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Abstract. We study the n-dimensional category catn�X� of a compact space X, a

counterpart to Lusternik-Schnirelmann category in the context of n-homotopy theory,

and prove Menger manifold analogues of results due to Montejano and Wong for

Hilbert cube manifolds.

Theorem. For any compact connected Menger manifold M, we have that

catnÿ1�M� � gcatl n �M� ÿ 1 � gcatl n �Kernÿ1�M��;

where gcatl n �M�

� min k
there exists an open cover fUi j i � 1; . . . ; kg of M such

that Ui is homeomorphic to ln � mnnfptg

�

�

�

�

� �

and Kernÿ1�M� is the �nÿ 1�-homotopy kernel of M, introduced by Chigogidze.

1. Introduction.

All spaces are assumed to be locally compact, separable and metrizable.

The Lusternik-Schnirelmann category (L-S category for short) of a space X, denoted

by cat�X �, is de®ned as follows:

cat�X� � min k
there exists an open cover fUi j i � 1; . . . ; kg

such that each Ui is contractible in X

�

�

�

�

� �

:

When X is a compact polyhedron, we may replace ``an open cover'' above

with ``a polyhedral cover'', that is, a cover consisting of subpolyhedra of X.

Throughout the present paper, the Hilbert cube (� the countable product of the

closed interval [0, 1]) is denoted by Q. Also the n-dimensional universal Menger

compactum (see [1], [5], [11] etc.) is denoted by mn. In [17 ], L. Montejano

proved that for any compact connected Hilbert cube manifold (called a Q-

manifold in the sequel) X, a cover U of X such that jUj � cat�X� � 1 can be

chosen so that each member of U is homeomorphic �A� to Q � �0; 1�. A similar
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result for noncompact Q-manifolds was obtained by R. Wong [21] (see Theorem

1.1 below). The purpose of the present paper is to obtain analogous results on

Menger manifolds (called mn-manifolds in the sequel). It is now widely recognized

that there exists a strong similarity between Q-manifold theory and mn-manifold

theory, and the proofs of our results basically ®t into the scheme similar to those

of the previous results mentioned above, while details depend on ®nite dimen-

sional feature and a special construction of Menger manifolds.

In order to state the results of Montejano and Wong precisely, we introduce

the following notion. For a Q-manifold M, let

gcatQ��0;1��M� � min k

there exists an open cover

fUi j i � 1; . . . ; kg such that each Ui is

homeomorphic to Q � �0; 1�

�

�

�

�

�

�

8

<

:

9

=

;

:

Theorem 1.1. (a) ([17 ]). For each compact connected Q-manifold M, we

have that cat�M� � 1 � gcatQ��0;1��M�.

(b) ([21]). For each compact connected Q-manifold M, we have that

cat�M� � gcatQ��0;1��M � �0; 1��.

It is known that the �nÿ 1�-homotopy theory in mn-manifold theory plays

the same role as the one of the homotopy theory in Q-manifold theory. So it is

natural to introduce the n-homotopy theoretic counterpart of L-S category in

order to obtain the corresponding results in Menger manifold theory (Theorems

3.2 and 3.4 below). An appropriate notion for this purpose has been introduced

by R. H. Fox in the paper [13], where the notion is called the n-dimensional

category.

Notation. For a subset A of a space X, int�A� and bd�A� denote the

(topological) interior and the (topological) boundary of A in X respectively. On

the other hand, when A is a manifold, the manifold interior and the manifold

boundary of A are denoted by IntA and qA respectively. The q-dimensional

ball fx A Rq j kxka 1g (kk denotes the standard norm on Rq) is denoted by Dq

and S qÿ1 � qDq, the �qÿ 1�-dimensional sphere. Also I denotes the unit interval

�0; 1� and J denotes the half line �0;y�.

The author would like to express his sincere thanks to the referee for

pointing out some errors of the ®rst draft and also for the detailed comments

which considerably improved the exposition of the paper.

2. Preliminary results on Menger manifolds and n-homotopy.

In this section, we recall some facts on Menger manifold theory and n-

homotopy theory with emphasis on triangulated Menger manifolds. A geometric
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description of the �nÿ 1�-homotopy kernels seems to be new in the literature.

We begin with the de®nition of triangulated Menger manifolds.

Let M0 be a PL manifold of dimensionb 2n� 1 (with or without boundary)

and let L0 be a combinatorial triangulation of M0. Take the second barycentric

subdivision b2
L0 of L0 and let

M1 � st�jL
�n�
0 j; b2

L0� and L1 � b2
L0 jM1:

Inductively, when we have de®ned Mi and its triangulation Li, take the second

barycentric subdivision b2
Li of Li and de®ne

Mi�1 � st�jL
�n�
i j; b2

Li� and Li�1 � b2
Li jMi�1:

In this way, we have a decreasing sequence of PL manifolds �Mi�. The inter-

section My � 7y

i�1
Mi is called a triangulated mn-manifold and the sequence

f�Mi;Li� j ib 0g is called the de®ning sequence of My. Notice that this con-

struction is di¨erent than that of M. Bestvina [1]. The present construction,

called the Lefschetz construction in the sequel, is originally due to Lefschetz [15 ].

If we start with M0 � I 2n�1 with the standard triagulation, then the resulting

compactum is called the n-dimensional universal Menger compactum, and denoted

by mn. A locally compact separable metrizable space is called a mn-manifold

(or, an n-dimensional Menger manifold ) if each of its points has a neighbour-

hood which is homeomorphic to mn. It is easily seen that any triangulated

mn-manifold is a mn-manifold in the above sense. The outstanding theorem of

Bestvina states that the converse holds.

