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Abstract. Let G be a finite group. A gap G-module V is a finite dimensional real
G-representation space satisfying the following two conditions:

(1) The following strong gap condition holds: dim V'* > 2dim V¥ for all P <
H < G such that P is of prime power order, which is a sufficient condition to define a G-
surgery obstruction group and a G-surgery obstruction.

(2) 7 has only one H-fixed point 0 for all large subgroups H, namely H € #(G).
A finite group G not of prime power order is called a gap group if there exists a gap G-
module. We discuss the question when the direct product K x L is a gap group for two
finite groups K and L. According to [5], if K and K x C, are gap groups, so is
K x L. In this paper, we prove that if K is a gap group, so is K x C,. Using [5], this
allows us to show that if a finite group G has a quotient group which is a gap group,
then G itself is a gap group. Also, we prove the converse: if K is not a gap group, then
K x Dy, is not a gap group. To show this we define a condition, called NGC, which is
equivalent to the non-existence of gap modules.

1. Introduction.

Let G be a finite group and p a prime. In this paper we assume that the
trivial group is also called a p-group. We denote by Z,(G) a set of p-subgroups
of G, define the Dress subgroup G{#} as the smallest normal subgroup of G whose
index is a power of p, possibly 1, and let denote by %,(G) the family of sub-
groups L of G which contains G}, Set

2(G)=) (G) ad 2(G)=) %(G).
p p
Let V be a G-module V. We say that V is Z(G)-free, if V¢ =0 holds for any
prime p. Set Z(G) as a set of pairs (P, H) of subgroups of G such that P <
H <G and Pe 2(G). We denote by Z(G) be a set of all elements (P, H) of
9(G) with P ¢ £(G). Clearly note that this set equals to Z(G) if 2(G)NZ(G)
= @ holds. We define a function dy : 2(G) — Z by

dy(P,H) =dimV? —2dim V'H.
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We say that V' is positive (resp. nonnegative, resp. zero) at (P, H), if dy(P,H)
is positive (resp. nonnegative, resp. zero). For a finite group G not of prime
power order, a real G-module V is called an almost gap G-module, if V' is an
Z(G)-free real G-module such that dy(P,H) >0 for all (P,H)e 2(G). If
Z(G)N2(G) = & holds, an almost gap G-module is called a gap G-module.
We can stably apply the equivariant surgery theory to gap G-modules. We say
that G is a/an (almost) gap group if there is a/an (almost) gap G-module. A
finite group G is called an Oliver group if there does not exist a normal series
P < H <G such that P and G/H are of prime power order and H/P is cyclic. A
finite group G has a smooth action on a disk without fixed points if and only if G
is an Oliver group, and G has a smooth action on a sphere with exactly one fixed
point if and only if G is an Oliver group (cf. Oliver and Laitinen-Morimoto
3).

It 1s an important task to decide whether a given group G is a gap group.
In fact, if a finite Oliver group G is a gap group, then one can apply equivariant
surgery to convert an appropriate smooth action of G on a disk D into a smooth
action of G on a sphere S with S® = M = DY where dim M > 0 (cf. Morimoto
(4, Corollary 0.3]).

Laitinen and Morimoto [3] defined the G-module

V(G) = (RIG] - R) ~ D(RIG/G)] - R,
p

which is useful to construct a gap G-module, and proved that a finite group G has
a smooth action on a sphere with any number of fixed points if and only if G is
an Oliver group. This G-module also plays an important role in this paper.
The purpose of this paper is to study the question when a direct product group
is a gap group. The main theorem of this paper concerns a direct product
K x D,,, where D, is the dihedral group of order 2n for n>1 (D, = C; and
D4 = Cz X Cz).

THEOREM 1.1. Let n be a positive integer and let K be a finite group. Then
K is a gap group if and only if G=K X D, is a gap group.

This paper is a continuation of our joint work with M. Morimoto and M.
Yanagihara [5].  The key idea of the proof can be found in [6]. In [5, Theorem
3.5], we have shown that if 2(K)N ¥ (K) = & and K x C, is a gap group, so is
K x F for any finite group F. In[Lemma 5.1, we show that if K is a gap group,
so is K x C,, which is the case where n = 1 in the main theorem. Using
5.1 and [5, Theorem 3.5], we obtain the following theorem.

THEOREM 1.2. If a finite group G has a quotient group which is a gap group,
then G itself is a gap group.
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Recall that G is an Oliver group if it has a quotient group which is an Oliver
group.

The organization of the paper is as follows. In Section 2, we estimate
dy(P,H) for a (K x L)-module V by characters of irreducible K- and L-
modules. In Section 3, we find a gap G-module for a certain direct product
group of symmetric groups. The groups S; and Ss are not gap groups but
Sy x S5 is a gap group. In Section 4, we introduce a condition NGC and show
that G holds NGC if and only if G is not a gap group. We define a dimension
matrix and give the condition equivalent to one being a gap group by using a
dimension submatrix. In Section 5, by using the results in Section 4, we show
that K x C, is an almost gap group if so is K. In Section 6, we show that there
are many finite groups G such that 2(G)N £(G) = & holds but G are not gap
groups. As an application we completely decide when a direct product group of
symmetric groups is a gap group. Since a gap group which is a direct product of
symmetric groups is an Oliver group, it can act smoothly on a standard sphere
with one fixed point.

