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Abstract. In this paper we study the Hankel transformation on Hardy type spaces.
We also investigate Hankel convolution operators and Hankel multipliers on these
Hardy spaces.

1. Introduction and preliminaries.

The Hankel transform is defined by ([29])

mwxw=j:uwﬂ4wwmnﬁﬁum

where J, denotes the Bessel function of the first kind and order u. We will
assume throughout this paper that u > —1/2.

For every 1 <p < oo, we consider the space L[ constituted by all those
Lebesgue measurable functions ¢ on (0, c0) such that

wmz{fwwwmvﬁw<w.

Here dy(x) denotes the measure (x**'/2#I'(u+1))dx. By L} we under-
stand the space L. ((0, c0),dx) of the essentially (respect to the Lebesgue measure
on (0,00)) bounded functions on (0, o).

It is clear that 4, defines a continuous mapping from Lﬂl into L. Herz [18,
Theorem 3] established that /, can be extended to L/ as a continuous mapping
from L7 into L/f’/, for every 1 < p <2. Here p’ denotes the conjugate of p (that
is, p'=p/(p—1)).

In [2, Lemma 3.1] we proved by using the Marcinkiewicz interpolation
Theorem the following L”-inequality that is a Pitt type inequality for the Hankel
transformation [13, Corollary 7.4].

2000 Mathematics Subject Classification. 46F12.
Key Words and Phrases. Hankel transform, Hankel multipliers, Hankel convolution operators.
*Partially supported by DGICYT Grant PB 97-1489 (Spain).



688 J. J. BETANCOR and L. R.-MEsA

THEOREM A. Let 1 <p <2. For every ¢ €Ll we have

o0

j:o B2, ()37 dy(x) < € | 9ol i), 1)

where C is a suitable positive constant depending only on p.

Our first objective in this paper is to give a sense to the inequality (1) when
0 <p <1. Note that in general (1) is not true when p = 1. Indeed, define

¢(x):{1, xe(0,1)

0, otherwise.
Then according to [12, p. 22 (6)], hu(#)(3) =y Ui (v), v e (0,0).
Moreover there exists K > 0 such that

127 T (2) for every z € (0, K).

> 0000
= 202 (e +2)
Hence, we have

K dx

de ut2
| S =2y | e )
0o X 0 X
Suppose now that (1) holds for p =1 and for every ¢ € Lﬂl. Then, since
¢ eLﬂl, we can write

* dx : C
| @S <] @ - g 3

for a certain C > (. By combining (2) and (3) it concludes that

K
[
0 X

Thus we get a contradiction.

To study the inequality (1) when 0 < p < 1, inspired in celebrated and well-
known results concerning to Fourier transforms and [13, Chapter III]), we
need to introduce new Hardy type function spaces. The Hankel translation
[19]) plays an important role in the definition of our atomic Hardy spaces.

Haimo and Hirschman investigated a convolution operation and a
translation operator associated to the Hankel transformation. If f,ge L!, the
Hankel convolution f#g of f and g is defined by

(f1)(y) = j: FO 0@ (), v e (0, 0)
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where the Hankel translation 7,, y e (0,00), is given by
(00)) = | Dulx a2 dr(2). 3y e (0,00),
being
2 (et 1)°
D =
,U(x7 y7Z) F(,u+ 1/2)\/%

(xyz) #A(x, p,2)* " x,p,2€(0,0),

and where A4(x, y,z) denotes the area of a triangle having sides with lengths x, y
and z, when such a triangle exists, and A4(x, y,z) = 0, otherwise.

In and the Hankel convolution and the Hankel translation were
studied on the L/-spaces. More recently, in [4] and the g-convolution and
the operator 7,, y € (0, 00), have been studied in spaces of generalized functions
with exponential and slow growth.

We now define our atomic Hardy spaces. Firstly we introduce a class of
fundamental functions that we will call atoms. Let 0 <p <1. A Lebesgue
measurable function @ on (0,00) is a p-atom when « satisfies the following
conditions

(i) there exists o € (0,00) such that a(x) =0, x > «;

all, < »((0, oc))l/z_l/p, where a € (0,00) is given in (i);

(iii) f,' x¥a(x)dy(x) =0, for every j=0,1,...,r,
where r = [(x+ 1)(1 —p)/p]. Here by [x] we denote the integer part of x.

