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Abstract. In this paper we study the Hankel transformation on Hardy type spaces.

We also investigate Hankel convolution operators and Hankel multipliers on these

Hardy spaces.

1. Introduction and preliminaries.

The Hankel transform is de®ned by ([29])

hm�f��y� �

�

y

0

�xy�ÿm
Jm�xy�f�x�x

2m�1 dx;

where Jm denotes the Bessel function of the ®rst kind and order m. We will

assume throughout this paper that m > ÿ1=2.

For every 1a p < y, we consider the space L p
m constituted by all those

Lebesgue measurable functions f on �0;y� such that

kfkp �

�

y

0

jf�x�jp dg�x�

� �1=p

< y:

Here dg�x� denotes the measure �x2m�1=2mG�m� 1�� dx. By Ly

m we under-

stand the space Ly��0;y�; dx� of the essentially (respect to the Lebesgue measure

on �0;y�) bounded functions on �0;y�.

It is clear that hm de®nes a continuous mapping from L1
m into Ly

m . Herz [18,

Theorem 3] established that hm can be extended to L p
m as a continuous mapping

from L p
m into L p 0

m , for every 1a pa 2. Here p 0 denotes the conjugate of p (that

is, p 0 � p=�pÿ 1�).

In [2, Lemma 3.1] we proved by using the Marcinkiewicz interpolation

Theorem the following L p-inequality that is a Pitt type inequality for the Hankel

transformation [13, Corollary 7.4].
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Theorem A. Let 1 < pa 2. For every f A L p
m we have

�

y

0

x2�m�1��pÿ2�jhm�f��x�j
p
dg�x�aC

�

y

0

jf�x�jp dg�x�; �1�

where C is a suitable positive constant depending only on p.

Our ®rst objective in this paper is to give a sense to the inequality (1) when

0 < pa 1. Note that in general (1) is not true when p � 1. Indeed, de®ne

f�x� �
1; x A �0; 1�

0; otherwise.

�

Then according to [12, p. 22 (6)], hm�f��y� � yÿmÿ1Jm�1�y�, y A �0;y�.

Moreover there exists K > 0 such that

jzÿmÿ1Jm�1�z�jb
1

2m�2G�m� 2�
; for every z A �0;K�:

Hence, we have

�K

0

dx

x
a 2m�2G�m� 2�

�K

0

jhm�f��x�j
dx

x
: �2�

Suppose now that (1) holds for p � 1 and for every f A L1
m . Then, since

f A L1
m , we can write

�

y

0

jhm�f��x�j
dx

x
aC

�1

0

dg�x� �
C

2m�1G�m� 2�
; �3�

for a certain C > 0. By combining (2) and (3) it concludes that

�K

0

dx

x
aC:

Thus we get a contradiction.

To study the inequality (1) when 0 < pa 1, inspired in celebrated and well-

known results concerning to Fourier transforms ([7] and [13, Chapter III]), we

need to introduce new Hardy type function spaces. The Hankel translation

([19]) plays an important role in the de®nition of our atomic Hardy spaces.

Haimo [17] and Hirschman [19] investigated a convolution operation and a

translation operator associated to the Hankel transformation. If f ; g A L1
m , the

Hankel convolution f ]g of f and g is de®ned by

� f ]g��y� �

�

y

0

f �x��tyg��x� dg�x�; y A �0;y�
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where the Hankel translation ty, y A �0;y�, is given by

�tyg��x� �
�

y

0

Dm�x; y; z�g�z� dg�z�; x; y A �0;y�;

being

Dm�x; y; z� �
23mÿ1G�m� 1�2
G�m� 1=2� ���

p
p �xyz�ÿ2m

A�x; y; z�2mÿ1; x; y; z A �0;y�;

and where A�x; y; z� denotes the area of a triangle having sides with lengths x; y

and z, when such a triangle exists, and A�x; y; z� � 0, otherwise.

In [17] and [19] the Hankel convolution and the Hankel translation were

studied on the L p
m -spaces. More recently, in [4] and [25] the ]-convolution and

the operator ty, y A �0;y�, have been studied in spaces of generalized functions

with exponential and slow growth.

We now de®ne our atomic Hardy spaces. Firstly we introduce a class of

fundamental functions that we will call atoms. Let 0 < pa 1. A Lebesgue

measurable function a on �0;y� is a p-atom when a satis®es the following

conditions

(i) there exists a A �0;y� such that a�x� � 0, xb a;

(ii) kak2 a g��0; a��1=2ÿ1=p, where a A �0;y� is given in (i);

(iii)
� a

0 x2ja�x� dg�x� � 0, for every j � 0; 1; . . . ; r,

where r � ��m� 1��1ÿ p�=p�. Here by �x� we denote the integer part of x.

By Se we represent the function space that consists of all those even func-

tions f belonging to the Schwartz space S. Se is endowed with the topology

induced in it by S. As usual S 0
e denotes the dual space of Se. S 0

e is equipped

with the weak � topology.

Let 0 < pa 1. Our Hardy type space Hp;m is constituted by all those f A S 0
e

that can be represented by

f �
X

y

j�0

ljtxjaj �4�

being xj A �0;y�, lj A C and aj is a p-atom, for every j A N , where
P

y

j�0 jljj
p <

y and the series in (4) converges in S 0
e.

