrive at this conclusion). We remark also that V5 = V1(4,−1). Although the value
l = −1 in Form 1 does not make sense knot-theoretically, from the point of view of formal
algebra this identity will allow us to handle Form 5 often in the same way as Form 1.

We also meet the convention that in a comparison ‘Form x vs Form y’, the integers
k, l are parameters that correspond to ‘Form x’, while k′, l′ correspond to ‘Form y’.
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• Form 1 vs Form 1: We need to deal with

V1(k, l) .= V1(k′, l′). (8)

Looking at t = eπi/5, we find using the above values and k + l ≥ 3,

∣∣(−1/t)l(1− t)k+l(t + 1 + 1/t)
∣∣ ≤

(√
5− 1
2

)3√5 + 3
2

=
√

5− 1
2

.

Using this inequality and the analogous one with k, l replaced by k′, l′, and taking
norms in (8) we find

∣∣∣∣∣
∣∣∣∣− t− 1

t

∣∣∣∣
k+l

−
∣∣∣∣− t− 1

t

∣∣∣∣
k′+l′

∣∣∣∣∣ ≤
√

5− 1. (9)

But
∣∣− t− 1

t

∣∣ =
√

5+1
2 , and k + l, k′+ l′ ≥ 3, so we see that k + l = k′+ l′. We will

argue that then (8) gives 5 | l − l′, so (k, l) = (k′, l′), as desired.
Indeed, set k̃ = k + l = k′ + l′. Now it is more convenient to use γn instead

of vn. So assume there are two different values l1,2 of l = 0, . . . , 4, such that
V1(k̃ − l, l) (are different but) differ by a 20-th root of unity. Now

|t + 1| · ∣∣V1(k̃ − l, l)
∣∣ ≥

∣∣∣∣− t− 1
t

∣∣∣∣
k̃

− |1− t|k̃
∣∣∣∣1 + t +

1
t

∣∣∣∣.

So V1(k̃ − l1, l1) ' V1(k̃ − l2, l2) implies that

|t+1| ·∣∣V1(k̃ − l1, l1)−V1(k̃ − l2, l2)
∣∣ ≥ ∣∣1−eπi/10

∣∣ ·
[∣∣∣∣−t− 1

t

∣∣∣∣
k̃

−|1−t|k̃
∣∣∣∣1+t+

1
t

∣∣∣∣
]
.

On the other hand, by the definition of V1,

|t + 1| · ∣∣V1(k̃ − l1, l1)− V1(k̃ − l2, l2)
∣∣ ≤

√
2
√

5 + 10
2

|1− t|k̃
∣∣∣∣1 + t +

1
t

∣∣∣∣,

where the first factor on the right stands for the largest distance between two 5-th
roots of unity (which are −1/t). Setting t = eπi/5, and combining the last two
inequalities, we obtain

√
2
√

5 + 10
2

·
(√

5− 1
2

)k̃√5 + 3
2

≥ ∣∣1− eπi/10
∣∣ ·

[(√
5 + 1
2

)k̃

−
(√

5− 1
2

)k̃

·
√

5 + 3
2

]
.
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So with |1− eπi/10| =
√

2−
√√

5+5
2 , we have

(√
5 + 1
2

)k̃

≤
(√

5− 1
2

)k̃−2


1 +

√
2
√

5 + 10

2

√
2−

√√
5+5
2


 .

Evaluating the second factor on the right, we have

(√
5 + 1
2

)2k̃−2

≤ 7.07958 . . . ,

so k̃ ≤ 3, that is, k̃ = 3. These cases are easily checked directly. By direct
calculation, we find that v1 and v3 distinguish the cases l = 0, 3 from those l = 1, 2.
Then one verifies that

(
V1(l, 3− l)(eπi/5)
V1(3− l, l)(eπi/5)

)20

6= 1

for l = 0, 1, and this case is finished.
• Form 1 vs Form 2: We assume

V1(k, l) .= V2(k′, l′), (10)

for k + l ≥ 3, k̃ := k′ + l′ ≥ 3, which means

(
− t− 1

t

)k+l

+
(
− 1

t

)l

(1− t)k+l

(
t + 1 +

1
t

)

.= (1− t)k̃

(
t + 1 +

1
t

)(
1− t2

1− t

)l′

. (11)