By S. we represent the function space that consists of all those even func-
tions ¢ belonging to the Schwartz space S. S. is endowed with the topology
induced in it by S. As usual S, denotes the dual space of S,. S, is equipped
with the weak * topology.

Let 0 < p < 1. Our Hardy type space #, , is constituted by all those f € S/
that can be represented by

[=> Jtya; (4)
j=0

being x; € (0,0), 4; € C and g; is a p-atom, for every je N, where )% |4;]” <
oo and the series in (4) converges in S..
We define on %, , the quasinorm |||, , by

© 1/p
1, = inf(Z ij”) :

J=0

where the infimum is taken over all those sequences (/11-);20 < C such that f is

given by (4) for certain x; € (0,0) and p-atoms a;, j€ N.
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By proceeding in a standard way (see [14], for instance) we can see that
defining the metric d, , on %, , by

dp,u(f, g) = ||f_ g”lﬁ/ﬂ fag € %,ﬂv

Ay, 1s a complete, metric linear space. Moreover, #, , is a quasiBanach space.

Recently, Bloom and Xu [6] have defined Hardy spaces on Chébli-Triméche
hypergroups. ((0, 00), ) is a Chébli-Triméche hypergroup that it is usually called
Bessel-Kingman hypergroup ([28]). Our Hardy type space is different from the
one considered by Bloom and Xu [6]. We would like to thank to Bloom and Xu
for turning our attention to their paper [6].

In Section 2 we study the Hankel transformation on the Hardy type space
Ay . In particular we establish the following extension of Theorem A to
0O<p<l

THEOREM 1.1. Let 0 <p < 1. Then there exists C >0 such that

JOO () (0) P22 dy(x) < A2
0

for every fe A, ,.

Note that the inequality showed in can be seen as a Paley type
inequality for Hankel transforms [13, p. 55]. In Y. Kanjin has recently
obtained, for other variant of the Hankel transformation, an inequality similar to
the one established in that holds on classical Hardy spaces.

In [5] we investigated Hankel convolution operators on L? and weighted L/
spaces. There the following result was proved.

THeOREM B ([5, Theorem 1.1]). Let 1 <p < oo. Assume that k is a locally
integrable function on (0,00) and define the operator Ty by Tyf =kt f. If the
following two conditions

(i) there exists C, >0 such that |Tifl, < Gl fll, f €Ll

(ii) there exist two positive constants A and B such that for every x,y €
(0, o0)

| () - ()] dHE) < 4
|x—z|>B| y—x|

hold, then for every 1 < q < p there exists C, >0 for which
ITifll, < Cllflly, /e L,

and there exists Cy; > 0 being
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H(xe 0,%0) [T () > ) < LAl 4> 0 and el

In Section 3 we study the Hankel convolution operators on %, ,
If me Lr then m defines a Hankel multiplier M,, through

M, f = hy(mh,f).

In particular, if me L, and h,(m)e L;, M, coincides with the convolu-
tion operator T}, () ([19, Theorem 2d]). Gosselin and Stempak obtained a
Hankel version of the celebrated Mihlin-H6rmander Fourier multiplier Theorem.
Recently the authors [5, Theorems 1.2 and 1.4] and Kapelko have extended
the multiplier theorem of Gosselin and Stempak in different ways. In Section 4,
inspired in the ideas included in the papers of Coifman and Miyachi [26],
we study Hankel multipliers in the space #7 .

Throughout the paper C always will denote a suitable positive constant not
necessarily the same in each occurrence.

2. The Hankel transformation of %, ,.

In this section we study the Hankel transformation on the Hardy type spaces
A, .. Here we prove, as a main result, Theorem [.1. Our results can be seen
as a Hankel version of celebrated properties concerning Fourier transforms of

classical Hardy spaces ([7], [9] and [13]).
Firstly we establish useful estimates for the Hankel transform of p-atoms.

LemMmA 2.1. Let 0 <p < 1. Then, for every p-atom, we have
M) @) ()] < I ]al?, ye (0, 00),

where A ={2(r+ 1)p+2(u+1)(p = D}/ {(e+1)(2 - p)}.
(i) Ihua)(y)] < Cllally"""2, y e (0, 0).