We de®ne on Hp;m the quasinorm k kp;m by

k f kp;m � inf
X

y

j�0

jljjp
 !1=p

;

where the in®mum is taken over all those sequences �lj�yj�0 HC such that f is

given by (4) for certain xj A �0;y� and p-atoms aj , j A N .
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By proceeding in a standard way (see [14], for instance) we can see that

de®ning the metric dp;m on Hp;m by

dp;m� f ; g� � k f ÿ gkp
p;m; f ; g A Hp;m;

Hp;m is a complete, metric linear space. Moreover, Hp;m is a quasiBanach space.

Recently, Bloom and Xu [6] have de®ned Hardy spaces on CheÂbli-TrimeÁche

hypergroups. ��0;y�; ]� is a CheÂbli-TrimeÁche hypergroup that it is usually called

Bessel-Kingman hypergroup ([28]). Our Hardy type space is di¨erent from the

one considered by Bloom and Xu [6]. We would like to thank to Bloom and Xu

for turning our attention to their paper [6].

In Section 2 we study the Hankel transformation on the Hardy type space

Hp;m. In particular we establish the following extension of Theorem A to

0 < pa 1.

Theorem 1.1. Let 0 < pa 1. Then there exists C > 0 such that

�
y

0

jhm� f ��x�j
p
x2�m�1��pÿ2� dg�x�aCk f kp

p;m;

for every f A Hp;m.

Note that the inequality showed in Theorem 1.1 can be seen as a Paley type

inequality for Hankel transforms [13, p. 55]. In [22] Y. Kanjin has recently

obtained, for other variant of the Hankel transformation, an inequality similar to

the one established in Theorem 1.1 that holds on classical Hardy spaces.

In [5] we investigated Hankel convolution operators on L p
m

and weighted L p
m

spaces. There the following result was proved.

Theorem B ([5, Theorem 1.1]). Let 1 < p < y. Assume that k is a locally

integrable function on �0;y� and de®ne the operator Tk by Tk f � k] f . If the

following two conditions

(i) there exists Cp > 0 such that kTk f kp aCpk f kp, f A L p
m
;

(ii) there exist two positive constants A and B such that for every x; y A

�0;y� �
jxÿzj>Bjyÿxj

j�txk��z� ÿ �tyk��z�j dg�z�aA;

hold, then for every 1 < q < p there exists Cq > 0 for which

kTk f kq aCqk f kq; f A Lq
m
;

and there exists C1 > 0 being
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g�fx A �0;y� : jTk f �x�j > lg�a
C1

l
k f k1; l > 0 and f A L1

m :

In Section 3 we study the Hankel convolution operators on Hp;m.

If m A Ly

m then m de®nes a Hankel multiplier Mm through

Mm f � hm�mhm f �:

In particular, if m A L1
m and hm�m� A L1

m , Mm coincides with the convolu-

tion operator Thm�m� ([19, Theorem 2d]). Gosselin and Stempak [15] obtained a

Hankel version of the celebrated Mihlin-HoÈrmander Fourier multiplier Theorem.

Recently the authors [5, Theorems 1.2 and 1.4] and Kapelko [21] have extended

the multiplier theorem of Gosselin and Stempak in di¨erent ways. In Section 4,

inspired in the ideas included in the papers of Coifman [8] and Miyachi [26],

we study Hankel multipliers in the space H1;m.

Throughout the paper C always will denote a suitable positive constant not

necessarily the same in each occurrence.

2. The Hankel transformation of Hp;m.

In this section we study the Hankel transformation on the Hardy type spaces

Hp;m. Here we prove, as a main result, Theorem 1.1. Our results can be seen

as a Hankel version of celebrated properties concerning Fourier transforms of

classical Hardy spaces ([7], [9] and [13]).

Firstly we establish useful estimates for the Hankel transform of p-atoms.

Lemma 2.1. Let 0 < pa 1. Then, for every p-atom, we have

(i) jhm�a��y�jaCy2�r�1�kakÿA
2 , y A �0;y�,

where A � f2�r� 1�p� 2�m� 1��pÿ 1�g=f�m� 1��2ÿ p�g.

(ii) jhm�a��y�jaCkak
2�pÿ1�=�pÿ2�
2 , y A �0;y�.

Proof. Let a be a p-atom. Assume that a A �0;y� is such that a�x� � 0,

xb a and

kak2 a g��0; a��1=2ÿ1=p: �5�

(i) Since
�

y

0 a�x�x2j dg�x� � 0, for every j A N , 0a jar � ��m�1��1ÿp�=p�,

we can write

hm�a��y� �

� a

0

�xy�ÿm
Jm�xy�a�x�x

2m�1 dx

�

� a

0

�xy�ÿm
Jm�xy� ÿ

X

r

j�0

cj;m�xy�
2j

 !

a�x�x2m�1 dx; y A �0;y�;

where cj;m � �ÿ1� j=f2m�2jG�m� j � 1�j!g, j � 0; . . . ; r.
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Hence, according to [23, (2.2)], from (5) it follows

jhm�a��y�jaCy2�r�1�

� a

0

ja�x�jx2�r�1� dg�x�

aCy2�r�1�kak2

� a

0

x4�r�1� dg�x�

� �1=2

aCy2�r�1�kak2a
2�r�1��m�1

aCy2�r�1�kakÿA
2 ; y A �0;y�;

being A � f2�r� 1�p� 2�m� 1��pÿ 1�g=f�m� 1��2ÿ p�g.

(ii) By taking into account that the function zÿmJm�z� is bounded on �0;y�,

we can write

jhm�a��y�jaC

� a

0

ja�x�jx2m�1 dxaCkak2a
m�1

aCkak
2�pÿ1�=�pÿ2�
2 ; y A �0;y�: r

As a consequence of Lemma 2.1 we prove the following essential property.

