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1. Introduction.

In this paper we study the asymptotic behavior of scattering amplitudes
by two magnetic fields at large separation in two dimensions. We denote by
x = (x],x2) a generic point in R? and we write

—i0; —a)*, 0, =0/dx;,

MN

H(A) = (—iV — 4)?
]:1

for the Schrodinger operator with magnetic potential A(x) = (a;1(x),a2(x)) :
R? — R*>. The magnetic field b(x) is defined as b=V x A = 01a; — dra; and

o= (2n)"" Jb(x) dx

is called the total flux of field b, where the integration with no domain attached is
taken over the whole space. This abbreviation is often used in the discussion
below. We are now given two smooth magnetic fields b; e CgO(RZ), j=1,2,
with compact support. Let A4;(x), V x 4;=>5;, be the magnetic potential
associated with b;. For given magnetic field b(x), the corresponding potential
A(x) is not uniquely determined, but the scattering amplitude is invariant under
the gauge transformation 4 — A +Vg. We fix one of such magnetic potentials.
The precise form is specified in Section 2 (Proposition 2.1). We set

Hy=H(A) + Ayg) = (—=iV — A) — Ayg)?,  Aza(x) = Ar(x — d), (1.1)

for d = (dy,d,) € R* with |d| » 1, and we denote by f,;(w — ;1) the scattering
amplitude for the pair (H,, Hy), where Hy = —4 is the free Hamiltonian. The
quantity |f,(w — w’; A)|? is called the differential cross section for scattering from
the initial direction w € S' to the final direction w’ at energy 4 > 0, S! being the
unit circle. The precise representation for f,(w — w’; 1) is also given in Section
2 (Proposition 2.2). The aim here is to study the asymptotic behavior of
f1(w — w'; 1) as the distance |d| between the centers of fields bi(x) and byy(x) =
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by(x —d) goes to infinity. The two dimensional case is the most interesting. In
fact, the magnetic effect is strongly reflected in this case for the topological reason
that R*\{0} is not simply connected.

We shall formulate the obtained result. We set

Hy = H(4)) = (=iV — 4)* (1.2)

for j=1,2, and denote by f;(w — ';1) the scattering amplitude for the pair
(Hj,Hy). We use the notation 0(x;w) to denote the azimuth angle from
direction w e S!.

THEOREM 1.1.  Let the notation be as above. Denote by «; the total flux of
field b; e CF(R?), j=1,2, and define t(d;w,w') by

(d;0,0") = 0(d;w) — 0(d; —o).

Assume that at least one of oy and oy is zero. If @ and ' satisfy w # +d/|d|,
o' #+d/|d| and o # o', then f;(w — @'; 1) behaves like

Jalw — @' 2) = expliogt(—d; w, ")) fi (0 — @5 1)
+ exp(in(d; 0,0")) o, 4 (@ = @'; A) + o(1) (1.3)
as |d| — oo, where
f2,d(w — ') = CXP(—i\/Zd (0 = w)) f1{o— o' A)
is the scattering amplitude for the pair (H 4,Hy) with Hy 4 = H(Aay).

We can derive the asymptotic formula even for the case w = +d or o = icf,
where d =d/|d|. For brevity, we assume that o =0. Then f;,(—d — o'; 1)

and f;(w — d;1) obey the same formula as 1.3). This can be seen from
the proof of Theorem I.1. However f;(d — @’;A) and f,(w — —d;A) take a
different form. We can prove the following theorem.

THEOREM 1.2.  Under the above situation, one has the following statements:
(1) If o' # —d, then

fald — @' 2) = fi(d — o'; 1)

+ (cos o) exp(ioy (. — O(d; —))) f5 4(d — '3 2) + o(1).
) If w #d, then
fylo = =d;2) = fi(w — —d; 1)

+ (cos oy m) exp(ic (0(d; ) — 1)) fo. g (@ — —d; 1) + o(1).
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3) If o=d and o' = —d, then
fild = —d; 2) = fi(d — —d; }) + (cosoqn)*fo.q(d — —d; 1) + o(1).

Magnetic potentials are not in general expected to fall off rapidly at infinity
even if fields are assumed to be of compact support. Let be Cy° (R*). We
define

Ap(x) = (a15(x), a2 (x)) = (=020(x), O19(x)) (14)

with ¢ = (271)*1 [log|x — y|b(y)dy. ThenV x 4, = Ap = b and A, becomes the
potential associated with field 5. However, if the flux o does not vanish, then
Ap(x) cannot decay faster than O(|x|™') at infinity. In fact, it behaves like

Ap(x) = Au(x) + O(|x] %), |x] — oo, (1.5)

where
Ay (x) = a(=x2/|x]* 21 /|x]%). (1.6)

The motion of particles in quantum mechanical systems is subject to the influence
of magnetic potentials as well as of magnetic fields. This fact can be found
in the asymptotic formula [1.3). The phase factor exp(io;t(d;w,w’)) depends
on the flux o of the field »;. This means that b; has an influence upon
the scattering by field by; =V x Ay4, although the support of by is located in
the long distance from that of by;. Such a quantum phenomenon is known
as the Aharonov-Bohm effect ([2]). If, in particular, o is a half-integer, then
f4(d — @';2) obeys the asymptotic formula

fyld = '3 2) = fi(d — '3 2) +o(1)

in [Theorem 1.2, This means that the scattering by field b; does not make any
contribution to the leading term in the asymptotic formula.

