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1. Introduction.

In this paper we study the asymptotic behavior of scattering amplitudes

by two magnetic ®elds at large separation in two dimensions. We denote by

x � �x1; x2� a generic point in R
2, and we write

H�A� � �ÿi`ÿ A�2 �
X2

j�1

�ÿiqj ÿ aj�
2; qj � q=qxj ;

for the SchroÈdinger operator with magnetic potential A�x� � �a1�x�; a2�x�� :

R
2 ! R

2. The magnetic ®eld b�x� is de®ned as b � `� A � q1a2 ÿ q2a1 and

a � �2p�ÿ1

�
b�x� dx

is called the total ¯ux of ®eld b, where the integration with no domain attached is

taken over the whole space. This abbreviation is often used in the discussion

below. We are now given two smooth magnetic ®elds bj A Cy

0 �R2�, j � 1; 2,

with compact support. Let Aj�x�, `� Aj � bj, be the magnetic potential

associated with bj. For given magnetic ®eld b�x�, the corresponding potential

A�x� is not uniquely determined, but the scattering amplitude is invariant under

the gauge transformation A ! A� `g. We ®x one of such magnetic potentials.

The precise form is speci®ed in Section 2 (Proposition 2.1). We set

Hd � H�A1 � A2d� � �ÿi`ÿ A1 ÿ A2d�
2; A2d�x� � A2�xÿ d�; �1:1�

for d � �d1; d2� A R
2 with jdjg 1, and we denote by fd�o ! o 0

; l� the scattering

amplitude for the pair �Hd ;H0�, where H0 � ÿD is the free Hamiltonian. The

quantity j fd�o ! o 0
; l�j2 is called the di¨erential cross section for scattering from

the initial direction o A S1 to the ®nal direction o 0 at energy l > 0, S1 being the

unit circle. The precise representation for fd�o ! o 0
; l� is also given in Section

2 (Proposition 2.2). The aim here is to study the asymptotic behavior of

fd�o ! o 0
; l� as the distance jdj between the centers of ®elds b1�x� and b2d�x� �



b2�xÿ d� goes to in®nity. The two dimensional case is the most interesting. In

fact, the magnetic e¨ect is strongly re¯ected in this case for the topological reason

that R2nf0g is not simply connected.

We shall formulate the obtained result. We set

Hj � H�Aj� � �ÿi`ÿ Aj�2 �1:2�

for j � 1; 2, and denote by fj�o ! o 0; l� the scattering amplitude for the pair

�H j ;H0�. We use the notation y�x;o� to denote the azimuth angle from

direction o A S1.

Theorem 1.1. Let the notation be as above. Denote by aj the total ¯ux of

®eld bj A Cy

0 �R2�, j � 1; 2, and de®ne t�d;o;o 0� by

t�d;o;o 0� � y�d;o� ÿ y�d;ÿo
0�:

Assume that at least one of a1 and a2 is zero. If o and o 0 satisfy o0Gd=jdj,
o 0 0Gd=jdj and o0o 0, then fd�o ! o 0; l� behaves like

fd�o ! o
0; l� � exp�ia2t�ÿd;o;o 0�� f1�o ! o

0; l�

� exp�ia1t�d;o;o 0�� f2;d�o ! o
0; l� � o�1� �1:3�

as jdj ! y, where

f2;d�o ! o
0; l� � exp�ÿi

���

l
p

d � �o 0 ÿ o�� f2�o ! o
0; l�

is the scattering amplitude for the pair �H2;d ;H0� with H2;d � H�A2d�.

We can derive the asymptotic formula even for the case o �Gd̂ or o 0 �Gd̂,

where d̂ � d=jdj. For brevity, we assume that a2 � 0. Then fd�ÿd̂ ! o 0; l�
and fd�o ! d̂; l� obey the same formula as (1.3). This can be seen from

the proof of Theorem 1.1. However fd�d̂ ! o 0; l� and fd�o ! ÿd̂; l� take a

di¨erent form. We can prove the following theorem.