Using Remark 4.1, we see that for a link L fitting into both forms we have d(L) ≤ 1,
and so l′ ≤ 2. For t = eπi/5, the base of the rightmost exponent in (11) is of norm
> 1. We take norms in (11) and bring the second summand on the left hand side
to the right. We obtain analogously to (9)

∣∣∣∣− t− 1
t

∣∣∣∣
k+l

≤
√

5− 1
2

(
1 +

2
√

5 + 10
4

)
≈ 2.85 · · · <

(√
5 + 1
2

)3

,

which is impossible.
• Form 1 vs Form 3: Let k̃ = k′ + l′ ≥ 0. We must consider
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(
− t− 1

t

)k+l

+
(
− 1

t

)l

(1− t)k+l

(
t + 1 +

1
t

)

.=
(
− t− 1

t

)k̃(
−
√

t− 1√
t

)(−√t− 1√
t

−t− 1
t

)l′

. (12)

By Remark 4.1 we have l′ = 0 if 5 - k − l and l′ = 1 otherwise. So

|1− t|k+l

∣∣∣∣1 + t +
1
t

∣∣∣∣ ≤ |t2 + 1|k+l + |t + 1| · |t2 + 1|k̃ max
(

1,
|t + 1|
|t2 + 1|

)
.

Look first at t = e3πi/5. Since |t+1| > 1 > |t2 +1|, we have the second alternative
in the maximum. Then

(√
5 + 1
2

)k+l

· 3−√5
2

≤
(√

5− 1
2

)k+l

+
(√

5− 1
2

)k̃−1

· 5−√5
2

.

So

(√
5 + 1
2

)k+l

≤
(√

5− 1
2

)k+l−2

+
(√

5− 1
2

)k̃−3

· 5−√5
2

≤
√

5− 1
2

+
5 + 3

√
5

2
= 2 + 2

√
5.

The last inequality uses k̃ ≥ 0, k + l ≥ 3. Then by calculation k + l ≤ 3, and so
k + l = 3. Now look at t = eπi/5. Taking norms in (12), and this time minimizing
with respect to l′ = 0, 1, we find

(√
5 + 1
2

)3

+
(√

5− 1
2

)3√5 + 3
2

=
(√

5 + 1
2

)3

+
(√

5 + 1
2

)−1

≥
(√

5 + 1
2

)k̃
√

2
√

5 + 10
2

.

The left hand side evaluates to (3 + 3
√

5)/2, and then

(√
5 + 1
2

)k̃

≤ 3 + 3
√

5√
2
√

5 + 10
≈ 2.55,

so k̃ ≤ 1. Thus it remains to check the cases k′+ l′ ≤ 1, k+ l = 3 (with k, l, k′ ≥ 0,
l ≤ 4; and l′ = 1 if 5 | k− l and l′ = 0 otherwise). It is easy to perform (still better
by computer) these handful of comparisons; v3 distinguishes all such V1(k, l) and
V3(k′, l′).
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• Form 1 vs Form 4: The same estimate as with ‘Form 1 vs Form 1’ works.
• Form 1 vs Form 5: We can apply the same argument as with ‘Form 1 vs Form 1’,

since we did not use that l > 0 there. Then again we need to check only k̃ = 3.
Direct calculation shows that v1 and v3 distinguish the case l = −1 (in Form 5)
from l = 0, 3 and l = 1, 2.

• Form 2 vs Form 2:

(1− t2)l(1− t)k .= (1− t2)l′(1− t)k′ .

Since |l − d(L)|, |l′ − d(L)| ≤ 1, we have |l − l′| ≤ 2. Since for l = l′ we are easily
done, assume with loss of generality l − l′ ∈ {1, 2}. Then

|1− t|k−k′ ∈
{

1
|1− t2| ,

1
|1− t2|2

}
.

For t = eπi/5 the numbers on the right are 0.850 . . . , 0.723 . . . , while the sequence
on the left is 1, 0.618 . . . , 0.381 . . . , 0.236 . . . etc.

• Form 2 vs Form 3: We have to check

(1− t2)l(1− t)k

(
t + 1 +

1
t

)
.=

(
−
√

t− 1√
t

)l′+1(
− t− 1

t

)k′

. (13)

Now by Remark 4.1, |l − l′| ≤ 1, so l̃ := l′ + 1 − l = 0, 1, 2. Taking norms in (13)
and using l̃ = 0, 1, 2, we have

|1− t|l+k =
|t + 1|l̃|t2 + 1|k′∣∣1 + t + 1

t

∣∣ .