2. Direct product groups.

Let G=K x L be a finite group. We denote by y; the character for a G-
module V. Let P and H be subgroups of G such that [H : P]=2. Then

(2.1) dvew(P, H) ZXV 71 () (ma(x ZXV w1 (V)xw (m2(y))
xeP yeH

Z xy (i (h))xw (ra(h)),

heH\P

where V' (resp. W) is a K- (resp. L-) module and #; : G — K and 7y : G — L are
the canonical projections.
We set

7HG)={(P,H) € 2(G)||H : P] = [HG** : PG'*] =2 and
PG = G for all odd primes ¢}.

and

2%(G) = 2(G)N Z*(G).

Then dy (g is positive on Z(G)\Z*(G).
We have shown a restriction formula that reads as follows:
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ProposiTION 2.2 (cf. [5, Proposition 3.1]). Let K be a subgroup of an almost
gap group G such that G < K< G. Then K is an almost gap group.
Furthermore, if the order of G\*} is not a power of a prime, then G\* is an almost

gap group.

Let RO(G)y (g be an additive subgroup of RO(G) generated by #(G)-free
irreducible real G-modules. There is a group epimorphism ¢: RO(G) —
RO(G)y () which is a left inverse of the inclusion RO(G)y — RO(G). For a
G-module V, we set Vo = @(V). Then Vg is an Z(G)-free G-module and
(2.3) Vo) =(V =V = @ -9,
?|IG]

holds. In particular, V(G) = R[G]4 holds. Here the minus sign is inter-
preted as follows. For some integer / > 0, we regard J as a G-submodule of
/R[G] with some G-invariant inner product. For a G-submodule W of V, we
denote by V' — W the G-module which is orthogonal complement of W in V.
For distinct primes p and ¢, V6" NV = VG holds, since GP'Gl4 = G.
Then the direct sum of (V — 99" is a G-submodule of ¥ — V€.

The following is a restriction formula for an odd prime p.

PROPOSITION 2.4. Let K be a subgroup of G such that G\?' < K < G for a
prime p. Suppose there is a normal p-subgroup L of G such that LK = G. If G
is a gap group then so is K.

Proor. Let W be a gap G-module. Since WX =0 we set V=
(Res$ WL)g( x)- We show that Vis a gap K-module. It suffices to show that V'
is positive on 2%(K). Let (P,H) e 2*(K). Then P is a p-group and thus LP is
also a p-group. Therefore it follows that (LP, HP) e 2*(G) and dy(P,H) =
dw(LP, HP) — Y dw(LPK'}, HPK'Y) = dy (LP, HP) — dy (LPK?}, HPK%}),
We claim that LK = G?} and thus dy(P,H) = dy(LP,LH) > 0. For g =tk €
G = LK, we obtain g~ ' LK?'g = (k7'Lk)(k"'K?'k) = LK}, Hence LK is a
normal subgroup of G. Clearly LK% < G2},

N <

K — Kng# — K3

l J l

G=LK —— ¢¥W=rLKne?) — [k

Since LN(KNG) = (LNGPHNK =LNK =LNK", it follows that [GI* :
KNG =LK : K1%]. Therefore we obtain that [G1?} : LK{*}] is a power of
2 and thus G1% = LK, O
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COROLLARY 2.5. Let p be an odd prime, L a nontrivial p-group and K a
finite group such that K x L is a gap group. Then the following holds.

(1) K x N is a gap group for any nontrivial subgroup N of L.

(2) If K{PY < K, then K is a gap group.

Proor. In (2) we let N be a trivial group. Let V be a gap (K x L)-
module. Regarding ¥ as a (K x L)-module, set W = Resg % VL. Then
WK = KOs o p&xDY — 0 for any prime ¢, namely W is #(K x N)-free.
For (P,H) e 2*(K x N), it follows that P is a p-group, (PL,HL)e 2*(K x L)
and then dy (P, H) = dy(PL,HL) > 0. Therefore W is positive on Z*(K x N)

and hence W@ (dim W + 1)V(K x N) is a gap (K x N)-module. ]

3. Product with a symmetric group.

Let C, be a cyclic group of order n. In this section, by constructing
appropriate gap modules, we show that S5 x Sy, S5 x S5 and S5 x Sy x C, are all
gap groups. The proof depends on [5, Theorem 3.5] and the fact that A4 x C; is
an almost gap group.

