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Elliptic curves from sextics

By Mutsuo OkaA

(Received Oct. 4, 2000)

Abstract. Let 4" be the moduli space of sextics with 3 (3,4)-cusps. The quotient
moduli space ./"/G is one-dimensional and consists of two components, Ajorys/G and
Ngen/G. By quadratic transformations, they are transformed into one-parameter
families C; and Dy of cubic curves respectively. First we study the geometry of .A; /G,
¢ = torus, gen and their structure of elliptic fibration. Then we study the Mordell-Weil
torsion groups of cubic curves C, over Q and D over Q(v/—3) respectively. We show
that C; has the torsion group Z/3Z for a generic s € @ and it also contains subfamilies
which coincide with the universal families given by Kubert with the torsion
groups Z/6Z, Z/6Z +Z/2Z, Z/9Z, or Z/12Z. The cubic curves D, has torsion
Z/3Z + Z/3Z generically but also Z/3Z+ Z/6Z for a subfamily which is para-
metrized by Q(v/-3).

1. Introduction.

Let /3 be the moduli space of sextics with 3 (3,4)-cusps as in [02]. For
brevity, we denote /3 by A". A sextic C is called of a torus type if its defining
polynomial f has the expression f(x,y)= fo(x, y)3 + f3(x, y)2 for some poly-
nomials f>, f3 of degree 2, 3 respectively. We denote by .A{ors the component of
A" which consists of curves of a torus type and by Vg, the curves of a general
type (= not of a torus type). We denote the dual curve of C by C*. Let G =
PGL(3,C). The quotient moduli space is by definition the quotient space of the
moduli space by the action of G.

In §2, we study the quotient moduli space .4"/G. We will show that /"/G
is one dimensional and it has two components ANiyy/G and Ngn/G which
consist of sextics of a torus type and sextics of a general type respectively. After
giving normal forms of these components Cy, s € P!(C) and D,, se P'(C), we
show that the family C; contains a unique sextic Csy which is self dual (Theoreml
2.8) and Csq4 has an involution which is associated with the Gauss map
2.12).

In section 3, we study the structure of the elliptic fibrations on the com-
ponents ./,/G, & = torus, gen which are represented by the normal families C,
se P1(C) and D,, se P!(C). Using a quadratic transformation we write these
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families by smooth cubic curves Cy; and Dy which are defined by the following
cubic polynomials.

1
Cs:x3—1s(x—1)2—|—sy2:0

Dy : —8x° 4+ 14 (s+35)p® — 6x + 3x — 6V =3y — 3v/—3x
— 6V -3x? — 12V -3xp + (s = 35)xp =0

We show that C,, se P!(C) (respectively Dy, se PY(C)) has the structure of
rational elliptic surfaces X3 (resp. Xzs33) in the notation of [Mi-P].

In section 4, we study their torsion subgroups of the Mordell-Weil group of
the cubic families Cy and D,. The family C is defined over Q and Dy is defined
over quadratic number field Q(v/—3). Both families enjoy beautiful arithmetic
properties. We will show that the torsion group (Cs)tor(Q) is isomorphic to Z/3Z
Jor a generic s € Q but it has subfamilies Cy 4y, Cy, ,(r)s Cpy(ey and Cy (), U, 1,1,V €
O for which the Mordell-Weil torsion group are Z/6Z, Z/ 6Z +Z)/2Z, Z /9Z and
Z /12Z respectively. Each of these groups is parametrized by a rational function
with Q coefficients which is defined over Q and this parametrization coincides,
up to a linear fractional change of parameter, to the universal family given by
Kubert in [Ku].

As for (Dy),.(Q(v=3)), we show that (Dy),,.(Q(V=3)) is generically iso-
morphic to Z/3Z + Z/3Z but it also takes Z/3Z + Z/6Z for a subfamily D,

parametrized by a rational function with coefficients in Q and defined on Q(v/—3).

2. Normal forms of the moduli /.

We consider the submoduli ./ of the sextics whose cusps are at O := (0,0),
A:=(1,1) and B:=(1,—1). As every sextic in A can be represented by a
curve in A by the aetlon of G, we have N / G AW /G0 where G is the
stabilizer of 4" : ={geG;g(N/V)= Y By an easy computation,
we see that G\ is the semi-direct product of the group G( ) and a finite group A,

isomorphic to the permutation group %3 where G i1s defined by

ap a 0
G(()l) =<4 M = a a 0 | €G; a3(a12 - a%) #0
ar —dz dy djz

Note that G(()1> is normal in G and g e G() fixes singular points point-
wise. The isomorphism # =~ %3 is given by 1dent1fying g € A" as the permu-
tation of three singular locus O, 4,B. We will study the normal forms of the
quotient moduli A/G = 41 /GD
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LeMMA 2.1. For a given line L:={y = bx} with b> —1#0, there exists
M e Gél) such that LM is given by x = 0.

PrOOF. By an easy computation, the image of L by the action of M~
where M is as above, is defined by (a; — bay)y + (ay — ba;)x = 0. Thus we take
a; = bay. Then a} —a3 = a3(b*> — 1) #0 by the assumption. O

LEMMA 2.2. The tangent cone at O is not y + x=0 for Ce &',

PrOOF. Assume for example that y — x = 0 is the tangent cone of C at O.
The intersection multiplicity of the line L; := {y —x =0} and C at O is 4 and
thus L; - C > 7, an obvious contradiction to Bezout theorem. O]

Let 4 be the subspace of 4! consisting of curves Ce /) whose
tangent cone at O is given by x =0. Let G® be the stabilizer of /. By
and [Lemma 2.2, we have the isomorphism:

COROLLARY 2.3. /V(l)/G N2 GO,
It is easy to see that G is generated by the group G( .= 62n G(()1> and an
element 7 of order two which is defined by t(x, y) = (x,—y). Note that

ay 0 0
GP={M=| 0 a 0|eG" aa#0
ar — as 0 as

For Ce . /® we associate complex numbers 5(C), ¢(C) e C which are
the directions of the tangent cones of C at A,B respectively. This implies
that the lines y — 1 =b(C)(x— 1) and y +1 = ¢(C)(x — 1) are the tangent cones
of C at A and B respectively. We have shown that Ce ‘/Vt(()rgls if and only
if 5(C)+¢(C)=0 and otherwise C is of a general type and they satisfy
¢(C)? 4 3¢(C) — b(C)e(C) 43 —3b(C) + b(C)* =0 (84, [02)).

We consider the subspaces:

Hioms ={C € Ngngs B(O) =0}, M) = {Ce M) b(C) = ¢(C) = V=3}

orus gen gen )

and we put 40 = 4%y,

torus gen *

ReMARK. The common solution of both equations: b+ ¢ = ¢? 4 3¢ — be +
3-3b+b>=01is (h,c)=(1,—1) and in this case, C degenerates into two non-
reduced lines (32 — x2)* =0 and a conic.