Proposition 2.1. Let 0 < pa 1. If a is a p-atom then

jhm�txa��y�jaCy2�m�1��1=pÿ1�; x; y A �0;y�:

Proof. Let a a p-atom. Assume ®rstly that y2�r�1�kakÿA
2 a kak

2�pÿ1�=�pÿ2�
2 ,

where y A �0;y� and, as in Lemma 2.1, A � f2�r� 1�p� 2�m� 1��pÿ 1�g=

f�m� 1��2ÿ p�g. Then, from Lemma 2.1, (i), it infers that

jhm�a��y�jaCy2�r�1�kakÿA
2 aCy2�m�1��1=pÿ1�; y A �0;y�:

On the other hand, if y2�r�1�kakÿA
2 b kak

2�pÿ1�=�pÿ2�
2 then Lemma 2.1, (ii),

leads to

jhm�a��y�jaCkak
2�pÿ1�=�pÿ2�
2 aCy2�m�1��1=pÿ1�; y A �0;y�:

Thus we have proved that

jhm�a��y�jaCy2�m�1��1=pÿ1�; y A �0;y�: �6�

According to [25, (2.1)]

hm�txa��y� � 2mG�m� 1��xy�ÿm
Jm�xy�hm�a��y�; x; y A �0;y�: �7�

Note that here C is a positive constant that is not depending on x; y A

�0;y�. Thus the proof of proposition is ®nished. r
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The Hankel transformation hm is an automorphism of Se ([1, Satz 5] and

[11, p. 81]). The transformation hm is de®ned on the dual space S 0
e by trans-

position. That is, if f A S 0
e, hm f is the element of S 0

e de®ned by

hhm f ; fi � h f ; hmfi; f A Se:

Thus, as it is well-known, hm is an automorphism of S 0
e. Hence, if f A Hp;m,

with 0 < pa 1 and f admits the representation (4) where xj A �0;y�, lj A C and

aj is a p-atom, for every j A N , and
Py

j�0 jljj
p < y, then, according to (7),

hm� f ��y� � 2mG�m� 1�
X

y

j�0

lj�xjy�
ÿm
Jm�xjy�hm�aj��y�; y A �0;y�: �8�

Moreover, since
Py

j�0 jljja �
Py

j�0 jljj
p�1=p, from Proposition 2.1 it deduces

that hm f is a continuous function on �0;y� and that

jhm� f ��y�jaC
X

y

j�0

jljj
p

 !1=p

y2�m�1��1=pÿ1�; y A �0;y�:

Hence we can conclude that

yÿ2�m�1��1=pÿ1�jhm� f ��y�jaCk f kp;m; y A �0;y�: �9�

From (9) it infers the following weak type inequality for the Hankel trans-

formation hm.

Proposition 2.2. Let 0 < pa 1. There exists C > 0 such that for every

f A Hp;m

g�fy A �0;y� : jhm� f ��y�jy
2�m�1��1ÿ2=p� > lg�aC

k f kp
p;m

lp ; l A �0;y�:

Proof. Let f A Hp;m and l A �0;y�. By (9) it follows

g�fy A �0;y� : jhm� f ��y�jy
2�m�1��1ÿ2=p� > lg�a

��Ck f kp; m=l�
p=�2m�2�

0

dg�y�

aC
k f kp

p;m

lp : r

To establish Theorem 1.1 next lemma is fundamental.

Lemma 2.2. Let 0 < pa 1. There exists C > 0 such that, for every p-atom,
�y

0

jhm�a��y�j
p
y2�m�1��pÿ2� dg�y�aC:
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Proof. Let a be a p-atom. Assume that R > 0. By virtue of Lemma 2.1,

(i), since r > f�m� 1��1ÿ p�=pg ÿ 1, we can write

�R

0

jhm�a��y�j
p
y2�m�1��pÿ2� dg�y�aC

�R

0

y2�r�1�p�2�m�1��pÿ2� dg�y�kakÿAp
2

aC�Rkak
p=��m�1��pÿ2��
2 �2��r�1�p��m�1��pÿ1��: �10�

Also, according to [18, Theorem 3], HoÈlder's inequality leads to

�

y

R

jhm�a��y�j
p
y2�m�1��pÿ2� dg�y�

a

�

y

0

jhm�a��y�j
2
dg�y�

� �p=2 �

y

R

yÿ4�m�1� dg�y�

� ��2ÿp�=2

aCkakp
2R

ÿ�m�1��2ÿp�: �11�

By taking now R � kak
p=��m�1��2ÿp��
2 , from (10) and (11) we conclude that

�

y

0

jhm�a��y�j
p
y2�m�1��pÿ2� dg�y�aC: r

Now we prove Theorem 1.1.

Proof of Theorem 1.1. Let 0 < pa 1 and f A Hp;m. Assume that f is

given by (4). Then hm� f � admits the representation (8) for certain xj A �0;y�,

lj A C and aj p-atom, for each j A N , and being
P

y

j�0 jljj
p < y.

According to Lemma 2.2 and since the function zÿmJm�z� is bounded on

�0;y�, we can write

�

y

0

jhm� f ��y�j
p
y2�m�1��pÿ2� dg�y�aC

X

y

j�0

jljj
p

�

y

0

jhm�aj��y�j
p
y2�m�1��pÿ2� dg�y�

aC
X

y

j�0

jljj
p:

Hence,

�

y

0

jhm� f ��y�j
p
y2�m�1��pÿ2� dg�y�aCk f kp

p;m:

Thus the proof is ®nished. r

A Hankel version of the Hardy inequality appears when we take p � 1 in

Theorem 1.1.
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Corollary 2.1. There exists C > 0 such that

�
y

0

jhm� f ��y�j
dy

y
aCk f k1;m;

for every f A H1;m.