Let 4(G) be a complete set of cyclic groups C of G generated by elements in
H\P of 2-power order, for all (P,H)e %*(G). Let €(G) be a complete set of
representatives of conjugacy classes of elements C € 4(G). We denote by Gy, a
p-Sylow subgroup of G for a prime p.

ProposITION 3.1. G = A4 x Cy is an almost gap group but not a gap group.

Proor. 2(G)NZ2(G) = {GB}} causes that G is not a gap group. Since
Gl = Gy, the set 2%(G) consists of four elements of type (Gp3y, Gzy x Ca).
Thus

(ndg, R: — (1nd§, R:)™) @ 27(G)

is a required almost gap G-module, where Ry is the nontrivial irreducible C,-
module. []

PROPOSITION 3.2.  The G-module V(G) is an almost gap G-module for any
nilpotent group G not of prime power order.

Proor. Note that G is isomorphic to [], G{,;. Thus if the order of G is
divisible by three district primes, V' (G) is a gap group by [5, Theorem 0.2]. We
may assume |G| = p?q” for primes p and ¢ (p > ¢). Let (P,H) e 2°(G). Since
PGP} = G implies P = Gy = G\ e (@), there are no elements (P,H)e
7%(G) such that P¢ #(G). Thus V(G) is an almost gap G-module by |5,
Lemma 0.1]. ]

ProrosITION 3.3. G = A5 x Cy is a gap group.
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PrOOF. Let K = A4 x C; and W, be an almost gap K-module. Set W =
Ind¢ Wy and V' = W @ (dim W + 1)V(G). We show that V' is a gap G-module.
It suffices to show that W is positive at all (P,H)e 2*(G). Note that

dw(P,H)= > dy(KNg'Pg,KNg 'Hg) > 0.
PgK e(P\G/K)"/"

Since Ky is a Sylow 2-subgroup of G, we have (P\G/K) HIP % & 1t suffices to
show that KNg~'Pg ¢ #(K). Suppose KNg~'Pge #(K). Then KNg 'Pg=
K. Thus P is a Sylow 2-subgroup of G but this contracts the existence of H.
Hence KNg 'Pg¢ #(K) and W is positive at all (P,H) e 2°(G). ]

Recalling [2.3], given a subgroup L of G, we define a G-module V(L; G) =
Ind’(R[L] — R , namely an Z(G)-free G-module removing non-%(G)-free
L 2(G) y
part ), (Indf(R[L] — R)®"" from Ind{(R[L] - R).

PrOPOSITION 3.4, G =S5 xSy and Ss X S5 are gap groups.

Proor. We regard G as a subgroup of Sg. Set K; = S5 x Ay, K» = As X Sy
and K3 = Cg x Sy, which are all gap groups. (Also see [5, Lemma 5.6].) We
define V,, = Indgm W,, for m =1,2,3, where W,, is a gap K,,-module. It follows
that

C(G)={C21,C4.1,C1.2,C1.4,Cr2,Cr.4,Cs.2,Cs 4,52, 84, Tr, T4}

Here C;1, Ci4, Cij, Si and T; are cyclic subgroups generated by a;, b;, a;b;, s
and ¢; respectively (i, j = 2,4), where ay = (1,3), as = (1,2,3,4), b, = (6,8), by =
(6,7, 8,9), S = Cl,‘bi and t, = aZbi.

Let (P,H)e %*(G). If H\P has an element which is conjugate to an
element in

{ai,si|i=2,4}, (resp. {b;,t;|i=2,4}, resp. {as,bi,arh;|i = 2,4})

then V) (resp. Va, resp. V3) is positive at (P, H).

Let L be a subgroup of G of order 16 generated by asby, b3, and (6,7)(8,9).
Now assume H\P consists of elements which are conjugate to elements in
{asb;|i=2,4}. For such a pair (P, H), there is an element a of G such that
a 'Ha is a subgroup of L. (Note that Gy = Dg x Dg has just 4 elements con-
jugate to g for each g = asbs, ashy.) Since Ng(L) is a Sylow subgroup Gy, it
follows that

~ (G P\G/L)""|

ING(L)|
dvir.cv(P.H) >
vize) (P H) 2 ING(L) Na'PaL]|

> |Ng(L)/L| —2=2>0.
Putting all together, V(L;G) ® 3(V(G) @@1'3:1 Vi) is a gap G-module.
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Since [Ssx Ss:G] =5 is odd, Ssx Ss is a gap group by [5, Lemma
0.3]. ]