LEMMmA 2.4. Assume that Ce /. Then there exist a unique C' e N3
and an element g€ G® such that C9 = C'. This implies that

2 /G ~ 4B

gen

f/‘/torus/ G Jt/torus/ G t(()izlsi f/Vgen/ G

gen
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PROOF. Assume that C e 4V (1 )

toruss 0 +¢=0. Consider an element g € G,

1 0 0
gl = 0 1 0
1—613 0 as

The image LY is given by y — x + xa3 — a3 — bxas + ba; = 0. Thus we can solve
the equation a3(1 —b) — 1 =0 in a3 uniquely as a3 = 1/(1 —b) as b # 1. Thus

(1)

g€ G,  is unique if it fixes the singular points pointwise and thus C’ is also

unique. It 1s easy to see that the stabilizer of ./Vtgrus is the cyclic group of order

two generated by 7, as C' is even in y (see the normal form below) and C™ = C’
for any C’e A2 . Thus we have 42 /G® ~ 41

torus* torus-*

Consider the case C e A@Q Then the images of the tangent cones at A4, B
by the action of g are given by y — x4+ xa3 — a3 — bxas; + ba; =0 and y+ x —
xasz + a3 — c¢xaz + caz = 0 respectively. Assume that h(CY) = ¢(C?). Then we
need to have a3(1 —b) — 1 =a3(—1 —¢) + 1, which has a unique solution in a3,
if (x) b—c—2%#0. Assume that ¢>+3c—bc+3—-3b+b>=0 and b—c—
2=0. Then we get (b,c) = (1,—1) which is excluded as it corresponds to a
non-reduced sextic. Thus the condition (%) is always satisfied. Put (b',¢’) :=
(b(C9),¢(CY)). They satisfy the equality ¢’* + 3¢’ —b'¢’ +3 —3b' +b'* = 0 and
b’ =c'. Thus we have either b’ =c¢'=+/-3 or b’ =c' = —v/—3. However
in the second case, (CY)° belongs to the first case. Thus b’ = ¢’ =+/—3 and
C9e /D as desired. ]

gen

2.1. Normal forms of curves of a torus type

In [O2], we have shown that a curve in ,/Vtorus is defined by a polynomlal
f(x,y) which is expressed by a sum f;(x, y) + sf3(x, y) where f>(x, y) is

smooth conic passing through O, 4,B and fi(x,y) = (»*> — x?)(x — 1).

PROPOSITION 2.5. The direction of the tangent cones at O, A and B are the
same with the tangent line of the conic f,(x,y) =0 at these points.

This is immediate as the multiplicity of f3(x, y) at 0,4, B are 4. Assume
that C e ,/Vt“or?ls, that is, the tangent cones of C at O, A and B are given by
x=0, y—1=0 and y+1=0 respectively. Thus the conic f;(x, y) =0 is
also uniquely determined as f>(x,y) = y? + x> —2x. Therefore .1, )

torus
dimensional and it has the representation

(26) Cs 3f:[orus(x7 y,S) = fz(X, y)3 + ng(x, y)2 =0.

For s # O 27, 00, Cy is a sextic with three (3,4)-cusps, while C,; obtains a node.
If ge G? fixes the tangent lines y + 1 =0, then g =e or 7. As C; = Ci, this
implies that CY = C;,. Thus Cs # C, 1if s # t.

one-
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2.2. Normal form of sextics of a general type.

For the moduli A4, of sextics of a general type, we start from the expres-
sion given in §.1, [02]. We may assume b = ¢ =+/—3. Then the parametri-
zation is given by

feen (X, 2,8) = fo(x, ) +5(x,0)°, filx,p) = (0 = x?)(x 1)

where s is equal to aps in [O2] and fy is the sextic given by

2.7)  folx,y) == p® +p3(6V=3 — 6V/=3x) + y*(35 — 76x + 38x?)
+ p3(=24vV=3x + 36V =3x> — 12v/=3x%)
+ p?(=94x? + 200x* — 103x%)
+ y(24vV/=3x3 — 42V =3x* + 18V =3x7) + 64x° — 133x* + 68x°.

Let Dy := { fgen(xX, y,5) = 0} for each se C. Observe that Dy = {fy(x, y) =0} is
a sextic with three (3,4)-cusps and of a general type. For the computation of
dual curves using Maple V, it is better to take the substitution y — yv/—3 to
make the equation to be defined over Q. Summarizing the discussion, we have

THEOREM 2.8.  The quotient moduli space NG is one dimensional and it has
two components.

(1) The component Niorus/ G has the normal forms Cy = {f(x, y,s) = 0} where
S, 3,8) = (% )+ sf5(x, ), flx, y) =y + X7 = 2x and f3(x, y) = (2 = x2) -
(x = 1). The curve Csq is a unique curve in N'|/G which is self-dual.

(2) The component Ngen/G has the normal form: feen(x,y,s) = fo(x, )+
sf3(x, y)2 where f3 is as above and the sextic fy(x,y) =0 is contained in Nge.
This component has no self-dual curve.

ProOOF OoF THEOREM 2.8. We need only prove the assertion for the dual
curves. The proof will be done by a direct computation of dual curves using the
method of §2, [O2] and the above parametrizations. We use Maple V for the
practical computation. Here is the recipe of the proof. Let X* Y* Z* be the
dual coordinates of X,Y,Z and let (x*,y*):=(X*/Z*,Y*/Z*) be the dual
affine coordinates.

(1) Compute the defining polynomials of the dual curves C/ and D}
respectively, using the method of [Lemma 2.4, [O2]. Put geoms(x*, y*,s) and
Joen(x*, y*,s) the defining polynomials.

(2) Let G.(X*, Y*, Z*,s) be the homogenization of g.(x*, y*,s), ¢ = torus or
gen. Compute the discriminant polynomials 4y-G, which is a homogeneous
polynomial in X*,Z* of degree 30 (cf. Lemma 2.8, [O1]). Recall that the mul-
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tiplicity in 4y-G, of the pencil X* —#Z* = 0 passing through a singular point is
generically given by u+m —1 where u is the Milnor number and m is the
multiplicity of the singularity ((O2]). Thus the contribution from a (3,4)-cusp is
8. Thus if C; has three (3,4)-cusps, it is necessary that 4y-(G) =0 has three
linear factors with multiplicity > 8.

(3-1) For the curves of a general type, an easy computation shows that it is
not possible to get a degeneration into a sextic with 3 (3,4)-cusps by the above
reason.

(3-2) For the curves of a torus type, we can see that s =54 is the only
parameter such that C; e ./". Thus it is enough to show that Cgy =~ Cs.

(4) The dual curve CZ; of Cs4 is defined by the homogeneous polynomial

G(X*,Y* Z*) :=128X*°Z* + 1376X**Z** — 192X Y**Z*
1 4664X 373 — X2y _1584X Y2 Z+?
+7090X*2Z** £ 58X * Y7z — 3060X* Y2 Z*+3

+5050X* 2 + Y*O 1349422 172572 Z2** £ 13757*S.