Theorem 2.1 ([1]). (a) A locally compact separable metrizable space X is a

mn-manifold if and only if it is an n-dimensional LC nÿ1 space which satis®es the

following condition, called the disjoint n-cells property.

For each pair a; b : I n ! X of maps and for each e > 0, there exist

two maps a 0; b 0
: I n ! X which are e-close to a and b respectively

such that a 0�I n�V b 0�I n� � q.

(DDnP)

(b) Each mn-manifold is homeomorphic to a triangulated mn-manifold.

It is known that the �nÿ 1�-homotopy theory is a correct framework for

the study of mn-manifolds. The de®nition of n-homotopy is originated by R. H.

Fox [13] and later developed by A. Chigogidze in the context of Menger

manifold theory [5].

Definition 2.2. Two maps f ; g : X ! Y between locally compact separable

metrizable spaces are said to be n-homotopic (denoted by f F
n
g) if, for each

map a : K ! X de®ned on a locally compact separable metrizable space K with

dimKa n, the compositions f � a and g � a are homotopic. If f and g are

proper maps and f � a and g � a are properly homotopic for each proper map
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a : K ! X with dimKa n, then we say that f and g are properly n-homotopic

(denoted by f '
n
p g).

The proof of Whitehead theorem and [6, Proposition 1.5] yield the following

result which will be used repeatedly.

Theorem 2.3 (cf. [9, Proposition 1.1]). Let f : X ! Y be a map between

locally compact LC nÿ1 (� locally �nÿ 1�-connected) separable metrizable spaces

with dimX, dimYa n. The map f is an �nÿ 1�-homotopy equivalence if and

only if the induced homomorphism f] : pi�X� ! pi�Y� is an isomorphism for each

i � 0; 1; . . . ; nÿ 1 and for every choice of base points.

The proper �nÿ 1�-homotopy types of m
n-manifolds determine their topo-

logical types as is stated in the next theorem. We say that a proper map

f : X ! Y between locally compact separable metrizable space induces an epi-

morphism (a monomorphism resp.) of the i-th homotopy groups of ends if, every

compactum K in Y is contained in some compactum L such that, for any choice

of base point � A X ÿ f ÿ1�L�,

pi�X ÿ f ÿ1�L�; �� ���!
f]

pi�Y ÿ L; f ����

� jX �]

?
?
?
y

?
?
?
y
� jY �]

pi�X ÿ f ÿ1�K�; �� ���!
f]

pi�Y ÿ K; f ����

im� jY �] H im f] �ker f] H ker� jX �] resp.), where jX and jY are appropriate inclu-

sions. An isomorphism between homotopy groups of ends is de®ned in the

obvious way.

Theorem 2.4 ([1, 2.8.6, and Chap. 6]). Let f : M ! N be a proper map

between m
n-manifolds.

(a) The map f is properly �nÿ 1�-homotopic to a homeomorphism if and

only if f induces an isomorphism f] : pi�M� ! pi�N� for each choice of base points,

and induces an isomorphism between the i-th homotopy groups of the ends for each

i � 0; . . . ; nÿ 1.

(b) In particular, if M and N are compact, the map f is �nÿ 1�-homotopic to

a homeomorphism if and only if f induces an isomorphism f] : pi�M� ! pi�N� for

each choice of base points and for each i � 0; . . . ; nÿ 1.

Next we introduce the notion of Z-sets in Menger manifolds and state the Z-

set Unknotting Theorem that will be used frequently.

Definition 2.5. A closed set A in a space X is called a Zn-set if, for each

map a : I n ! X and for each e > 0, there exists a map a
0
: I n ! X ÿ A which is
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e-close to a. A closed set in X which is a Zn-set for each n is called a Z-set. It

is known that every Zn-set in each m
n-manifold is always a Z-set.

The DDnP and the Baire category argument imply the following:

Theorem 2.6 ([1, 2.3.8 and Chap. 6]). Let M be a m
n-manifold and let K be

a locally compact separable metrizable space with dimKa n. Then each map

f : K ! M is approximated by an embedding the image of which is a Z-set in M

(such an embedding is called a Z-embedding).

Theorem 2.7 (the Z-set Unknotting Theorem, [1, 3.1.4 and Chap. 6]). Let

f : A ! B be a homeomorphism between Z-sets A, B of a m
n-manifold M and let

iA : A ! M and iB : B ! M be the inclusions of A and B respectively. If iB �

f '
nÿ1

p iA, then there exists a homeomorphism F : M ! M that is an extension of f .

The following result will also be useful in the sequel.

Theorem 2.8 ([12, Theorem 7] and [5, Theorem 8]). For each m
n-manifold

M, there exists a locally compact polyhedron P with dimPa n and a proper

UV nÿ1-map j : M ! P.

Here, a proper map f : X ! Y between locally compact separable metrizable

spaces is called a UV k-map if each ®bre f ÿ1�y� satis®es the following condition:

(UV k): for each embedding e : f ÿ1�y� ! E into an ANR E and for each

neighbourhood U of e� f ÿ1�y�� in E, there exists a neighbourhood V of e� f ÿ1�y��

contained in U such that pi�V� ! pi�U� is trivial for each i � 0; . . . ; k.

It is well known that proper UV nÿ1-maps between LC nÿ1 spaces of dimen-

sion at most n are proper �nÿ 1�-homotopy equivalences (cf. [6, Proposition 1.4]).

Hence we have:

Corollary 2.9. Each m
n-manifold has the same proper �nÿ 1�-homotopy

type as a locally compact polyhedron of dimension at most n. In particular, each

compact mn-manifold has the same �nÿ 1�-homotopy type as a compact polyhedron

of dimesion at most n.

Before proceeding further, let us point out a property of triangulated

m
n-manifolds in the above consturction.