RemMARK 3.5. Consider the following subgroups of G =S5 xS4: P=
<af,b2>, H, = <a4b4,a4b2> and H, = <a4b2,a4b2bf>. Then (P, H4) and (P, Hz)
are elements of @z(G). Ny = NG(Cy 4) = {as,bs,arby) of order 32 has just
4 elements which are conjugate to asbs and no elements conjugate to asb;.
Thus |(Hs\P)NNs| =4 and so HyNNs=38. Therefore if Hy > Cs4, then
|N4/PC474ﬂN4| = |N4/H4 ﬂN4| =4 and dV(C4‘4)(P7 H4) >4-2=2. Similarly
since Ny = Ng(Cs2) = <a4,b2,b§,a2> ~ Dg x C, x C of order 32 has only 4
elements conjugate to asb, and no elements conjugate to asby, it follows that
dy(c,,)(P,Hy)>2. Then in this estimation we only obtain that V(Cy2) ®
V(C474) is nonnegative at (P, Hs) and (P,H,). However |(P\G/C47j)Hf/P| =8
in fact and thus dy(c, (P, H;) = 6 for j=2,4. Thus W = V(Cy2) ® V(Cy4) is
positive at (P, H;) for j = 2,4, and hence 5(V(G)@ Vi @ V> ® V3) @ W is a gap
G-module.

For G = 85 x Sy x (3, the set €(G) consists of 28 elements. Let K = Ss X
Ay X Cy, Ky = Aq x Sy x Cy and K3 = Cg x Sy x Cy be subgroups of G. They
are gap groups by [Proposition 3.1 and [5, Theorem 3.5]. Similarly by using their
gap groups, we can prove the next proposition.

ProposITION 3.6. Let V; (i=1,2,3) be G-modules induced from gap K;-
modules. Let Ks be a subgroup of G generated by (1,2,3,4)(6,7), (6,7)(8,9),
(6,8)(7,9), and (10, 11), viewing naturally G = Ss x Sy x Cy as a subgroup of S;.
Then

3nernererG)eV(ksa)
is a gap G-module. Furthermore, Ss X S5 X Cy is a gap group.

Considering the similar argument of the proof of Propositions 3.4 and (3.6,
we obtain the following proposition.

PROPOSITION 3.7.  Let G be a finite group such that ?(G)N ¥ (G) = & and §
a subset of C€(G). We assume that:

(1) For any element C of §, there is a gap group K such that C < K < G.

(2) There is an ¥ (G)-free G-module W which is positive at any (P,H) €
2%(G) such that H contains an element of €(G)\F as a subgroup.

Then G is a gap group.

ProOOF. For each element C of &, pick up a gap subgroup K¢ of G which
includes C and a gap Kc-module We. Then Indgc We is nonnegative on Z(G),
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and is positive at (P,H)e 2°(G) if CNg '(H\P)g# & for some geG.
Therefore W @ (dim W + 1)(V(G) @ @Ce% Ind,gc We) is a gap G-module. []

Let n>9. Note that K =8, 5 x 45 (< S,) is a gap group, since 4s x C;
is a gap group. Let § < €(G) be a set of all elements of order < k,, where k»
is a power of 2 such that k, <n < 2k,. Then K contains any element of & up
to conjugate in G. W =V ({(1,2,...,k)>;S,) fulfills (2) in [Proposition 3.7.
Hence S, is a gap group which has been already shown in [2].

4. Farkas lemma and the condition NGC.

Throughout this section, we assume that G is a finite group not of prime
power order. We consider the following condition NGC: There are a nonempty
subset S < Z(G) and positive integers m(P, H) for (P,H) € S such that

(4.1) Y m(P,H)dy(P,H) =0
(P,H)eS

for any #(G)-free irreducible G-module V.

We denote by NGC(G) the condition NGC for a group G. If G,y = G4,
then setting S = {(G{9},G)} and m(G!?,G) =1, we obtain (4.1). If 2(G)N
2(G) = J, then S must be a subset of 2%(G) by existence of V(G).

We give two examples. For a dihedral group D, of order 2n, any #(D,,)-
free irreducible module is zero at ({1}, (). Let Py =<{(1,3)(2,4)), HH =
(1,2,3,4)>, P, ={(1,2,3)>, and H, ={(1,2,3),(1,2)) be subgroups of Ss, and
set § = {(Pl,Hl), (PQ,Hz)}. Then dw(Pl,Hl) +dW(P2,H2) =0 for any 3(55)-
free irreducible module W. (See [6].) Therefore D, and Ss satisfy the condition
NGC. Hereafter we show that if G is not a gap group, G satisfies the condition
NGC.

We write x >y (resp. x > ), if x; > y; (resp. x; > y;) for any i, where x =
Ux1,. .., x) and y = [y, .-, 1)

THEOREM 4.2 (The duality theorem cf. [1, p. 248]). For an n x m matrix A
with entries in Q, let

~

minimize cx
subject to Ax >b, x>0

be a primal problem and let

maximize by
subject to Ay <¢, y=>0
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be a problem which is called the dual problem. Then the following relationship
between the primal and dual problems holds.

Dual
Optimal | Infeasible | Unbounded

Optimal Possible | Impossible | Impossible

Primal | Infeasible | Impossible | Possible Possible

Unbounded | Impossible | Possible | Impossible

The duality theorem is proved by applying a linear programming over Q.
A key point of the proof is that the (revised) simplex method is closed over Q.
We omit the detail.