We can see that Cg, is isomorphic to Cs4 as (Ci,)” = Csq where

—4/3 0 -5/3
A= 0 1 o0
~5/3 0 —13/3

2.3. Involution 7 on Cs4.

For a later purpose, we change the coordinates of P* so that the three cusps
of Cy are at Oz := (0,0,1), Oy :=(0,1,0), Oy := (1,0,0). A new normal form
in the affine space is given by C;:f(x, y)3 + sf3(x, y)2 =0 where fo(x,y):=
xy —x+y and f3(x,y):= —xy. In particular, Cs4 is defined by

(2.9) f(x,9) = (xp— x+y)° +54x%? = 0.
In this coordinate, Cg, is defined by
—28y% — 17x*y? — 17x%p* — 28x%y% — 29° + 1788x%y + 1788x%y
— 17y* — 17x* + 262xy + 1788x%p — 1788xy? — 262xy* + 1788x)°
— 1788x%y? — 8166x%y? + 28x% 4 262x*y — 2x°y — 2xp° + 1

— 17 = 17x* 4+ 2 + 2x = 2y + x* +y® =0.
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It is easy to see that (CZ%)™ = Cs; where

~1/3 7/3 -1/3
A= 73 =1/3 1/3
~1/3 1/3 -7/3

For a given A € GL(3,C), we denote the automorphism defined by the right
multiplication of 4 by ¢,. Let F(X,Y,Z) be the homogenization of f(x, y).
Then the Gauss map dualc,, : Cs4 — Cs, 1s defined by

dvale, (X, Y,Z) = (Fy(X,Y,Z),Fy(X,Y,Z),Fz(X,Y,Z))

where Fy, Fy,F, are partial derivatives. We define an isomorphism 7: Csy —
Cs4 by the composition ¢, odualc,. Then 7 is the restriction of the rational
mapping: ¥ : C* — C?, (x,y) — (x4, y4) and

(2.10)
N —y3+4x2—xzy3—|—4x3yz—8x3y—4xzyz—8xy—4xyz—2xy3+109x2y—|—4y2—|—4x3
T A X2 ax2y 4+ Ax3yT 83y — 109x2)% — 2xy — Axy? — 8x3 +4x2y + 2 +4x
’ —493 +4x% —4x?y3 £ x3? = 2x3y —4x?p? —8xy — 109xy? — 8xp3 +4x2y +4y? + X3
4=

434 x? —4x2)3 +4x3y2 —8x3y— 109x2y2 — 2xy —4xy? — 8xp3 +4x2y + 2 +4x3

Observe that 7 is defined over Q. Cs4 has three flexes of order 2 at F):=
(1,-1/4,1), F,:= (1/4,—-1,1), F; := (4,—4,1) and 7 exchanges flexes and cusps:

©(Ox) = Fi, ©(Oy) = F, ©1(0z) = F3,
(211) {‘L’(Fl):OX, ‘L'(Fz):Oy, T(F3)=Oz.

Furthermore we assert that

PrROPOSITION 2.12.  The morphism t is an involution on Csg.

ProOF. By the definition of t and below, we have (C := Cs):
ToT= (P10 dualc)? = (dual s, o 04,) © (¢4 0 duale) =id

as A 1s a symmetric matrix. ]

Let C be a given irreducible curve in P?> defined by a homogeneous poly-
nomial F(X,Y,Z) and let Be GL(3,C). Then C? is defined by G(X,Y,Z) :=
F((X,Y,Z)B™).

LemMA 2.13. Two curves (C3)" and (C *)th1 coincide and the following dia-
gram commutes.
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c —— (C*
J/%; l(ﬂlB—l
CB dual .p (CB)*

Proor. The first assertion is the same as Lemma 2, [O2]. The second
assertion follows from the following equalities. Let (a,b,c) € C.

dualCB((”B(a7 b7 C)) = (GX((pB(av b7 C)), GY((pB(a? b, C))v GZ((pB(a7 b7 C)))
= (Fx(a,b,c),Fy(a,b,c), Fy(a,b, ¢))'B!
= @ip1(dualc(a, b, c)) ]

In section 5, we will show that 7 is expressed in a simple form as a cubic curve.

3. Structure of elliptic fibrations.

We consider the elliptic fibrations corresponding to the above normal
forms. For this purpose, we first take a linear change of coordinates so that
three lines defined by f3(x, y) =0 changes into lines X =0, ¥ =0 and Z =0.
The corresponding three cusps are now at Oz = (0,0,1), Oy = (0,1,0), Oy =
(1,0,0) in P?. Then we take the quadratic transformation which is a birational
mapping of P> defined by (X,Y,Z) — (YZ,ZX,XY). Geometrically this is the
composition of blowing-ups at Oy, Oy, Oz and then the blowing down of three
lines which are strict transform of X, Y, Z = 0. It is easy to see that our sextics
are transformed into smooth cubics for which X =0, Y =0 and Z=0 are
tangent lines of the flex points. Those flexes are the image of the (3,4)-cusps.
We take a linear change of coordinates so that the flex on Z =0 is moved
at 0:=(0,1,0) with the tangent Z =0. Then the corresponding families are
described by the families given by {foms(X, ,5) = 0;s € P'} and {hgen(x, y,s) =
0,5 P'} where

r |
Cs : htorus(x7 y,S) =7 — ZS(X - 1)2 +Sy27

Dy : hgen(x, p,8) := —8x% + 1 + (s + 35)p? — 6x2 + 3x
\ —6v/ =3y — 3v-3x — 6v/—3x% — 12v/-3xy + (s — 35)xy.

Let H,(X,Y,Z,S,T)=h(X/Z,Y/Z,S/T)Z3T for &= torus, gen. We con-
sider the elliptic surface associated to the canonical projection 7 : S, — P' where
S, is the hypersurface in P' x P? which is defined by H,(X,Y,Z,S,T)=0.
Case I. Structure of Sims — P'. For simplicity, we use the affine coor-
dinate s=S/T of {T #0} c P! and denote 7~ !(s) by C,. We see that the
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singular fibers are s = 0,27, 00. C, consists of three lines, isomorphic to I3 in
Kodaira’s notation, [Ko]. C,; obtains a node and this fiber is denoted by /; in
. The fiber Cy is a line with multiplicity 3. The surface Sious has three
singular points on the fiber Cy at (X,Y,Z)=(0,1/2,1),(0,—1/2,1),(0,1,0).
Each singularity i1s an A,-singularity. We take minimal resolutions at these
points. At each point, we need two P! as exceptional divisors and let p:
Storus — Siorus be the resolution map. The composition 7:=7mop: Siorus — P! is

the corresponding elliptic surface. Now it is easy to see that 50 =71(0) is a
singular fiber with 7 irreducible components, which is denoted by IV* in [Kol.
Here we used the following lemma. The elliptic surface Siorus is rational and
denoted by Xu3; in [Mi-P].

Assume that the surface V := {(s,x, y) € C*: f(s,x, y) = 0} has an A, sin-
gularity at the origin where f(s,x,y) := sx +y* +sx-h(s, x, y) where h(0) = 0.
Consider the minimal resolution 7 : ¥ — ¥V and let 7~ 1(0) = E, UE,. It is well-
known that E; - Ey =1 and E? = -2 for i =1,2.

LemMma 3.1.  Consider a linear form /(s,x,y) = as + bx + cy and let L' be the
strict transform of £/ =0 to V.

(1) Assume that b=c=0 and a+#0. Then (n*/)=3L"+2E, +E, and
L' -Ey =1 and L' does not intersect with E,, under a suitable ordering of E, and
E.

(2) Assume that abc #0. Then we have (n*/)=L"+ E\+ E, and L' - E; =
1 for i=1,2.