Proposition 2.10. Let My � 7y

i�1
Mi be a triangulated m

n-manifold with

the de®ning sequence f�Mi;Li� j ib 0g. Then

(a) jL
�n�
i jH jL

�n�
i�1jH6y

i�1
jL

�n�
i jHMy for each i,

(b) for each map f : K ! My of a compactum K with dimKa n and

for each e > 0, there exists a map g : K ! My which is e-close to f such that

g�K�H6y

i�1
jL

�n�
i j, and

(c) if N0 is a subcomplex of L0 such that jN0j is a PL manifold of

dimensionb 2n� 1, then jN0jVMy is a m
n-manifold.
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Proof. The assertions (a) and (c) are immediate consequences of the

construction. To verify the assertion (b), ®x an index i and consider the map

f : K ! My ,! Mi. Factor the map through a PL map of an n-dimensional

polyhedron and apply general position to obtain a map f 0
: K ! Mi such that

f 0�K� misses the dual �dimMi ÿ nÿ 1�-skeleton of Li (recall that dimMib

2n� 1). Then the image of f 0 can be pushed into jL
�n�
i j, thus we obtain a map

g : K ! jL
�n�
i jHMy. If we take a su½ciently large i, then we may choose g as

close to f as we wish. r

For a Q-manifold M, the topological type of the Q-manifold M � �0; 1� is

determined by its homotopy type. The corresponding result has been obtained

by Chigogidze for mn-manifolds [7]. He introduced the notion of the �nÿ 1�-

homotopy kernel of a mn-manifold which corresponds to M � �0; 1� for a

Q-manifold M.

Definition 2.11. For a mn-manifold M, let f : M ! M be a Z-embedding

of M into itself which is properly �nÿ 1�-homotopic to id. Then the topological

type of Mn f �M� does not depend on the choice of the embedding (by the

Z-set Unknotting Theorem 2.7), and is called the �nÿ 1�-homotopy kernel of

M (denoted by Kernÿ1�M�). It easily follows from Theorem 2.3 that the

inclusion Kernÿ1�M� ,! M is an �nÿ 1�-homotopy equivalence.

We give a geometric construction of the homotopy kernel for the later

use. For a triangulation P of a polyhedron P and a triangulation I of I, P�I

denotes the cell complex structure of P� I whose cells are of the form:

s� t for s A P and t A I:

Proposition 2.12. Let M be a mn-manifold with a de®ning sequence

f�Mi;Li� j ib 0g. Take a triangulation I0 of the closed interval I and let

J0 � L0 �I0. De®ne b2J0 � b2L0 � b2I0 and let N1 � st�jJ
�n�
0 j; b2J0�; J1 �

b2J0 jN1. Proceed inductively as in the Lefschetz construction to de®ne a se-

quence f�Ni;Ji�g by means of b2Ji � b2Li � b2Ii, and let Ny � 7y

i�1
Ni. Then

Ny is homeomorphic to M and Kernÿ1�M� is homeomorphic to Ny VM0 � �0; 1�.

Proof. Notice ®rst that Ji jNi � f0g � Li � Ji jNi � f1g. Let r : M0 �

I ! M0 � f1g be the projection and observe that r�Ni� � Mi � f1g. Let r �

r jNy : Ny ! M � f1g � MANy VM0 � f1g be the restriction of r to Ny. It

is readily seen that r induces an isomorphism between the i-th homotopy groups

for each i � 0; . . . ; nÿ 1, thus M is homeomorphic to Ny by Theorem 2.4.

Furthermore, the same argument shows that r is �nÿ 1�-homotopic to idNy
.

Also it is easy to see that M � f1g is a Z-set in Ny. Thus Kernÿ1�M� is

homeomorphic to NynM � f1g � Ny V �M0 � �0; 1�). r
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By the Complement Theorem ([4]), we have that Kernÿ1�m
n� is homeo-

morphic to mnnfptg.

Notation 2.13. Throughout this paper, mnnfptg is denoted by ln.

The space ln is topologically characterized as follows. A locally compact

separable metrizable space X is said to be k-tame at the in®nity if, for each

compactum K in X, there exists a compactum LIK such that the inclusion

i : XnL ,! XnK factors through an at most �k � 1�-dimensional compact poly-

hedron up to k-homotopy. That is, there exist a compact polyhedron P with

dimPa k � 1 and two maps a : XnL ! P and b : P ! XnK such that b � a is

k-homotopic to i. A locally compact separable metrizable space Y is said to

be locally k-connected at the in®nity if, for each compactum K in Y, there exists

a compactum LIK such that each map a : S i ! YnL extends to a map a :

D i�1 ! YnK for each i � 0; . . . ; k.

Theorem 2.14 [9, Corollary 2.8]. A noncompact mn-manifold M is homeo-

morphic to ln if and only if M is �nÿ 1�-connected, locally �nÿ 1�-connected at

in®nity, and �nÿ 1�-tame at in®nity.

Definition 2.15. Let M be a mn-manifold. A closed mn-submanifold A of

M is called a clean mn-submanifold if there is a mn-manifold dA in A such that

(a) �M ÿ A�U dA is a mn-manifold,

(b) dA is a Z-set in both of A and �M ÿ A�U dA, and

(c) Aÿ dA is open.

If in addition, A and dA are homeomorphic to mn, then A and �A; dA� are

called a clean mn and a clean mn-pair respectively.

It is easy to see that there exists a sequence

W1 HW2ndW2 HW2 HW3ndW3 H � � �

of clean mn-pairs f�Wi; dWi�g such that ln � 6y

i�1
Wi.

For other aspects of Menger manifold theory, see for example, [1], [4±12].

3. Lusternik-Shnirelmann type invariant in n-homotopy theory and

Menger manifolds.