LemmA 4.3 (Farkas Lemma). Let A be an n x m matrix with entries in Q.
For be Q", set

X(A,b)={xecQ"|Ax=b,x>0} and Y(A,b)={yecQ"|'Ay <0,'by >0}.
Then either X(A,b) or Y(A,b) is empty but not both.

Proor. First suppose X (4,b) # J. If it might holds Y(A4,b) # I, then
'yAx = 'yb = 'hy > 0 but the inequalities ‘y4 < 0 and x > 0 implies ‘yAx <0
which is contradiction. Thus Y(A4,b) is empty. Next suppose X(4,b) = &.
Consider a primal problem

minimize  ‘Ox

. A b
> >
subject to l_Alx_ l—b]7 x>0

which has an infeasible solution. Then the dual problem is

maximize ‘bz
subject to ‘Az <0

where z=y, —y, and y = Bl ] This problem has a solution z = 0 and thus it
2

has an unbounded solution. Therefore there exists a solution z such that ‘bz > 0

and then Y (4,b) # . O

Let n be a number of £ (G)-free irreducible G-modules and m = |2(G)|.
We denote by M (m,n; Z) the set of m x n matrices with entries in Z. We say
that D is a dimension matrix of G, if De M(m,n;Z) is a matrix whose (i, j)-
entry is dy(P;, H;), where V; runs over Z(G)-free irreducible G-modules and
(P;, H;) runs over elements of Z(G). For a subset S of Z(G), a submatrix
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D' e M(|S|,n; Z) of a dimension matrix D of G is called a dimension submatrix
of G over S. Set

Zt, ={xeZ" x>0}
and

’D’y < O,Zyi > 0}

If G is a gap group, then there is x € ZZ,, such that Dx > 0. The converse
is also true, since W =) . x;V; is a gap G-module, where x; is the i-th entry of x.

ZS(G) — {y_ [[yl""’yk] EZIZ{O

ProposITION 4.4.  The followings are equivalent.

(1) G is not a gap group.

2) Zy)(G) # .

(3) There are a nonempty subset S < Z(G) and positive integers m(P, H) for
(P,H) € S such that 3, p 1y csm(P, H)dy (P, H) <0 for any %(G)-free irreducible
G-module V.

Proor. Let D be a dimension matrix of G. Set 4 = [D,—E], where E is
the identity matrix, and b= [1,...,1]. If there is x = ‘[x],x2] € X(4,b), then
Dx; — x, = b and thus Dx; > b. Take a positive integer k such that kx; € Z™.
Then D(kxi) > kb > b. Therefore X (4,b) # & implies that G is a gap group.
Clearly if G is a gap group, then X (4,b) # & holds. Then by [Lemma 4.3, G
is a gap group if and only if Y(A4,b) = J, equivalently Zy)(G) = & holds.
Therefore (1) and (2) are equivalent.

It is clear that (3) implies (2). To finish the proof we show that (2) implies
(3). Take z€ Zy)(G). Set S asa set of (P;, H;,)’s such that the i,-th entry of z
is nonzero, and let m(P;,, H;) be the i-th entry of z. Then > Py M) sm(P;, H;)-
dy(P;,, H;,) <0 clearly holds. W

Thus if NGC(G) holds, then G is not a gap group.

PrOPOSITION 4.5.  Suppose that there are an ¥ (G)-free G-module W and a
subset T < 9(G) such that dw(P,H) > 0 for any (P,H) € 9(G) and dw(P,H) > 0
for any (P,H)e T. Then the followings are equivalent.

(1) G is not a gap group.

2) Zyon\r(G) # &.

(3) There is a nonempty subset S < Z(G)\T and integers m(P,H) > 0 for
(P,H) € S such that }_ p 1y csm(P, H)dy (P, H) <0 for any Z(G)-free irreducible
G-module V.

Proor. Clearly (2) implies (1) by |[Proposition 4.4. Suppose that G is not a
gap group. Let D; be a dimension submatrix of G over S and D, a dimension
submatrix of G over Z(G)\S. Then D = '[Dy, D,| is a dimension matrix of G.
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Let V; (1 <j<k) be a complete set of #(G)-free irreducible G-modules. Set
y="»,--., ), where W = Z]k:lijj- Since there is a nonzero vector x =
‘[x1,x2] = 0 such that xD = x;D; + x,D, < '0, we have x1 D1y + XDy < 0.
Since D1y > 0 and D,y > 0, we obtain that ‘x; D1y = x,D,y = 0 and thus x; = 0.
Therefore x,D, < 0 for the nonzero vector x, >0 and hence (2) holds. ]

COROLLARY 4.6. Let G be a finite group such that ?(G)N ¥ (G) = . The
group G is a gap group if and only if Z,2(G) = & holds.

This holds from the existence of V(G).
The following proposition can be proven by the same manner of the proof of
IProposition 4.§. Recall that 2(G) N ¥ (G) = & implies Z2(G) = 2(G).