Finally, from a Paley-Wiener type theorem for the Hankel transform due

to Gri½th [16], we can deduce a characterization of the distributions in Hp;m

through Hankel transforms.

Let a be a p-atom. Assume that a A �0;y� is such that a�x� � 0, xb a,

and kak2 a g��0; a��1=2ÿ1=p. Then, according to [18, Theorem 3], it follows,

khm�a�k2 � kak2 a g��0; a��1=2ÿ1=p:

Moreover, by taking into account well-known properties of the Bessel

functions [31, §5.1 (6) and (7)] we can write

D j
mhm�a��0� � 0; j � 0; . . . ; r;

where Dm � xÿ2mÿ1�d=dx�x2m�1�d=dx� and r � ��m� 1��1ÿ p�=p�.

Also, by [16], hm�a� is an even and entire function such that

jhm�a��z�jaCeajIm zj; z A C :

To simplify we will say that an even and entire function A is p-normalized

and of exponential type a A �0;y� when A satis®es the following conditions.

(i) kAk2 a g��0; a��1=2ÿ1=p,

(ii) D j
mA�0� � 0, j � 0; 1; . . . ; r, being Dm and r as above, and

(iii) jA�z�j � O�eajIm zj�, as jzj ! y.

Hence, in other words, we have proved that if a is a p-atom then hm�a� is

p-normalized and of exponential type a, for some a A �0;y�.

Conversely, suppose that an even and entire function A is p-normalized

and of exponential type a A �0;y�. Then Gri½th's Theorem [16] implies that

hm�A��x� � 0, xb a, and that

khm�A�k2 a g��0; a��1=2ÿ1=p:

Moreover, hm�hm�A�� � A and D j
mA�0� � �ÿ1� j

� a

0 x2jhm�A��x� dg�x� � 0, j �

0; . . . ; r.

Thus by taking into account (7) we can conclude the following charac-

terization of the distributions in Hp;m.
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Proposition 2.3. Let 0 < pa 1. A distribution f A S 0
e is in Hp;m if, and

only if, there exist xj A �0;y�, lj A C and a p-normalized and of exponential type

aj function Aj , aj A �0;y�, for every j A N , such that

hm� f ��y� �
X

y

j�0

lj�xjy�
ÿm
Jm�xjy�Aj�y�; y A �0;y�;

and that
P

y

j�0 jljj
p < y.

3. Hankel convolution operators in the spaces Hp;m.

In this section we study Hankel convolution operators de®ned by

Tk f � k] f ;

where k is a locally integrable function on �0;y�, on the Hardy type spaces Hp;m.

According to [1] and [11] the topology of Se is also generated by the family

fgm;ngm;n AN of seminorms, where

gm;n�f� � sup
x A �0;y�

xm 1

x

d

dx

� �n

f�x�

�

�

�

�

�

�

�

�

; f A Se; m; n A N :

Also, SaÂnchez [27] proved that if hm
m;n is the seminorm of Se de®ned by

hm
m;n�f� � sup

x A �0;y�

jxmDn
mf�x�j; f A Se; m; n A N ;

where Dm � xÿ2mÿ1�d=dx�x2m�1�d=dx�, then fhm
m;ngm;n AN generates the topology of

Se. Hence, from [25, Proposition 4.2] we can deduce characterizations of the

Hankel convolution operators on Se and S 0
e.

Our ®rst result is an extension of Theorem B.

Proposition 3.1. Let k be a locally integrable function on �0;y�. Assume

that the following two conditions

(i) Tk de®nes a bounded linear operator from L2
m into itself.

(ii) There exist two positive constants A and B such that

�

jxÿzj>Bjyÿxj

j�txk��z� ÿ �tyk��z�j dg�z�aA; x; y A �0;y�;

and, for a certain c > 1,

�

y

cR

j�txk��z� ÿ k�z�j dg�z�aA; x A �0;R� and R A �0;y�;

hold. Then Tk de®nes a bounded linear mapping from H1;m into L1
m .
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Proof. Let a be a 1-atom. We choose a > 0 such that a�x� � 0, xb a,

and kak2 a g��0; a��ÿ1=2. We can write

�

y

0

j�Tka��x�j dg�x� �

� ca

0

�

�

y

ca

� �

j�Tka��x�j dg�x� � I1 � I2:

Here c > 1 is the one given in (ii).

Since Tk is a bounded operator from L2
m into itself, HoÈlder's inequality leads

to
� ca

0

j�Tka��x�j dg�x�a

�

y

0

j�Tka��x�j
2
dg�x�

� �1=2 � ca

0

dg�x�

� �1=2

aCkak2a
m�1

aC:

Also, by taking into account that
�

y

0 a�y� dg�y� � 0, the condition (ii) allows

us to write

�

y

ca

j�Tka��x�j dg�x� �

�

y

ca

�

y

0

�txk��y�a�y� dg�y�

�

�

�

�

�

�

�

�

dg�x�

�

�

y

ca

�

y

0

��txk��y� ÿ k�x��a�y� dg�y�

�

�

�

�

�

�

�

�

dg�x�

a

� a

0

ja�y�j

�

y

ca

j�tyk��x�ÿk�x�j dg�x�dg�y�aC

� a

0

ja�y�j dg�y�

aCkak2

� a

0

dg�y�

� �1=2

aC:

Hence, it concludes that

kTkak1 aC:

Note that the positive constant C is not depending on the 1-atom a.