The following de®nitions are natural counterparts to the cat�X� for a space

X and gcatQ��0;1��M� for a Q-manifold M in the context of n-homotopy theory

and mn-manifolds.

Definition 3.1. (a) For a space X, let

catn�X � � min k

there exists an open cover fUi j i � 1; . . . ; kg

such that each inclusion Ui ! X is

n-homotopic to a constant map

�

�

�

�

�

�

8

<

:

9

=

;

:
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(b) For a mn-manifold M, let

gcatl n�M� � min k
there exists an open cover fUi j i � 1; . . . ; kg

such that each Ui is homeomorphic to ln

�

�

�

�

� �

:

In [13], catn�X� is denoted by hn-cat�X � and is called the n-dimensional

category. Clearly, catn is an n-homotopy invariant.

Our ®rst result is an analogue of Theorem 1.1 (a) (section 1).

Theorem 3.2. For any compact connected mn-manifold M, we have that

gcatl n�M� � catnÿ1�M� � 1:

Corollary 3.3. A compact connected mn-manifold is homeomorphic to mn if

and only if it is the union of two open sets, each of which is homeomorphic to ln.

Proof of Corollary 3.3. It is clear that the compactum mn is the union

of the above open sets. To prove the reverse implication, take a compact

connected mn-manifold M with gcatl n�M� � 2. Then we have that catnÿ1�M� �

gcatl n�M� ÿ 1 � 1, that is, M is �nÿ 1�-connected. Theorem 2.4 implies that mn

is the unique �nÿ 1�-connected compact mn-manifold. See also Appendix. r

Proof of Theorem 3.2. The idea of the proof is similar to the one of

Theorem 1.1 (a). First we prove that gcatl n�M�b catnÿ1�M� � 1. Let U �

fUi j i � 1; . . . ; kg be an open cover such that each Ui is homeomorphic to ln.

Take a closed shrinking fFig of U, that is, a closed (and hence compact) cover

fFi j i � 1; . . . ; kg of M such that Fi HUi for each i. Since UK is homeomorphic

to ln, there exists a clean mn-pair (W ; dW ) in M such that FK HWndW H

W HUK . The existence of such a pair easily follows from the construction of

ln or from the proof of Lemma 2.3 of [9]. Then the space N � �MnW�U dW is

a mn-manifold and it is easy to see (and as is proved in [20]) that the inclusion

N ,! M is an �nÿ 1�-homotopy equivalence, and hence catnÿ1�N� � catnÿ1�M�.

It is easy to construct a retraction W ! dW which extends to a retraction r :

M ! N.

For i � 1; . . . ; k ÿ 1, let Vi � Ui VN. Then fVi j i � 1; . . . ; k ÿ 1g is an open

cover of N and it is easily seen that the inclusion Vi ! N is equal to the

composition Vi ,! Ui ,! M !
r
N which is �nÿ 1�-homotopic to a constant

map (because so is Ui ,! M). Therefore catnÿ1�N�a k ÿ 1, which shows that

catnÿ1�M�a gcatl n�M� ÿ 1.

In order to prove the reverse inequality, let P be a compact connected

polyhedron which has the same �nÿ 1�-homotopy type as M (Corollary 2.9).

Embedding P into a Euclidean space and taking a regular neighbourhood, we may

assume that P is a PL manifold. Let m � dimP. By the invariance of catnÿ1

under the �nÿ 1�-homotopy equivalences, we have that catnÿ1�P� � catnÿ1�M�

(� denoted by k). There exists a polyhedral cover P � fPi j i � 1; . . . ; kg of P
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such that each inclusion Pi ,! P is �nÿ 1�-homotopic to a constant map.

Throughout the proof, one ®xes a triangulation T of P such that each Pi

is supported by a subcomplex of T. For simplicity of notation, P
� j�
i denotes the

j-skeleton of Pi with respect to T. Also the point �0; . . . ; 0� A IntD2n�1 is

denoted by 0. By the assumption on Pi, the �nÿ 1�-skeleton P
�nÿ1�
i is con-

tractible in P for each i.

Consider the product space N � P�D2n�1 � �0; k � 1� and let

Si � Pi �D2n�1 � �0; i�; and

Ti � Pi �D2n�1 � �i; k � 1�; i � 1; . . . ; k:

Since P
�nÿ1�
i is contractible in P, applying general position to P�D2n�1, the cone

c�P
�nÿ1�
i � over P

�nÿ1�
i can be embedded into P�D2n�1 so that c�P

�nÿ1�
i �V �P�

f0g� � the base of the cone � P
�nÿ1�
i . The embedding may be further modi®ed

to an embedding

si : c�P
�nÿ1�
i � ! Pi �D2n�1 � �i; i � 1=3�

such that

(1) Si V si�c�P
�nÿ1�
i �� � si�P

�nÿ1�
i � � P

�nÿ1�
i � f0g � fig, and

(2) si�c�P
�nÿ1�
i ��V qN � si�P

�nÿ1�
i �V qN.

Let S �
i � Si U si�c�P

�nÿ1�
i ��. It has the same homotopy type as Pi U c�P

�nÿ1�
i �, and

in particular is �nÿ 1�-connected. Similarly we obtain an embedding

ti : c�P
�nÿ1�
i � ! P�D2n�1 � �i ÿ 1=3; i�

such that

(3) Ti V ti�c�P
�nÿ1�
i �� � ti�P

�nÿ1�
i � � P

�nÿ1�
i � f0g � fig, and

(4) ti�c�P
�nÿ1�
i ��V qN � ti�P

�nÿ1�
i �V qN.

Let T �
i � Ti U ti�c�P

�nÿ1�
i �� which is �nÿ 1�-connected as well.