ProrosITION 4.7.  Let G be a finite group not of prime power order. Suppose
that there are an ¥(G)-free G-module W and a subset T < 2*(G) such that
dw(P,H) >0 for any (P,H) € 2(G) and dw(P,H) > 0 for any (P,H) € T. Then
the followings are equivalent.

(1) G is not an almost gap group.

(2) Zgz(G)\T(G) # .

(3) There is a nonempty subset S = Z*(G)\T and integers m(P,H) > 0 for
(P,H) € S such that 3 p 1y csm(P, H)dy (P, H) <0 for any #(G)-free irreducible
G-module V.

THEOREM 4.8. Let G be a finite group not of prime power order. Then
Zs(G)={ve z£)| Dy =0, y # 0},

where D is a dimension submatrix over S. In particular G is not a gap group if
and only if NGC(G) holds.

Proor. Since (1) and (3) of [Proposition 4.4 are equivalent, NGC(G) implies
G is not a gap group. Suppose that G is not a gap group. We show that
NGC(G) holds. Let D be a dimension submatrix of G over 2*(G) and set ¢ =
‘I1,...,1] € @". Note that R[G] includes all irreducible G-modules. Since V' (G)
is a module removing non-¥(G)-free, (irreducible) G-modules from R|G], the G-
module V(G) includes any £ (G)-free irreducible G-modules. Let ae ZZ, be a
vector corresponding with V(G). Thus we obtain that both Da =0 and ‘ba > 0
for any b e Q" such that b >0 and ‘ch > 0. Then

Y('D,b)N Y(—'D,b) # &.

By we get
X('D,b)UX(-'D,b) = ¢,
namely,
{xcQ"|'Dx=5b,x>0}U{xecQ"|Dx=—bx>0} =



986 T. Sumi

Then defining a map f : ZJ) — Z" by f(x) = ‘Dx, the image of f is a subset of
Z"\{£b|b>0,"cb >0} = (Z"\{£b|b>0})U{0}.

Taking z € Z,2)(G) by [Proposition 4.5, f(z) <0 holds. On the other hand,
the vector f(z) belongs to (Z"\{+b|b>0})U{0}. Hence we obtain f(z) =0.
We complete the proof. O

5. Product with the cyclic group of order 2.

The purpose of this section is to prove the following lemma.

Lemma 5.1. If K is an almost gap group, then so is G = K x C;.

Combining [5, Theorem 0.4] and [Lemma 3.1, we obtain [Theorem I.2.

Now we show [Lemma 5.1. To apply [Proposition 4.5, we define a subset T
of 2(G). Let W be an almost gap K-module. Letn;:G— K and ny: G — C,
be canonical projections. First, set T) = Z(G)\Z*(G). The module V; = V(G)
is nonnegative on Z(G) and positive on T;. Second, set 7> = {(P,H) € Z*(G)|
my(P) = my(H)}. Then V3 =Ind¢ W is nonnegative on Z(G) and positive on
T,. Ttis clear that V; and V; are #(G)-free. Note that V(P x C,) is an almost
gap group and particularly, nonnegative on Z(G) for any p-group P (p # 2).
Third, set T3 = {(P,P x C;) € 2*(G) | P e ?(K)\#(K)}. We show that there is
an % (G)-free G-module V3 such that V3 is nonnegative on Z(G) and positive on
T3, by dividing two cases. Let (P,H) e Ts.

The first case is one where |K| is divisible by at least two odd primes. Take
an odd prime ¢ such that ¢ divides |K| and addly if P # {1} then P is not a ¢-
group. Then IndgqX ¢, V(Cy x Cy) is positive at (P, H). Set V3 = C—B Indc <G
V(C, x C;), where p ranges over all odd primes which divide |K|. Then V3 is
positive on T3.

The second case is one where |K|= 29" for some odd prime p and some
integer a,b > 1. Set L= K,y x C;and V3 = Ind; V(L). If2(K)NZ(K) =,
then Ky, is not a normal subgroup of K and thus there is an element g € G for
any P e 2(K) such that LNg~'Pg < K. If K, is a normal subgroup of K,
then LN P < Ky, for any Pe Z(K)\Z(K). Therefore we obtain that

dy,(P.H)= > dyg(LNg 'Pg,LNg " Hy)
PgLe(P\G/L)"/*

_ 3 dim V(L)29 7 > 0.
m1 (P)gK(py em (P)\K/K ()
Then V3 is positive on T3.
Putting all together, V' =1} @ V> @ V3 is nonnegative on Z(G) and positive
on T:T1UT2UT3.
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Let V; (1 <j<y) be all irreducible K-modules such that V; is #(K)-free
whenever 1 <j < a, VK{} =0 but VK{'} # 0 for some odd prime p whenever
a<j<p, and VK{} # 0 whenever ﬁ <j<y. Then any ¥ (G)-free irreducible
G-module is one of Uj=V,®QR (1<j<oa) and Wy =V, @R, (1 <k <p).
Here R (resp. Ry ) is the irreducible trivial (resp. nontrivial) C,-module.