Moreover, according to (7), [19, Theorem 2d] and [30, p. 16],

kTk�txa�k1 � kk]txak1 � ktx�k]a�k1 a kk]ak1 aC; for every x A �0;y�: �12�

Let now f be in H1;m. Then f A S 0
e and

f �
X

y

j�0

ljtxjaj; �13�

where lj A C , xj A �0;y� and aj is a 1-atom, for every j A N , and
P

y

j�0 jljj < y.

Series in (13) converges in L1
m . In fact, it is su½cient to note that, according

to again [30, p. 16]
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ktxak1 a kak1 a 1;

for every x A �0;y� and every 1-atom a. Hence f A L1
m .

By virtue of Theorem B, Tk f is in weak-L1
m and

Tk f �
Xy
j�0

ljTktxjaj: �14�

By (12) the series in (14) converges in L1
m and

kTk f k1 aC
Xy
j�0

jljj:

Hence,

kTk f k1 aCk f k1;m;

and then the proof is ®nished. r

The following result can be established by proceeding as in the proof of

Proposition 3.1.

Proposition 3.2. Let k be a locally integrable function on �0;y�. Assume

that the following three conditions are satis®ed.

(i) Tk de®nes a bounded linear operator from L2
m into itself.

(ii) Tk de®nes a bounded linear operator from L1
m into S 0

e.

(iii) There exist A > 0 and c > 1 such that

�
y

cR

j�txk��z� ÿ k�z�j dg�z�aA; x A �0;R� and R A �0;y�:

Then Tk is a bounded linear mapping from H1;m into L1
m .

Proof. It is su½cient to proceed as in the proof of Proposition 3.1. Here,

the condition (ii) replaces to the �1; 1� weak type for the operator Tk that it is

used in the proof of Proposition 3.1. r

We now describe some sets of functions that de®ne Hankel convolution

operators between Hardy type spaces Hp;m. The corresponding results for the

usual convolution operator on classical Hardy spaces were established by Colzani

[10].

Proposition 3.3. Let 0 < pa qa 1. Assume that, for every n A N , xn; en A

�0;y�, and gn is a function that satis®es the following properties

(i) gn�x� � 0, xb 2ÿn;

(ii) kgnk1 a en2
2�m�1��1=qÿ1=p�n; and

(iii) kt2�m�1��1=pÿ1�hm�gn�k2 a en2
2�m�1��1=qÿ1=2�n.
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Suppose also that there exists C > 0 such that xn aC2ÿn, n A N , andP
y

n�0 e
q
n < y and de®ne k �

P
y

n�0 txngn. Then Tk de®nes a bounded linear

mapping from Hp;m into Hq;m.

Proof. Note ®rstly that, according to [30, p. 16]

ktxngnk1 a kgnk1 a en; n A N :

Hence the series de®ning k converges in L1
m

and k A L1
m
.

Let a be a p-atom. By [19, Theorem 2b and Theorem 2d] and by (7), we

can write

Tka �
Xy
n�0

txn�a]gn�:

Let n A N .

Suppose that a�x� � 0, xb a and that kak2 a g��0; a��1=2ÿ1=p, where a > 0.

Then �txn�a]gn���x� � 0, xb a� 2ÿn � xn. Indeed, we have

�tygn��z� �

� y�z

jyÿzj

Dm�y; z; u�gn�u� dg�u� � 0; jyÿ zjb 2ÿn:

Hence,

�a]gn��y� �

�
a

0

a�z��tygn��z� dg�z� � 0; yb a� 2ÿn;

and then,

�txn�a]gn���x� �

� xn�x

jxnÿxj

Dm�xn; x; y��a]gn��y� dg�y� � 0; xb a� 2ÿn � xn:

Moreover, since
�
y

0 x2ja�x� dg�x� � 0, j � 0; . . . ; r, being r � ��m�1��1ÿ p�=p�,

we have that
�
y

0

x2j�a]gn��x� dg�x� � 0; j � 0; . . . ; r:

Indeed, let j � 0; . . . ; r. Fubini's Theorem leads to

�
y

0

x2j�a]gn��x� dg�x�

�

�
y

0

�
y

0

�
y

0

x2ja�y�gn�z�Dm�x; y; z� dg�z�dg�y�dg�x�

�

�
y

0

a�y�

�
y

0

gn�z�

�
y

0

x2jDm�x; y; z� dg�x�dg�z�dg�y�: �15�
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We now evaluate the integral

�

y

0

x2jDm�x; y; z� dg�x�; y; z A �0;y�:

Let y; z A �0;y�. We can write, for certain ai; j A R, i � 0; . . . ; j,

�

y

0

x2jDm�x; y; z� dg�x�

� lim
t!0�

2mG�m� 1�

�

y

0

x2j�xt�ÿm
Jm�xt�Dm�x; y; z� dg�x�

� lim
t!0�

�ÿ1� j2mG�m� 1�D j
m; t

�

y

0

�xt�ÿm
Jm�xt�Dm�x; y; z� dg�x�

� lim
t!0�

�ÿ1� j22mG�m� 1�2D j
m; t��yt�

ÿm
Jm�yt��zt�

ÿm
Jm�zt��

� �ÿ1� j22mG�m� 1�2 lim
t!0�

X

j

i�0

ai; jt
2i 1

t

d

dt

� �i�j

��yt�ÿm
Jm�yt��zt�

ÿm
Jm�zt��

� �ÿ1� j22mG�m� 1�2 lim
t!0�

X

j

i�0

ai; jt
2i
X

i�j

l�0

i � j

l

 !