Proor. Let a be a p-atom. Assume that o€ (0,00) is such that a(x) =0,
x> o and
lall, < 7((0,a)) /1. (5)

(i) Since [;" a(x)x¥ dy(x) =0, for every je N, 0< j<r=[(u+1)(1-p)/p],
we can write

o

hu(a)(y) = . (xp) " Ju(xp)a(x)x* ! dx

— ((xy T (xy) - Zc]ﬂxy ) )x#Hdx,  ye (0, 0),
Jo

where ¢, = (—1) /{2 (b j+ 1)1}, j=0,....r
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Hence, according to [23, (2.2)], from (5) it follows

(@) ()] < CYArD j a(x) 20D dy(x)

» 1/2
< X V|, (JO e dy(x))
< O g2 < 2 D|lgl A e (0, 00),

being 4 = {2(r+ 1)p +2(u+1)(p — D}/{(u+ 1)(2 - p)}-
(i) By taking into account that the function z#J,(z) is bounded on (0, ),

we can write

(@) = C | Ja(l dv < Claf

< Cllal;"" 72,y e (0,%0). O

As a consequence of [Lemma 2.1 we prove the following essential property.
PropoSITION 2.1. Let 0<p<1. If ais a p-atom then
[hy(zea)(y)] < Cy*HDIP=D e (0, 0).

PROOF. Let a a p-atom. Assume firstly that y2+D|a|;* < [|a] 3~/ 772),

where y e (0,00) and, as in Lemma 2.1, 4 ={2(r4+1)p+2(u+1)(p-1)}/
{(u+1)(2—p)}. Then, from [Cemma 2.1, (i), it infers that

hu(@)(y)] < O ally* < QDD y e (0, 00).

On the other hand, if y2*V|all;4 > [|a|3*~"/""? then [Cemma 2.1, [i),
leads to

@] < Cllall3~72 < ¢ P=D 1y e (0, 00).
Thus we have proved that
(@) (y)| < Gy DEP=D 1y e (0, o0). (6)
According to [25, (2.1)]
hu(txa)(y) = 2T (u+ 1) () “u(ep)h(a)(y), - x,p € (0, 0). (7)

Note that here C is a positive constant that is not depending on X,y €
(0,00). Thus the proof of proposition is finished. O
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The Hankel transformation /, is an automorphism of S, ([1, Satz 5] and
(11, p. 81]). The transformation /4, is defined on the dual space S, by trans-
position. That is, if f € S., h,f is the element of S/ defined by

$hufs 90 =S hud),  deSe.

Thus, as it is well-known, /, is an automorphism of S). Hence, if f € %, ,,
with 0 < p <1 and f admits the representation (4) where x; € (0, ), 4; € C and
a; is a p-atom, for every je N, and Y 7, |/|” < co, then, according to (7),

()0 = 2T+ 1) Y 4o “hh@)(). ye©m). (&)
j=0

Moreover, since » " |4 < (372, [41° )7 from [Proposition 2.1 it deduces
that 4,/ is a continuous function on (0,00) and that

1/p

Hence we can conclude that
y 2EDWP D, (1) ()] < Clflly 0 ¥ € (0,00), 9)

From (9) it infers the following weak type inequality for the Hankel trans-
formation #,,.

ProposITION 2.2, Let 0 <p < 1. There exists C >0 such that for every
J e

P
y({y € (0,00) : 1 (/)(p)| 220 > 0y) < C—”J;'LP’”,

Proor. Let fe#,, and A€ (0,00). By (9) it follows

2 € (0, 00).

(CULf ], o272

J({y € (0, 00« [h(f) (20020 5 73) < jo dy(y)

||f [
< /11,
To establish Theorem 1.1 next lemma is fundamental.

LEMMA 2.2. Let 0 <p < 1. There exists C > 0 such that, for every p-atom,

Jo (@) ()72 P2 dy(y) < C.
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PrOOF. Let a be a p-atom. Assume that R > 0. By virtue of [Lemma 2.1,
(i), since r > {(u+ 1)(1 —p)/p} — 1, we can write

R R
jo (@) () [Py2 002 iy ) < cjo PROPRED D g3l

< C(RHCIHP/ w1 (p— 2)])2[(7+1)P+(/l+1)([’—1)]. (10)

Also, according to [18, Theorem 3], Holder’s inequality leads to

JOO (@) () |Py2 D2 gy (y)

< {Jw (@) (1) dy(y) },,/ ? { J: 4 g }(2—p)/2

0
< C|la||y R (D), (11)

By taking now R = |ja||Z/"*V?) from (10) and [TT] we conclude that

JO (@) (p)|Py2 P2 dy(y) < C. O

Now we prove [Theorem 1.1.