Now for t = eπi/5, we get

(√
5− 1
2

)k+l

=

(√
5+1
2

)k′

·
(√

2
√

5+10
2

)l̃

√
5+3
2

=
(√

5 + 1
2

)k′−2

·
(√

2
√

5 + 10
2

)l̃

.

Now the right hand side is at least
(√

5−1
2

)2, while the left hand side for k + l ≥ 3
is at most

(√
5−1
2

)3, a contradiction.
• Form 2 vs Form 4: trivial
• Form 5 vs Form 2: We apply the same argument as with ‘Form 1 vs Form 2’.
• Form 3 vs Form 3: If V3(k, l) .= V3(k′, l′), we have l = l′ by Remark 4.1, and then

k = k′ is easy to see using v1, v3.
• Form 3 vs Form 4: trivial
• Form 5 vs Form 3: By the same norm estimate as in ‘Form 1 vs Form 3’, we are

left with k′ + l′ ≤ 1, and since d(L) = 1 in Form 5, also l′ = 1, so k′ = 0. This
case, however, is not ruled out by v1 or v3, and in fact not even by V̄ . It is the
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question of 5-equivalence of the link 73
1 in [Ro, appendix] (which is the last link in

Theorem 4.1) and the 2-component unlink. This problem was encountered also in
Ishiwata’s tabulation [I] of 5-equivalence of links up to 9 crossings. The problem is
now resolved using the Q polynomial. Clearly for both links d(L) = 1. However,
exactly the sign, which Q(2 cos 2π/5) contains additionally, manages to distinguish
the two links.

• In Form 4 vs Form 4, Form 4 vs Form 5 and Form 5 vs Form 5 there is nothing to
do, and so our proof is complete. ¤

5. Applications.

The preceding discussion explains how to proceed to test the Montesinos property
of some link L using the Jones polynomial.

For Form 1, one should take t = eπi/5. Then |t2 +1| > 1 > |1−t|. Increase m = k+ l

from 3 on, as long as

|t2 + 1|m ≤ |t + 1| · v1(L) + |1− t|3 · |t + 1 + 1/t|.

If
∣∣|t2 + 1|m − |t + 1| · v1(L)

∣∣ ≤ |1− t|m · |t + 1 + 1/t|,

then compare V̄ with V̄1(k, l) = V̄1(m− l, l) for 0 ≤ l ≤ 4. Note that we have a restriction
on l from d(L). While we cannot determine d(L) from the Jones polynomial, it still leaves
a “trace” in form of the condition that 5d(L) divides det(L) = |VL(−1)|. So among the
5 possible l we can exclude the cases where 5 divides exactly one of k − l = m− 2l and
VL(−1), but not the other.

For Form 2, one should take t = e3πi/5. Then |t2−1| > |1− t| > 1. Now we increase
first l from 1 onward as long as 5l−1 | VL(−1) (because of the relation to d(L)), and

|t2 − 1|l|t + 1 + 1/t| ≤ |t + 1| · v3(L).

For such l, iterate k from max(0, 3− l) onward, as long as

|t2 − 1|l|1− t|k|t + 1 + 1/t| ≤ |t + 1| · v3(L).

If equality holds, compare V̄ with V̄2(k, l).
With a similar procedure one tests Form 3, now using t = eπi/5. (Then |t2 + 1|,

|1+t| > 1, and we must have 5l | det(L).) Forms 4 and 5 (latter actually being redundant,
since equivalent, as far as V̄ can tell, to Form 3 for k = 0, l = 1) are tested by direct
comparison.

If one fails to find V̄ in these forms, one can conclude that L is not (even 5-equivalent
to) a Montesinos link. I wrote a computer program that performs this test, and show its
output on (say) non-alternating 10 crossing knots1:

1In this table, we use the numbering of [Ro, appendix], but the mirroring convention in [HT]; a

conversion to Rolfsen’s mirroring can be found on my website.
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10 124 match form 3 for k=2, l=0 10 145 match form 2 for k=2, l=1
10 125 match form 3 for k=2, l=0 10 146 match form 2 for k=2, l=1
10 126 match form 3 for k=2, l=0 10 147 match form 2 for k=2, l=1
10 127 match form 3 for k=2, l=0 10 148 match form 1 for k=1, l=2
10 128 match form 1 for k=2, l=1 10 149 match form 1 for k=1, l=2
10 129 form 5 10 150
10 130 match form 1 for k=0, l=3 10 151
10 131 match form 1 for k=1, l=2 10 152
10 132 form 5 10 153
10 133 match form 1 for k=2, l=1 10 154
10 134 match form 1 for k=3, l=0 10 155 match form 2 for k=1, l=2
10 135 match form 1 for k=3, l=0 10 156 match form 2 for k=1, l=2
10 136 match form 2 for k=1, l=2 10 157
10 137 match form 2 for k=1, l=2 10 158 match form 2 for k=1, l=2
10 138 match form 2 for k=1, l=2 10 159
10 139 match form 3 for k=1, l=0 10 160
10 140 match form 3 for k=0, l=0 10 161 match form 2 for k=1, l=2
10 141 match form 3 for k=0, l=0 10 162 form 5
10 142 form 5 10 163 match form 2 for k=3, l=1
10 143 match form 3 for k=1, l=0 10 164 match form 2 for k=1, l=2
10 144 match form 3 for k=0, l=0 10 165

Whenever no form is found, the Montesinos property is ruled out. This happens for
9 of the last 18 knots; the first 24 knots are Montesinos. Our test thus seems relatively
efficient. It can surely not be perfect, since it is invariant under 5-moves, and also
sporadic duplications of Jones polynomials occur. However, it seems easier to perform
than all previously known Montesinos link tests (at least for general diagrams, and as
long as the Jones polynomial can be calculated).

Let us make a brief comment on a result of Motegi [Mo]. He shows

Theorem 5.1 (Motegi). Montesinos knots/links of length > 3 have unknot-
ting/unlinking number > 1.

This means that for an unknotting number one knot or link we can sharpen the
Montesinos property test by demanding k + l ≤ 3 in Forms 1, 2 and 3. For example, the
knot 1088 has a Jones polynomial that matches Form 2 for k = 3 and l = 1. I.e. 1088

could be 5-equivalent to M(1/2, 1/2, 1/2, 2/5), and then only to its class, since either’s
d-invariants coincide (see the proof of Theorem 4.2). But having unknotting number 1,
we see that 1088 cannot be a Montesinos knot.

More generally, we have the following. Let us again write a rational link as a
Montesinos link of length 1, and use ‘∞’ to formalize connected sums of rational links
(see end of Section 2.2).

Corollary 5.1. The 5-move equivalence classes of unknotting number 1 Mon-
tesinos knots are contained in the following 12 classes:
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M(1/2, 1/2, 1/2) M(1/2,−1/2,−1/2) M(1/2, 2/5, 2/5)

M(1/2, 1/2,−1/2) M(−1/2,−1/2,−1/2) M(1/2, 1/2, 2/5)

M(1) M(2/5) M(1/2,∞,∞)

M(1/2) M(1/2, 1/2,∞) M(1/2, 1/2, 1/2, 1).

A look at the first 24 non-alternating 10 crossing knots in the above calculation and
in the tables of [Kw] (with the supplement that u(10131) = 1; see [St5]) helps to see that
10 of these 12 classes are realized; the other 2 are M(1/2, 1/2,∞) and M(1/2,∞,∞),
and we do not know about them.

Proof. Since reducing a Montesinos knot (or link) K by 5-moves gives no rep-
resentative of larger length, we need to look in Forms 1 and 2 only at the links with
k + l ≤ 3 and in Forms 3 and 4 at those with k + l ≤ 2. Latter two forms occur when
some rational tangle reduces to an ∞ tangle, and we write them as a length-3 notation
with a fractional part ∞. If at most 2 fractional parts occur, we have a rational link. If
all three fractional parts are ∞ or 2/5, then u(K) ≥ d(K) ≥ 2. The classes M(0) and
M(1/2, 2/5,∞) are ruled out using the Jones-Rong value of Q, see [St5]. ¤

Remark 5.1. In addition to Remark 4.2, by Motegi’s result, the problems to
distinguish 5-move equivalence classes in Theorem 4.2 are remedied also when considering
unknotting/linking number one knots/links. Mutations become trivial for Montesinos
links of length 3, and one easily observes that in each pair of links of Form 4 with equal
Jones-Rong value, at least one link has 3 connected sum factors. Such a link does not
occur when reducing a Montesinos link of length 3 by 5-moves.