�yt�ÿmÿl
Jm�l�yt�

� �ÿy2� l�zt�ÿmÿ�i�jÿl�
Jm�i�jÿl�zt��ÿz2� i�jÿl

� G�m� 1�2a0; j
X

j

l�0

j

l

 !

y2l

2 jG�m� l � 1�

z2�jÿl�

G�m� j ÿ l � 1�
:

Hence, by (15)

�

y

0

x2j�a]gn��x� dg�x� �
G�m� 1�2a0; j

2 j

�
X

j

l�0

j

l

 !

1

G�m�l�1�G�m� jÿl�1�

�

y

0

a�y�y2l dg�y�

�

y

0

gn�z�z
2� jÿl� dg�z� � 0:

By proceeding in a similar way to above we obtain

�

y

0

x2j�txn�a]gn���x� dg�x� �
G�m� 1�2a0; j

2 j

�
X

j

l�0

j

l

 !

x
2� jÿl�
n

G�m� l � 1�G�m� j ÿ l � 1�

�

y

0

y2l�a]gn��y� dg�y� � 0:
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We conclude that, for some bn > 0, txn�a]gn�=bn is a q-atom. We shall now

determinate bn.

Firstly let us consider that ab 2ÿn. According to [19, Theorem 2b], it

follows

ka]gnk2 a kak2kgnk1 a g��0; a��1=2ÿ1=p
en2

ÿ2n�m�1��1=pÿ1=q�

aCeng��0; a� 2ÿn��1=2ÿ1=q:

Here C is not depending on n or a.

Assume now that a < 2ÿn. By taking into account that
�

y

0 y2ja�y� dg�y� �

0, j � 0; . . . ; r, being r � ��m� 1��1ÿ p�=p�, we have

a]gn�x� �

�

y

0

a�y� �txgn��y� ÿ
X

r

l�0

G�m� 1��D l
mgn��x�y

2l

22l l!G�l � m� 1�

" #

dg�y�; x A �0;y�:

Hence, since hm is an isometry on L2
m and by taking into account (7), it infers

ka]gnk2 a

�

y

0

ja�y�j tygnÿ
X

r

l�0

y2lG�m�1�

2ml!G�m�l�1�
D l
mgn































2

dg�y�

�

�

y

0

ja�y�j 2mG�m�1��xy�ÿm
Jm�xy�ÿ

X

r

l�0

�ÿ1� lG�m�1��xy�2l

22l l!G�m�l�1�

 !

hm�gn�































2

dg�y�:

Moreover, by [23, (2.2)] it follows

ka]gnk2 aC

�

y

0

ja�y�jy2�m�1��1=pÿ1�kx2�m�1��1=pÿ1�hm�gn��x�k2 dg�y�

aC

� a

0

ja�y�jy2�m�1��1=pÿ1� dg�y�en2
2�m�1��1=qÿ1=2�n

aCkak2

� a

0

y4�m�1��1=pÿ1� dg�y�

� �1=2

en2
2�m�1��1=qÿ1=2�n

aCa2�m�1��1=2ÿ1=p�a2�m�1��1=pÿ1���m�1�en2
2�m�1��1=qÿ1=2�n

� Cen2
2�m�1��1=qÿ1=2�n

aCeng��0; a� 2ÿn��1=2ÿ1=q;

where again C is not depending on n or a.

Now, since there exists C > 0 such that xn aC2ÿn, for every n A N , by [30,

p. 16] it has

ktxn�a]gn�k2 a ka]gnk2 aCeng��0; a� 2ÿn � xn��
1=2ÿ1=q:

Then bn � Cen, where C does not depend on n or a.

Thus we conclude that Tka A Hm;q and kTkakq;m aCf
P

y

n�0 e
q
ng

1=q.
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Let now f A Hm;p, being

f �
X

y

j�0

ljtyjaj ;

where yj A �0;y�, lj A C and aj is a p-atom, for every j A N , and such that
Py

j�0 jljj
p < y. Since the last series converges in L1

m and k A L1
m , by taking into

account [19, Theorem 2b]

Tk f �
X

y

j�0

ljtyjTkaj :

Then we obtain that

kTk f kq;m aC
X

y

n�0

jenj
q

 !1=q

k f kp;m;

and the proof is completed. r

4. Hankel multipliers on Hardy type spaces H1;m.

In this section we study Hankel multipliers on Hardy type spaces H1;m. Let

m be a measurable bounded function on �0;y�. According to [18, Theorem 3]

the operator Mm de®ned by

Mm f � hm�mhm� f ��

is linear and bounded from L2
m into itself. In [5], [15] and [21] Hankel versions

of Mihlin-HoÈrmander multiplier theorem have been obtained. Here we establish

a Mihlin-HoÈrmander theorem for Hankel multipliers in a certain subspace of

H1;m. Note ®rstly that, according to (9), if f A Hp;m, 0 < pa 1, then Mm f is in

S 0
e and it is de®ned by

hMm f ; fi �

�y

0

m�y�hm� f ��y�hm�f��y� dg�y�; f A Se:

Moreover, we have,

jhMm f ; fijaCk f kp;m

�y

0

y2�m�1��1=pÿ1�jhm�f��y�j dg�y�; f A Se:

Hence Mm is a bounded operator from Hp;m into S 0
e.

