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Abstract. The definitions of the Feynman path integral for the Pauli equation
and more general equations in configuration space and in phase space are proposed,
probably for the first time. Then it is proved rigorously that the Feynman path
integrals are well-defined and are the solutions to the corresponding equations. These
Feynman path integrals are defined by the time-slicing method through broken line
paths, which is familiar in physics. Our definitions of these Feynman path integrals
and our results give the extension of ones for the Schrödinger equation.

1. Introduction.

We consider some charged non-relativistic particles in an electromagnetic field.
For the sake of simplicity we suppose the charge and the mass of every particle to
be qc and m > 0, respectively. We consider x = (x1, . . . , xn) ∈ Rn and t ∈ [0, T ],
where T > 0 is an arbitrary constant. Let E(t, x) = (E1, . . . , En) ∈ Rn and
(Bjk(t, x))1≤j<k≤n ∈ Rn(n−1)/2 denote electric strength and magnetic strength tensor,
respectively, and (V (t, x), A(t, x)) = (V, A1, . . . , An) ∈ Rn+1 an electromagnetic poten-
tial, i.e.,

E = −∂A

∂t
− ∂V

∂x
,

Bjk =
∂Ak

∂xj
− ∂Aj

∂xk
(1 ≤ j < k ≤ n), (1.1)

where ∂V/∂x = (∂V/∂x1, . . . , ∂V/∂xn). Then the Lagrangian function L0(t, x, ẋ) (ẋ ∈
Rn) is given by

L0(t, x, ẋ) =
m

2
|ẋ|2 + qcẋ ·A− qcV. (1.2)

The Hamiltonian function H0(t, x, p) (p ∈ Rn) is defined through the Legendre transfor-
mation of L0 by
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H0(t, x, p) =
1

2m
|p− qcA|2 + qcV. (1.3)

Let T ∗Rn = Rn
x × Rn

p denote the phase space, and (Rn)[s,t] and (T ∗Rn)[s,t] the
spaces of all paths q : [s, t] 3 θ → q(θ) ∈ Rn and (q, p) : [s, t] 3 θ → (q(θ), p(θ)) ∈ T ∗Rn,
respectively. The classical actions Sc(t, s; q) for q ∈ (Rn)[s,t] in configuration space and
S(t, s; q, p) for (q, p) ∈ (T ∗Rn)[s,t] in phase space are given by

Sc(t, s; q) =
∫ t

s

L0

(
θ, q(θ), q̇(θ)

)
dθ, q̇(θ) =

dq

dθ
(θ) (1.4)

and

S(t, s; q, p) =
∫ t

s

{
p(θ) · q̇(θ)−H0

(
θ, q(θ), p(θ)

)}
dθ, (1.5)

respectively (cf. [2]).
In 1948 Feynman proposed an essentially different description of quantization from

the Heisenberg and the Schrödinger ones in [5]. Let f be a probability amplitude given
at the time 0. Then he claimed that the value of the probability amplitude at (T, x) can
be described as the sum, in a sense, of N−1(exp i~−1Sc(T, 0; q))f(q(0)) over all paths
q ∈ (Rn)[0,T ] satisfying q(T ) = x with a normalization factor N independent of q and
x. This sum is called the Feynman path integral. In 1951 Feynman himself gave the
description reformulated by means of the Feynman path integral in phase space in [6].
This Feynman path integral is called the phase space Feynman path integral. Now we
know that his description is very useful and applied to wide areas in physics (cf. [21]).

The Feynman path integral and the phase space Feynman path integral were rigor-
ously defined and proved to satisfy the Schödinger equation

i~
∂

∂t
u(t) = H0(t)u(t), u(0) = f (1.6)

in many papers, where

H0(t) :=
1

2m

n∑

j=1

(
~
i

∂

∂xj
− qcAj

)2

+ qcV (1.7)

and ~ is the Planck constant. For example, See [1], [8], [14], [15], [18], [23] and their
references. See Theorem 4 in Section 5 of Chapter 4 in [10] for the non-existence of the
measure defining the Feynman path integral.

Let t(a1, . . . , an) denote the transposed of vector (a1, . . . , an), where aj (j =
1, 2, . . . , n) are complex numbers. Let n = 3, u(t) = t(u1(t), u2(t)), I2 the identity matrix
of degree 2, B(t, x) = (B23(t, x),−B13(t, x), B12(t, x)) = ∇×A(t, x) and σ = (σ1, σ2, σ3),
where σj (j = 1, 2, 3) are the Hermitian constant matrices of degree 2 called the Pauli
matrices satisfying
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[σ1, σ2] = 2iσ3, [σ2, σ3] = 2iσ1, [σ3, σ1] = 2iσ2. (1.8)

Here [·, ·] denotes the commutator for matrices. Then we have the Pauli equation

i~
∂

∂t
u(t) = He(t)u(t), u(0) = t(f1, f2)

representing the motion of a particle with spin 1/2, where

He(t) := H0(t)I2 − qc~
2m

B(t) · σ.

Feynman and Hibbs say in Section 12–10 of [7] that with regard to application to quantum
mechanics, path integrals suffer most grievously from a serious defect, because they do not
permit a discussion of particles with spin in a simple and lucid way. Also, Schulman says
in Chapter 22 of [22] that it has been difficult to suggest a continuous path subsequently
to be summed over so as to obtain the probability amplitude for the Pauli equation.
The author does not know the mathematical references concerning the Feynman path
integral for the Pauli equation. Let ~ = 1, and A(t, x) ∈ R3 and V (t, x) ∈ R independent
of t ∈ [0, T ]. Then in [9] the formula of the Feynman-Kac type for the equation

∂

∂t
u(t) = −He(t)u(t), u(0) = t(f1, f2)

was obtained. We note that in [9] the random variable matrix M(t, ω) (ω ∈ Ω) of degree
2 defined by the solution to

d

dt
M(t, ω) =

qc

2m

(
B(bω(t)) · σ)

M(t, ω), M(0, ω) = I2 (1.9)

was used, where Ω is a basic space and bω(t) is the Brownian motion of dimension 3. As
physical references the Feynman path integral on R3×SO(3) was studied in [22] and the
Feynman path integral was studied by means of the introduction of new two variables
for spin in [4]. See [11], [22] for the detailed physical references.