The present paper is motivated by the recent work [7], where the same
problem has been studied in the case of scattering by potentials for the
Schrédinger operator —4 + Vi(x) + Va(x — d) with potentials falling off rapidly
at infinity. The case is quite different in the scattering by magnetic fields in
two dimensions. Roughly speaking, the difference comes from the long-range
property of magnetic potentials. Several new devices are required. We
introduce

H, = H(Aoc) = (_ZV - Aa)z (17)

as an auxiliary operator, where A,(x) is defined by [1.6]. By [1.3), the difference
H(Ap) — H, becomes a perturbation of short-range class. The potential A4,(x)
satisfies V x A, = 2nad(x) in the distribution sense and the Hamiltonian H, has a
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o-like magnetic field. The scattering amplitude f,;(w — @’; 1) is represented in
terms of the eigenfunction of H,. This Hamiltonian admits the partial wave
expansion in polar coordinates and its outgoing eigenfunction takes the form

0 (x; 2, 0) =) exp(—iva/2) exp(il0(x; —))J,(V2lx])

leZ

with v =|/ —a|, where J,(z) denotes the Bessel function of order p. One of
important ingredients to prove the main theorems is the asymptotic behavior

0. (x; 4, 0) = exp(ia(0(x; 0) — 7)) exp(iVix - o) (1 + o(1)), 0(x; ) # 0,

at infinity. This formula is known in the physical literatures (see [2], [3], [9] for
example). If a is not an integer, the asymptotic form on the right side has the
phase gap along direction w. This makes the phase factors in the asymptotic

formula [1.3).

We prove in Section 3 and in Section 6. The
proof makes an essential use of the assumption that at least one of two flux «;
and o is zero. However the idea developed here, particularly in Section 4,
seems to extend to the general case without such a restriction. We are going to
discuss the detailed matter in another paper [13]. We end the section by making
a comment on the extension to the case of several centers. If at most one field
has a nonzero flux, then we can derive a similar asymptotic formula when all
the distances between respective centers of fields go to infinity. We skip the
details.

2. Scattering by magnetic field.

In this section we make a brief review on the scattering by magnetic fields
with compact support. The aim here is to derive the representation formula for
scattering amplitudes. The result is mentioned as [Proposition 2.2/ at the end of
the section. The derivation is rather formal. The rigorous treatment can be

found in [10], [11].

2.1. We begin by specifying the form of magnetic potential. Let
beCy (Rz) be given smooth magnetic field with compact support

suppb < {x e R*: |x| < M} (2.1)

for some M >0, and we denote by o the total flux of . We construct
the magnetic potential A(x), V x 4 = b, which has the property A(x) = A,(x)
for |x|> 1 large enough, where A,(x) is defined by [1.6]. Let A(x)=
(a1p(x), azp(x)) be defined by (1.4). By [I.5], we have xjap(x)+ x2a2(x) =
O(|x|™") as |x| — o, and hence we can define aj(x) as
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ap(x) = — J:O (x1a15(5X) 4+ X205 (sx)) ds

for x # 0.

LEmMA 2.1. One has the relation
Ap(x) = Ay(x) + Vap(x) + E(x)

for x #0, where E(x) = (e1(x),ex(x)) is given by

e1(x) = J:O sxob(sx)ds, ex(x) = — J:O sx1b(sx) ds.

Proor. We set bjk = @Clkb — 5kajb, 1 <j, k<2, for Ay, = (alb,aZb), so that
b(x) = b1a(x) = —by1(x). A simple calculation yields

0

diap(x) = — Jl (ajp(sx) + s(d/ds)ajp (sx) + sxibj(sx)) ds

for kK #j and hence we obtain

o0

Ojap(x) = ap(x) — J

by partial integration. By [(1.5), R4,(Rx) — A,(x) as R — oo. This proves the
lemma. [l

sxrbjr (sx) ds — lim Raj(Rx)
1 R— 0

We now introduce a cut-off function ye C;°[0,00) with the following
properties: y(s) > 0 is nonnegative and

2)=1 for 0<s<1, y(s)=0 fors>2. (2.2)

Let M >0 be as in and let E(x) be as in [Lemma 2.1. We set 7, (x) =
y(r/M) with r=|x|, and 7 ,(x)=1—7,,(x). Then E(x) vanishes on the
support of ., and hence A,(x) is decomposed into
Ay = Lot + X)) A = AX) +V (T oo pep)
by [Lemma 2.1, where
A(X) = oo (¥)42(x) + B(x)

with B=a,Vy,, + 7yAp. The magnetic potential A(x) still has b(x) as a field,
and it satisfies 4(x) = A,(x) for |x| > 2M. Thus we have proved the following
proposition.

PROPOSITION 2.1.  Let b e C(R?) be given smooth magnetic field with flux o.
If b(x) has support in {|x| < M} for some M >0, then there exists a smooth
magnetic potential A(x) associated with b such that
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A(x) = Ay(x) = al=x2/ | 3 /Ix), - |x] > 2M.

2.2. We fix the potential A(x) as in the above proposition, and we write
H for the operator H(A4) = (—iV — A)* throughout the section. This operator
admits a unique self-adjoint realization in L?(R*). We denote by the same
notation H this self-adjoint operator, which has the domain %(H) = H*(R?),
H*(R?) being the Sobolev space of order s. The operator H is known to have
the following spectral properties ([6]): (1) H has no positive bound state energies;
(2) The resolvents

R(A+icH)=(H—-2TFig)", &>0,
have the boundary values to the positive axis

R(4 +i0;H) = 1133 R(A+igH), 1>0,
as an operator from the weighted space L2(R*) = L*(R?*;{x)* dx) into L> (R?)
for s> 1/2, where (x> = (1 + |x|*)"/2.
By [Proposition 2.1, the difference H — Hy between H and the free
Hamiltonian Hy = —A4 1s a perturbation of long-range class. Nevertheless the
ordinary wave operators

Wi(H,Hy) =s— tligl exp(itH) exp(—itH,) : L*(R*) — L*(R?)

are known to exist and to be asymptotically complete ([8]). Hence the scattering
operator

S(H,Hy) = W;(H,H))W_(H,Hy) : L*(R*) — L*(R?)