6. Invariants of the Kauffman polynomial.

Now we study the 5-move invariants of the Kauffman polynomial to enhance the
test. The following is easy to see:

Lemma 6.1. Let n,m ∈ Zk, so that n 6= ±m and w = e2πin/k 6= ±1,±i. Then
F (a, z) for a = e2πim/k and z = w+w−1 = 2 cos 2πn/k, up to multiplication with (powers
of ) a, is a k-move invariant.

Proof (sketch). Consider the generating function

f(a, z, x) =
∞∑

j=0

Λ(Aj)(a, z)xj ,

where Aj are link diagrams with a twist tangle of j crossings (that is, a tangle with
Conway notation j, as on the right of (1) for j = 5). Use the relations (4) to rewrite f

as a rational function in x, determined by A0,1,∞. Finally analyze for what values of a

and z (for which F (a, z) makes sense), the zeros x of the denominator polynomial are
distinct k-th roots of unity. ¤
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In the case of k = 5, Lemma 6.1 gives up to complex conjugacy four invariant
evaluations of F . We finish the paper with a uniform calculation of them, and some
examples in application of the corresponding formulas. Despite that these values mainly
coincide (as we will note below) with the invariants we already treated, their formulas
make still some sense, at least because the (sign in) the Jones-Rong value can be useful.

To evaluate F on the links in Theorem 3.2, we make again a skein module calculation,
this time using the Kauffman polynomial (not to be confused with the Kauffman bracket)
skein relation (4). In the following we assume that a and z are as specified in Lemma
6.1 for k = 5, and consider F (a, z) up to powers of a.

We start with determining the coefficients

〈1/2〉 = A〈0〉+ B〈1〉+ C〈∞〉
〈2/5〉 = D〈0〉+ E〈1〉+ F〈∞〉

of the tangles T = 〈1/2〉 and T ′ = 〈2/5〉 in the Kauffman skein module (not to be
confused with the Kauffman bracket skein module).

By taking the closure of the sum of the tangle T = 〈1/2〉 resp. T ′ = 〈2/5〉 with the
0, ∞ and −1 tangles, we obtain a linear equation system that determines the Kauffman
skein module coefficients of T and T ′.

Let first a1 = 1
a + a, and

T2 = −1 +
a1

z

H = za1 − T2

G4 = (1− a2
1)− za1 + z2a2

1 + z3a1

G3 = (−1/a− 2a) + za1/a + z2a1

be the writhe-unnormalized polynomials of the 2-component unlink, Hopf link, Figure-8
knot, and negative trefoil, respectively.

Let

M =




T2 a 1

1 1
a T2

1
a T2 a




be the matrix that represents the closures of the three skein module generating tangles
〈0〉, 〈1〉 and 〈∞〉, and

v =




a2 a2 H

H G4

1
a G3




be the to-result polynomials for the closures of the the tangles T and T ′. Then
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(
A B C

D E F

)
= (M−1 · v)T ,

and by calculation we find

(A,B, C) = (za, z, −1)

(D,E,F) =
(
− a2 + z2 + a2z2 + az3, −z +

z2

a
+ z3, −z

a
− z2

)
.

A routine (and so omitted) further calculation leads to the formulas we wish (the
link in Form 5 can be evaluated directly).

Theorem 6.1. For a and z as in Lemma 6.1 for k = 5, the values F (a, z) of the
links in Theorem 3.2 are given, up to powers of a, as follows.

For Form 1 we have with k = n, l = n′:

F1(n, n′) =
1

T2

[
Hn+n′ + an−n′zn+n′

( n∑

j=0

n′∑

j′=0

(
n

j

)(
n′

j′

)
W1

(
(j − j′) mod 5

))]
,

where

W1(0) = −1 + T2
2,

W1(±1) = −a∓2 + T2,

W1(±2) = −a±1 + a∓2 HT2 .

For Form 2 we have

F2(n, n′) =
1

T2

[
G4

n′ Hn +
n∑

j=0

n′∑

j′=0

(
n

j

)(
n′

j′

)
An−jBj Dn′−j′ Ej′ W2

(
(j + j′) mod 5

)]
,

where

W2(0) = −1 + T2
2,

W2(±1) = −a∓1 + a±1 T2,

W2(±2) = −a∓2 + HT2 .

For Form 3 and Form 4,

F3(n, n′, n′′) := G4
n Hn′ T2

n′′ .