To establish our Hankel multiplier theorem that it is inspired in the results

about Fourier multipliers due to Miyachi [26], we need to introduce a subspace of

H1;m.
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We say that a measurable function a on �0;y� is a �1;y�-atom when a is a

1-atom and kak
y
a g��0; a��ÿ1, where a A �0;y� is such that f�x� � 0, xb a.

Note that if kak
y
a g��0; a��ÿ1 and f�x� � 0, xb a, where a A �0;y�, then

kak2 a kak
y
g��0; a��1=2 a g��0; a��ÿ1=2:

The space H
y

1;m consists of all those f A L1
m being

f �
X

y

j�0

ljtxjaj; �16�

where the series converges in S 0
e and lj A C , xj A �0;y� and aj is a �1;y�-

atom, for every j A N , and being
P

y

j�0 jlj j < y. Note that the series in (16) also

converges in L1
m .

We de®ne on H
y

1;m the topology induced by the quasinorm k ky1;m de®ned by

k f ky1;m � inf
X

y

j�0

jljj

( )

; f A H
y

1;m;

where the in®mum is taken over all those absolutely convergent complex sequences

�lj�
y

j�1 for which the representation (16) holds for some xj A �0;y� and �1;y�-

atoms aj , j A N .

It is not hard to see that Hy

1;m is contained in H1;m, and the topology of Hy

1;m

is weaker than the one induced in it by H1;m.

We now establish our Hankel version of Mihlin-HoÈrmander theorem on

Hardy type spaces.

Theorem 4.1. Assume that ab 0, bb 0, k A N , k > �m� 1�=2 and 0 < bÿ

a�2k � m� 1� < 2. Suppose also that m A C k�0;y� is a bounded measurable

function on �0;y� such that

1

y

d

dy

� �l

m�y�

�

�

�

�

�

�

�

�

�

�

a yÿb�Ayaÿ1�2l ; 0a la k; �17�

where Ab 1 and m�x� � 0, 0 < x < d, for certain d > 0. Then the Hankel

multiplier Mm de®nes a bounded operator from H
y

1;m into L1
m .

Proof. To see that Mm de®nes a bounded operator from H
y

1;m into L1
m it is

su½cient to prove that there exists C > 0 such that

kMmak1 aC �18�

for every �1;y�-atom.
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Indeed, let f A L2
m VH

y
1;m. Assume that f �

Py
j�1 ljtxjaj, in S 0

e, where

lj A C , xj A �0;y� and aj is an �1;y�-atom, for every j A N , and being
Py

j�0 jljj < y. Then

Mm f � hm�mhm� f �� �
X

y

j�0

ljMm�txjaj�

is in S 0
e. Moreover, the last series converges in L1

m . Indeed, since Mm commutes

with Hankel translations, from (18) it deduces

X

l

j�n

jljjkMm�txjaj�k1 aC
X

l

j�n

jljj; n; l A N ; n > l:

Hence, since L1
m -convergence implies S 0

e-convergence, we have

hm�mhm� f ���x� �
X

y

j�0

ljMm�txj �aj���x�; a:e: x A �0;y�

and

kMm f k1 aC
X

y

j�0

jljj:

Thus we conclude that

kMm f k1 aCk f ky1;m:

Since L2
m VH

y
1;m is a dense subspace of Hy

1;m, Mm can be extended to H
y
1;m as

a bounded operator from H
y
1;m into L1

m .

We now prove (18). Suppose that m�x� � 0, x A �0; 1�. Otherwise we can

proceed in a similar way. Let a be a �1;y�-atom and assume that a�x� � 0,

xb a, and kaky a g��0; a��ÿ1. Since kak2 a g��0; a��ÿ1=2 and Mm is bounded

from L2
m into itself, HoÈlder's inequality leads to

�2a

0

jMma�x�j dg�x�aC

�2a

0

jMma�x�j
2
dg�x�

� �1=2

am�1
aC: �19�

We choose a function f A Cy�0;y� such that f�x� � 0, x B �1=2; 2� and
Py

j�ÿy f�x=2 j� � 1, x A �0;y� (see [20]). Since m�x� � 0, x A �0; 1�, we can

write

m�x� �
X

y

j�0

mj�x�; x A �0;y�;

where mj�x� � m�x�f�x=2 j�, x A �0;y� and j A N .

To simplify in the sequel we write Mj instead of Mmj
, j A N .

J. J. Betancor and L. R.-Mesa704



Let j A N . Since mj A L2
m , we have that ([3, Lemma 2.1])

Mja � kj]a

where kj � hm�mj�.

It is not hard to see that

jMja�x�ja

� a

0

j�txkj��y�j ja�y�j dg�y�a kak
y

� a

0

j�txkj��y�j dg�y�

aCaÿ2�m�1�

� a

0

j�txkj��y�j dg�y�; x A �0;y�: �20�

On the other hand, since
� a

0 a�x� dg�x� � 0, according to [24, p. 256], it has

Mja�x� �

� a

0

a�y��R1�y�kj��x� dg�y�; x A �0;y�; �21�

where for a measurable function f on �0;y�,

�R1�y� f ��x� �

� y

0

y�y; s�ts�Dm f ��x�s
2m�1 ds

being

y�y; s� �

yÿ2m ÿ sÿ2m

2m
; 0 < s < y

0; otherwise.