can be defined as a unitary operator.
Recall that 0(x;w) denotes the azimuth angle from direction w e S!. Let

Po(x; A, @) = exp(iﬂx ‘w), A>0, weS!,

be the generalized eigenfunction of Hy, Hyp, = Ap,, where the notation - denotes
the scalar product in R?. As is well known, ¢, is expanded as

0o(x; 4y ) = > explill|n/2) exp(il0(x; ))Jy (V2]x]) (2.3)
leZ

in terms of the Bessel functions J,(z). If we define the unitary mapping # from
Sl

).
L*(R?) to L*((0,00);dA) ® L*(S") by

(Fu)(h o) =27"202n)"" Jg?)o(x; 2, o)u(x) dx,
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then H is diagonalized as & *Ho# = /x on the space L*((0,0);d.) ® L*(S!),
and the scattering operator S(H, Hy) has the direct integral decomposition

o0
S(H,Ho) ~ FS(H, H)) F* = J ® S(J: H, Ho) d),
0
where the fibre S(4; H, Hy) : L*(S') — L?(S') is called the scattering matrix at
energy 4 >0 and it acts as

(7 S(H, Ho)u)(4, 0) = (S(4; H, Ho) (7 u)(4,-)) ()
for u e L*(R?).

2.3. We proceed to the representation for the integral kernel of S(4; H, Hy).
Let H, = H(A4,) be as in (1.7). By [Proposition 2.1, the perturbation H — H, is
of short-range class. We represent the kernel of S(4; H, Hy) as the sum of the
kernels of two scattering matrices S(4; H,, Hy) and S(4; H, H,).

We first consider the kernel of S(4; H,, Hy). The operator H, is rotationally
invariant. We work in the polar coordinate system (r,0) and write L?(R.) for
L?((0,00);dr). Let A;, [ € Z, be the eigenspace associated with eigenvalue [ of
operator —id/d0 acting on L?(S'). Then we have the decomposition

LRO®L(S) =) @ (L*(R.) ® ).

leZ

If we define the unitary mapping
(Uu)(r,0) = r'u(r0) : L*(R*) — L*(R;) ® L*(S"),
then U yields the partial wave expansion for H,. We formally write

H,~UH,U" =) @ (H,®Id),
leZ

where Id i1s the identity operator and Hj, is given by
Hy, = —0F + (v} = 1/4)r?
with v= |/ —a|. The operator Hy, is self-adjoint in L?>(R,) with domain

9(Hy) ={ueL*(R.) : Hyue L*(R)), lim r2u(r) < w0}

r—0
and hence H, also becomes self-adjoint in L*(R?*) with domain

9(H,) ={ueL*(R*) : HueL*(R*), lim |u(x)|< oo}

r=|x|—0

The potential A,(x) has a strong singularity at the origin, so that the domain
9(H,) does not necessarily coincide with the domain of H and H,. Nevertheless
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it is known ([10]) that the wave operators W, (H,, Hp) exist and are asymp-
totically complete Ran W, (H,, Hy) = L*(R?).

We shall define the generalized eigenfunction ¢ (x;4,w) of H,. To do this,
we make use of expansion formula (2.3) for ¢y(x;4,w). We set

ex(r) = exp(xi|l|n/2)Jy(r) — exp(£ivm/2)J,(r).
The Bessel function J,(r) obeys the asymptotic formula

To(r) = (2/7) 2r 2 cos(r — (2p + Da/4) (1 + gm(r) + O™, r— o0,
for any m > 1 large enough, where g,,(r) obeys (d/dr)* gm(r) = O(—'7%). Hence
1t follows that
ex(r) = exp(Fir)(Czir 2 4+ 0(r /%)) + exp(+ir) O )

for some constant Cy; # 0. By definition, e ;(r) satisfies the incoming radia-
tion condition e’ +ie_; = O(r~/?) at infinity, while e,(r) satisfies the outgoing

radiation condition €', —ie;; = O(r~3/). Thus, if we take account of formula

(2.3) and of the simple relation
exp(il0(x; —)) = exp(i|l|x + il0(x; w))
between azimuth angles 0(x;®) and 0(x; —w), then ¢ is defined by
9= (x;4,0) = Zexp(iivn/Z) exp(il0(x; +))J,(V|x|) (2.4)
lez

with v=|/—o| again. The series converges locally uniformly and ¢
satisfies H,p- = Ap-. The eigenfunction ¢ 1s formally represented as ¢ =
W, (H,, Hy)p, by using the intertwining property of wave operators.

We often identify the coordinates over the unit circle S! with the azimuth
angles from the positive x| axis. The scattering matrix S(4; H,, Ho) : L*(S') —
L?(S") has the property

S(4; Hy, Ho) = 9, (x34,7) = 0_(x; 4, 7).
Since

exp(ivet/2) exp(—il0(x; —w)) = exp(i(v — )m) exp(—iva/2) exp(—il0(x; w))

by a simple computation, S(4; H,, Hy) has the kernel

S(e', @34, Hyy Ho) = (21) 1)~ exp(i(l — v)m) explil(w' — w)).
leZ

According to [10], the sum on the right side equals
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> " exp(i(l — v)m) expl(il6) = 2m(cos and(0) — (isinam/m)e’™ " Fy(0)),
leZ

where [0 denotes the usual Gauss notation and Fy(6) is defined by
Fo(0) = v.p.e”/(e? —1).
Thus we obtain
S(w',w; A, Hy, Hy) = cos amd(w’ — w) — (isinazn/n)e™ @) Fy(w' — w).

This kernel has been calculated by [2], [10]. We refer to [1], [4], for
the recent works related to the spectral theory for Hamiltonians with o-like

magnetic fields.