Proor oF THEOREM 1.1. Let 0 <p <1 and f e #,,. Assume that f is
given by (4). Then h,(f) admits the representation (8) for certain x; € (0, ),
Jj€ C and @; p-atom, for each je N, and being 3% |/|” < oo.

According to and since the function z7#J,(z) is bounded on
(0,00), we can write

0 o) 0
j (1) ()Py2 00 gy () < CZWL (@) )Py 02 gy )
=0

0

<CY |4
J=0

Hence,

L (1)) P22 () < A2

Thus the proof is finished. O

A Hankel version of the Hardy inequality appears when we take p =1 in
Theorem 1
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COROLLARY 2.1. There exists C >0 such that

© d
j WIS < CUfl

0
for every f e,

Finally, from a Paley-Wiener type theorem for the Hankel transform due
to Griffith [16], we can deduce a characterization of the distributions in #, ,
through Hankel transforms.

Let a be a p-atom. Assume that « € (0,00) is such that a(x) =0, x > a,
and ||a||, < »((0, 2))/>"1P Then, according to [18, Theorem 3], it follows,

@)y = llally < 7((0,2)) 27

Moreover, by taking into account well-known properties of the Bessel
functions [31, §5.1 (6) and (7)] we can write

A (a)(0) =0, j=0,...,r,

where A, = x~ %7 1(d/dx)x**(d/dx) and r=[(u+ 1)(1 - p)/p].
Also, by [16], /,(a) is an even and entire function such that

I (a)(z)] < Ce*™ zeC.

To simplify we will say that an even and entire function A is p-normalized
and of exponential type o € (0,00) when A satisfies the following conditions.

() [l < 2((0,2)) 27,

474(0) =0, j=0,1,...,r, being 4, and r as above, and

(iii) |4(z)| = O(e*™), as |z| — oo.

Hence, in other words, we have proved that if @ is a p-atom then /,(a) is
p-normalized and of exponential type o, for some o € (0, c0).

Conversely, suppose that an even and entire function 4 is p-normalized
and of exponential type o € (0,00). Then Griffith’s Theorem implies that
h,(A)(x) =0, x > a, and that

17,(A) |, < ((0, oc))l/z_l/l’_

Moreover, A, (h,(A)) = A and 4]4(0) = (1) [Fx¥h,(4)(x)dy(x) =0, j =
0,...,r.

Thus by taking into account (7) we can conclude the following charac-
terization of the distributions in %, ,.
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ProposITION 2.3. Let 0 <p < 1. A distribution f €S, is in A,, if, and
only if, there exist x; € (0,0), A; € C and a p-normalized and of exponential type
o function Aj, o; € (0,00), for every je€ N, such that

() = 450) T A(v), v e (0,00),
Jj=0

and that 37”7, |4" < 0.

3. Hankel convolution operators in the spaces 7, ,.
In this section we study Hankel convolution operators defined by

ka = klifa

where k is a locally integrable function on (0, c0), on the Hardy type spaces %, ,.
According to [1] and the topology of S, is also generated by the family
{Pmntmnen Of seminorms, where

(5 d%)nqﬁ(x)

Also, Sanchez proved that if 7} is the seminorm of S, defined by

ym,n(¢) = Sup 9 ¢ESe7 n/Z,nEN.

xe(0,00)

ﬂf,in((ﬁ) = Sup |xmAZ¢(x)|, peS., mneN,
x€e(0,00)
where 4, = x~#1(d/dx)x**!(d/dx), then {n% }, .y generates the topology of
Se. Hence, from [25, Proposition 4.2] we can deduce characterizations of the
Hankel convolution operators on S, and S,.
Our first result 1s an extension of Theorem B.

ProPOSITION 3.1.  Let k be a locally integrable function on (0, 00). Assume
that the following two conditions

(i) Ty defines a bounded linear operator from Lj into itself.

(i) There exist two positive constants A and B such that

L e (0k) (2) = (2,k)(2)| dy(z) < 4, x,y€(0,0),

and, for a certain ¢ > 1,

JZ ((txk)(z) — k(z)|dy(z) < A, x€e(0,R) and Re (0, 0),

hold.  Then Ty defines a bounded linear mapping from 3, , into L;}'



Hankel transformation, convolution operators and multipliers 697

ProOF. Let a be a l-atom. We choose o > 0 such that a(x) =0, x > «,
and |lal|, < y((0, %)) "%, We can write

[inara = ([ )imac o = n+ o

Here ¢ > 1 is the one given in (i1).
Since T} is a bounded operator from Lﬁ into itself, Holder’s inequality leads

[Mimawiam < {| " imamp e }l/z{f () }1/2

0 0

to

< Cllall,e* ' < C.