The proof is immediate from a direct computation.

Case II. Structure of Sgen — P'. Now consider the elliptic surface Sgen.
Put Dy =7 !(s). The singular fibers are at s = —35,—53 + 6v/—3,—53 — 6v/=3
and s = oo. The fiber s = oo 1s already /3 and Sge, 15 smooth on this fiber. On
the other hand, Se, has an A4,-singularity on each fiber Dy, s =—35, —53 + 6\/—_3,
—53 —6v/—3. Let p: S'gen — Sgen be the minimal resolution map and we con-
sider the composition 7 := 70 p : Seen — P' as above. Then using (2) of
3.1, we see that 7 : S'gen — P! has four singular fibers and each of them is /3 in
the notation . This elliptic surface is also rational and denoted as X3333 in

[P,

4. Torsion group of C; and D,.

Consider an elliptic curve C defined over a number field K by a Weierstrass
short normal form: y? = h(x), h(x) = x> + Ax + B. The j-invariant is defined by
J(C) = —1728(44)” /4 with 4 = —16(44° +27B%). We study the torsion group
of the Mordell-Weil group of C which we denote by Ci(K) hereafter.
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Recall that a point of order 3 is geometrically a flex point of the complex
curve C ([Si]) and its locus is defined by f(x,y) = Z(f)(x,y) =0 where f(x, y)
is the defining polynomial of C and F(f):= firf) — 2 fify + 4.,/ =0
(O1]). In our case, Z (f)=24xy> —18x*—12x>4 —2A. The unit of the group
is given by the point at infinity O := (0,1,0) and the inverse of P = (o, ) € C is
given by (o, —f) and we denote it by —P. For a later purpose, we prepare two
easy propositions. Consider a line L(P,m) passing through —P defined by y =
m(x — o) — . The x-coordinates of two other intersections with C are the solu-
tion of ¢(x) := f(x,m(x —a) — f)/(x — ) which is a polynomial of degree 2 in
x. Let 4,q be the discriminant of ¢ in x. Note that 4.g is a polynomial in
m.

(A) When does a point Q € C exist such that 2Q = P.

Assume that a K point Q = (x1, y;) satisfies 20 = P. Geometrically this
implies that the tangent line TpC passes through —P.

PROPOSITION 4.1.  There exists a K-point Q with 2Q = P if and only if m is
a K-solution of Acq(m) =0 and x| is the multiple solution of q(x)=0. If P is
a flex point, A.q(m) =0 contains a canonical solution which corresponds to the
tangent line at P and m = — f(o, B)/f, (o, f). For any K-solution m with m #
—fx(o, B)[fy (o, B), the order of Q is equal to 2 - order P.

(B) When does a point Q € C exist such that 3Q = P.

Assume that a K-point Q = (xy, y;) satisfies 30 = P. Put Q' :=2Q and put
Q' = (x2,)2). Let ToC be the tangent line at Q. Then T,C intersects C at
—Q’. Then —3Q is the third intersection of C and the line L which passes
through Q,Q’. Thus three points —P,(Q,Q’ are colinear. Write L as y =
m(x — o) — f. Then xj,x; are the solutions of ¢(x) =0. Thus we have

(4.2) x; = —coeff(g, x) /coeff (¢, x*) — x1, y1 =m(x; —a)—p

where coeff(g, x) is the coefficient of x' in ¢(x). Let Lg(x,y) be the linear
form defining TpC and let R(x) be the resultant of f(x,y) and Ly(x,y) in
y. Put Rj(x):= R(—coeff(q,x)/coeff(q,x*) — x). Then by the above consid-
eration, x = x; is a common solution of ¢(x) = R;(x) =0. Let R,(m) be the
resultant of ¢(x) and R;(x). Note that if A.q(m) =0, L is tangent to C at Q
and R,(m)=0. In this case, 2Q = P.

PROPOSITION 4.3.  Assume that there exists a K-point Q with 3Q = P and
order Q =3 -order P and let m be as above. Then Ry(m) =0 and A.q(m) # 0.
Moreover xi is given as a common solution of q(x) = Rj(x) = 0.

Actually one can show that R,(m) is divisible by (d.q)*.
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4.1. Cubic family associated with sextics of a torus type.
We have observed that the family C; for se Q is defined over Q. First,
recall that C; is defined by

1
(4.4) Cy: x> —5br= )2 +52=0

and the Weierstrass normal form is given by C;:3y? = x> + a(s)x + b(s) where

1, 1 P I
4.5 - _ 4 -3 b - _ 5 -4 - 6.
(4:5) als) == gg¥ T35 MO =g+t

Put 2 :={0,27, 00}. This corresponds to singular fibers. We have two sections
of order 3: s+ ((1/12)s%, +(1/2)s?). Put P := ((1/12)s%,(1/2)s?). Thus the
torsion group is at least Z/3Z. By [Ma], the possible torsion group which has
an element of order 3 is one of Z/3Z, Z/6Z, Z/2Z + Z/6Z, Z/9Z, or Z/12Z.
The j-invariant of C; is given by

(46) ](Cs) ::thI"llS(S)a jtorus(s) = S(S - 24)3/(S - 27)

(1) Assume that (Cj),,(Q) has an element of order 6, say P, := (0,f,) €
C,NQ*. We may assume that P, + P, = P;. By [Proposition 4.1, this implies
that x = o must be the multiple solution of

q(x) := s — 365° — 72ms* — 6xs5* — 65*m* + T2m*x — 12x* = 0.
As —f(—=P1)/f,(=P1) = —s/2, we must have m # —s/2 and thus
(4.7) Aq = Aq/(2m+s) = 5 — 325% — 2ms* — dm?s + 8m® = 0.

The curve 4.(q) =0 is a rational curve and we can parametrize 4.q =0 as
s = pg(u), m= pgs(u)u where

(4.8) 0e(u) == 32/(1 + 2u)(2u — 1)*,

The point P, is parametrized as

128 —1+ 1242 512(6u + 1)
(4.9) P, = 2 4> 5 2
3 QuA4D Y (=1+2u)" (=14+2u)Qu+1)

where ue Q. We put Ag:= {s=gs(u);uec @} and Xs:= ¢ '(2). Note that
e =1{-1/2,1/2,5/6,—1/6}.

(1-2) Assume that we are given s = ¢(u) and we consider the case when ((4.7)
has three rational solutions in m for a fixed s. This is the case if ¢¢(u) = p4(v)
has two rational solutions different from ». This is also equivalent to (Cy),,.(O)
has Z/2Z + Z/2Z as a subgroup. The equation is given by the conic
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(4.10) O :du? —2u+duv—1—20+4*=0.
By an easy computation, Q is rational and it has a parametrization as follows.

. (r)._—36+5r2 v(r)___l(r2—|—24r—36)
BRI T 76 (1247

(4.11)

The generators are P, of order 6 and R = (y,0) of order 2 where

o BL(r*— 480 + 727 —432)(12+ 17)°
a 4 (r2 — 36)*r4 .

Put ¢g 5(r) := ¢g(p,(r)), which is given explicitly as
P6.2(r) = 27(12+ 1) /r?(r — 6)°(r + 6)".