2.4. We shall derive the representation for the kernel of S(4;H, Hy). By
the chain rule of wave operators, we have

Wi (H,Hy) = Wy (H, H,) W, (H,, Ho)
and hence
S(H, Hy) = W (H,, Ho)S(H, H,)W_(H,, Hy),

where S(H,H,)= W} (H,H,)W_(H,H,). The existence and completeness of
wave operators W, (H, H,) follow from those of Wy (H,, Hy) and W, (H, Hy) at
once. Thus S(H, Hy) is decomposed into the sum

S(H,Hy) = S(H,,Hy) + W} (H,,Ho)(S(H,H,) — 1d)W_(H,, Hy). (2.5)

We have already calculated the kernel of S(4; H,, Hy). Let S, denote the second
operator on the right side of (2.5) and we consider the operator

FS$F*: L*((0,00):d)) @ L*(S') — L*((0,00);d1) ® L*(S1).

If we make use of the formal relation ¢ = W, (H,, Hy)p,, then this operator has
the kernel

SZ(wla ;3 )“/7 j‘) = 2_1(277:)_2((S(Ha Hoc) - Id)(p+( ;ia CO), ¢—( ;/1/76()/))7
where the notation ( , ) stands for the L? scalar product in L*(R*). We set

Hom(X) =1 =20 (x); xa(X) = s (r) = x(r/2M),

for the cut-off function y(s) € C;°[0, o) with property (2.2). The function y_ ,,
has support in {|x| >2M}. By [Proposition 2.1, A(x) = A,(x) on the support
of y.., and hence H = H, there. The wave operator W, (H, H,) is expressed
through the limit
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W.(H,H,) =s— tligl exp(itH )y s exp(—itH,)

and hence we have

=00
S(H,H,) — Id = exp(itH,)y s exp(—itH)W_(H, H,)

t=—o0

=i J exp(itH,)DyyW_(H, H,) exp(—itH,) dt

by the intertwining property, where

Dy = Hofoors — Yoot = HY o ng — XooneH = [H, X oopt) = sy HI- (2.6)

Since H, and y.,, are rotationally invariant, we may write the commutator
Dy, as

Dy = [eraXooM] = [H()?XooM] = [XM>H0]

and D), fulfills the relation Dy, = —Dy. We insert this integral representation.
If we further make use of relation

exp(—itH,)p- = exp(—itd)p+
and of formula

Jexp(it(/l' — ) dt = 2m(3 — 2),

then we obtain
Sy, w; ', A) = (i/4n) (o', w; ', A)O(A" — A)
by a formal computation, where
(o' 0;)',)) = —(W_(H,H,)p,(-;4,0), Dyp_(-; 1, 0)).

Since W_(H, H,) is represented in the integral form
0
W_(H,H,) = )om — iJ exp(itH)D s exp(—itH,) dt,
—00

we have
Sy(',w; 2, 2) = (i/4n)] (@', w; 2)0(A' — A)
again by a formal computation, where

I @;4) = ((—Xon + ROA+i0; H)Dy)gp (-5 4,0), Dypgp_(- 5 4, 0")).



Scattering amplitudes in magnetic fields 655

Thus S(4; H, Hy) : L>(S') — L*(S') has the integral kernel
S(w' w; A, H, Hy) = S(w',w; 4, Hy, Hy) + Sh(o', w3 1),
where
Sa(w', 03 2) = =(i/4m)(Y (-5 4, @), Dyg (-1 2,0"))
with
(35 42) = (fag — RO+ 10; YD), (34, ). 2.)

As is easily seen, _ (x; 4, ) is a unique solution to equation (H — A)y, = 0 such
that ¥, — ¢, (x;4,w) satisfies the outgoing radiation condition at infinity.

We now define the scattering amplitude in question. The scattering
amplitude f(w — w'; ) for scattering from initial direction w € S! to final one o’
at energy 4 > 0 is defined by

flo— o' 2)=cA)(S(@,w;i H,Hy) — o —v))
with ¢(4) = (2r/ivZ2)"/%. We obtain the following proposition.

PROPOSITION 2.2. Assume that ® # w'. Then the scattering amplitude
f(o— o'y 1) is represented as

flw— ;7)) = c(Q)(fo(0" — w) = (i/4n)g.(0 — '; 1))
with ¢(2) = (2r/ivVi)'%, where
Sl = o) = —(isinom/m)e ™) Fy(o — )
with Fo(0) = e /(e — 1), and
ga(@ — @'s2) = (Y,.(54,0), Dup_(-54,0"))
with W, (x,: 4, w) defined by (2.7).

3. Proof of Theorem 1.1: reduction to three lemmas.

In this section we prove [Theorem 1.1. The proof is done by reduction to
three lemmas. We recall the notation. Let b; € C° (R?), j=1,2, be two given
magnetic fields with total flux «;. We assume that b; has support in the unit ball
{Ix| < 1}. By |Proposition 2.1, we can construct the smooth magnetic potential
Aj(x) associated with b; such that 4;(x) = A4, (x) for |x| > 2, where

Ay (x) = ay(=xa /||, 31/ |x[?) (3.1)

for j=1,2. We define H; = H(A;) with this potential 4;(x) and denote by

filo — @';2) the scattering amplitude for the pair (H;, Hy).
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ProOF OF THEOREM 1.1. For brevity, we assume that o = 0. Then the field
b(x) = by(x) + by(x — d) has the flux « = o; and is supported in {|x| < M} with
M =|d|+ 1. According to [Proposition 2.1, there exists a magnetic potential
A(x) associated with b such that

A(x) = A,(x) = a(=x2/|x]*, 1 /|x%)

for |x| >2M. Note that A4,(x) =0 for |x| > 2.
We set H = H(A). By |[Proposition 2.2 the scattering amplitude
fi(w — @'y A) for the pair (H, H)) takes the form

Ja(o = @3 2) = c()(f,(0" = w) = (i/4n)g,(w — '; 1)) (3:2)

under natural modification of the notation in [Proposition 2.2, Since oy = 0, we
have f, (0) =0 and