Also, by taking into account that [,” a(y)dy(y) = 0, the condition [ii] allows
us to write

JOO |(Tka)(x)| dy(x) = JOO Jw(rxk)(y)a(y) dy(y)‘ dy(x)

co 0

— Jf Jw[(rxk)( y) = k(x)]a(y) dy(y)‘ dy(x)

o

< j |a<y>|r|<ryk><x>—k<x>|dy(x)dy(y) scj a(y)|dy(y)

0
< cuauz{jadm}l/z <c

0
Hence, it concludes that

||Tka||l < C

Note that the positive constant C is not depending on the l-atom a.
Moreover, according to (7), [19, Theorem 2d]| and [30, p. 16],

1 Tk(zxa)lly = |kl = llex(kta)ll, < [lktall; < €, for every x e (0, c0). (12)
Let now f be in #), Then f €S and

S =2 itya;, (13)
j=0
where /; € C, x; € (0,00) and ; is a 1-atom, for every je N, and )7 |/ < co.

Series in (13) converges in Lﬂl. In fact, it is sufficient to note that, according
to again [30, p. 16]
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lzvally < lally < 1,

for every x e (0,00) and every l-atom a. Hence f € L,.
By virtue of Theorem B, T f is in weak-Lﬂ1 and

o0
Tif =Y 4Titya;. (14)
Jj=0
By (12) the series in (14) converges in L#1 and

1T/l < €Y 14l
Jj=0

Hence,
1Tk SNy < ClIA s
and then the proof is finished. O

The following result can be established by proceeding as in the proof of
IProposition 3.1.

ProOPOSITION 3.2.  Let k be a locally integrable function on (0, 0). Assume
that the following three conditions are satisfied.

(i) Tk defines a bounded linear operator from Lﬂ2 into itself.

(i) Ty defines a bounded linear operator from Lﬂl into S).

(iii) There exist A >0 and ¢ > 1 such that

JZ ((tck)(z) — k(2)|dy(z) < A, x€(0,R) and R e (0, 0).

Then Ty is a bounded linear mapping from i, into L;.

Proor. It is sufficient to proceed as in the proof of [Proposition 3.1. Here,
the condition replaces to the (1,1) weak type for the operator T} that it is
used in the proof of [Proposition 3.1l. ]

We now describe some sets of functions that define Hankel convolution
operators between Hardy type spaces #, ,. The corresponding results for the
usual convolution operator on classical Hardy spaces were established by Colzani

[10].

PrROPOSITION 3.3. Let 0 < p<q < 1. Assume that, for every ne N, x,,¢&, €
(0,00), and g, is a function that satisfies the following properties

®  gn(x) =0, x=>27"

(i) [|gnll, < e,22W D/ a=1/pIn; g

(iil) || 2P DR, (g, < g, 22w/ a=1/2n,
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Suppose also that there exists C >0 such that x, < C2™" neN, and

S oel < oo and define k=37 tygn. Then Ty defines a bounded linear
mapping from #, , into Ay ,.

Proor. Note firstly that, according to [30, p. 16]
1Tx,gnlly < llgnlly <&, neN.

Hence the series defining k converges in Lﬂ1 and k € Lli.
Let a be a p-atom. By [19, Theorem 2b and Theorem 2d] and by (7), we
can write

w
Tia = Z T, (afign).
n=0

Let ne N.
Suppose that a(x) =0, x >« and that ||a|, < ((0, o)) 271P where o > 0.
Then (ty,(afg,))(x) =0, x > a+27" +x,. Indeed, we have

00 = [ Dz e =0, [y -z =27
|y—z|
Hence,
(atg,)(y) = L A(2) (00 (2) dr(5) =0, y2at 2",
and then,
(tx, (atgn))(x) = Jlxn_x Dy (xn,x, y)(agn)(y)dy(y) =0, x=o+27"+x,.