We define a subset 4> of A¢ by the image ¢ ,(Q). Put X, := (06‘712(2). It is
given by X¢, = {0, +2, +6}.

(2) Assume that there exists a rational point P; = (o3, /;) of order 9 such
that 3P; = P. By [Proposition 4.3, this is the case if and only if

Ry(m,s) := 512m° + 768mB3s — 512m°s> — 1536m%s* — 192s*m’
— 6144m°s® — 6528m*s* + 96s°m* — 12288m>s*
— 2048m3s° + 645°m> + 4805°m? — 153605 m>
— 61445%m + 384s"m — 65°m + 565° — 5125% — 768s” — 5 =0

has a rational solution. Here R is Ra/(4.q)*(s + 2m)s* up to a constant mul-
tiplication. Again we find that the curve {(m,s) e C?; R3(m,s) =0} is rational
and we can parametrize this curve as s = @q(f), m = Yy(t) where

( L (=149 =3¢+ 38)°
(ﬂ9(l) ::_g t3(l—1)3(1‘—}—])3
(4.12)
Do) = - (1HOF — 3430 (1 + 2 + 1477
\ 9 16 13(1‘— 1)3(l‘—l— 1)3 .

The generator P; = (a3, f;) is given by

’OB: I (1= 182+ 1522 — 1263 + 15¢* 4 301° 4 33¢%)(92 — 1+ 383 — 31)*
768 (t—1)°(t+1)%8
1 (143292 —1+38 = 31)°
\ﬁ3 T 512 (t— 1D+ 1) '

We put Ay := {py(1);1€ Q} and Xy := ¢3! () ={0,1,-1}.
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(3) Assume that se 4¢ and (Cy),,(Q) has an element Py = (a4,f,) € CsN
O’ of order 12. Then we may assume that P, + P, = P,. This implies that the
tangent line at P4 passes through —P,. Write this line as y =n(x — oy) — f5,.
By the same discussion as above, the equality I"(n;,u) = 0 holds where I is the
polynomial defined by

(4.13) T(u,ny) = —786432u* — 98304n,u° — 524288u° + 3932164°
— 16384n,u* — 3072n3u* 4 131072u + 24576n,u
+ 40961, 4 16384 + 25617 + n}

and n=n;/(2u+1)(2u—1)>. Again we find that I'= 0 is a rational curve and
we have a parametrization: u = u(v) and n; = n;(v) where
1 (v +2v2 +5)

=—= ni(v) =-16

) (202 — 4y — 4y +v* - 3)
W =T 6 —3)

(vd — 6v2 — 3)

(4.14)

(v =3 — 612)°
v=DA+ w1 +02)

(4.15) s=01n(v) = gs(u(v), ¢pp(v) ==~

The generator of the torsion group Z/12Z is Py = (o4, f8,) where

( . 1 (V8 — 1207 + 2418 — 36v5 + 42v* + 1203 + 36v — 3)(v* — 6v2 — 3)*
12 =1 v+ 1D 2+ 1)

) 1 (v =6 = 3)%(2 - 3)

\ﬁ4 ) (v— 1)7(‘}4_ 1)11(\/24— 1)2'

We put A4y :={p,(v);ve Q}. By definition, 4j; < 4¢. The singular fibers
21 =9 '(2) is given by {0, +1}. Summarizing the above discussion, we get

THEOREM 4.16.  The j-invariant is given by jioms(s) = s(s — 24)* /(s — 27) and
the Mordell-Weil torsion group of C; is given as follows.

(Z/3Z, seQ—AcUAgUX

Z/6Z, S:(p6(u)€A6—A6’2UA12, MEQ—26
(Co)ior(@) = Z/6Z + Z)2Z, 5= 06,(r) € g2, 1€ Q— 262
Z/9Z, SZ(Dg(l)EAg, teQ—2)

\Z/12Z, s=¢p(v) €A, veQ—21

4.2. Comparison with Kubert family.

In [Ku], Kubert gave parametrizations of the moduli of elliptic curves defined
over  with given torsion groups which have an element of order > 4. His
family starts with the normal form:
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(4.17) E(b,c):y*+ (1 —c)xy — by = x* — bx?.

We first eliminate the linear term of y and then the coefficient of x?. Let
K, (b,c) be the Weierstrass short normal form, which is obtained in this way.
The j-invariant is given by

(1 — 8bc? — 8¢h — 4¢ + 16b + 6¢2 + 1602 — 4¢3 + ¢4)?
b3(3¢? — ¢ — 3¢3 — 8bc? + b —20c¢h + ¢* + 16b?)

J(E(b,¢)) =

For a given elliptic curve E defined over K with Weierstrass normal form E : y*> =
x3+ax+b and a given k € K, the change of coordinates x — x/k?, y s y/k’
changes the normal form into y? = x> + ak*x + bk®. We denote this operation
by Tk(E)

1. Elliptic curves with the torsion group Z/6Z. This family is given by a
parameter ¢ with b = ¢+ ¢2.

2. Elliptic curves with the torsion group Z/6Z + Z/2Z. This family is
given by a parameter ¢; with b =c+¢* and ¢ = (10 — 2¢1)/(c} - 9).

3. Elliptic curves with the torsion group Z/9Z. The corresponding pa-
rameter is f and b=cd, c=fd—f, d=f(f—1)+ 1.

4. Elliptic curves with the torsion group Z/12Z. The corresponding
parameter is 7 and b=cd, c=fd—f, d=m+r1, f=m/(l—1) and m =
(B3t —32-1)/(z - 1).

PROPOSITION 4.18.  Our family Cy ), Cp, ,(r)s Coo(1)s Cppp(v) are equivalent to
the respective Kubert families. More explicitly, we take the following change of
parameters to make their j-invariants coincide with those of Kubert and then we
take the change of coordinates of type Wy to make the Weierstrass short normal
forms to be identical with K, (x,y).

1. For C, ), take u=—(c—1)/2(3c+1) and k = c*(c+1)/(3c+ )2,

2. For C, ), take r=—12/(cy —3) and k =4(-5+ 1) (e — 1)2/(012 —

6c1 +21)*/(c1 — 3)(c1 + 3).

3. For Cpyy, take t=—f/(f—2) and k= f3(f = 1)*/(f> =32+ 1),

4. For C, ), take v=—1/Q2t—1) and k = (v — 1)7* (=2t + 2c* + 1)(—1 +

21)%/(67* — 1203 + 1202 — 67 + 1),

We omit the proof as the assertion is immediate from a direct computation.

4.3. Involution on Cs,.

We consider again the self dual curve C:= Csq (see §3). The Weierstrass
normal form is y> = x> — 98415x + 11691702. Note that 54 € Ag — A1» Ude U
2. In fact, 54 = ¢¢(1/6) and 54 ¢ AU A >. The j-invariant is 54000 and the
torsion group Ci(Q) is Z/6Z and the generator is given by P = (—81,4374).
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Other rational points are 2P = (243, —1458), 3P = (162,0), 4P = (243,1458),
5P = (—81,—4374), and O = (0,1,0) (= the point at infinity). Recall that C has
an involution 7 which is defined by (2.10) in §3. To distinguish our original
sextic and cubic, we put

CO ' (xy—x+y) +54x22 =0, C¥:p*=x>—98415x + 11691702.
The identification @ : C®) — C© is given by the rational mapping:
@(x, y) = (—2916/(27x — 5103 — y), 2916/ (y + 27x — 5103))

and the involution z® on C® is given by the composition @' ozod. After
a boring computation, 7 is reduced to an extremely simple form in the
Weierstrass normal form and it is given by 7 (x, y) = (p(x, »),¢(x, y)) where

2x — 567 y
XL y(x,y) = 19683 — 2
162 1Y) (x — 162)?