12(0) = 1,(0) = —(isinoyz/m) exp(ie1]0) Fo (0)

for 0+#0. Hence the first term f,(w'—w) on the right side of is
decomposed into

fle ) = £, (0 — o) + explint(dio,0) f (@ ~ o). (33)
On the other hand, the second term g,(w — w’; 1) is represented as
goc(a) - Cl)/,/l) = (lﬁ—o-( 7i7w)7DM(p_( ;iaa)l))a

where ¢ (x;4,w) is the generalized eigenfunction of the Hamiltonian H, =
H(A,) = H(A, ) with J-like magnetic field 270 d(x) at the origin.
The two Hamiltonians H and H,; have the same magnetic field » and hence

H = €ing€_ig
for some smooth real function g(x). The function g satisfies
A(x) = A1(x) + Aa(x —d) + Vg(x)

and we have Vg=0 for |x|> 1 large enough. This function is uniquely
determined up to a constant. If g(x) — 0 at infinity, then

e =1, |x| > 1. (3.4)

Y

We turn back to g,(w — @’;A). This term is rewritten as
ga(@ — "5 2) = (W, (54, 0),e Dyp_(-;4,0")) (3.5)

with y, (x; 4, @) = e 90 (x; 2, ). Recall that . (x;4,w) satisfies (H — L)y,
= 0 and that , — ¢, obeys the outgoing radiation condition at infinity. Hence
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Y. ,(x;4,) is a unique solution to (Hy — A)Y,, =0 such that ¢, — ¢, obeys
the outgoing radiation condition. By construction, 4;(x) = 4,,(x) for |x| > 2,
and Any(x) = Ao(x —d) =0 for |x —d| >2. Hence

Hy = H(A) = H,, (3.6)

on the region I1; = {|x| >2}N{|x—d|>2}. This implies that ¢ (x;4, o)
satisfies (Hy —A)p, =0 in II;. We now set

20(%) = x0(r) = 2(r/2); xoa(x) = xo(x = d) (3.7)

and .4 (x) =1— yxo(x) — yoq(x) for the cut-off function ye C;°[0,00) with
property (2.2). The function y., has support in I7; and y,(x)ye,(x) =0 for
|d| > 1. By uniqueness theorem, the solution v, (x;4,®) is represented as

Vg = owa — R(Z+10; Hy) D1y — R(A+i0; Hy)Dag)p, (3.8)
where
Dia = [x0, Hal;  D2a = [)o4> Hal- (3.9)

We consider the term e “Dyp_(x; A, ") on the right side of [3.5). By (3.6),
¢_(x; 4, @") obeys y.,,(Hs— A)p_ =0. Recall the notation Dy = [H, ] In
(2.6) with M =|d|+ 1. Since

Yoot (H = 2)p_ = gy (Hoy — 2)p_ =0,
we may write the term e “Dyp_ as
e "Dyp_ = e (H — W9 = (Hi = Dtooe 0_.
Thus we obtain
e Dyp_ = (Hq— 1) (Xom€ 0_ = Apa®-) + (D1a + Daa)o_, (3.10)

where Dy, and Dy, are the commutators defined in [3.9]. By [3.4), e ¥¢p_ —¢_
has compact support and ., obeys (Hy — A)y,, =0. We combine (3.10) with
to obtain that g,(w — ’;4) admits the decomposition

gu(w — @5 2) = p1(d) + 1,(d) + y12(d) + 72 (d),
where
yi(d) = (1 = xo) = R(A+i0; Hy)D1a)p. (-3 4, @), Diagp_(- 4, 0"))
y2(d) = (1 = xoa) = R(A+i0; Hy)D2a)p, (3 4, @), Daagp_(- 4, 0"))
Vie(d) = —(R(A+i0; Hy)Djag (- 2, ©), Drag_(+3 2, "))

This is the desired representation.
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LemMa 3.1.  One has
y12(d),  y2u(d) =0

as |d| — oo.

LemmA 3.2, Let Dy = [yy, Ho|l Then one has

71(d) = g (0 — @5 2) + o(1)
as |d| — oo, where
Gor (0 = @' 2) = (Y1154, 0), Dogp_(-; 4, 0"))
and
Vi1 (x4, 0) = ((1 =) = R(A+i0; Hi)Do)g, (x; 4, )

is a unique solution to (Hy — )Y, =0 such that | — ¢, obeys the outgoing
radiation condition at infinity.

Lemma 3.3, Let ¢y(x; 7, 0) = exp(iv/ix - @) and let Dy = [y,, Ho] be as in
Lemma 3.2. Then one has
72(d) = exp(iot(d; 0, ")) exp(=iVd - (0" = 0))go (@ — @';2) + o(1)

as |d| — oo, where

9o (@ — @5 2) = (Y y2(-5 4, @), Doy (-5 4, "))

and
Yio(x; 2, 0) = ((1 = x) — R(Z+i0; H2) Do) gy (x; 4, @)

is a unique solution to (Hy — A)W_, =0 such that ., — ¢, obeys the outgoing
radiation condition at infinity.

We shall complete the proof of the theorem, accepting the above lemmas as
proved. These lemmas are proved in Section 5. If we recall the representation
for f(w — ®'; /) in [Proposition 2.2, then the theorem is obtained from as
an immediate consequence of the three lemmas. ]

4. Resolvent estimates.

In this section we study the resolvent estimate for R(4+i0;H;) as a
preliminary step toward the proof of the three lemmas in the previous section.
Throughout the section, the flux a, is still assumed to be zero.