Let u(t) = t(u1(t), . . . , ul(t)), f = t(f1, . . . , fl), Il the identity matrix of degree l and
H1(t, x) = (h1jk(t, x)) a Hermitian matrix of degree l. We consider the generalized Pauli
equation

i~
∂

∂t
u(t) =

(
H0(t)Il + ~H1(t)

)
u(t), u(t0) = f. (1.10)

Our aim in the present paper is to propose the definitions of the Feynman path integral
and the phase space Feynman path integral for (1.10), probably for the first time. Then
we prove rigorously that these Feynman path integrals are well-defined and satisfy (1.10).
We note that our definitions of these Feynman path integrals and our results give the
extension of ones for the Schrödinger equation in [16].
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Assume that all h1jk(t, x) are continuous in [0, T ] × Rn. For a continuous path
q ∈ (Rn)[0,T ] let F (t, s; q) (0 ≤ t, s ≤ T ) be the unitary matrix of degree l defined by the
solution to

d

dt
A (t) = −iH1(t, q(t))A (t), A (s) = Il. (1.11)

We note that (1.11) is like (1.9). Let f = t(f1, . . . , fl) be a probability amplitude
given at the time 0. Roughly speaking, we define the Feynman path integral and the
phase space Feynman path integral for (1.10) with t0 = 0 by the sums, in a sense,
of N−1(exp i~−1Sc(T, 0; q))F (T, 0; q)f(q(0)) over all continuous q ∈ (Rn)[0,T ] satisfy-
ing q(T ) = x and of N ′−1(exp i~−1S(T, 0; q, p))F (T, 0; q) × f(q(0)) over all continuous
q ∈ (Rn)[0,T ] and all p ∈ (Rn)[0,T ] satisfying q(T ) = x respectively, where N ′ is also a
normalization factor independent of q, p and x.

The outline of the proof is as follows. We define the Feynman path integral and the
phase space Feynman path integral for (1.10) by the time-slicing method through broken
line paths. This method is familiar in physics (cf. [7], [21]). We denote the space of all
infinitely differentiable functions in Rn with compact support by C∞0 (Rn). Let

qt,s
x,y(θ) := y +

θ − s

t− s
(x− y), 0 ≤ s ≤ θ ≤ t ≤ T (1.12)

and set for f = t(f1, . . . , fl) ∈ C∞0 (Rn)l

C (t, s)f :=





√
m/(2πi~(t− s))

n
∫ (

exp i~−1Sc

(
t, s; qt,s

x,y

))

×F
(
t, s; qt,s

x,y

)
f(y)dy,

s < t,

f, s = t.

(1.13)

Let t − s > 0 be small. Then we can prove the so-called stability of C (t, s) and the
so-called consistency of C (t, s) for (1.10) in Propositions 3.4 and 3.5 of the present paper
by means of the theory of the oscillatory integral operators as in [16]. Then we can prove
our results as in the same way as in [16].

The plan of the present paper is as follows. In section 2 we state our results and
some remarks. Section 3 is devoted to the proof of the main theorem.

2. Results.

Let ∆ : 0 = τ0 < τ1 < · · · < τν = T be a subdivision of the interval [0, T ].
We set |∆| := max1≤j≤ν(τj − τj−1). For x(0), . . . , x(ν−1) and x in Rn let’s define q∆ =
q∆(θ;x(0), . . . , x(ν−1), x) ∈ (Rn)[0,T ] by the broken line path joining points x(j) at τj (j =
0, 1, . . . , ν, x(ν) = x) in order, i.e.

q∆(θ) = x(j−1) +
θ − τj−1

τj − τj−1

(
x(j) − x(j−1)

)
, τj−1 ≤ θ ≤ τj



A mathematical theory of the Feynman path integral 653

for j = 1, 2, . . . , ν. Then we have the following.

Lemma 2.1. Assume that all h1jk(t, x) are continuous in [0, T ] × Rn. Then we
have

F (T, 0; q∆) = F
(
T, τν−1; q

T,τν−1

x,x(ν−1)

)
F

(
τν−1, τν−2; q

τν−1,τν−2

x(ν−1),x(ν−2)

) · · ·F(
τ1, 0; qτ1,0

x(1),x(0)

)
.

(2.1)

Proof. For τk ≤ t ≤ τk+1 (k = 0, 1, . . . , ν − 1) we have

F (t, 0; q∆) = F
(
t, τk; qτk+1,τk

x(k+1),x(k)

)
F (τk, 0; q∆).

In fact both sides satisfy

d

dt
A (t) = −iH1

(
t, q

τk+1,τk

x(k+1),x(k)(t)
)
A (t), A (τk) = F (τk, 0; q∆).

So, (2.1) can be proved by induction. ¤

For a multi-index α = (α1, . . . , αn) and x ∈ Rn we write |α| =
∑n

j=1 αj , xα =
xα1

1 · · ·xαn
n , ∂α

x = (∂/∂x1)α1 · · · (∂/∂xn)αn and 〈x〉 =
√

1 + |x|2. Let L2 = L2(Rn) be
the space of all square integrable functions in Rn with inner product (·, ·) and norm
‖ · ‖. We introduce the weighted Sobolev spaces Ba = Ba(~) := {f ∈ L2; ‖f‖Ba :=
‖f‖+

∑
|α|=a(‖xαf‖+‖(~∂x)αf‖) < ∞} (a = 1, 2, . . . ). We set B0 := L2. Let B−a (a =

1, 2, . . . ) denote the dual space of Ba. Let ‖f‖Ba for f = t(f1, . . . , fl) ∈ (Ba)l denote the
norm (

∑l
j=1 ‖fj‖2Ba)1/2.

Let χ ∈ C∞0 (Rn) such that χ(0) = 1. For a function g(x, y) on Rn × Rnν we
define the oscillatory integral Os− ∫

g(·, y)dy by limε→0

∫ ∏ν
j=1 χ(εy(j))g(·, y)dy, where

y = (y(1), . . . , y(ν)) ∈ Rnν and the limit is taken in the topology of Ba different from
that in [19]. Let q∆ = q∆(θ;x(0), . . . , x(ν−1), x). We define

∫ (
exp i~−1Sc(T, 0; q∆)

)
F (T, 0; q∆)f(q∆(0))Dq∆

:=
( ν∏

j=1

√
m

2πi~(τj − τj−1)

n)
Os−

∫
· · ·

∫ (
exp i~−1Sc(T, 0; q∆)

)

×F (T, 0; q∆)f(q∆(0))dx(0) · · · dx(ν−1) (2.2)

for f ∈ C∞0 (Rn)l. Then from (1.4), (1.13) and Lemma 2.1 we can write

∫ (
exp i~−1Sc(T, 0; q∆)