Moreover, since [,” x¥a(x)dy(x) =0, j=0,...,r, being r = [(u+1)(1-p)/p],
we have that

o0
| g o =0, j=0...r
Indeed, let j=0,...,r. Fubini’s Theorem leads to

[ @t o

0

— J: J:O J:O x7a(y)gn(2)Du(x, ,2) dy(z)dy(y)dy(x)

= [ | 0@ [ Potsr D t@a@nm. 09
0 0 0
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We now evaluate the integral
s} .
J xYDy(x, y,z)dy(x), y,z€(0,0).
0

Let y,ze€(0,00). We can write, for certain a; ;e R, i=0,...,],
w .
| *¥D,(x.3.2) o)

0

= lim 2“I"(u+ 1) JOC x¥ (xt) T (xt) D,y (x, y, z) dy(x)

t—0+ 0
= lim (<127 e Dl | (50 0D (3,3, o)

t—07t 0

= lim (=1)"2% I (u+ 1)°45 [(v0) " (y0) (1) T (21)]

t—0+

= 2 1P fim Y (1 ) 100 00 GG
i=0

=0

. J i)
_ in2 2 q; 42 —u—l
= (DT 1)l St §:< l )(yr) Jt(31)
o2 ey 2\l
x (=) (z1) it -1(z1) (~2%)

2 226-1)
- a‘”z 2fru+1+ D) I(u+j—-1+1)

Hence, by

r T+ 1)’a,

¥ atga) () dy(x) = =

By proceeding in a similar way to above we obtain

0 2a |
J x¥ (ty, (atign))(x) dy(x) = (/‘2—})0]
0

Ny $20 .
Z( ) Fpg+1+0r (ﬂﬂ_,H)L ¥ (atgn)(y) dy(y) = 0.
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We conclude that, for some f, > 0, 1y, (atg,)/p, is a g-atom. We shall now
determinate f,,.

Firstly let us consider that o« >27". According to [19, Theorem 2b], it
follows

1/2— —2n -
latgully < llallllgall, < ((0,a))! 217,272 /p=1/g)

< Cepp((0,004+27") 2711,

Here C is not depending on n or a.
Assume now that o < 27". By taking into account that [ y¥a(y)dy(y) =
0, j=0,...,r, being r=[(x+ 1)(1 — p)/p], we have

L (a+ 1)(459,) ()™
2

NI+ p+ 1) dy(y), xe(0,0).

ahga(x) = f a() [<rxgn><y> -

1=0
Hence, since 7, is an isometry on Lj and by taking into account (7), it infers

~ Vel
Zﬂl'F(,u—I—H—l)

EREY. 2
<2ﬂr<u+1><xy>”fﬂ<xy>l§;( Sl F(‘(‘:j}ily)) )h,mgn)

Tygn— dy( )

latguls < jo\ a(y)|

= [ e

Moreover, by [23, (2.2)] it follows

dy(y).

2

latgnll, < CJO ja(y) ]y NP0 2 =Dy (g,) (x) 1 dy(v)

- CL ()] 2D 1y ()220 D1 /g-1/20m

o 1/2

< C”a”Z{J y4(ﬂ+1 (1/p—1 d))( )} 8n22(,u+1)(1/q—1/2)n
0

< Co2eED0/21p) 2 DU p=1) et 2211 fg=1/2)n

— Cg, 22 NWa=12m < Cg (0,004 27)) 2714

where again C is not depending on n or a.
Now, since there exists C > 0 such that x, < C27", for every n e N, by [30,
p. 16] it has

Iz, (atga)ls < llatgally < Ceap((0,04+ 27" 4 x,)) 12710,
Then p, = Ce¢,, where C does not depend on n or a.
Thus we conclude that Tpae #, , and |Tall, , < C{3°, ¢! a1,
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Let now f € %, ,, being
%
f=2 by
j=0

where y; € (0,0), 4 € C and g; is a p-atom, for every je N, and such that
fo;o |4;]” < oo. Since the last series converges in LA} and k € Lﬂl, by taking into
account [19, Theorem 2b]

m
Tef =Y iy, Teay
j=0

Then we obtain that

. 1/q
||ka||q,y < C(Z 8nq> ||f||p,la7

n=0

and the proof is completed. ]

4. Hankel multipliers on Hardy type spaces ./ ,.

In this section we study Hankel multipliers on Hardy type spaces #7 ,. Let
m be a measurable bounded function on (0,00). According to [18, Theorem 3]
the operator M,, defined by

M f = hyu(mh, (1))

is linear and bounded from L? into itself. In [5], and Hankel versions
of Mihlin-Hérmander multiplier theorem have been obtained. Here we establish
a Mihlin-Hérmander theorem for Hankel multipliers in a certain subspace of
A .. Note firstly that, according to (9), if f € #, 4, 0 < p <1, then M,,f is in
S! and it is defined by

o0

u@J¢>=jrmwmuxwmwxwmwm pes.