Theorem 1.2. Under the above situation, one has the following statements:

(1) If o 0 0ÿd̂ , then

fd�d̂ ! o
0; l� � f1�d̂ ! o

0; l�

� �cos a1p� exp�ia1�pÿ y�d;ÿo
0��� f2;d�d̂ ! o

0; l� � o�1�:

(2) If o0 d̂ , then

fd�o ! ÿd̂; l� � f1�o ! ÿd̂; l�

� �cos a1p� exp�ia1�y�d;o� ÿ p�� f2;d�o ! ÿd̂; l� � o�1�:
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(3) If o � d̂ and o 0 � ÿd̂, then

fd�d̂ ! ÿd̂; l� � f1�d̂ ! ÿd̂; l� � �cos a1p�
2
f2;d�d̂ ! ÿd̂; l� � o�1�:

Magnetic potentials are not in general expected to fall o¨ rapidly at in®nity

even if ®elds are assumed to be of compact support. Let b A Cy

0 �R2�. We

de®ne

Ab�x� � �a1b�x�; a2b�x�� � �ÿq2j�x�; q1j�x�� �1:4�

with j � �2p�ÿ1 � logjxÿ yjb�y� dy. Then `� Ab � Dj � b and Ab becomes the

potential associated with ®eld b. However, if the ¯ux a does not vanish, then

Ab�x� cannot decay faster than O�jxjÿ1� at in®nity. In fact, it behaves like

Ab�x� � Aa�x� �O�jxjÿ2�; jxj ! y; �1:5�

where

Aa�x� � a�ÿx2=jxj
2; x1=jxj

2�: �1:6�

The motion of particles in quantum mechanical systems is subject to the in¯uence

of magnetic potentials as well as of magnetic ®elds. This fact can be found

in the asymptotic formula (1.3). The phase factor exp�ia1t�d;o;o
0�� depends

on the ¯ux a1 of the ®eld b1. This means that b1 has an in¯uence upon

the scattering by ®eld b2d � `� A2d , although the support of b1 is located in

the long distance from that of b2d . Such a quantum phenomenon is known

as the Aharonov-Bohm e¨ect ([2]). If, in particular, a1 is a half-integer, then

fd�d̂ ! o 0; l� obeys the asymptotic formula

fd�d̂ ! o 0; l� � f1�d̂ ! o 0; l� � o�1�

in Theorem 1.2. This means that the scattering by ®eld b2d does not make any

contribution to the leading term in the asymptotic formula.

The present paper is motivated by the recent work [7], where the same

problem has been studied in the case of scattering by potentials for the

SchroÈdinger operator ÿD� V1�x� � V2�xÿ d� with potentials falling o¨ rapidly

at in®nity. The case is quite di¨erent in the scattering by magnetic ®elds in

two dimensions. Roughly speaking, the di¨erence comes from the long-range

property of magnetic potentials. Several new devices are required. We

introduce

Ha � H�Aa� � �ÿi`ÿ Aa�
2 �1:7�

as an auxiliary operator, where Aa�x� is de®ned by (1.6). By (1.5), the di¨erence

H�Ab� ÿHa becomes a perturbation of short-range class. The potential Aa�x�

satis®es `� Aa � 2pad�x� in the distribution sense and the Hamiltonian Ha has a
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d-like magnetic ®eld. The scattering amplitude fd�o ! o 0
; l� is represented in

terms of the eigenfunction of Ha. This Hamiltonian admits the partial wave

expansion in polar coordinates and its outgoing eigenfunction takes the form

j��x; l;o� �
X

l AZ

exp�ÿinp=2� exp�ily�x;ÿo��Jn�
���

l
p

jxj�

with n � jl ÿ aj, where Jp�z� denotes the Bessel function of order p. One of

important ingredients to prove the main theorems is the asymptotic behavior

j��x; l;o� � exp�ia�y�x;o� ÿ p�� exp�i
���

l
p

x � o��1� o�1��; y�x;o�0 0;

at in®nity. This formula is known in the physical literatures (see [2], [3], [9] for

example). If a is not an integer, the asymptotic form on the right side has the

phase gap along direction o. This makes the phase factors in the asymptotic

formula (1.3).

We prove Theorem 1.1 in Section 3 and Theorem 1.2 in Section 6. The

proof makes an essential use of the assumption that at least one of two ¯ux a1
and a2 is zero. However the idea developed here, particularly in Section 4,

seems to extend to the general case without such a restriction. We are going to

discuss the detailed matter in another paper [13]. We end the section by making

a comment on the extension to the case of several centers. If at most one ®eld

has a nonzero ¯ux, then we can derive a similar asymptotic formula when all

the distances between respective centers of ®elds go to in®nity. We skip the

details.