)
F (T, 0; q∆)f(q∆(0))Dq∆

= lim
ε→0

C (T, τν−1)χ(ε·)C (τν−1, τν−2) · · ·χ(ε·)C (τ1, 0)χ(ε·)f. (2.3)
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As is seen from (2.3), Proposition 2.2 in [13] and Lemma 2.2 in [3], it seems to be
difficult that the limit in (2.3) is taken pointwise in Rn. The existence of the limit (2.2)
or (2.3) will be proved in Theorem 2.3 in the present paper. The Feynman path integral∫

(exp i~−1Sc(T, 0; q))F (T, 0; q)f(q(0))Dq in configuration space for the generalized Pauli
equation (1.10) with t0 = 0 is defined by

lim
|∆|→0

∫ (
exp i~−1Sc(T, 0; q∆)

)
F (T, 0; q∆)f(q∆(0))Dq∆ (2.4)

as in [7], [21], where the limit in (2.4) is taken in the topology of (Ba)l.
Let 0 ≤ t0 ≤ t ≤ T . We take 1 ≤ µ′ < µ ≤ ν such that τµ′−1 ≤ t0 < τµ′ and

τµ−1 < t ≤ τµ. Then we define for f ∈ C∞0 (Rn)l

C∆(t, t0)f := lim
ε→0

C (t, τµ−1)χ(ε·)C (τµ−1, τµ−2) · · ·χ(ε·)C (τµ′ , t0)χ(ε·)f. (2.5)

Otherwise we set C∆(t, t0)f = C (t, t0)f . Then from (2.3) we have

C∆(T, 0)f =
∫ (

exp i~−1Sc(T, 0; q∆)
)
F (T, 0; q∆)f(q∆(0))Dq∆. (2.6)

For Π(j) (j = 0, 1, . . . , ν − 1) in kinetic momentum space Rn we define the path
Π∆(θ; Π(0), . . . ,Π(ν−1)) ∈ (Rn)[0,T ] in kinetic momentum space by the piecewise constant
path taking Π(0) at θ = 0,Π(j) for τj < θ ≤ τj+1 (j = 0, 1, . . . , ν − 1). Let q∆ =
q∆(θ;x(0), . . . , x(ν−1), x) and set

p∆(θ) := Π∆(θ) + A(θ, q∆(θ)). (2.7)

Then we define for f ∈ C∞0 (Rn)l

∫∫ (
exp i~−1S(T, 0; q∆, p∆)

)
F (T, 0; q∆)f(q∆(0))DΠ∆Dq∆

:= (2π~)−nνOs−
∫
· · ·

∫ (
exp i~−1S(T, 0; q∆, p∆)

)

×F (T, 0; q∆)f(q∆(0))dΠ(0)dx(0) · · · dΠ(ν−1)dx(ν−1). (2.8)

The existence of the limit (2.8) will be proved in Theorem 2.3 in the present paper. The
Feynman path integral

∫∫
(exp i~−1S(T, 0; q, p))F (T, 0; q)f(q(0))DΠDq in phase space

for the generalized Pauli equation (1.10) with t0 = 0 is defined by

lim
|∆|→0

∫∫ (
exp i~−1S(T, 0; q∆, p∆)

)
F (T, 0; q∆)f(q∆(0))DΠ∆Dq∆ (2.9)

as in [21] in the topology of (Ba)l.
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Let

ζt,s
x,y,Π(θ) :=

(
qt,s
x,y(θ),Π + A

(
θ, qt,s

x,y(θ)
)) ∈ (T ∗Rn)[s,t], (2.10)

and for 0 ≤ s ≤ t ≤ T and f ∈ C∞0 (Rn)l set

Gε(t, s)f :=





(2π~)−n

∫∫ (
exp i~−1S

(
t, s; ζt,s

x,y,Π

))

× χ(εΠ)F
(
t, s; qt,s

x,y

)
f(y)dΠdy,

s < t,

f, s = t.

(2.11)

Let 0 ≤ t0 ≤ t ≤ T . If we take 1 ≤ µ′ < µ ≤ ν such that τµ′−1 ≤ t0 < τµ′ and
τµ−1 < t ≤ τµ, we define for f ∈ C∞0 (Rn)l

G∆(t, t0)f := lim
ε→0

Gε(t, τµ−1)χ(ε·)Gε(τµ−1, τµ−2) · · ·χ(ε·)Gε(τµ′ , t0)χ(ε·)f. (2.12)

Otherwise we set G∆(t, t0)f = limε→0 Gε(t, t0)f . Then from (1.5), (2.7)–(2.8), (2.10)–
(2.11) and Lemma 2.1 we have

G∆(T, 0)f =
∫∫ (

exp i~−1S(T, 0; q∆, p∆)
)
F (T, 0; q∆)f(q∆(0))DΠ∆Dq∆. (2.13)

Let

Φ(t, s;x, y, z) := z − x + y

2
+

t− s

m

∫ 1

0

A(s, y + θ(x− y))dθ

− t− s

m
B′(t, s;x, y, z)− (t− s)2

m
E′(t, s;x, y, z) ∈ Rn,

where E′ = (E′
1, . . . , E

′
n), B′ = (B′

1, . . . , B
′
n),

E′
j =

∫ 1

0

∫ σ1

0

Ej

(
t− σ1(t− s), z + σ1(x− z) + σ2(y − x)

)
dσ2dσ1

and

B′
j =

n∑

k=1

(zk − xk)
∫ 1

0

∫ σ1

0

Bjk

(
t− σ1(t− s), z + σ1(x− z) + σ2(y − x)

)
dσ2dσ1.

Then Lemma 3.2 in [14] says

Lemma 2.2. Let ∂α
x Ej(t, x) (j = 1, 2, . . . , n) and ∂α

x Bjk(t, x) (1 ≤ j < k ≤ n) be
continuous in [0, T ]×Rn for all α. We suppose
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∣∣∂α
x Ej(t, x)

∣∣ ≤ Cα, |α| ≥ 1,
∣∣∂α

x Bjk(t, x)
∣∣ ≤ Cα〈x〉−(1+δ), |α| ≥ 1 (2.14)

in [0, T ] × Rn, where constants δ = δα > 0 may depend on α. Then there exits a
constant ρ∗ > 0 such that the mapping : Rn 3 z → ξ = Φ ∈ Rn is homeomorphic and
det ∂Φ/∂z ≥ 1/2 for each fixed 0 ≤ t− s ≤ ρ∗, x and y.