0

Moreover, we have,

(<M f 931 < ClIfl,, JO YD () () dy(y). ¢ € S

Hence M,, is a bounded operator from %, , into S,.

To establish our Hankel multiplier theorem that it is inspired in the results
about Fourier multipliers due to Miyachi [26], we need to introduce a subspace of
%1 7#.
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We say that a measurable function a on (0, 00) is a (1, o0)-atom when a is a
l-atom and [|a||, < ((0,2))”", where a € (0,00) is such that ¢(x) =0, x> a.
Note that if [|a||, < 7((0,x))”" and ¢(x) =0, x > o, where o€ (0, 0), then

lally < llall . 7((0,2))'* < p((0,0)) 2.

The space ", consists of all those f eLA} being
[=> Iy, (16)
=0

where the series converges in S] and 4;e€ C, x;€(0,00) and a; is a (1, 00)-
atom, for every j e N, and being > " |%| < co. Note that the series in (16) also
converges in L.

We define on 7", the topology induced by the quasinorm || Hlooﬂ defined by

flﬂ—inf{zij}, f ey
=0

where the infimum is taken over all those absolutely convergent complex sequences
(/lj)jﬁl for which the representation (16) holds for some x; € (0,00) and (1, 0)-
atoms a;, jeN.

It is not hard to see that ", is contained in /) ,, and the topology of 7",
is weaker than the one induced in it by 7 ,.

We now establish our Hankel version of Mihlin-H6rmander theorem on
Hardy type spaces.

THEOREM 4.1. Assume that a >0, b >0, ke N, k> (u+1)/2 and 0 < b—
a(2k +u+1) < 2. Suppose also that me C*(0,0) is a bounded measurable
Sunction on (0,00) such that

1 dY
(y dy) W)
where A>1 and m(x) =0, 0<x <9, for certain 0 >0. Then the Hankel
multiplier M, defines a bounded operator from %ﬁou into Lﬂl.

<y Ay, 0<i<k (17)

Proor. To see that M,, defines a bounded operator from )", into L; it is
sufficient to prove that there exists C > 0 such that

[Mopall, < € (18)

for every (1, c0)-atom.
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Indeed, let feL;N#7,. Assume that f =37, At.a, in S), where
4jeC, x;€(0,00) and a; is an (1,c0)-atom, for every je N, and being
> o |4l < 0. Then

o0

Mo f = h(mh () = 3 2y Mon(2)

J=0

isin S. Moreover, the last series converges in Lﬂl. Indeed, since M,, commutes
with Hankel translations, from (18) it deduces

[ /
Dl Mu(rya)ly < € 14l nleN.n> 1
j=n Jj=n

Hence, since Lﬂl-convergence implies S,-convergence, we have

o0

B (£))(3) = 3 Mo (y (0))(3), ac. xe (0, 0)
j=0

and

| M SNl < €Y 1A,

=0
Thus we conclude that

1M f 1y < CIAIIY

Since L/f N, is a dense subspace of #\",, M,, can be extended to #7", as
a bounded operator from ", into Lﬂl.

We now prove (18). Suppose that m(x) =0, xe (0,1). Otherwise we can
proceed in a similar way. Let @ be a (1, c0)-atom and assume that a(x) =0,
x>0, and |al|, <y((0,))"". Since |la|, < »((0, 2))""* and M,, is bounded
from L7 into itself, Holder’s inequality leads to
1/2

200
|Ma(x)|? a’y(x)} < C. (19)

Jza |\Ma(x)|dy(x) < C{J

0 0

We choose a function ¢ € C*(0,00) such that ¢(x) =0, x ¢ (1/2,2) and
2 L d(x/27) =1, xe(0,00) (see [20]). Since m(x) =0, xe(0,1), we can

J==%
write
m(x) = m(x), xe(0,00),
J=0

where m;(x) = m(x)p(x/2/), x € (0,00) and je N.
To simplify in the sequel we write M; instead of M,,, je V.
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Let jeN. Since m; eLﬂz, we have that ([3, Lemma 2.1])
Mja = kjta

where k; = h,(m;).
It 1s not hard to see that

Mya(x)| < jo (zks) )] la(y)| o () <

L (o) ()] o)

o

< Cor 20t L (k)W) do(y),  xe (0, 0). (20)

On the other hand, since || a(x)dy(x) =0, according to [24, p. 256], it has

Mja(X)ZJ: a(y)(Ri(p)k;)(x) dy(y), xe€(0,0), (21)

where for a measurable function f on (0, ),

(Ri()/)(x) = j 0y, 0) 0o (A, f) ()2 do

0
being

y—Z,u _ 0.—2/4

0(y,0) = u
0, otherwise.