2. Scattering by magnetic ®eld.

In this section we make a brief review on the scattering by magnetic ®elds

with compact support. The aim here is to derive the representation formula for

scattering amplitudes. The result is mentioned as Proposition 2.2 at the end of

the section. The derivation is rather formal. The rigorous treatment can be

found in [10], [11].

2.1. We begin by specifying the form of magnetic potential. Let

b A Cy

0 �R2� be given smooth magnetic ®eld with compact support

supp bH fx A R
2
: jxj < Mg �2:1�

for some M > 0, and we denote by a the total ¯ux of b. We construct

the magnetic potential A�x�, `� A � b, which has the property A�x� � Aa�x�
for jxjg 1 large enough, where Aa�x� is de®ned by (1.6). Let Ab�x� �
�a1b�x�; a2b�x�� be de®ned by (1.4). By (1.5), we have x1a1b�x� � x2a2b�x� �
O�jxjÿ1� as jxj ! y, and hence we can de®ne ab�x� as
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ab�x� � ÿ

�
y

1

�x1a1b�sx� � x2a2b�sx�� ds

for x0 0.

Lemma 2.1. One has the relation

Ab�x� � Aa�x� � `ab�x� � E�x�

for x0 0, where E�x� � �e1�x�; e2�x�� is given by

e1�x� �

�
y

1

sx2b�sx� ds; e2�x� � ÿ

�
y

1

sx1b�sx� ds:

Proof. We set bjk � qjakb ÿ qkajb, 1a j, ka 2, for Ab � �a1b; a2b�, so that

b�x� � b12�x� � ÿb21�x�. A simple calculation yields

qjab�x� � ÿ

�
y

1

�ajb�sx� � s�d=ds�ajb�sx� � sxkbjk�sx�� ds

for k0 j and hence we obtain

qjab�x� � ajb�x� ÿ

�
y

1

sxkbjk�sx� dsÿ lim
R!y

Rajb�Rx�

by partial integration. By (1.5), RAb�Rx� ! Aa�x� as R ! y. This proves the

lemma. r

We now introduce a cut-o¨ function w A Cy
0 �0;y� with the following

properties: w�s�b 0 is nonnegative and

w�s� � 1 for 0a sa 1; w�s� � 0 for s > 2: �2:2�

Let M > 0 be as in (2.1) and let E�x� be as in Lemma 2.1. We set ~wM�x� �

w�r=M� with r � jxj, and ~wyM�x� � 1ÿ ~wM�x�. Then E�x� vanishes on the

support of ~wyM and hence Ab�x� is decomposed into

Ab � �~wyM � ~wM�Ab � A�x� � `�~wyMab�

by Lemma 2.1, where

A�x� � ~wyM�x�Aa�x� � B�x�

with B � ab`~wM � ~wMAb. The magnetic potential A�x� still has b�x� as a ®eld,

and it satis®es A�x� � Aa�x� for jxj > 2M. Thus we have proved the following

proposition.

Proposition 2.1. Let b A Cy
0 �R2� be given smooth magnetic ®eld with ¯ux a.

If b�x� has support in fjxj < Mg for some M > 0, then there exists a smooth

magnetic potential A�x� associated with b such that
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A�x� � Aa�x� � a�ÿx2=jxj2; x1=jxj2�; jxj > 2M:

2.2. We ®x the potential A�x� as in the above proposition, and we write

H for the operator H�A� � �ÿi`ÿ A�2 throughout the section. This operator

admits a unique self-adjoint realization in L2�R2�. We denote by the same

notation H this self-adjoint operator, which has the domain D�H� � H 2�R2�,
H s�R2� being the Sobolev space of order s. The operator H is known to have

the following spectral properties ([6]): (1) H has no positive bound state energies;

(2) The resolvents

R�lG ie;H� � �H ÿ lH ie�ÿ1; e > 0;

have the boundary values to the positive axis

R�lG i0;H� � lim
e!0

R�lG ie;H�; l > 0;

as an operator from the weighted space L2
s �R2� � L2�R2

; hxi2s dx� into L2
ÿs�R2�

for s > 1=2, where hxi � �1� jxj2�1=2.
By Proposition 2.1, the di¨erence H ÿH0 between H and the free

Hamiltonian H0 � ÿD is a perturbation of long-range class. Nevertheless the

ordinary wave operators

WG�H;H0� � sÿ lim
t!Gy

exp�itH� exp�ÿitH0� : L2�R2� ! L2�R2�

are known to exist and to be asymptotically complete ([8]). Hence the scattering

operator

S�H;H0� � W �
��H;H0�Wÿ�H;H0� : L2�R2� ! L2�R2�

can be de®ned as a unitary operator.