For each i � 2; . . . ; k, take a polyhedral arc Li in IntN connecting S �
iÿ1 with

T �
i such that

S �
iÿ1 VLi is the vertex of the cone siÿ1�c�P

�nÿ1�
iÿ1 ��; and

T �
i VLi is the vertex of the cone ti�c�P

�nÿ1�
i ��

(Notice that the vertices of these cones are in IntN ). It is easy to see that

(5) S �
iÿ1 ULi UT �

i is an �nÿ 1�-connected subpolyhedron. De®ne subpoly-

hedra N1; . . . ;Nk�1 of N as follows.

N1 � a regular neighbourhood of T �
1 ;

Ni � a regular neighbourhood of S �
iÿ1 ULi UT �

i for i � 2; . . . ; k; and

Nk�1 � a regular neighbourhood of S �
k :
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Then fNi j i � 1; . . . ; k � 1g is a polyhedral cover of N and we prove that, for

each i � 1; . . . ; k � 1,

(6) the polyhedra Ni and bd�Ni� (� the topological boundary of Ni in N )

are �nÿ 1�-connected.

Proof. Since Ni is a regular neighbourhood of an �nÿ 1�-connected

polyhedron, it is �nÿ 1�-connected as well. To prove that bd�Ni� is �nÿ 1�-

connected, observe ®rst that qNi � bd�Ni�U �Ni V qN�. Let

R1 � P1 � f0g � �1; k � 1�U t1�c�P
�nÿ1�
1 ��;

Ri � Piÿ1 � f0g � �0; i ÿ 1�U siÿ1�c�P
�nÿ1�
iÿ1 ��ULi U

U ti�c�P
�nÿ1�
i ��UPi � f0g � �i; k � 1�; for i � 2; . . . ; k; and

Rk�1 � Pk�1 � f0g � �k; k � 1�U sk�c�P
�nÿ1�
k ��:

The sets T �
1 ;S

�
iÿ1 ULi UT �

i �2a ia k� and S �
k collapse onto R1, Ri

�2a ia k� and Rk�1 respectively and hence

(7) Ni is a regular neighbourhood of Ri �i � 1; . . . ; k � 1�. Recall that

dimNi � dimN � m� 2n� 2 and dimRia dimP�1 � m�1. By general posi-

tion and (7), the �nÿ 1�-connectedness of qNi easily follows from the �nÿ 1�-

connectedness of Ni. Also notice that

(8) Ni V qN is a regular neighbourhood of Ri V qN and

dim�qNi� � m� 2n� 1 and dim�Ri V qN�am� 1:

Now given a map a : S q ! bd�Ni� ,! qNi �qa nÿ 1�, one can extend a to

a map a : Dq�1 ! qNi by the �nÿ 1�-connectedness of qNi. Applying the

general position, one may push im a o¨ Ri V qN in qNi and then push that image

further into cl�qNin�Ni V qN��H bd�Ni�, due to (8). Thus a extends to a map

â : Dq�1 ! bd�Ni� and this proves that bd�Ni� is �nÿ 1�-connected.

Since qNi is a Z-set in Ni and bd�Ni�H qNi, we see that

(9) bd�Ni� is a Zn-set in Ni.

Take a triangulation L0 of N such that each Ni and bd�Ni� are supported by

subcomplexes of L0. Start the Lefschetz construction with M0 � N and the

triangulation L0. This yields a mn-manifold Py and a proof similar to the one

of Proposition 2.12 works to prove that Py is homeomorphic to M. Let Ui be

an open set of Py de®ned by

Ui � int�Ni�VPy � �Ninbd�Ni��VPy for each i � 1; . . . ; k � 1:

By the condition (6) and Theorem 2.4, we see that the mn-manifolds Ni VPy

and bd�Ni�VPy are homeomorphic to mn. By the condition (9) above, we see
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easily that bd�Ni�VPy is a Z-set in Ni VPy. Hence, Ui � �Ninbd�Ni��VPy is

homeomorphic to ln by the Complement Theorem [4]. Thus we have that

gcatl n�M�a k � 1, completing the proof. r

Next we consider the �nÿ 1�-homotopy kernel Kernÿ1�M� of a mn-manifold

M and prove the following theorem that corresponds to Theorem 1.1 (b).

Theorem 3.4. For any compact connected mn-manifold M,

catnÿ1�M� � gcatln�Kernÿ1�M��:

Proof. Since M and Kernÿ1�M� have the same �nÿ 1�-homotopy type (see

De®nition 2.11), we see that

catnÿ1�M� � catnÿ1�Kernÿ1�M��a gcatl n�Kernÿ1�M��:

We need the following lemma for the proof of the reverse inequality.

Lemma 3.5. Let �W ; dW� be a clean mn-pair in mn and let Z be a closed

set in mn such that ZVW � q. Let K be a closed set which is contained in

WndW . Then there exists a homeomorphism f : mn ! mn such that f jZ � id

and f �K�VW � q.

Proof of Lemma 3.5. A proof using the Z-set Unknotting theorem

(Theorem 2.7) seems to be known to experts. We give a brief sketch here. One

can easily take clean mn-pairs (W0; dW0) and (W1; dW1) such that

W0 H �WndW�nK , W HW1ndW1 and W1 VZ � q. By making use of Theo-

rem 2.7, it is easy to construct a homeomorphism f : W1 ! W1 such that

f �W0� � W , f �dW0� � dW , and f j dW1 � id. Extend f to a homeomorphism

f : mn ! mn by declaring that f � id outside W1. Then it follows easily that

f jZ � id and f �K�VW � q.