If n > 0, we have Form 4; if n = 0, Form 3 with k = n′, l = n′′.
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These expressions look slightly more complicated than those for V , but are still
straightforward to evaluate. Using the formulas, we can for example rule out 10155 and
10161 from being Montesinos. Since 10155 with d = 2 satisfies the condition of Remark
4.1 for Form 2 and l = 2, the proof of Theorem 4.2 and the calculation in Section 5 show
that if 10155 were Montesinos, it must be in the 5-equivalence class of a Montesinos link
corresponding to the polynomial F2(1, 2) (for example 10136). But the F polynomial
invariants of F (10155) are different from those of F2(1, 2). The same argument rules
out 10161. The other 7 undecided knots remain, and it is suspectable that they are
5-equivalent to Montesinos links.

Finally, let us clarify the status of the four values in Lemma 6.1. For m = 1 we have
the two (equivalent under the interchange of ±√5) Jones-Rong values of Q in Proposition
3.2. The other two values (also equivalent up to ±√5) are

w±2 = F
(
e±2πi/5, 2 cos 4π/5

)
and w±4 = F

(
e±4πi/5, 2 cos 2π/5

)
.

Unfortunately, it turns out that we already know them, too. Proposition 16.6 of [Li]
shows that w+

4,2 = ±x2
1,3 mainly identify with the invariants x1,3 of Corollary 3.1. Here

the sign ‘±’ depends on the parity of link components, and w+
2,4 are determined up to

multiplication by fifth roots of unity, so from Definition 3.1 and Remark 3.1 we see w4,2

to be equivalent to x̃1,3.

Acknowledgements. Main motivation for this work provided Ishiwata’s talk
[I]. The calculations were partly assisted by MATHEMATICATM [Wo], the table access
program KnotScape [HT] and the graphic web interface Knotilus [FR]. I wish to thank
also to my host T. Kohno for his encouragement.
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[Li] W. B. R. Lickorish, An introduction to knot theory, Graduate Texts in Mathematics, 175,

Springer-Verlag, New York, 1997.

[LT] W. B. R. Lickorish and M. B. Thistlethwaite, Some links with non-trivial polynomials and their

crossing numbers, Comment. Math. Helv., 63 (1988), 527–539.

[Mo] K. Motegi, A note on unlinking numbers of Montesinos links, Rev. Mat. Univ. Complut. Madrid,

9 (1996), 151–164.

[Mu] K. Murasugi, On periodic knots, Comment. Math. Helv., 46 (1971), 162–174.

[P] J. Przytycki, tk moves on links, Braids, Santa Cruz, 1986 (J. S. Birman and A. L. Libgober,

eds.), Contemp. Math., 78 (1988), 615–656.

[P2] J. Przytycki, The t3, t4 moves conjecture for oriented links with matched diagrams, Math. Proc.

Cambridge Philos. Soc., 108 (1990), 55–61.

[PT] J. Przytycki and T. Tsukamoto, The fourth skein module and the Montesinos-Nakanishi conjec-

ture for 3-algebraic links, J. Knot Theory Ramifications, 10 (2001), 959–982.

[Ro] D. Rolfsen, Knots and links, Publish or Perish, 1976.

[R] Y. W. Rong, The Kauffman polynomial and the two-fold cover of a link, Indiana Univ. Math.

J., 40 (1991), 321–331.

[St] A. Stoimenow, Rational knots and a theorem of Kanenobu, Exper. Math., 9 (2000), 473–478.

[St2] A. Stoimenow, Jones polynomial, genus and weak genus of a knot, Ann. Fac. Sci. Toulouse, VIII

(1999), 677–693.

[St3] A. Stoimenow, Knots of genus two, preprint math.GT/0303012.

[St4] A. Stoimenow, Coefficients and non-triviality of the Jones polynomial, preprint math.

GT/0606255.

[St5] A. Stoimenow, Polynomial values, the linking form and unknotting numbers, Math. Res. Lett.,

11 (2004), 755–769.

[Th] M. B. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math., 93

(1988), 285–296.

[Wo] S. Wolfram, Mathematica – a system for doing mathematics by computer, Addison-Wesley, 1989.

Alexander Stoimenow

Research Institute for Mathematical Sciences

Kyoto University

Kyoto 606-8502, Japan

E-mail: stoimeno@kurims.kyoto-u.ac.jp