Recall that y�x;o� denotes the azimuth angle from direction o A S1. Let

j0�x; l;o� � exp�i
���

l
p

x � o�; l > 0; o A S1;

be the generalized eigenfunction of H0, H0j0 � lj0, where the notation � denotes
the scalar product in R

2. As is well known, j0 is expanded as

j0�x; l;o� �
X

l AZ

exp�ijljp=2� exp�ily�x;o��Jjlj�
���

l
p

jxj� �2:3�

in terms of the Bessel functions Jp�z�. If we de®ne the unitary mapping F from

L2�R2� to L2��0;y�; dl�nL2�S1� by

�Fu��l;o� � 2ÿ1=2�2p�ÿ1

�

j0�x; l;o�u�x� dx;
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then H0 is diagonalized as F
�H0F � l� on the space L2��0;y�; dl�nL2�S1�,

and the scattering operator S�H;H0� has the direct integral decomposition

S�H;H0�FFS�H;H0�F
� �

�y
0

lS�l;H;H0� dl;

where the ®bre S�l;H;H0� : L
2�S1� ! L2�S1� is called the scattering matrix at

energy l > 0 and it acts as

�FS�H;H0�u��l;o� � �S�l;H;H0��Fu��l; ����o�

for u A L2�R2�.

2.3. We proceed to the representation for the integral kernel of S�l;H;H0�.

Let Ha � H�Aa� be as in (1.7). By Proposition 2.1, the perturbation H ÿHa is

of short-range class. We represent the kernel of S�l;H;H0� as the sum of the

kernels of two scattering matrices S�l;Ha;H0� and S�l;H;Ha�.

We ®rst consider the kernel of S�l;Ha;H0�. The operator Ha is rotationally

invariant. We work in the polar coordinate system �r; y� and write L2�R�� for

L2��0;y�; dr�. Let Ll , l A Z, be the eigenspace associated with eigenvalue l of

operator ÿiq=qy acting on L2�S1�. Then we have the decomposition

L2�R��nL2�S1� �
X
l AZ

l �L2�R��nLl�:

If we de®ne the unitary mapping

�Uu��r; y� � r1=2u�ry� : L2�R2� ! L2�R��nL2�S1�;

then U yields the partial wave expansion for Ha. We formally write

HaFUHaU
� �

X
l AZ

l �Hla n Id�;

where Id is the identity operator and Hla is given by

Hla � ÿq
2
r � �n2 ÿ 1=4�rÿ2

with n � jl ÿ aj. The operator Hla is self-adjoint in L2�R�� with domain

D�Hla� � fu A L2�R�� : Hlau A L2�R��; lim
r!0

rÿ1=2u�r� < yg

and hence Ha also becomes self-adjoint in L2�R2� with domain

D�Ha� � fu A L2�R2� : Hau A L2�R2�; lim
r�jxj!0

ju�x�j < yg:

The potential Aa�x� has a strong singularity at the origin, so that the domain

D�Ha� does not necessarily coincide with the domain of H and H0. Nevertheless

Scattering amplitudes in magnetic ®elds 651



it is known ([10]) that the wave operators WG�Ha;H0� exist and are asymp-

totically complete RanWG�Ha;H0� � L2�R2�.
We shall de®ne the generalized eigenfunction jH�x; l;o� of Ha. To do this,

we make use of expansion formula (2.3) for j0�x; l;o�. We set

eHl�r� � exp�Gijljp=2�Jjlj�r� ÿ exp�Ginp=2�Jn�r�:

The Bessel function Jp�r� obeys the asymptotic formula

Jp�r� � �2=p�1=2rÿ1=2 cos�rÿ �2p� 1�p=4� 1� gm�r�� �O�rÿm�; r ! y;�

for any mg 1 large enough, where gm�r� obeys �d=dr�kgm�r� � O�rÿ1ÿk�. Hence

it follows that

eHl�r� � exp�Hir��CHlr
ÿ1=2 �O�rÿ3=2�� � exp�Gir�O�rÿ3=2�

for some constant CHl 0 0. By de®nition, eÿl�r� satis®es the incoming radia-

tion condition e 0ÿl � ieÿl � O�rÿ3=2� at in®nity, while e�l�r� satis®es the outgoing

radiation condition e 0�l ÿ ie�l � O�rÿ3=2�. Thus, if we take account of formula

(2.3) and of the simple relation

exp�ily�x;ÿo�� � exp�ijljp� ily�x;o��

between azimuth angles y�x;o� and y�x;ÿo�, then jH is de®ned by

jH�x; l;o� �
X

l AZ

exp�Ginp=2� exp�ily�x;Go��Jn�
���

l
p

jxj� �2:4�

with n � jl ÿ aj again. The series converges locally uniformly and jH
satis®es HajH � ljH. The eigenfunction jH is formally represented as jH �
WG�Ha;H0�j0 by using the intertwining property of wave operators.