We fix ρ∗ > 0 determined in Lemma 2.2 through the present paper. The following
is the main theorem in the present paper.

Theorem 2.3. Besides the assumptions of Lemma 2.2 we suppose that ∂α
x Aj(t, x)

(j = 1, 2, . . . , n) and ∂α
x V (t, x) are continuous in [0, T ]×Rn for all α and that we have

∣∣∂α
x Aj(t, x)

∣∣ ≤ Cα, |α| ≥ 1,
∣∣∂α

x V (t, x)
∣∣ ≤ Cα〈x〉, |α| ≥ 1 (2.15)

in [0, T ]×Rn. We also assume that ∂α
x h1jk(t, x) (j, k = 1, 2, . . . , l) for all α are continuous

in [0, T ]×Rn and satisfy

∣∣∂α
x h1jk(t, x)

∣∣ ≤ Cα, (t, x) ∈ [0, T ]×Rn. (2.16)

Let a = 0, 1, . . . and |∆| ≤ ρ∗. Then we have: (1) Both of C∆(t, t0) and G∆(t, t0) are
well-defined on C∞0 (Rn)l independently of the choice of χ and can be extended to bounded
operators on (Ba)l. In addition, they are equal to one another and are continuous in
0 ≤ t0 ≤ t ≤ T as (Ba)l-valued functions. (2) As |∆| → 0, C∆(t, t0)f for f ∈ (Ba)l

converges in (Ba)l uniformly in 0 ≤ t0 ≤ t ≤ T and this limit satisfies the generalized
Pauli equation (1.10).

We have together with (2.6) and (2.13)

Corollary 2.4. Let a = 0, 1, . . . and f ∈ (Ba)l. Under the assumptions of Theo-
rem 2.3 there exist the Feynman path integrals

∫
(exp i~−1Sc(t, 0; q))F (t, 0; q)f(q(0))Dq

and
∫∫

(exp i~−1S(t, 0; q, p))F (t, 0; q)f(q(0))DΠDq in configuration space and in phase
space for 0 ≤ t ≤ T , which are equal to one another, are continuous in 0 ≤ t ≤ T as
(Ba)l-valued functions and satisfy the generalized Pauli equation (1.10) with t0 = 0.

Remark 2.1. We have F (t, s; q) = exp(−i
∫ t

s
H1(θ, q(θ))dθ) in case that H1(t, x)

is a diagonal matrix. So,

∫∫ (
exp i~−1S(T, 0; q∆, p∆)

)
F (T, 0; q∆)f(q∆(0))DΠ∆Dq∆

=
∫∫ (

exp i~−1

∫ T

0

{
p∆(θ) · q̇∆(θ)Il −H0(θ, q∆(θ), p∆(θ))Il − ~H1(θ, q∆(θ))

}
dθ

)

× f(q∆(0))DΠ∆Dq∆.

We note that
∫ T

0
{p(θ) · q̇(θ)Il−H0(θ, q(θ), p(θ))Il−~H1(θ, q(θ))}dθ is the classical action

in phase space corresponding to the quantum equation (1.10).



A mathematical theory of the Feynman path integral 657

Remark 2.2. Let E 0
t,s([0, T ]; (Ba+2)l)

⋂
E 1

t,s([0, T ]; (Ba)l) denote the space of all
(Ba+2)l-valued continuous and (Ba)l-valued continuously differentiable functions in
0 ≤ s ≤ t ≤ T . We know from the second step of the proof of Theorem in [12] that the
solutions to (1.10) are unique in

⋃∞
a=−∞(E 0

t,s([0, T ]; (Ba+2)l)
⋂

E 1
t,s([0, T ]; (Ba)l)).

Remark 2.3. If H1(t, x) = 0 identically in [0, T ]×Rn, then we have F (t, s) = Il

from (1.11). Hence Theorem 2.3 and Corollary 2.4 in the present paper state the same
results as in Theorems 1 and 2 in [16].

Remark 2.4. If we suppose, besides the assumptions of Lemma 2.2 that ∂tBjk(t, x)
(1 ≤ j < k ≤ n) are continuous in [0, T ] × Rn, then we can get the same assertions as
in Theorem 2.3 and Corollary 2.4 in the present paper where a = 0. The proof can be
given by virtue of the gauge transformation as in the proof of Theorem in [14].

Remark 2.5. Let M ≥ 0 be an integer and zjk(x,Π) (j, k = 1, 2, . . . , l) infinitely
differentiable scalar functions in R2n. We suppose

∣∣∂α
Π∂β

x zjk(x,Π)
∣∣ ≤ Cα,β(1 + |x|+ |Π|)M , (x,Π) ∈ R2n

for all α and β. We set the matrix z(x,Π) := (zjk(x,Π)) of degree l. Then we define for
a t0 ∈ [0, T ]

∫∫ (
exp i~−1S(T, 0; q∆, p∆)

)
F (T, t0; q∆)z(q∆(t0),Π∆(t0))

×F (t0, 0; q∆)f(q∆(0))DΠ∆Dq∆

as in the same way of defining (2.8). From (1.11) we note

F
(
t′, s′; qt,s

x,y

)− Il = −i

∫ t′

s′
H1

(
θ, qt,s

x,y(θ)
)
F

(
θ, s′; qt,s

x,y

)
dθ

for s ≤ s′ ≤ t′ ≤ t. Assume

n∑

i=1

∂2zjk

∂xi∂Πi
(x,Π) = 0

identically in R2n for j, k = 1, 2, . . . , l. We take F (t, t0; qt,s
x,y)z(qt,s

x,y(t0),Π)F (t0, s; qt,s
x,y)

for s ≤ t0 ≤ t as ω(x,Π, y) in Proposition 5.1 and Theorem 5.2 in [17]. Then from
Corollary 4.3 in [17], (2.1) and Lemma 3.1 in the present paper we can prove as in
the proof of Theorem 2.2 in [17] under the assumptions of Theorem 2.3 that for f ∈
(Ba+M )l (a = 0, 1, . . . ) there exists

lim
|∆|→0

∫∫ (
exp i~−1S(T, 0; q∆, p∆)

)
F (T, t0; q∆)z(q∆(t0),Π∆(t0))

×F (t0, 0; q∆)f(q∆(0))DΠ∆Dq∆
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in (Ba)l, which is equal to U(T, t0)Z(t0)U(t0, 0)f . Here U(t, t0)f denotes the solu-
tion to the generalized Pauli equation (1.10) and Z(t0) the pseudo-differential operator
Z(X, ~Dx −

∫ 1

0
A(t0, X + θ(X ′ −X))dθ) with double symbol (cf. [19]). One can prove

the same assertions as in Theorems 2.2 and 2.3 in [17], which give the generalization of
the results for the Schödinger equation in [16], [17], in the same way that the above was
proved. The detailed proof will be published elsewhere.