O<ao<y

For every I, se N, 0 <[ <k, by [17), Leibniz’s rule leads to

(L& e

< €2/ 422% @01 x e (0, o0).
Hence we obtain

<C 2 - 2j(I—i)+2sj sup

2j7]SXS2j+I

(422200 (1 d) ¥y ()]

X dx

2
< C2/@ D (p(2/ 71 22 < /@bl se N O <1 < k.
By taking into account now that 4 = 3o cxix*((1/x)(d/dx))"™", where

cpi 18 a suitable positive constant for every 7 =0,...,i and i€ N, a straight-
forward manipulation allows us to conclude
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(1 + 4722500 2) A8k |

/ i

E 2122] (1—a)i

22 Y dx 2
/ i 1 d i+h
<C A~ 2122/(1 —a)i+2jh ( ) [x2smj(x)]
— — X dx
i 2
< CAHYEs=brurl)pdal ] e N O <] <k. (22)

By invoking Holder’s and Minkowski’s inequalities, [30, p. 16] and it
follows

JOO J |(2ky) ()] dyp(v)dy(x)

20 J0O

< { Jw ( J (2dy) ()] () (1 + A_zzz,-(l_a)xz)k>zdy(x) }1/2

20 0

1/2

.{Jw(l +A222j(1a)x2)—2kdy(x)}

C( 12] (I—a ) (u+1)
a H—y ' . 2 1/2
{ ( DU A )1+ A2 ) dy<x>}
x—y
C( 12] (I—a ) (u+1)

1/2

{ < a x+y (1 4+ A~22250-9 2Kk ()| Du(x, y,z)dy(z)dy(y)>2dy(x)}

|x— y\

o 12](1 a)) (,U-H)

{jw (] mra220-02 5 2)1) dy<y>)2 dy<x>}l/2

20 \ Jo

< Clat ) [ a1 4 A225092) g o)
< C(A—lzj(l—a))—(ﬂ+1)a2(,u+l)H( 1+ A4 252j(1-a) )kk Hz

< C(Aflzj(lfa))—(,LH-I)A2k2j(,u+lfb)22jako€2(,u+l)

< C AXt+19 j(a2hktpt1)=b) ) 2u+1) (23)
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By proceeding in a way similar to above (see [24, p. 256]), it has

| [ 1wl arman

20 JO

o

< C(A—lzj(l—a))(ﬂ+1)J

y .
0 L)HfaKl-+44‘222“1‘”22)khdﬂkaHH29(y,a)dy(a)dy(y)

< C(A—l2j(1—a))_(M'H)A2k2j(2—b+l4+1)22]ak Ja

Oﬂw%@wwmmw

Since [y 0(y,0)dy(s) < Cy?*, ye(0,0), we conclude that

j% | i) )

20 J0

< C4A 2k+,u+12j(a(2k+,u+l)—b+2)a2(,u+2) ' (24)

By combining [20], [21), (23) and it obtains

Jw \M,a(x)] dy(X) < CA2k+ﬂ+12j(a(2k+,u+l)—b),
20

and
o0
|| 1) () < Coraphom gt
20

Now, we choose j, €N such that 2/0q < 1 < 2/*ly, provided that o <1,
and we take j,=—1, when o> 1. Since Z}LO M;a converges to M,a, as
n— oo, in L7, we can write

|| 1¥ate) e

20

< | 1nga]

=0 2a

- C(i o2 421 flaQkepe1)=b+2) i A2k+/‘+12f(“(2k+”+1)b)>
j:O j:j0+1

< (2 A2Hn1 g (ke 1)=b+2) A2k+ﬂ+12jo(a(2k+,u+1)—b))

because 0 < b —a(2k +u+1) <2. Then, since b > a(2k + u+ 1), it obtains
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L |Ma(x)| dy(x) < CA*FHHL (25)

By combining (19) and (25) we obtain (18). Thus the proof is finished. []
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