See [14, Lemma 2.1] for another construction. r

Now we proceed to the proof of the inequality:

catnÿ1�M�b gcatl n�Kernÿ1�M��:

Take a compact polyhedron S which has the same �nÿ 1�-homotopy type

as M (Corollary 2.9) and let k � catnÿ1�M� � catnÿ1�S�. As in Theorem 3.2,

we may assume that S is a PL manifold. There exists a polyhedral cover

fSi j i � 1; . . . ; kg of S such that each inclusion Si ,! S is �nÿ 1�-homotopic to a

constant map in S. Fix a triangulation of S such that each Si is supported by a

subcomplex of the triangulation. The �nÿ 1�-skeleton of Si (with respect to the

triangulation) is contractible in S by the assumption, and hence the inclusion

S
�nÿ1�
i ,! S extends to a map c�S

�nÿ1�
i � ! S of the cone c�S

�nÿ1�
i � over S

�nÿ1�
i . As
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in the proof of Theorem 3.2, there exists a PL embedding ei : c�S
�nÿ1�
i

� !

S �D2n�1 � �0; 1� such that

ei�c�S
�nÿ1�
i

��V �S �D
2n�1 � f0g� � ei�S

�nÿ1�
i

� � S
�nÿ1�
i

� f0g � f0g:

Let

Ti � Si �D
2n�1 � f0gU ei�c�S

�nÿ1�
i

��;

which is an �nÿ 1�-connected subpolyhedron of S �D2n�1 � �0; 1�. A similar

argument to the one in Theorem 3.2 works to prove that a regular neigh-

bourhood Ni of Ti in S �D2n�1 � �0; 1� and its topological boundary bd�Ni�

are �nÿ 1�-connected (notice here that Ni is also a regular neighbourhood

of Si U ei�c�S
�nÿ1�
i

�� which has codimensionb 2n� 1 in Ni). For simplicity,

S �D2n�1 and Si �D2n�1 are denoted by P and Pi respectively. Take ®ne

triangulations P0 of P and J0 of �0; 1� respectively and consider the cell complex

structure P0 �J0 of P� �0; 1�. Adjusting each Ni and taking a su½ciently ®ne

triangulations P0 and J0, we may assume that each Ni is supported by a

subcomplex of P0 �J0.

Start the Lefschetz construction with M0 � P� �0; 1� and the cell complex

L0 � P0 �J0. The resulting compactum My is a mn-manifold which is homeo-

morphic to M, and the �nÿ 1�-homotopy kernel Kernÿ1�M� is homeomorphic

to My VP� �0; 1� by Proposition 2.12. Recall that jL
�n�
i

jH jL
�n�
i�1j for ib 1

(Proposition 2.10). We de®ne an increasing sequence �Ks� of compact polyhedra

as follows.

Ks � jL�n�
s

jVP� �0; ts� and

K
i

s
� jL�n�

s
jVPi � �0; ts�; where ts is a vertex of Js such

that ts < 1 and ts " 1 as s ! y �i � 1; . . . ; k�:

Observe that

(1) Ks HKs�1 H6
sb1

Ks � 6
sb1

jL�n�
s

jVP� �0; 1�,

(2) Ks � 6k

i�1
K i

s
, and

(3) each Ks is a Z-set in My (See the proof of Proposition 2.10 (b)).

Let Ui � int�Ni�VMy. Since Ni and bd�Ni� are supported by subcomplexes of

P0 �J0 and bd�Ni� is a Z-set in Ni, Ui is homeomorphic to ln (see the second

part of the proof of Theorem 3.2).

The idea of the remaining part of the proof is similar to the one of [21].

We will construct an open subset V of Kernÿ1�M�AMy VP� �0; 1� which

is the union of k open sets homeomorphic to ln, and also which contains

6
sb1

jL�n�
s

jVP� �0; 1�. Then V is a mn-manifold and, by Theorem 2.3 and
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Proposition 2.10, we see that the inclusion V ,! Kernÿ1�M� is an �nÿ 1�-

homotopy equivalence. By [7, Theorem 2.2 and Proposition 2.2], we have that

Kernÿ1�V�AKernÿ1�Kernÿ1�M��AKernÿ1�M�. As a ®nal step, we will construct

an open cover of Kernÿ1�V�, each member of which is homeomorphic to ln.

Construction of V: The open set V is de®ned as the union V � 6k

i�1
Vi,

where Vi is an open set which is homeomorphic to ln and contains 6y

s�1
K i

s .

In what follows, we construct an open embedding ei : l
n ! Kernÿ1�M� such that

ei�l
n�I6y

s�1
K i

s . Such an embedding is obtained by modifying the argument

of the one in [21]. Throughout the following construction, we ®x an index

i �� 1; . . . ; k� and a homeomorphism gi : l
n ! Ui. Also ®x a sequence �Wi� of

clean �mn�'s in ln such that

gÿ1
i �Pi � f0g�HW1ndW1 HW1 HW2ndW2 HW2 H � � � H 6

y

j�1

Wj � ln
:

The embedding ei is de®ned as the limit of a sequence of open embeddings

fhl : l
n ! Kernÿ1�M� j l � 1; 2; . . .g.

Step 1. There exists an open embedding h1 : l
n ! Kernÿ1�M� such that

h1 jW1 � gi jW1 and h1�W2�IK i
1.

Proof. Suppose that K̂ i
1 � K i

1ngi�W1ndW1�0q (otherwise, just take gi as

h1). First we show that

(1.1) there exists a map f 0
1 : K̂ i

1 ! Kernÿ1�M� which is �nÿ 1�-homotopic

to the inclusion K̂ i
1 ! Kernÿ1�M� in Kernÿ1�M� such that f 0

1 �K̂
i
1�H gi�W1�n

Pi � f0g.