Remark 2.6. We consider the Pauli equation. Then since the trace of σj (j =
1, 2, 3) is equal to zero, the trace of H1(t, x) = (−qc/2m)B(t, x) · σ is also zero. So, we
have det F (t, s; q) = 1. Consequently, we see F (t, s; q) ∈ SU(l).

3. Proof of Theorem 2.3.

For the sake of simplicity we set ~ = 1 and qc = 1.

Lemma 3.1. Assume that ∂α
x h1jk(t, x) (j, k = 1, 2, . . . , l) are continuous for all α

in [0, T ]×Rn and satisfy

∣∣∂α
x h1jk(t, x)

∣∣ ≤ Cα, |α| ≥ 1, (t, x) ∈ [0, T ]×Rn. (3.1)

Let 0 ≤ s < t ≤ T . Then F (t′, s′; qt,s
x,y) for s ≤ s′, t′ ≤ t is a unitary matrix. We also

see that for all α and β ∂α
x ∂β

y F (t′, s′; qt,s
x,y) exist, are continuous and satisfy

∣∣∂α
x ∂β

y F (t′, s′; qt,s
x,y)

∣∣ ≤ Cα,β (3.2)

in 0 ≤ s ≤ s′, t′ ≤ t ≤ T , x ∈ Rn and y ∈ Rn.

Proof. We see from (1.11) that F (t′, s′; qt,s
x,y) is a unitary matrix. So we have

(3.2) for α = β = 0. We also know from the theory of the ordinary differential equations
that for all α and β ∂α

x ∂β
y F (t′, s′; qt,s

x,y) exist and are continuous in 0 ≤ s ≤ s′, t′ ≤ t ≤ T ,
x ∈ Rn and y ∈ Rn. We have

d

dt′
∂

∂xj
F

(
t′, s′; qt,s

x,y

)

= −iH1

(
t′, qt,s

x,y(t′)
) ∂

∂xj
F

(
t′, s′; qt,s

x,y

)− i

{
∂

∂xj
H1

(
t′, qt,s

x,y(t′)
)}

F
(
t′, s′; qt,s

x,y

)
,

∂

∂xj
F

(
s′, s′; qt,s

x,y

)
= 0.

Consequently we have

∂

∂xj
F

(
t′, s′; qt,s

x,y

)
= −i

∫ t′

s′
F

(
t′, θ; qt,s

x,y

){ ∂

∂xj
H1

(
θ, qt,s

x,y(θ)
)}

F
(
θ, s′; qt,s

x,y

)
dθ. (3.3)

In the same way we can prove (3.2) from (3.1) for |α + β| = 1. In the same way we can
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prove (3.2) for all α and β by induction. ¤

Let p(x,w) = (pjk(x,w)) be a matrix valued function of degree l. We define the
operator Pjk(t, s) (j, k = 1, 2, . . . , l) on C∞0 (Rn) by

Pjk(t, s)f =





√
m/(2πi(t− s))

n
∫ (

exp iSc

(
t, s; qt,s

x,y

))

× pjk(x, (x− y)/
√

t− s)f(y)dy,

s < t,

√
m/(2πi)

n
Os−

∫
(exp im|w|2/2)

× pjk(x,w)dwf(x),
s = t

(3.4)

as in [13], [14], where the oscillatry integral in (3.4) is taken pointwise in the usual sense
as in [19]. We set for f = t(f1, . . . , fl) ∈ C∞0 (Rn)l

P (t, s)f :=
(
Pjk(t, s)

)
f. (3.5)

Let C (t, s) be the operator on C∞0 (Rn)l defined by (1.13).

Lemma 3.2. Let M1 ≥ 0 and assume

∣∣∂α
x V (t, x)

∣∣ +
n∑

j=1

∣∣∂α
x Aj(t, x)

∣∣ ≤ Cα〈x〉M1 , (t, x) ∈ [0, T ]×Rn (3.6)

for all α. Let f ∈ C∞0 (Rn)l. Then we have: (1) Let M2 ≥ 0 and suppose

∣∣∂α
w∂β

xpjk(x,w)
∣∣ ≤ Cα,β(1 + |x|+ |w|)M2 , (x,w) ∈ R2n (3.7)

for all j, k, α and β. Then, ∂α
x (P (t, s)f)(x) exist for all α and are continuous in 0 ≤ s ≤

t ≤ T and x ∈ Rn. (2) We see under the assumptions of Lemma 3.1 that ∂α
x (C (t, s)f)(x)

exist for all α and are continuous in 0 ≤ s ≤ t ≤ T and x ∈ Rn.

Proof. The assertion (1) follows from Lemma 2.1 in [14].
From (1.11) we have

F
(
t′, s′; qt,s

x,y

)− Il = −i

∫ t′

s′
H1

(
θ, qt,s

x,y(θ)
)
F

(
θ, s′; qt,s

x,y

)
dθ. (3.8)

So from Lemma 3.1 we get

∣∣∂α
x ∂β

y

{
F

(
t, s; qt,s

x,y

)− Il

}∣∣ ≤ Cα,β(〈x〉+ 〈x− y〉)|t− s|, (x, y) ∈ R2n

for 0 ≤ s < t ≤ T , all α and β. Consequently, the assertion (2) can be proved as in the
proof of Lemma 2.1 in [14]. ¤
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Proposition 3.3. Under the assumptions of Theorem 2.3 except for the assump-
tions concerning H1(t, x) we have for a = 0, 1, . . . : (1) There exists a constant Ka ≥ 0
such that

∥∥∥∥
√

m

2πi(t− s)

n ∫ (
exp iSc

(
t, s; qt,s

·,y
))

f(y)dy

∥∥∥∥
Ba

≤ eKa(t−s)‖f‖Ba , 0 ≤ t− s ≤ ρ∗ (3.9)

for f ∈ Ba. (2) Let q(x,w) be a scalar function satisfying (3.7) and let Q(t, s) denote
the operator defined by (3.4). Set for k = 0, 1, . . .

|q|k = max
|α+β|≤k

sup
x,w

(1 + |x|+ |w|)−M2
∣∣∂α

w∂β
x q(x,w)

∣∣. (3.10)

Then there exists a k = k(a,M2) such that we have

‖Q(t, s)f‖Ba ≤ Ca|q|k‖f‖Ba+M2 (3.11)

for f ∈ Ba+M2 .