(4.19) p(x,y):=81
Note that C has another canonical involution : which is an automorphism defined
by 1:(x,y) — (x,—y). We can easily check that t®)o1=107"). Note that
®)(P) =2P, 19(2P) =P, 19(3P) = 0, 1¥(0) =3P, 1P (4P) = 5P, 13 (5P) =
4P. Let 5: C — C be the translation by the 2-torsion element 3P i.e., 5(x, y) =
(x,y) +(162,0). It is easy to see that t¥) is the composition z0#. That is
3 (x, y) = (x,—p) + (162,0) where the addition is the addition by the group
structure of Cs4. Thus

THEOREM 4.20. The involution © on sextics C'© is equal to the involution
13 on CO) which is defined by (4.19) and it is also equal to (x,y) — (x,—y) +
(162,0).

4.4. Cubic family associated with sextics of a general type.

We consider the family of elliptic Dy curves associated to the moduli of
sextics of a general type with three (3,4)-cusps. Recall that D; is defined by the
equation:

Dy : —8x% + 1+ sp? 4+ 35y — 6x% + 3x — 6V =3y — 3v/=3x
— 6V —3x> — 12/ =3xp + (s — 35)xy = 0.

This family is defined over Q(v/—3). We change this polynomial into a
Weierstrass normal form by the usual process killing the coefficient of y and
then by killing the coefficient of x>. A Weierstrass normal forms is given by
y? = x> +a(s)x + b(s) where
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1
(a(s) = — g (5 4T)(s + T1)(s” + 705+ 1657)
(421) < L 2 4 3 2
b(s) := 5306 (57 + 7054 793)(s™ 4 212s” + 175025
\ 1 6486445 + 9038089).

The singular fibers are s = —35, —53 +6v—3, —53 —6v/—3 and s= o0. Put
X ={-35-53+6v-3,0}. In this section, we consider the Modell-Weil
torsion over the quadratic number field Q(v/—3). First we observe that this
family has 8 sections of order three +P;;, i =1,...,4 where P3; are given by

x3.1 := 5041/48 + 71s/24 + 5% /48

4.22 P31 = (x3,1,131),
(4.22) 1= (6, 31) {y3,1:_2917/4+53s/2+s2/4,

X3.0 1= —2209/16 — 47s/8 — s2/16

4.23 P35 = (x32, ¥3,2),
(4.23) ( ) y32 1= V=3(s? + 1065 + 2917)(s + 35)/144,

X33 1= §2 /48 + 79348 + 355/24 + (s + 35)v/—3/2

(4.24)  P53:=(x33,3:3), {yz,s = (=1 +v/=3)(s + 35)(s + 6v/=3 + 53)/8,

X3.4 1= 57 /48 + 793 /48 + 355/24 — (s + 35)v/=3/2

(4.25) Pyg:=(x34,734), {W = —(1+V/=3)(s + 53 — 6V/=3)(s + 35)/8.

Thus they generate a subgroup isomorphic to Z/3Z + Z/3Z. We can take the

generators P31, P35 for example. Thus by [Ke-Mo], (D), .(Q(v—3)) is iso-
morphic to one of the following.

(a) Z/3Z+Z/3Z, (b) Z/3Z+Z/6Z and (c) Z/6Z + Z/6Z.

By the same discussion as in 5.1, there exists P € D; with order 6 and 2P = P; ; if
and only if

A(s,m) := s> + 85s% — 4ms® — 568ms + 15555 — 16m?s
— 1136m* — 15465 — 20164m + 64m’ = 0.
Fortunately the variety 4 =0 is again rational and we can parametrize it as
(4.26) s =E6(1), E(t) == — (271 — 1304¢> + 17920t — 71680) /(1 — 8) (¢ — 16)?,
(427) m=y(1), (1) :=—(—128+31% + 15361 — 6144) /(1 — 8)(r — 16)”.
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It turns out that the condition for the existence of Q € Dy with 20 = P;, 1s the
same with the existence of P, 2P = P; ;. Assume that s = ¢4(¢). Then by an
easy computation, we get P = (x¢1,161) and Q = (x¢ 2, y6,2) Where

1 (—30728° +117964801> +86016¢* — 13271041 — 566231041 + 113246208 4 47¢°)

X61:=—% ,
R (1—8)%(1—16)"
_ —Ar(r* — 241+ 192)(71* — 1441 + 768)
Yol (1—16)5(1—8)’ !
1 (370~ 2016r° + 40704r* — 294912¢° — 1179648 + 283115521 — 113246208)
*273 (t—8)*(t—16)" ’

8V 1) (1= 12-4V=3)(71 =724 8v/=3) (71 =72~ 8V=3)i(1 = 12+4v/=3)
T (—16)°(—8)°

It is easy to see by a direct computation that 3P = 3Q = («,0) where

L. 2~ 4804 384)(13r* — 528r° + 80641 — 552961 +- 147456)

3 (t—8)%(r—16)"

and Q — P=P;3. Now we claim that

Cram 1. (Dy),(Q(V=3))=Z/3Z + Z/6Z with generators P;3 and P.
In fact, if the torsion is Z/6Z + Z/6Z, there exist three elements of order
two. However fy(x) := f(x,0) factorize as (x — ) fp o(x) and their discriminants
are given by
20481°(1 — 12)° (12 — 241+ 192)° (712 — 1441 + 768)°
(1—8)°(t—16)"®

Ay fo0 = 165888(1 — 12)° (1% — 241 +192)° (1 — 8)7 (¢t — 16)".

A fo =

)

Consider quartic Q4 : g(t,v) := 165888(¢ — 12)(¢> — 24t + 192)(t — 8) — v> = 0.
Thus D, has three two torsion elements if and only if the quartic g(¢,v) = 0 has
O(v—3)-point (ty,v9) with 7y # 8,16,12,12 + 4y/—3. The proof of Claim is re-
duces to:

ASSERTION 1. There are no such point on Q4.

Proor. By an easy birational change of coordinates, g(z,v) = 0 is equivalent
to the elliptic curve C := {x* +1/16777216 — y> =0}. We see that C has two
elements of order three, (0, +1/4096) and three two-torsions (—1/256,0), (1/512 —
1/512/=3,0) and (1/512+1/512v/=3,0). Again by [Ke-Mo], Cio;(Q(v-3)) =
Z/2Z + Z/6Z. As the rank of C is 0 ([S-Z]), there are exactly 12 points on
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C. They correspond to either zeros or poles of 4.(fy). This implies that the
quartic Q4 has no non-trivial points and thus C does not have three 2-torsion
points. This completes the proof of the Assertion and thus also proves the
Claim. [

Now we formulate our result as follows. Let 4¢ = {s = &(1);te Q(V-3)}
and X¢ := 66_1(2) is given by X = {8,16,0,12,12 + 4v/-3,(72 + 8v/-3)/7}.