There are a couple of ways to obtain such a map f 0
1 and one of them is

described below. Take a ®ne triangulation T of K i
1 (that could be much ®ner

than L1 of the de®ning sequence) and replace K̂ i
1 by the star st�K̂ i

1;T�. It

su½ces to construct a map de®ned on st�K̂ i
1;T� with the above property, so

we assume at the outset that K̂ i
1 is a compact polyhedron. The polyhedron K̂ i

1

is a subset of Pi � �0; 1�. Using a homotopy along the �0; 1�-direction in Pi �

�0; 1�, K̂ i
1 can be deformed to a subset of gi�W1ndW1� which does not intersect

Pi � f0g. Let H : K̂ i
1 � �0; 1� ! Pi � �0; 1� be the homotopy such that H0 � the

inclusion K̂ i
1 ,! Pi and H1�K̂

i
1�H gi�W1ndW1� (where Ht�x� � H�x; t�, �x; t� A

K̂ i
1 � �0; 1�). We may assume that H�K̂ i

1 � �0; 1�� is a subpolyhedron of Pi � �0; 1�

with dimH�K̂ i
1 � �0; 1��a n� 1 and also that dimH1�K̂

i
1�a n.

Consider the set K̂ i
1 UH�K̂

i�nÿ1�
1 � �0; 1��UH1�K̂

i
1� that is a polyhedron of

dimension at most n. Using a similar trick to the one of [1, p. 34, Absorption

Move] (cf. Proof of Proposition 2.10 (b)), the above set can be ``pushed back''

into P� �0; 1�VMy keeping K̂ i
1 ®xed. A careful control can be made so that

the image of the set is contained in P� �0; 1�VMy � Kernÿ1�M�. Let u1 :
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K̂ i
1 UH�K̂

i�nÿ1�
1 � �0; 1��UH1�K̂

i
1� ! P� �0; 1�VMy be the resulting map �u1 j

K̂ i
1 � the inclusion�. Then f 0

1 � u1 �H j : K̂ i
1 � f1g ! Kernÿ1�M� is the required

map. Indeed, f 0
1 �K̂

i
1�H gi�W1�nPi � f0g and also the map u1 �H j : K̂

i�nÿ1�
1 �

�0; 1� ! Kernÿ1�M� provides a homotopy between the inclusion K̂
i�nÿ1�
1 ,!

Kernÿ1�M� and f 0
1 j K̂

i�nÿ1�
1 and this easily implies that f 0

1 is �nÿ 1�-homotopic to

the inclusion K̂ i
1 ,! Kernÿ1�M� in Kernÿ1�M�. This completes the proof of (1.1).

Let L1 � �Kernÿ1�M�ngi�W1��U gi�dW1� which is a mn-manifold.

(1.2) There exists a map f 00
1 : f 0

1 �K̂
i
1� ! L1 such that f1 � f 00

1 � f 0
1 is �nÿ 1�-

homotopic to the inclusion K̂ i
1 ,! L1 in L1.

Proof. Consider the sets

gÿ1
i � f 0

1 �K̂
i
1��HW1ndW1 HW1 HW2ndW2 HW2:

Applying Lemma 3.5 to mn
AW2, Z � dW2, �W ; dW� � �W1; dW1�, K �

gi� f
0
1 �K̂

i
1��, we obtain a map ~f1 : W2 ! W2 such that ~f1 j dW2 � id and

~f1�g
ÿ1
i � f 0

1 �K̂
i
1���VW1 � q. Clearly ~f1 is �nÿ 1�-homotopic to idW2

because

W2Amn. The map gi � ~f1 � g
ÿ1
i j gi�W2� naturally extends to a map ^f1 :

Kernÿ1�M� ! Kernÿ1�M� (by de®ning ^f1 � id outside gi�W2�) which is �nÿ 1�-

homotopic to id in Kernÿ1�M�. Furthermore, there exists a retraction gi�W1� !

gi�dW1� which extends to a retraction r1 : Kernÿ1�M� ! L1. The required map

f 00
1 is de®ned by f 00

1 � r1 � ^f1.

Summarizing the situation, we have that

(1.3) there exists a map f1 : K̂
i
1 ! L1 which is �nÿ 1�-homotopic to the

inclusion K̂ i
1 ! L1 in L1 such that f1�K̂

i
1�H gi�W2ndW2�VL1.

Since f1 j K̂
i
1 V gi�dW1� is �nÿ 1�-homotopic to the inclusion K̂ i

1 V gi�dW1� !

gi�dW1� ! L1. By the Homotopy Extension Theorem [4, Proposition 2.2] or

[1, Theorem 2.1.8], we may assume that f1 j K̂
i
1 V gi�dW1� � id. By the Z-set

Approximation Theorem 2.6, we may further assume that f1 is a Z-embedding

such that f1�K̂
i
1�V gi�dW1� � K̂ i

1 V gi�dW1�. Note that gi�dW1� is a Z-set in L1.

By the Z-set Unkotting Theorem 2.7, f1 extends to a homeomorphism f1 : L1 !

L1 which satis®es:

(1.4) f1 j gi�dW1� � id; f1�K̂
i
1�H gi�W2n�dW2 UW1��, and

(1.5) f1�K̂
i
1�V gi�dW1� � K̂ i

1 V gi�dW1�.

The desired open embedding h1 : l
n ! Kernÿ1�M� is de®ned as follows.

h1 jW1 � gi and h1 j l
nnW1 � f ÿ1

1 � gi:

This completes Step 1.

Step 2. There exists an open embedding h2 : l
n ! Kernÿ1�M� such that

h2 jW2 � h1 and h2�W3�IK i
2.
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Proof. Suppose that K̂ i
2 � K i

2nh1�W2ndW2�0q (otherwise, just take h1 as

h2). As in Step 1 (1.1), one can show that

(2.1) there exist a map f 0
2 : K̂ i

2 ! Kernÿ1�M� which is �nÿ 1�-homotopic

to the inclusion K̂ i
2 ! Kernÿ1�M� in Kernÿ1�M� such that f 0

2 �K̂
i
2�H gi�W1ndW1�n

Pi � f0g � h1�W1ndW1�nPi � f0g.