Proof. The assertion (1) follows from Proposition 3.4 in [16]. The assertion (2)
follows from Theorem 4.4 in [14]. ¤

Proposition 3.4. Under the assumptions of Theorem 2.3 there exist constants
K ′

a ≥ 0 (a = 0, 1, . . . ) such that we have

‖C (t, s)f‖Ba ≤ eK′
a(t−s)‖f‖Ba , 0 ≤ t− s ≤ ρ∗ (3.12)

for f ∈ (Ba)l.

Proof. The inequality (3.12) is clear for t = s. Let 0 < t − s ≤ ρ∗. From the
assumptions (2.16) for all α, (3.8) and Lemma 3.1 we have

∣∣∂α
x ∂β

y

{
F

(
t, s; qt,s

x,y

)− Il

}∣∣ ≤ Cα,β(t− s) (3.13)

for all α and β. We write from (1.13)

C (t, s)f =
√

m

2πi(t− s)

n ∫ (
exp iSc

(
t, s; qt,s

x,y

))
Ilf(y)dy

+
√

m

2πi(t− s)

n ∫ (
exp iSc

(
t, s; qt,s

x,y

)){
F

(
t, s; qt,s

x,y

)− Il

}
f(y)dy. (3.14)

Hence, applying Proposition 3.3 to (3.14), we get
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‖C (t, s)f‖Ba ≤ eKa(t−s)‖f‖Ba + Const.(t− s)‖f‖Ba

≤ eK′
a(t−s)‖f‖Ba , 0 < t− s ≤ ρ∗,

which completes the proof. ¤

Proposition 3.5. We write

H(t) := H0(t)Il + H1(t). (3.15)

Besides the assumptions of Lemmas 3.1 and 3.2 we suppose |∂α
x ∂tAj(t, x)| ≤ Cα〈x〉M1 in

[0, T ]×Rn for j = 1, 2, . . . , n and all α. Then, there exist an integer M2 ≥ 0, rjk(t, s;x,w)
and r′jk(t, s;x,w) (j, k = 1, 2, . . . , l) satisfying (3.7) for all 0 ≤ s ≤ t ≤ T such that

i
∂

∂t
C (t, s)f −H(t)C (t, s)f =

√
t− sR(t, s)f (3.16)

and

i
∂

∂s
C (t, s)f + C (t, s)H(s)f =

√
t− sR′(t, s)f (3.17)

for f ∈ C∞0 (Rn)l, where R(t, s) and R′(t, s) are the operators defined by (3.5) with
pjk(x,w) = rjk(t, s;x,w) and pjk(x,w) = r′jk(t, s;x,w), respectively.

Proof. Let 0 ≤ s < t ≤ T . For 0 ≤ s ≤ s′ ≤ t′ ≤ t ≤ T and f ∈ C∞0 (Rn)l we
write

C̃ (t′, s′; t, s)f :=





√
m/(2πi(t′ − s′))

n
∫ (

exp iSc

(
t′, s′; qt′,s′

x,y

))

×F
(
t′, s′; qt,s

x,y

)
f(y)dy,

s′ < t′,

f, s′ = t′.

(3.18)

In this proof we often write Sc(t, s; qt,s
x,y) as S(qt,s

x,y) for the sake of simplicity. It follows
from (1.2), (1.4) and (1.12) that we have

Sc

(
t, s; qt,s

x,y

)
=

m|x− y|2
2(t− s)

+ (x− y) ·
∫ 1

0

A(t− θ(t− s), x− θ(x− y))dθ

−
∫ t

s

V

(
θ, x− t− θ

t− s
(x− y)

)
dθ

=
m|x− y|2
2(t− s)

+ (x− y) ·
∫ 1

0

A(t− θ(t− s), x− θ(x− y))dθ

− (t− s)
∫ 1

0

V (t− θ(t− s), x− θ(x− y))dθ. (3.19)
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From (1.11) and (3.18) as in the proof of Lemma 4.1 in [16] we write

i
∂

∂t′
C̃ (t′, s′; t, s)f −H(t′)C̃ (t′, s′; t, s)f

= −
√

m

2πi(t′ − s′)

n ∫
eiS(qt′,s′

x,y )

(
r1(t′, s′; t, s, x, y) +

i

2m
r2(t′, s′; t, s, x, y)

)
f(y)dy,

(3.20)

where

r1 =
{

∂t′S
(
qt′,s′
x,y

)
+

1
2m

n∑

j=1

(
∂xj S

(
qt′,s′
x,y

)−Aj(t′, x)
)2 + V (t′, x)

}
F

(
t′, s′; qt,s

x,y

)
,

(3.21)

r2 =
{

mn

t′ − s′
−∆x S

(
qt′,s′
x,y

)
+

n∑

j=1

(∂xj Aj)(t′, x)
}

F
(
t′, s′; qt,s

x,y

)

− 2
n∑

j=1

(
∂xj S(qt′,s′

x,y )−Aj(t′, x)
)
∂xj F

(
t′, s′; qt,s

x,y

)
+ i∆x F

(
t′, s′; qt,s

x,y

)

+ 2mi
{
H1

(
t′, qt,s

x,y(t′)
)−H1(t′, x)

}
F

(
t′, s′; qt,s

x,y

)
. (3.22)

We can see from Lemma 4.1 in [16] and Lemma 3.1 in the present paper that setting
t′ = t and s′ = s, r1 in (3.21) and the first term on the right-hand side of (3.22) are of
the form of the right-hand side of (3.16). We see from (3.19)

∂xj
S

(
qt,s
x,y

)−Aj(t, x) =
m(xj − yj)

t− s
+
√

t− s pj

(
t, s;x,

x− y√
t− s

)
(3.23)

for j = 1, 2, . . . , n, where pj(t, s;x,w) satisfy (3.7). Consequently, we see together with
(3.3) from Lemma 3.1 that setting t′ = t and s′ = s, the second term on the right-hand
side of (3.22) is of the form of the right-hand side of (3.16). In the same way we can see
that setting t′ = t and s′ = s, r2 is of the form of the right-hand side of (3.16). As in the
proof of (3.3) we have

∂

∂t
F

(
t′, s′; qt,s

x,y

)
= −i

∫ t′

s′
F

(
t′, θ; qt,s

x,y

){ ∂

∂t
H1

(
θ, qt,s

x,y(θ)
)}

F
(
θ, s′; qt,s

x,y

)
dθ. (3.24)

Hence, setting t′ = t and s′ = s, ∂t C̃ (t′, s′; t, s)f is written of the form of the right-hand
side of (3.16). Thus we can prove (3.16), noting C̃ (t, s; t, s)f = C (t, s)f .