8

>

<

>

:

For every l; s A N , 0a la k, by (17), Leibniz's rule leads to

1

x

d

dx

� �l

�x2smj�x��

�

�

�

�

�

�

�

�

�

�

aC
X

l

i�0

2ÿ2j�lÿi��2sj sup
2 jÿ1axa2 j�1

1

x

d

dx

� �i

mj�x�

�

�

�

�

�

�

�

�

�

�

aC2 j�2sÿb��A222j�aÿ1�� l ; x A �0;y�:

Hence we obtain

�Aÿ222j�1ÿa�� l
1

x

d

dx

� �l

�x2smj�x��































2

aC2 j�2sÿb��g�2 jÿ1; 2 j�1��1=2 aC2 j�2sÿb�m�1�; l; s A N ; 0a la k:

By taking into account now that D i
m �

P i
h�0 ch; ix

2h��1=x��d=dx�� i�h, where

ch; i is a suitable positive constant for every h � 0; . . . ; i and i A N , a straight-

forward manipulation allows us to conclude
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k�1� Aÿ222j�1ÿa�x2� lD s
mkjk2

aC
X

l

i�0

X

i

h�0

Aÿ2i22j�1ÿa�i x2h 1

x

d

dx

� �i�h

�x2smj�x��































2

aC
X

l

i�0

X

i

h�0

Aÿ2i22j�1ÿa�i�2jh 1

x

d

dx

� �i�h

�x2smj�x��































2

aCA2l2j�2sÿb�m�1�22jal ; l; s A N ; 0a la k: �22�

By invoking HoÈlder's and Minkowski's inequalities, [30, p. 16] and (22) it

follows

�

y

2a

� a

0

j�txkj��y�j dg�y�dg�x�

a

�
�

y

2a

� a

0

j�txkj��y�j dg�y��1� Aÿ222j�1ÿa�x2�k
� �2

dg�x�

�1=2

�

�
�

y

0

�1� Aÿ222j�1ÿa�x2�ÿ2k
dg�x�

�1=2

aC�Aÿ12 j�1ÿa��ÿ�m�1�

�

�
�

y

2a

�
� a

0

� x�y

jxÿyj

Dm�x; y; z�jkj�z�j dg�z�dg�y��1� Aÿ222j�1ÿa�x2�k
�2

dg�x�

�1=2

aC�Aÿ12 j�1ÿa��ÿ�m�1�

�

�
�

y

2a

�
� a

0

� x�y

jxÿyj

�1� Aÿ222j�1ÿa�z2�kjkj�z�jDm�x; y; z� dg�z�dg�y�

�2

dg�x�

�1=2

� C�Aÿ12 j�1ÿa��ÿ�m�1�

�

�
�

y

2a

�
� a

0

�tx�1�Aÿ222j�1ÿa�z2�kjkj�z�j��y� dg�y�

�2

dg�x�

�1=2

aC�Aÿ12 j�1ÿa��ÿ�m�1�

� a

0

kty��1� Aÿ222j�1ÿa�z2�kjkj j�k2 dg�y�

aC�Aÿ12 j�1ÿa��ÿ�m�1�
a2�m�1�k�1� Aÿ222j�1ÿa�z2�kkjk2

aC�Aÿ12 j�1ÿa��ÿ�m�1�
A2k2 j�m�1ÿb�22jaka2�m�1�

aCA2k�m�12 j�a�2k�m�1�ÿb�a2�m�1�: �23�

J. J. Betancor and L. R.-Mesa706



By proceeding in a way similar to above (see [24, p. 256]), it has

�

y

2a

� a

0

j�R1�y�kj��x�j dg�y�dg�x�

aC�Aÿ12 j�1ÿa��ÿ�m�1�

� a

0

� y

0

kts��1� Aÿ222j�1ÿa�z2�kjDmkjj�k2y�y; s� dg�s�dg�y�

aC�Aÿ12 j�1ÿa��ÿ�m�1�
A2k2 j�2ÿb�m�1�22jak

� a

0

� y

0

y�y; s� dg�s�dg�y�:

Since
� y

0 y�y; s� dg�s�aCy2, y A �0;y�, we conclude that

�

y

2a

� a

0

j�R1�y�kj��x�j dg�y�dg�x�

aCA2k�m�12j�a�2k�m�1�ÿb�2�a2�m�2�
: �24�

By combining (20), (21), (23) and (24) it obtains

�

y

2a

jMja�x�j dg�x�aCA2k�m�12 j�a�2k�m�1�ÿb�
;

and

�

y

2a

jMja�x�j dg�x�aCa2A2k�m�12 j�a�2k�m�1�ÿb�2�
:

Now, we choose j0 A N such that 2 j0aa 1 < 2 j0�1a, provided that aa 1,

and we take j0 � ÿ1, when a > 1. Since
Pn

j�0 Mja converges to Mma, as

n ! y, in L2
m , we can write

�

y

2a

jMma�x�j dg�x�

a

X

y

j�0

�

y

2a

jMja�x�j dg�x�

aC

�

X

j0

j�0

a2A2k�m�12 j�a�2k�m�1�ÿb�2� �
X

y

j�j0�1

A2k�m�12 j�a�2k�m�1�ÿb�

�

aC�a2A2k�m�12 j0�a�2k�m�1�ÿb�2� � A2k�m�12 j0�a�2k�m�1�ÿb��

because 0 < bÿ a�2k � m� 1� < 2. Then, since b > a�2k � m� 1�, it obtains
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�
y

2a

jMma�x�j dg�x�aCA2k�m�1
: �25�

By combining (19) and (25) we obtain (18). Thus the proof is ®nished. r
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