4.1. We require several auxiliary operators. Let {; € C*(R) be a real-
valued periodic function with period 2z such that
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Ca(s) =aqs, |d| 7 <s<2m—|d|’, (4.1)
for 0 <o« 1 fixed small enough, and
()| = |(d/ds)Ca(s)] < eld|”,  |C7(s)] < cld|*

for ¢ >0 independent of |d|> 1. We define #,(x)=(,(0(x;—d)) with d =
d/|d| e S'. By definition, we have

Vi(x) = ((0(x; =d)VO(x; —d) = [i0(x; —d)) (=x2 /x|, 31/ [x[7)
and hence it follows from that Vn,(x) = A, (x) on the cone region
Iy={xeR*:|d|" <0(x;—d) < 2n—|d|°}. (4.2)

We can construct a smooth (not necessarily real-valued) function py; € C*(R?)
such that [p14(x)| > ¢ >0 and it satisfies

P1a(x) = exp(in(x)) (4.3)
for |x| > R> 1 fixed large enough. This function obeys the bound
Vo) = [dI”0(x™"), WVp1a(x)| = 1d*O(x ), |x| =0, (44)

uniformly in |d| > 1. If we set q14(x) = 1/p,4(x), then ¢, also obeys the same
bound as above and

Q1a(x) = P1a(x) = exp(—in,(x)) (4.5)

for |x| > R.
We now introduce the following two operators

Koa = praloqia, Kza = prgHa,aq1a = prat (A2)q14,
as an auxiliary operator, and we write Ki; = H; = H(A;). We set
Su={xeR:|x| =R xely}, Zu={xeR:|[x—d| <R},

and denote by mj;(x) the characteristic function of Xj;, where I'y is defined by
and I is the complement of I'y. We consider the differences

Wia = Kia — Koa, Woa = Koy — Koa.
The operator W), takes the form
Wia = eld(x) -V + eOd(x),

where the coefficients have support in 21, U{|x| < R}. By and (4.4), ey
obeys epq(x) = |d|*”O(|x|?) at infinity, and ej, satisfies
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e1a(x) = 0(d|") (=x2/ x|, x1/|x|*) = O(|d| "V 6(x) (4.6)

for x € 214, where 0(x) is the azimuth angle from the positive x; axis. On the
other hand, W>; has uniformly bounded coefficients with support in X,;. As is
easily seen, H; = Koz on

{xeR?*:|x—d|>R,|x| >R xelly}

We have Hd = Kld = K()d + Wld on Zld U {|X| < R} and Hd = KZd = KOd + W2d
on X,;. Since these two regions are disjoint with each other for |d| > 1, we
obtain

Hy = Koqg + Wia + Waa. (4.7)
We can write this relation as
Hy=Kig+ Wy, Hi=Ky+ Wi (4.8)

4.2. We denote by ||| the norm of bounded operators on L*(R*). The
remaining argument in this section is devoted to proving the following
proposition.

PROPOSITION 4.1. Let p be fixed as
12<p<(l+0)/2<1 (4.9)
for 0 < a1 as in (4.1). Then one has
|I<x>7PR(A 4 i0; Hy)mpg|| = o(1), |d| — 0.

The proof is done through a series of lemmas. Let G4(x, y;4) be the Green
kernel of R(A+i0;Kos). The resolvent R(A+ i0; Hy) has the kernel

Go(x, v : 2) = (i/4)Hy" (Vilx — y]),

where Hél)(z) is the Hankel function of first kind and order zero. As is well
known, H(()l)(z) behaves like

H(2) = (2/m)'"? explilz — /4))= (1 + O(|2] )
at infinity. Since R(A +i0; Kog) = p1aR(4 + i0; Hy)q14, we have
Ga(x, y; ) = co(Ap1a(x) exp(ivValx — y|)x — ¥~ q1a(») (1 + O(x — ¥ 7))
as |x — y| — oo, where ¢(2) = (1/87)"/* exp(in/4)i~"/*,

LemMA 4.1. Let p be as in Proposition 4.1 and let f,(x) be a bounded
function with compact support. Then:
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(1) || /oR(% + i0; Koa)mad|| = o(|d| 7).
(2) [[Kx> "R + i0; Kog)mag|| = o(1).
(3) [|m1a<x >’ 2R + i0; Kog)maal| = o(|d| ).

Proor. We prove (3) only. A similar argument applies to (1) and (2). To
prove (3), we consider the integral

L= ” P Ga(x, v )| dcdy.
erld,yeZZd

If xeX); and ye Xy, then |x — y| > ¢(|x| + |d|) for some ¢ > 0. Thus the
integral is evaluated as

o= 0() | o4 ) = 0 | (140
24 0
and hence I, = O(|d| ™) x O(|d|""?). We can take & so small that
1 — 30 > 0. Then the desired estimate follows at once. ]

REMARK 4.1. By elliptic estimate, it follows from [Cemma 4.1 (1) that
1/oVR(Z + i0; Koa)maal| = o(d|~°).

The differential operator Ky, does not necessarily have coefficients bounded
uniformly in 4, but this can be easily shown by use of (4.4).
Next we calculate

I(x,y) = (VO-V)exp(iVilx - y]), 0=0(x),
for y e 2y, fixed. A direct calculation yields
I(x, y) = iVaIx[ " x = 7 pl(Rapy — 21) exp(iVilx = y)),

where x = (%1, %) = (x1/|x],x2/|x]) € S'. If xe Zyq, £ =—d + O(|d|™"), and if
yey, p=d+ 0(d)""). Thus we have

Xoy — X197, = O(|d| %)
and hence it follows that
I(x,y) = 0(d)" ") x| [x — y|™'

uniformly in x € X, and ye 2y, If p fulfills (4.9), then we have

J j X1, )P — ¥~ ddy = O(d] ) x O(d| ™)
XEZld,yEEQd
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with k =0d/2—(p—1/2) >0. Thus we have proved the following lemma.
LEmMMA 4.2. Assume that p satisfies (4.9). Then
|71a<{x>? (VO - V)R(Z + i0; Kog)maq|| = o(|d| 7).
Lemma 4.3.
| <> WiaR(A + i0; Kog) 724 || = o(1).