Let q ∈ (Rn)[0,T ] be continuous. Let 0 ≤ t, θ, s ≤ T . Then from (1.11) as in the
proof of (2.1) we can easily see

F (t, θ; q)F (θ, s; q) = F (t, s; q).
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So from the unitarity of F (t, s; q) we have

F (t, s; q) = tF (s, t; q) (3.25)

for 0 ≤ t, s ≤ T , where the right-hand side above denotes the complex conjugate of the
transposed of the matrix F (s, t; q). Consequently, we have

∂

∂s
F (t, s; q) = iF (t, s; q)H1(s, q(s)). (3.26)

We will prove (3.17). From (3.18) and (3.26) as in the proof of Lemma 4.1 in [16]
we write

i
∂

∂s′
C̃ (t′, s′; t, s)f + C̃ (t′, s′; t, s)H(s′)f

= −
√

m

2πi(t′ − s′)

n ∫
eiS(qt′,s′

x,y )

(
r′1(t

′, s′; t, s, x, y) +
i

2m
r′2(t

′, s′; t, s, x, y)
)

f(y)dy,

(3.27)

where

r′1 =
{

∂s′S
(
qt′,s′
x,y

)− 1
2m

n∑

j=1

(
∂yj

S(qt′,s′
x,y ) + Aj(s′, y)

)2 − V (s′, y)
}

F
(
t′, s′; qt,s

x,y

)
,

(3.28)

r′2 =
{
− mn

t′ − s′
+ ∆y S

(
qt′,s′
x,y

)
+

n∑

j=1

(∂xj
Aj)(s′, y)

}
F

(
t′, s′; qt,s

x,y

)

+ 2
n∑

j=1

(
∂yj

S(qt′,s′
x,y ) + Aj(s′, y)

)
∂yj

F
(
t′, s′; qt,s

x,y

)− i∆y F
(
t′, s′; qt,s

x,y

)

+ 2miF
(
t′, s′; qt,s

x,y

){
H1(s′, y)−H1

(
s′, qt,s

x,y(s′)
)}

. (3.29)

So, we can prove (3.17) as in the proof of (3.16). ¤

Proof of Theorem 2.3. Let Kj and K ′
j (j = 1, 2, . . . , ν) be bounded operators

on (Ba)l and f ∈ C∞0 (Rn)l. Then, it holds that

Kνχ(ε·)Kν−1χ(ε·) · · ·χ(ε·)K1f −K ′
νK ′

ν−1 · · ·K ′
1f

=
ν∑

j=1

Kνχ(ε·) · · ·χ(ε·)Kj+1χ(ε·)(Kj −K ′
j

)
K ′

j−1 · · ·K ′
1f

+
ν−1∑

j=1

Kνχ(ε·) · · ·χ(ε·)Kj+1(χ(ε·)− 1)K ′
j · · ·K ′

1f. (3.30)
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Let |∆| ≤ ρ∗ and a = 0, 1, . . . . We can easily see

sup
0<ε≤1

‖χ(ε·)f‖Ba ≤ Const.‖f‖Ba

and

lim
ε→0

∥∥(χ(ε·)− 1)f
∥∥

Ba = 0

for f ∈ (Ba)l. So, applying Proposition 3.4 to (2.5), then from (3.30) for f ∈ (Ba)l we
have

C∆(t, t0)f = C (t, τµ−1)C (τµ−1, τµ−2) · · ·C (τµ′ , t0)f (3.31)

in (Ba)l. It follows from Proposition 3.4 that

‖C∆(t, t0)f‖Ba ≤ eKa(t−t0)‖f‖Ba , 0 ≤ t0 ≤ t ≤ T (3.32)

for f ∈ (Ba)l.
From (1.3), (1.5), (1.12), (2.10) and (3.19) we can easily see

S
(
t, s; ζt,s

x,y,Π

)
= − (t− s)

2m

∣∣∣∣Π− m(x− y)
t− s

∣∣∣∣
2

+ Sc

(
t, s; qt,s

x,y

)
. (3.33)

Consequently, from (2.11) we get

Gε(t, s)f =
√

m

2πi(t− s)

n ∫ (
exp iSc

(
t, s; qt,s

x,y

))
F

(
t, s; qt,s

x,y

)
f(y)dy

√
i/2π

n

×
∫

(exp−i|z|2/2)χ
(
ε
√

m/(t− s)z + εm(x− y)/(t− s)
)
dz. (3.34)

Let 0 < t − s ≤ ρ∗. Applying Lemma 6.2 in [16] to (3.34), we have from Lemma 3.1 in
the present paper

lim
ε→0

Gε(t, s)f = C (t, s)f (3.35)

in (Ba)l for f ∈ (Ba)l. From (2) of Proposition 3.3 we also have

sup
0<ε≤1

∥∥Gε(t, s)f
∥∥

Ba ≤ Ca‖f‖Ba . (3.36)

Hence, applying (3.30) to (2.12) and (3.31), then from (3.12), (3.35) and (3.36) we have

G∆(t, t0)f = C∆(t, t0)f (3.37)
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in (Ba)l for f ∈ (Ba)l as in the proof of (3.31), which completes the proof of (1) of
Theorem 2.3.