THEOREM 4.28. The Mordell-Weil torsion of D; is given by

Z/3Z+Z/3Z seQ(V-3)—AsUZ

(Ds)or(Q(V=3)) = { Z/6Z +Z)3Z s=2CE6(t) e ds, te Q(V=3)— 2.

The j-invariant is given by

(D) = L 6F4 6+ 7157 + 705+ 1657)°
S T 135) % (2 1+ 1065 + 917)°

4.5. Examples.

(A) First we consider the case of elliptic curves C;. In the following examples,
we give only the values of parameter s as the coefficients are fairly big. The
corresponding Weierstrass normal forms are obtained by [4.5).

1. s=54. The curve Cs4 with torsion group Z/6Z has been studied in §4.3.

2. Take r =3, s =4 ,(3) =343/9. Then the torsion group is isomorphic
to Z/6Z + Z/2Z with generators P, = (—55223/972, —588245/486) and R =
(88837/972,0). The j-invariant is given by 73-127°/22.36.52,

3. Take t = =3, s = pg(—3) = 1/216. Then the torsion group is isomorphic
to Z/9Z and the generator P; = (289/559872,—7/419904). The j-invariant is
713.73%/2°.3% .73 . 17.

4. Take v=3, s=¢,(3) =—27/80. Then the torsion is isomorphic to
Z/12Z with generator Py = (—2997/25600, —6561/102400). The j-invariant is
—11%.593/212.3. 53,

(B) We consider elliptic curves Dy defined over Q(v/—3). The normal form is
given by [4.21).

5. Take s =1. Then (Dy),,(Q(v~-3)) = Z/3Z + Z/3Z and the generators
are (x3,1, y3,1) = (108,756) and (x3.2, y32) = (—144, 756\/3). The j-invariant is
21533 /73,

6. Take t =4 and s = —299/9. Then the torsion is isomorphic to Z/6Z +
Z/3Z. The generators can be taken as (xg1,y61) = (—2351/243,-532/243)
and (X33, ¥3.3) = (8v/—3/9 — 2171/243,-680/81 + 248\/-3/81). The j-invariant
is given by 5°-173.313.22033/26.36.73.196,
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4.6. Appendix: Parametrization of rational curves.

Parametrizations of a rational curve are always possible and there exist
even some programs to find a parametrization on Maple V. For the detail, see
and [vH] for example. In our case, it is easy to get a parametrization by
a direct computation. For a rational curve with degree less than or equal four
is easy. For other case, we first decrease the degree, using suitable birational
maps. We give a brief indication. We remark here that the parametrization is
unique up to a linear fractional change of the parameter.

(1) For the parametrization of s° — 32s> — 2ms® — dm?s + 8m> =0, put
m = us.

(2) For the parametrization of

Ry(m,s) := 512m° + 768mB3s — 512m°s> — 1536mSs* — 1925*m°
— 6144m°s> — 6528m™*s* + 965 m* — 12288m>s* — 2048m° s>
+ 64s%m> + 4805%m? — 15360s°m> — 61445%m + 384s'm

— 658m + 5658 — 5125% — 76857 — 5% =0

put successively s = s, /m; and m = 1/m;, then put n; = nz/slz, then s; =50 — 2
and ny = nys,. This changes degree of our curve to be 6. Then s, + 53 —4 and
ng = ns + 2 and ns = ngs3. This changes our curve into a quartic. Other com-
putation is easy.

4.7. Further remark.

We would like to thank to Professor A. Silverberg who has kindly com-
municated us about the papers [R-S1] and [R-S2]. In [R-S1], a universal family
for Z/3Z + Z/3Z over Q(v/=3) is given as follows. A(u) : y> = x> + ap(u)x +
bo(u) where

ap(u) = =27u(8 +u?), bo(u) = —54(8 + 20u*> — u®)

and the subfamily, given by u = (4 +73)/(37?), describes elliptic curves with
torsion Z/6Z + Z/3Z ([R-S2]). Again by an easy computation, we can show
that by the change of parameter s = —47 + 12u we can identify Dy and A(u).
Our subfamily for Z/6Z + Z/3Z is also the same with that of [R-S2] by the
fractional change of parameter: ¢=8(t—2)/(r—1).

We would like to thank H. Tokunaga for the valuable discussions and in-
formations about elliptic fibrations and also to K. Nakamula and T. Kishi for the
information about elliptic curves over a number field. I am also gratefull to
SIMATH for many computations.
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4.8. Appendix: Computation of dual curves C; and D’.
In [Theorem 2.8, the dual curves C’ and D; are defined by the following
polynomials. C is defined by g(x, y) =0 where:

g :=—4s> — 729 — 4374 x — 8375+ 2187 y* — 8748 x> — 864 s x* — 275 »°
+ 1653 x p? — 3252 x° — 11252 x* = 2453 x? — 4% x* — 2187 p*
—165° x> — 165> x + 85> x? > — 245> x% > + 729 5 — 5832 x°
—26735x% — 2214 5x — 2160 s x> — 260 5% x> — 424 5% x* — 356 5% x
— 11252 + 685> x> y* —365° x y* + 9725 x y* + 27 sx% y* — 10805 x> »?
—8105x2 p? + 12425x y* 4+ 85> y2 —45® y* 4+ 14452 p* — 7835 y*
— 3257 y? + 8748 x y* — 4374 x y* + 8748 x% y% + 16475 y* — 1205 x 7.

For the dual curve of D, we first change the coordinates by y — /31 so that D,
is defined by fi(x, y) =0 where

fi:=1621°x =216 x+324 13 x> =72 px* =108 p3 x3 + 126 px* — 54 yx°
—12p°x35 =270 =162 y° + 64 x> — 133 x* + 68 x° + sx° + 315 y*
+9 s — 684 y* x + 342 p* X2 — 600 p2 x3 +309 2 x* + x*s—2x7s
— 18y xs4+9p*x?s5+ 2822 x* + 6 p* x s+ 6> x5
and the dual curve D] is defined by
59011092000 y° x 4+ 6633394206750 y° x + 2758312645200 y* x?
+ 19978762090770 y x> + 3718476720000 y x* + 442161486099
+ 14031749711565 x 4+ 1533079825101 y + 57301070400 »°
+ 327874701312 y° 4 36043875529317 x* + 33637736054772 x*
+ 13114936771650 x* 4 1875661200000 x> — 147317217894 s
+ 1495218073320 »* + 840892247884 y* + 2027895885759 y?
— 957 — 19567881 s* — 792758961 s° — 17398899090 5* — 284688 s
—23765° + 892912667112 x5 — 891 5° y — 297 5% 33 + 18099072 5% y°

+ 1641408380640 y* x + 40192740000 y* x> + 5014174998000 »* x*
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+ 13471184352354 y* x* + 624708869400 > x> s — 260721 5° y* x

+ 313980192 5% 3 x% + 25325395200 5% y x* + 1111553560851 5 y* x

+ 17158062 s* y* x> + 447680160 5> y° x + 1839668382 5° y x?

+ 349513914 52 2 x + 310125896640 5 y° x2 + 48690 5° y* x?