Let L2 � �Kernÿ1�M�nh1�W2��U h1�dW2� which is a mn-manifold. Next we

show that

(2.2) There exists a map f 00
2 : f 0

2 �K̂
i
2� ! L2 such that f2 � f 00

2 � f 0
2 is �nÿ 1�-

homotopic to the inclusion in L2.

Here f 00
2 is obtained as the composition of two maps that are similar to those

described in (1.2). First we push f 0
2 �K̂

i
2� o¨ h1�W1� and next o¨ h1�W2�, but

staying in h1�W3ndW3�. Let ^f2 : Kernÿ1�M� ! Kernÿ1�M� be the resulting map

such that ^f2 � id outside h1�W3�. A retraction r2 : Kernÿ1�M� ! L2 is de®ned

as the composition of two retractions

Kernÿ1�M� ! �Kernÿ1�M�nh1�W1��U h1�dW1� ! L2:

As in (1.2), the composition f 00
2 � r2 � f 0

2 is the desired map. Therefore,

(2.3) there exists a map f2 : K̂
i
2 ! L2 which is �nÿ 1�-homotopic to the

inclusion K i
1 ,! L2 in L2 such that f2�K̂

i
2�H h1�W3ndW3�nh1�W2�.

By proceeding now the exactly in the same way as in Step 1, we have the

desired open embedding h2. This completes Step 2.

Continuing this process, we have a sequence fhl : l
n ! Kernÿ1�M� j l �

1; 2; . . .g of open embeddings such that

(3) hl jWl � hlÿ1 and hl�Wl�1�IK i
l for each l.

Using the same argument as in [3, 20.1], one can see that the limit ei �

liml!yhl is the desired open embedding.

Let Vi � ei�l
n� and let V � 6k

i�1
Vi. Clearly V is an open set in Kernÿ1�M�

containing 6y

s�1
Ks. As was previously mentioned, Kernÿ1�V� is homeomorphic

to Kernÿ1�M�.

This completes the construction of V.

It remains to construct an open cover of Kernÿ1�V�, each member of which

is homeomorphic to ln. This is carried out as follows. We consider the prod-

uct space P� �0; 1� � �0; 1� which contains the previous P� �0; 1� as the subspace

P� �0; 1� � f0g. Take a triangulation I0 of �0; 1�, and let K � P0 �J0 �I0 be

the cell complex structure of P� �0; 1� � �0; 1�. Begin the Lefshetz construc-

tion (as in Proposition 2.12) with P� �0; 1� � �0; 1� and K to obtain another

mn-manifold M which is also homeomorphic to M. An important observation

here is that
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(4) MHM � �0; 1�.

We consider the previous open set V as a subset of M � f0g and let ~V �

V � �0; 1�VMH ��P� �0; 1�� � �0; 1��VM. It has clearly the same proper �nÿ 1�-

homotopy type as V. The above observation (4) implies that ~V is open in

M, and hence is a mn-manifold which is homeomorphic to V (Theorem 2.4).

Furthermore, by the construction, we see that

Kernÿ1� ~V�A ~V V �P� �0; 1� � �0; 1�� � ~Vn�V � f1gVM�:

Let ~Vi � Vi � �0; 1�VMH ~V . Then it is easy to verify the conditions of

Theorem 2.14 (or to inspect the geometric situation directly) to see that ~ViAln.

Therefore f ~Vi j i � 1; . . . ; kg is the desired open cover of Kernÿ1� ~V�A
Kernÿ1�V�. This completes the proof. r

Appendix. The monotone union of �ln�'s is ln.

In connection with Corollary 3.3, the following result would be worth

mentioning. It is a Menger manifold analogue of Brown's Theorem [2].

Theorem A. Let M � 6y

i�1
Ui be a mn-manifold, where each Ui is an open

set which is homeomorphic to ln such that Ui HUi�1. Then M is homeomorphic

to ln.

As in the proof of Brown, the proof is based on the following engul®ng

lemma.

Lemma B. Let W1 and W2 be clean �mn�'s in ln such that W1 HW2ndW2.

For each compact set K of ln, there exists a homeomorphism h : ln ! ln with

compact support such that h jW1 � id and h�W2�IK .

Proof of Lemma. Let W3 and W4 be clean �mn�'s such that W2 UKH
W3ndW3 HW3 HW4ndW4. For i � 2; 3, the subset �WinW1�U dW1 is homeo-

morphic to mn in which dW1 U dWi �Amn l mn� is contained as a Z-set. By the

Z-set Unknotting Theorem, there exists a homeomorphism h1 : �W2nW1�U dW1

! �W3nW1�U dW1 such that h1 j dW1 � id and h1�dW2� � dW3. Notice that

�W4nWi�U dWi is homeomorphic to mn which contains dW4 U dW1 �Amn l mn� as

a Z-set �i � 2; 3�. Applying the Z-set Unknotting Theorem again, we obtain a

homeomorphism h2 : �W4nW2�U dW2 ! �W4nW3�U dW3 such that h2 j dW4 � id

and h2 j dW2 � h1 j dW2. Let h : ln ! ln be the homeomorphism de®ned by

h jW1 U �lnnW4�U dW4 � id, h j �W2nW1�U dW1 � h1 and h j �W4nW2�U dW2 �

id. Then h�W2� � W3 IK and h is the desired homeomorphism. r

Having the above lemma at hand, the proof of Theorem proceeds exactly in

the same way as the one of Brown's Theorem.
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