Suppose that G is not an almost gap group. By |[Proposition 4.7, there are a
nonempty subset S < Z(G)\T and a nonzero vector x € Z such that ‘xD < ‘0.
Here D = [dy,(P,H),dw,(P,H)] is a dimension submatrix of G over S, where
l<j<aand 1 <k <f. For (P,H)eS, weobtain that P= HNK, n;(H) > P,

dy,(P,H) = > ay () xr(ra(h) = dy(P,mi(H)),
‘P’heH\P
and
dw,(P,H) = — Z Xw, (T (h))xr, (m2(h)) = —dy, (P, m(H)).
heH\P

Let F = [dy,(P,H)] be a submatrix of D such that D = [F,~F,—F’] for some
matrix F'. Then xD < 0 implies that xF < ‘0 and —'xF < ‘0. Hence 'xF =0
holds. On the other hand, a map Z(G)\T — Z*(K) assigning (P, H) to (P, n;(H))
is a bijection. (If |K| is odd, then 2(G)\T and Z*(K) are both empty.) Then
F = |dy(P,m(H))] is a dimension submatrix of K. By [Proposition 4.7, K is not
an almost gap group, which is contradiction. Therefore K x C, is also an almost

gap group.

COROLLARY 5.2.  The wreath product K [ L is a gap group for any finite group
K, if L is a gap group.

ProoF. It is clear from the existence of epimorphisms K [L — L. ]

6. Product with a dihedral group.

Let Dy, =<a,b|a*> =b" = (ab)2 = 1) be a dihedral group of order 2n. In
this section we study which K x D,, is a gap group. If K is a gap group, then so
is K x Dy,. We are also interesting in the converse problem.

We set

@[f(G) = {(P,H) e 2*(G)| P is a p-group}

for a prime p and
71(G) = {({1}. 2) e Z*(G)}.

PROPOSITION 6.1. Let G be a finite group not of prime power order, p an odd
prime and Q a nontrivial p-group. The natural projection n: G x Q — G induces
a surjection Z,» 72(6xQ) (GxQ)— Zaz( \(G).  Furthermore, it is a bijection if |G|
and p are coprzme
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PrOOF. Let (P,H)e Z2(G x Q). Note that HNQ =PNQ, (Gx Q)N
Q=0 and zn(P(G x Q){’}) = n(P)n(G x Q)" = n(P)G"} for any prime r.
Thus (n(P),n(H)) e@j(G). For a G-module V, it follows that

drenlPH) =~ Y an(a) = =58 S ) = dv(alP) i),

heH\P [P xen(H)\n(P)

where R regards as the trivial W-module and y is the character for V. Thus
the projection 7 induces a map Z,» 22(Gx 0)(Gx Q) = Zg 72(G ¢ (G). We show that
the map is surjective. Set S = {(4 X 0,BxQ)|(4,B) e @2(6)} which is a sub-
setof 7(G x Q). Let (P,H)eS. Thendygw(P,H)= dV( (P),n(H))dim W2
for a G-module V' and a Q-module W. If V' x W is £ (G x Q)-free and W is the
trivial irreducible Q-module, then V is £ (G)-free. Thus a dimension submatrix
D = [dygw(P,H)] over S coincides with [dy(n(P),n(H)),0,...,0]. Note that
[dy(n(P),n(H))] is a dimension submatrix over @2(G). For Xe€Zy G )(G), take
yE€ Zaz (Gx0)(G x Q) whose entry corresponding to (P,H) e @2(G x Q) is the
entry of x corresponding to (n(P),n(H)) if (P,H)e S and zero otherwise.
Then the map sends y to x. Therefore the map is surjective. If |G| is a coprime
to p, then S = @;(G x Q) which implies that the map is bijective. We complete
the proof. ]

This proposition implies as follows. If 2(G)N%(G) = &, then Zg?z(G)(G)
# (7 1s equivalent to that there is a nontrivial p-group Q such that G x Q is not a
gap group. Furthermore, if G x Q is a gap group for some nontrivial p-group Q,
so 1s G x R for any nontrivial p-group R. It also holds in the case where p = 2, by

Theorem 1.2 and [Proposition 2.2,

COROLLARY 6.2. Let K be a p-group. The group G = K x D», is not a gap
group.