+ 1255966935678 5 y x 4+ 13061376 5* y* x> + 651732480 5% y x*

+ 3109968 s* p* x 4 13930477632 5 > x* + 414725 y x* +22680s° y* x
+ 227913552 5 p* x 4+ 857351568 5> y? x* — 258309 5° y x>

+ 31851986040 s »? x° 4 8284032 s* y x* — 1257 y* x +23328 5% y° x

— 891648 5° x + 57655 x> + 1365125° x° — 365" x — 86495° x

— 519358 x* — 3657 x* 4+ 123193007676 5> x> + 100685283444 5> x*

+ 48478194 5* x* + 366309 5% x* — 5457 x% 4 3855993059241 x* s

+ 105357 x° + 15541496150580 y x 4 3825792 5% y° x + 87264 5* y* x*

+ 6924960 5* y* x* 4+ 1553580078 5° y% x> 4 102908891178 5% y x>

—5945° yx3 + 2243063232 5% yx® — 2823 5% 3% x — 8212278 5* 1% x

+ 193245024024 y* x s + 5241726000 y* x? s + 1514133147270 y* x* s

+ 1972998 s* y x? 4 25533064350 5% p> x — 442098 5° y x — 750 5° y? x?

— 65" 2 x> +4085° 2 X3 + 109656 5° p? x + 725 y* x + 3568752 5% y* X2
—2079 5% yx? + 117157642245 5 y x> — 470102076 5° y x — 2376 5% y x

+ 26298260280 5° y x + 663862307760 5 y° x + 2280870105552 5 y x°
—1985° 33 x — 151205° 33 x + 36673809381 5% y2 x + 487202688000 5 y x*
49212984712 5% y* x + 2730186 5% y* x — 28516212 s* y x 4+ 21735702 5* y x*
+ 68554643454 5> y? x? + 29808 s° y x* + 270950400 s> y* x>

+ 230247360 5% p° x +4325° y* x> 4+ 60582816005 y° x + 16416 5> p° x?

+ 3070054921815 5 y x* 4 3414088023336 x% s — 195210 5° y + 4325° »°

— 194681718 5° y* — 657 y* + 1068775776 5% y°> — 17005221 s* y — 57 p*
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+ 212975424 5% y° + 36864 s* y + 5608648080 5 y¢ — 5371866 5* y*

+ 976651446 5% p* + 144 5° y° + 3956832 5% y° — 2051776 5* p*

— 43410095 5° p* — 442882878 5 > — 13456455885 5% y + 74417206602 s >
— 718361460 5 y — 5373594108 5> y* — 1662 5% y* — 1576652661 5> »°

— 13156989 5* % 4 76562957565 5 y° + 144288 s* ° — 30512884194 5 y

— 202446 5> y* —2905° y* — 351755 »* + 30086432208 5 y° — 64503 5° y°
+ 62584308983 y* 5 + 1784396469555 x* 5 + 298204200000 x> s

— 15510231 s* x> — 11106 s° x* — 835704 5> x* + 2996734833 s* x*

— 957 x* + 21655 x* + 1651193118 5* x* + 181976491107 s> x*

+ 4757584653 5% x + 13305600 5* x° + 48152898 s* x* — 48064977 5* x

— 1179136260 s° x + 4348482318 5° x* + 684432000 5° x°

+ 19633320000 5 x> + 12117831538440 y* x + 30098845732644 y x>

References

S. S. Abhyankar and C. L. Bajaj, Automatic parametrization of rational curves and
surfaces III: Algebraic plane curves, Comput. Aided Geom. Design, 5 (1988), 309-321.
E. Brieskorn and H. Knorrer, Ebene Algebraische Kurven, Birkhduser, 1981, Basel-
Boston-Stuttgart.

A. Degtyarev, Alexander polynomial of a curve of degree six, J. Knot Theory Ram-
ifications, Vol. 3, No. 4, 439-454, 1994.

M. van Hoeij, Rational parametrizations of algebraic curves using a canonical divisor, J.
Symbolic Comput., 11 (1996), 1-19.

[Ke-Mo] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic

[R-S1]

fields, Nagoya Math. J., Vol. 109 (1988), 125-149.

K. Kodaira, On compact analytic surfaces II, Ann. of Math., 77 (1963), 563-626 and
ITI, Ann. of Math., 78 (1963), 1-40.

D. S. Kubert, Universal bounds on the torsion of elliptic curves, Proc. London Math.
Soc. (3), 33 (1976), 193-237.

B. Mazur, Rational isogenies of prime degree, Invent. Math., 44 (1978), 129-162.

R. Miranda and U. Persson, On Extremal Rational Elliptic Surfaces, Math. Z., 193
(1986), 537-558.

M. Namba, Geometry of projective algebraic curves, Decker, New York, 1984.

M. Oka, Flex Curves and their Applications, Geom. Dedicata, Vol. 75 (1999), 67-100.
M. Oka, Geometry of cuspidal sextics and their dual curves, to appear in Adv. Stud.
Pure Math., 29 (2000), Singularities and arrangements, Sapporo-Tokyo, 1998.

K. Rubin and A. Silverberg, Families of Elliptic Curves with Constant mod p Repre-
sentations, in: Conference on Elliptic Curves and Modular Forms, Hong Kong, December



[R-S2]

Elliptic curves from sextics 371

18-21, 1993, International Press, Cambridge, MA, 1995, 148-161; Second edition: Elliptic
Curves, Modular Forms, & Fermat’s Last Theorem, 1997.

K. Rubin and A. Silverberg, Mod 6 representations of elliptic curves, pp. 213-220
in: Automorphic Forms, Automorphic Representations, and Arithmetic, Proceedings of
Symposia in Pure Mathematics, vol. 66, Part 1, eds. Robert S. Doran, Ze-Li Dou, George
T. Gilbert, AMS, 1999.

U. Schneiders and H. G. Zimmer, The rank of elliptic curves upon quadratic ex-
tension, Computational number theory, 1989, 239-260.

J. H. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math., 106, Springer,
New-York, 1986.

R. Walker, Algebraic curves, Dover Publ. Inc., New York, 1949.

H. G. Zimmer, Torsion of elliptic curves over cubic and certain biquadratic number
fields, Arithmetic geometry, 203-220, Comtemp. Math., 174, Amer. Math. Soc.

Mutsuo Oka

Department of Mathematics
Tokyo Metropolitan University
Minami-Ohsawa, Hachioji-shi
Tokyo 192-0397

Japan

E-mail: oka@comp.metro-u.ac.jp



	1. Introduction.
	2. Normal forms of the ...
	2.1. Normal forms of curves ...
	2.2. Normal form of sextics ...
	THEOREM 2.8. ...

	2.3. Involution $\tau$ ...

	3. Structure of elliptic ...
	4. Torsion group of $C_{s}$ ...
	4.1. Cubic family associated ...
	THEOREM 4.16. ...

	4.2. Comparison with Kubert ...
	4.3. Involution on $C_{54}$ ...
	THEOREM 4.20. ...

	4.4. Cubic family associated ...
	THEOREM 4.28. ...

	4.5. Examples.
	4.6. Appendix: Parametrization ...
	4.7. Further remark.
	4.8. Appendix: Computation ...

	References