Proor. If we take account of (4.6), the lemma immediately follows from
Lemmas A.1 and (see Remark 4.1 also). N

REMARK 4.2. We can show in a similar way that
| <P WiaR(A — i0; Kog)maa|| = o(1)

and hence we have
|2a R(4 + i0; Koa) W1a<x)” || = o(1)

by adjoint. Such immediate consequences are often used without further ref-
erences in the discussion below.

LemMMA 4.4.
|<x>7PR(A 4 10; Ky 4) 74| = o(1).
ProoF. Since Kj; = Kog + W14, we have
R(A+i0; K14) = R(A + i0; Koy) — R(7. + i0; K1g) WiaR(A + i0; Koy)

by the resolvent identity. By the principle of limiting absorption, we know ([6])
that

XYPR(A+10; Kig){x>? = (x> PR(A +i0; H x> ™" : L*(R*) — L*(R?)

is bounded uniformly in d. This, together with Lemmas 4.1 and 4.3, proves the
lemma. [

LemMmA 4.5.
||<x>p WldR(i + i0; sz)ﬂde = 0(1)

Proor. The proof is almost the same as that of [Lemma 4.4. Since Ky =
Koqs + Wy, we have

R(A+1i0; Kyg) = R(A +10; Kog) — R(A + i0; Kog) Wag R(Z + 10; Kzg)

by the resolvent identity. The operator
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Ta R(A + i0; Kyg) g = maap1a R(A + i0; HZ,d)QldﬂQd : Lz(Rz) — Lz(RZ)

is bounded uniformly in d. The coeflicients of K; = p14H> 4414 are bounded
uniformly in 4 on 2,;. Hence

1724V R(J. + i0; Kpg) 24| = O(1)
by elliptic estimate. Thus the lemma follows from [Lemma 4.3. ]
We are now in a position to prove the proposition in question.
PROOF OF PROPOSITION 4.1. Since H; = Ky + Wi4 by , we have
R(A+1i0; Hy) = R(A+i0; K>g) — R(Z +i0; Hy) W14 R(7 4 i0; Kyg)
by the resolvent identity. Set
e1 = [|mqR(A+10; Hy)\x)™7 |, e2 = ||[maaR(A + i0; Hy)moal|-
Then it follows from that
ey = O(1) +o(1)ey.
On the other hand, H; = Ki; + W5; by again. This yields
R(A+1i0; Hy) = R(A+10; Ki4) — R(A2+i0; Hg) WaqR(A 4 i0; K14).
By Lemma 4.4, we have
|24V R(2 + i0; K1a)<{x>"|| = o(1)
and hence it follows that
er =o(1) +o(1)e.

The proposition is obtained by combining the two relations above. N

5. Proof of Lemmas 3.1, 3.2 and 3.3.

In this section we prove Lemmas 3.1, B.2 and B.3, which remain unproved.
To prove these lemmas, the asymptotic behavior at infinity of eigenfunction
¢+ (x; 4, w) plays an important role besides the resolvent estimates in the previous
section.

PROPOSITION 5.1. Let ¢ (x;4,w) be defined by (2.4). If x/|x| # w, then
¢, (x; 4, ) behaves like

0, (x; 2, 0) = exp(ie(0(x; ) — ) exp(iv/x - ) (1 + o(1))
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as |x| — oo, where the order estimate is uniform in x/|x| € S' with |x/|x| — w| > 6,
0 >0 being fixed arbitrarily. Similarly the incoming eigenfunction ¢_(x; 1, )
obeys

0_(x; 4, ) = exp(ia(0(x; —w) — 7)) exp(iVix - w)(1 + o(1))

Sor |x/|x] + w| > 9.

We prove the three lemmas, accepting [Proposition 5.1 as proved. The
proposition is verified in the next section.

ProoF OF LemMA 3.1. Recall that ¢;(x;4,0) is the eigenfunction of
H,(=H,). By [Proposition 5.1,

[ Imadio (o) = o) (5.1)

is bounded uniformly in 4. By elliptic estimate, it follows from [Proposition 4.1
that

| foVR(A +i0; Hy)V 7o = o(1)

for bounded function f, with compact support. This, together with [5.1),
completes the proof. ]

ProOF OF LEMMA 3.2. We represent R(A+i0; H;) as
R(A+1i0; Hy) = R(A+i0; K14) — R(Z +i0; Hy) W2 R(7. 4 i0; K14)

by use of the resolvent identity. Let y,(x) = y,(r) = x(r/2) be as in (3.7) and let
D1 = [0, Ha| be defined by [3.9). The coefficients of D;,; have support in Q; =
{2 < |x| < 4}. Hence it follows from [Proposition 4.1 and that

n(d) = (((1 = x9) = R(A+10; K14)D14)p, (-5 4, 0), Diap_(-; A, @")) 4+ o(1)

as |d| — oo. The operator H, coincides with Ki;, = H; = H(A;) on Qi, and
H, is rotationally invariant there. Thus we have Dy = [xo, Hi] = [, Ho] = Do.
This implies that

y1(d) = (1 = xo) = R(Z+i0; H1) Do) (-4, @), Dog_(-; 2,")) + o(1).
Thus the proof is completed. ]

PrROOF OF LEMMA 3.3. We repeat the same argument as in the proof of
[Lemma 3.2. Let Dag = [yo4, Ha] be as in [3.9). The coefficients of Dy; have
support in Qpy = {2 < |x —d| < 4}. Set Dog = )94, Ho]. Then we can calculate
Dzd as
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Doy = [0a: K2a| = pralyoas H2,alq1a = Pr1aDoaqia
and hence we have
R(A+i0; K2q)D2g = p1aR (4 + i0; Hy, 4) Doaqia-

By [4.5), 51, = q1a on Q2. Thus it follows from [Proposition 4.1 and
that y,(d) behaves like

y2(d) = (1 = xo4) — R(A+i0; Hy 4) Doa)q149. (- ; 4, @), Doaqra9_ (-5 4, ")) + o(1).