Proor. Since ({1},<{a)) € Z,(Dy,), Proposition 6.1 yields the assertion. []

ProOPOSITION 6.3. Let p be a prime and let K, and K, be finite groups not
of prime power order. If Z,» (K1) and Zg» ., (K>) are both nonempty, then
4 4
ZfZ';(leKz) (Kl X Kz) ;é g

ProOF. We define (P, H) € Z, (K x K;) for (P, Hy) € %, (K;) and (Py, H)
€ @z(Kg) as follows. Set P = P} x P,, which is a p-group. Take h;j € H; such
that ; ¢ P; and A; 1s an element of 2-power order for j = 1,2, and denote by H a
subgroup of K; x K, generated by P and h = hh,. 1t is clear that (P,H) e
@pz (K; x K;). Let S be a subset of @pz(Kl x K,) which is the image of the above
assignment and D = [dygw (P, H)] a dimension submatrix over S. Since
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_|LP|Z 2 (7 (hx)) gy (ma ()

xeP

dyvew(P,H) =

:_% Z 1y (hipy)xw (haps)

| |(P17172)€P
1
= _|_P| Z xy(hpy) Z Xw (haps)

PLEP PeEP;
= _dV(PlaHl)dW(P27H2)7
we have [dygw (P, H)| = —[dy(P1,H))| ® [dw (P2, Hy)]. Recall that [dy (P, H)]

(resp. [dw (P2, H>)]) is a dimension submatrix over @pz(Kl) (resp. 9[,2(K2)). Thus
X € Zgbz(lg)(Kj) (/=1,2) implies x1 @ x2 € Zy2 (g, ) (K1 X K>). O

2
P

Remarking (), Z,(G) = 2{(G), similarly as in the proof of [Proposition 6.3,
we obtain the following proposition.

PROPOSITION 6.4.  Let K| and K, be finite groups not of prime power order such
that Z@z(Kl)(Kl) #* @andZ@%(Kz)(Kz) # . Then Z@2(KIXK2)(K1 X Kz) # & holds.

On the other hand, the G-module V' (G) gives some restriction:

PROPOSITION 6.5. Let G be a finite group such that {1} < G'?} < G for some
odd prime p.  Then dyg) is positive on 23(G). Inparticular, ZQ%(G)(G) = & holds.

ExampLE 6.6. Let D4 =<(1,2)(3,4),(1,3)(2,4)> and Dg=<(1,2)(3,4),
(1,2,3,4)) be subgroups of Ss. Then (Dy,Ds) EZ@§(S4)(S4)- Thus Zys, s,
(S4 x S4) # & which implies that Sy x Sy is not a gap group. Repeating,
[]2, Ss is also not a gap group.

Now we prove the main theorem.

ProOF OoF THEOREM 1.1. By [Theorem 1.2, G is a gap group if so is K. If
K is of prime order, |Corollary 6.2 yields the assertion. Let K be a finite group
not of prime power order which is not a gap group. Then there is a vector
X € Zy2 (k) (K). By [Proposition 2.2, it suffices to show NGC(G) under the
assumption that n is odd, say n =2y +1. Let D = [dy(P,H)] € M(s,t;Z) be a
dimension submatrix of K over #*(K). We define (P,H') € 2*(G) for (P,H) e
7*(K) as follows. Take an element s € H\P of 2-power order. Let H' be a
subgroup of G which are generated by P and sa. Note that H' does not depend
on the choice of &. Set F = [dW(P, H")] e M(s,t'; Z), where t' is a number of
Z(G)-free irreducible G-modules. We claim that ‘Fx =0, which implies
Zy2)(G) # & and thus G is not a gap group. Let Wy (resp. W) be trivial
(resp. nontrivial) 1-dimensional D,,-module and W) (3 <k <y+2) be all irre-
ducible 2-dimensional D,,-modules. Let V; (1 <j<pf) be all irreducible K-
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modules such that Vj is Z(K)-free whenever 1 < j < a but ¥} is not whenever o <
J <pB. Then an Z(G)-free irreducible G-module is one of V; ® W (1 <j < w),
VW, (1<j<a)and V@ W, (1<j<p,3<k<y+2). Thust =20+ pfy.
We obtain that

1
d%®W1(P7H/) = _m Z XV,(nl(h))XWl(a) = dZ(PaH)
he H'\P

by (2.1), where 7;:G — K is a canonical projection. Similarly, we get
d[(/®W2(P,H/) = —dV](P,H) and dlﬁ@Wk(P>H/) =0. Thus F = [D, —D,O] and
then Fx =0. We complete the proof. ]

COROLLARY 6.7. Let K be a p-group, [],_,Ss, or Ss. Then G =K x
Hjﬁlean is not a gap group for any >0 and any n; > 1.

Proor. Since K is not a gap group, [Corollary 6.2 and imply
NGC(K x Dy,,). Thus the proof is completed applying each step
by induction on f. ]

THEOREM 6.8. Let n; (1 <k <o) be an integer such that ny >n, > -+ >
ny, > 1 and let G =[[[_, Sn, be a direct product group of symmetric groups. Then
G is a gap group if and only if either « > 1 and ny > 6 or o >2 and n; =3,
n, > 4.

This holds from Propositions 2.2, B.4, Corollary 6.7 and a result of Dover-
mann and Herzog [2]: A symmetric group S, is a gap group for n > 6.
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