We can prove (2) of Theorem 2.3 as in the proof of Theorem 1 in [16]. So we shall
give a rough sketch of the proof. See [16] for the detailed proof. We have |∂α

x ∂tAj(t, x)| ≤
Cα〈x〉 in [0, T ] × Rn for j = 1, 2, . . . , n and all α from the assumptions and (1.1). We
first note that from Lemma 3.2 and Proposition 3.5 we have

i
(
C (t1, s)f − C (t2, s)f

)
=

∫ t2

t1

(
H(θ)C (θ, s)f +

√
θ − sR(θ, s)f

)
dθ (3.38)

for f ∈ C∞0 (Rn)l and 0 ≤ s ≤ t1, t2 ≤ T .
We take an arbitrary t′ such that 0 ≤ t0 ≤ t′ ≤ T and a 1 ≤ k ≤ ν such that

τk−1 < t′ ≤ τk. Let |∆| ≤ ρ∗. Suppose µ = k and t0 ≤ τµ−1. Then from (3.31) and
(3.38) we have

i
(
C∆(t, t0)− C∆(t′, t0)

)

= i
(
C (t, τµ−1)− C (t′, τµ−1)

)
C∆(τµ−1, t0)

=
∫ t

t′
H(θ)C∆(θ, t0)dθ +

∫ t

t′

√
θ − τµ−1R(θ, τµ−1)dθ C∆(τµ−1, t0). (3.39)

Suppose µ > k and t0 ≤ τk−1. Then

C∆(t, t0)− C∆(t′, t0)

= C∆(t, t0)− C∆(τµ−1, t0) +
µ−k−1∑

l=1

(
C∆(τµ−l, t0)− C∆(τµ−l−1, t0)

)

+ C∆(τk, t0)− C∆(t′, t0).

So, as in the proof of (3.39) we have

i
(
C∆(t, t0)− C∆(t′, t0)

)

=
∫ t

t′
H(θ)C∆(θ, t0)dθ +

∫ t

τµ−1

√
θ − τµ−1R(θ, τµ−1)dθ C∆(τµ−1, t0)

+
µ−k−1∑

l=1

∫ τµ−l

τµ−l−1

√
θ − τµ−l−1R(θ, τµ−l−1)dθ C∆(τµ−l−1, t0)

+
∫ τk

t′

√
θ − τk−1R(θ, τk−1)dθ C∆(τk−1, t0). (3.40)

Set M = max(M2, 2). Then, applying (2) of Proposition 3.3 and (3.32) to (3.40), we get
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∥∥C∆(t, t0)f − C∆(t′, t0)f
∥∥

Ba

≤ Const.
( ∫ t

t′

∥∥C∆(θ, t0)f
∥∥

Ba+M dθ +
√
|∆|

∫ t

τµ−1

dθ
∥∥C∆(τµ−1, t0)f

∥∥
Ba+M

+
µ−k−1∑

l=1

√
|∆|

∫ τµ−l

τµ−l−1

dθ
∥∥C∆(τµ−l−1, t0)f

∥∥
Ba+M

+
√
|∆|

∫ τk

t′
dθ

∥∥C∆(τk−1, t0)f
∥∥

Ba+M

)

≤ Const. eKa+M T (1 +
√

ρ∗)|t− t′|‖f‖Ba+M .

Hence, we obtain

∥∥C∆(t, t0)f − C∆(t′, t0)f
∥∥

Ba ≤ Const. eKa+M T (1 +
√

ρ∗)|t− t′|‖f‖Ba+M (3.41)

when µ > k and t0 ≤ τk−1. It is easy to see that (3.41) is valid in general for 0 ≤ t0 ≤ t,
t′ ≤ T .

As in the proof of (3.41) we have

∥∥C∆(t, t0)f − C∆(t, t′0)f
∥∥

Ba ≤ Const. eKa+M T (1 +
√

ρ∗)|t0 − t′0|‖f‖Ba+M

for 0 ≤ t0, t′0 ≤ t ≤ T . Thus we obtain

∥∥C∆(t, t0)f − C∆(t′, t′0)f
∥∥

Ba

≤ Const. eKa+M T
(
1 +

√
ρ∗

)(|t− t′|+ |t0 − t′0|
)‖f‖Ba+M (3.42)

in general for 0 ≤ t0 ≤ t ≤ T and 0 ≤ t′0 ≤ t′ ≤ T .
Let {∆j}∞j=1 be a family of subdivisions of [0, T ] such that |∆j | ≤ ρ∗ and

limj→∞ |∆j | = 0. Take an arbitrary f ∈ (Ba+2M )l (a = 0, 1, . . . ). Then, we
see from (3.32) and (3.42) that {C∆j

(t, t0)f}∞j=1 is uniformly bounded as a family of
(Ba+2M )l-valued functions and equicontinuous as a family of (Ba+M )l-valued functions
in 0 ≤ t0 ≤ t ≤ T . We note from the Rellich criterion (cf. [20]) that the embedding
map from Ba+2M into Ba+M is compact. So, from the Ascoli-Arzelà theorem we can
find a subsequence {∆jk

}∞k=1, which may depend on f , such that C∆jk
(t, t0)f converges

in (Ba+M )l uniformly in 0 ≤ t0 ≤ t ≤ T as k → ∞. It follows from Lemma 3.2 and
(3.40) with t′ = t0 that limk→∞ C∆jk

(t, t0)f ∈ E 0
t,t0([0, T ]; (Ba+M )l)

⋂
E 1

t,t0([0, T ]; (Ba)l)
satisfies the generalized Pauli equation (1.10). As was noted in Remark 2.2, the solutions
to (1.10) are unique. Therefore, C∆(t, t0)f converges to the solution to (1.10) in (Ba+M )l

uniformly in 0 ≤ t0 ≤ t ≤ T as |∆| → 0.
Take an arbitrary f ∈ (Ba)l. Let ∆ and ∆′ be subdivisions such that |∆| ≤ ρ∗ and

|∆′| ≤ ρ∗. Then for any ε > 0 we can take a g ∈ (Ba+2M )l such that ‖g − f‖Ba < ε.
From (3.32) we have
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∥∥C∆(t, t0)f − C∆′(t, t0)f
∥∥

Ba

≤
∥∥C∆(t, t0)g − C∆′(t, t0)g

∥∥
Ba +

∥∥C∆(t, t0)(f − g)
∥∥

Ba +
∥∥C∆′(t, t0)(f − g)

∥∥
Ba

≤ ∥∥C∆(t, t0)g − C∆′(t, t0)g
∥∥

Ba+M + 2eKaT ε.

So,

lim|∆|,|∆′|→0 max
0≤t0≤t≤T

∥∥C∆(t, t0)f − C∆′(t, t0)f
∥∥

Ba ≤ 2eKaT ε.

Hence, we can see that C∆(t, t0)f converges in (Ba)l uniformly in 0 ≤ t0 ≤ t ≤ T as
|∆| → 0. It follows from Lemma 3.2, (3.40) with t′ = t0 and Lemma 2.5 in [12] that
lim|∆|→0 C∆(t, t0)f belongs to E 0

t,t0([0, T ]; (Ba)l)
⋂

E 1
t,t0([0, T ]; (Ba−M )l) and satisfies the

generalized Pauli equation (1.10). Thus, we could complete the proof of Theorem 2.3. ¤
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