The term qi4(x)p+(x;4, @) is calculated as

qraps = exp(—ing(x))ps (x; 4, )
= exp(—ily(0(x; —d)))p+ (x; 4, )

A

= exp(—ion 0(x; =d))p+ (x; 4, )

on Qy;. We apply [Proposition 5.1 to ¢+ (x;4,w). Then we obtain that

Qa9+ = exp(iog (0(x; Fo) — 0(x; —d) — 7))@ (x; 2, @) + o(1)

on Oy, Where ¢y(x; 4, @) = exp(ivix - ). If x € Qay, then 0(x; Fo) = 0(d; Fo)
+0(|d|™") and

0(x; —d) = 0(d; —d) + O(|d| ") =+ 0(|d| ™).
Thus we see that gi4(x)p (x; 4, @) behaves like
q1ap+ = exp(ios (0(d; Fo) — 2r)) exp(ivid - 0)py(x — d; 1, w) + o(1)

on (y;. This yields the desired result and the proof is complete. ]

6. Asymptotic behavior at infinity of eigenfunction.

The |Proposition 5.1 has played a basic role in proving the main theorem.
We here prove this proposition. As stated in Section 1, the asymptotic behav-
ior of eigenfunction ¢ (x;4,w) has been studied in the physical literatures [2|,
[3], [9] We copy the proof from [9], the original idea of which is due to
T. Takabayashi.

PROOF OF PROPOSITION 5.1. If we write ¢ (x;4,@,a) for ¢ (x;4, @), then
(p7<x;j~7wa OC) = (,7)+(—x;/l,a), _O()'

Hence the asymptotic formula for ¢_(x;4,w) follows from that for ¢ (x; 4, ) at
once. We consider only the case that o ¢ Z is not an integer. The case x € Z 1s
much simpler to deal with and we skip this case.
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For brevity we assume that 0 < o < 1, and we write ¢(x;®) for ¢, (x;4, )
with A =1. The proposition is verified for ¢(x;w). The proof uses the integral
representation

o0

Jp(r) =— <J e~ cos pt dt — sinan
0

e—pH—ir cosht dt (6 1 )
T 0

for the Bessel function J,(r), r >0, with p >0 ([5]). We denote by
Pine(X; @) = exp(ia(0(x; ) — 7)) exp(ix - w)

the asymptotic form on the right side. If we make a change of variable
y=(x0) =0(xio) —n, —n<y<m,

then it follows from that

9. (x;0) =Y (=i)"e™J,(|x])

leZ

with v = |l — |, and also we have ¢, .(x;w) = ™~ M7  We expand ¢,,.(x; ®)
as the Fourier series

(pmc X; CO 2 Zezl/J zoctfi|x| costefilt dt = Zezlyj e —i|x| COST a1t df
T - leZ
On the other hand, we have
o0

Z ezly (J —i|x| cost cos vidf — sin WTJ efvt+i|x| cosht dl>

leZ 0
by use of (6.1). Hence

0. (X;0) = Pine (x5 0) Ze’l/ sin an g ViilxIcosht gy
leZ

We calculate the sum on the right side. By assumption, 6(x;®) # 0 and hence
ly| < 7. A simple computation shows that

. efX[ e—at
E e~ sin vy = sin om — + -
—~ l4+e el 14e7e!

for 0 <a < 1. This yields

sin o J » e ¥

0+ (X%;0) = Pine(X;0) = — = et dy (6.2)
% e e~

T
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for |y| <= By the stationary phase method, the integral obeys the bound
0(|x]_1/ %) as |x| — oo. Thus the desired relation is obtained. O]

Next we consider the asymptotic behavior of ¢ (x;4,®) along the forward
direction . This has been already studied by [3], although the argument there is
not rigorous.

LEMMA 6.1. Let G={xeR>:0<|x/|x|—o| <cx|"'} for some ¢>0.
Then

0. (x;4,0) = (cosam) exp(iVix - ®) + o(1), |x| — oo,
for xe€@.

Proor. We use the same notation as in the proof of [Proposition 5.1. The
proof is rather sketchy but the justification is easy. We fix 0 <o « 1 small
enough and we write y = y(x;w) = —n+¢ or y=n—¢ for x € G, where ¢ >0
and it obeys ¢ = O(|x|™'). Let I be the integral on the right side of (6.2). If
y = —mn+¢, then we have

. |x‘71/2+5 1 o . |x| 1 L
I:e""'J M2 g 4 0(1) :e”|J ‘ —Uze"s| 2ds + o(1)
x|l t+1¢g —Ix’ s+ i8|x|

by changing the variable s = \x|1/2t. Note that e\x|1/2 = 0(|x]*1/2) and hence it

follows that
b’ 1 1\ .
J N\ e’|s|2/2ds=o(1).
x|\ s + ie|x| §

This yields
T ] .
[ = e J ——— 5 dsto(l) = —ize™ + o(1)
—Ix[7 s + ig| x| /

for y = —m+e Similarly we have I =ine™ +0(1) for y=n—e Thus the
lemma immediately follows from (6.2}). O

follows from [Lemma 6.1. We end the paper by proving this

theorem.

Proor oF THEOREM 1.2. The theorem is proved in exactly the same way as
in the proof of Mheorem I.1. We have only to replace

exp(io0(d; w)) — (1 + exp(2ioy)) /2 = (cos oy ) exp(io7)

for @ =d. Then we can get the desired asymptotic formula for fd(ai —w';A)
with o’ # —d. A similar argument applies to the other statements. ]
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