We often identify the coordinates over the unit circle S1 with the azimuth

angles from the positive x1 axis. The scattering matrix S�l;Ha;H0� : L2�S1� !
L2�S1� has the property

S�l;Ha;H0� : j��x; l; �� ! jÿ�x; l; ��:

Since

exp�inp=2� exp�ÿily�x;ÿo�� � exp�i�nÿ l�p� exp�ÿinp=2� exp�ÿily�x;o��

by a simple computation, S�l;Ha;H0� has the kernel

S�o 0;o; l;Ha;H0� � �2p�ÿ1
X

l AZ

exp�i�l ÿ n�p� exp�il�o 0 ÿ o��:

According to [10], the sum on the right side equals
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X

l AZ

exp�i�l ÿ n�p� exp�ily� � 2p�cos apd�y� ÿ �i sin ap=p�e i�a�yF0�y��;

where �a� denotes the usual Gauss notation and F0�y� is de®ned by

F0�y� � v:p: e iy=�e iy ÿ 1�:

Thus we obtain

S�o 0;o; l;Ha;H0� � cos apd�o 0 ÿ o� ÿ �i sin ap=p�e i�a��o
0ÿo�F0�o

0 ÿ o�:

This kernel has been calculated by [2], [10]. We refer to [1], [4], [12] for

the recent works related to the spectral theory for Hamiltonians with d-like

magnetic ®elds.

2.4. We shall derive the representation for the kernel of S�l;H;H0�. By

the chain rule of wave operators, we have

WG�H;H0� � WG�H;Ha�WG�Ha;H0�

and hence

S�H;H0� � W �
��Ha;H0�S�H;Ha�Wÿ�Ha;H0�;

where S�H;Ha� � W �
��H;Ha�Wÿ�H;Ha�. The existence and completeness of

wave operators WG�H;Ha� follow from those of WG�Ha;H0� and WG�H;H0� at

once. Thus S�H;H0� is decomposed into the sum

S�H;H0� � S�Ha;H0� �W �
��Ha;H0��S�H;Ha� ÿ Id�Wÿ�Ha;H0�: �2:5�

We have already calculated the kernel of S�l;Ha;H0�. Let S2 denote the second

operator on the right side of (2.5) and we consider the operator

FS2F
�
: L2��0;y�; dl�nL2�S1� ! L2��0;y�; dl�nL2�S1�:

If we make use of the formal relation jH � WG�Ha;H0�j0, then this operator has

the kernel

S2�o
0;o; l 0; l� � 2ÿ1�2p�ÿ2��S�H;Ha� ÿ Id�j��� ; l;o�; jÿ�� ; l

0;o 0��;

where the notation � ; � stands for the L2 scalar product in L2�R2�. We set

wyM�x� � 1ÿ wM�x�; wM�x� � wM�r� � w�r=2M�;

for the cut-o¨ function w�s� A Cy
0 �0;y� with property (2.2). The function wyM

has support in fjxj > 2Mg. By Proposition 2.1, A�x� � Aa�x� on the support

of wyM and hence H � Ha there. The wave operator WG�H;Ha� is expressed

through the limit
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WG�H;Ha� � sÿ lim
t!Gy

exp�itH�wyM exp�ÿitHa�

and hence we have

S�H;Ha� ÿ Id � exp�itHa�wyM exp�ÿitH�Wÿ�H;Ha�

�

�

�

�

t�y

t�ÿy

� i

�

exp�itHa�DMWÿ�H;Ha� exp�ÿitHa� dt

by the intertwining property, where

DM � HawyM ÿ wyMH � HwyM ÿ wyMH � �H; wyM � � �wM ;H�: �2:6�

Since Ha and wyM are rotationally invariant, we may write the commutator

DM as

DM � �Ha; wyM � � �H0; wyM � � �wM ;H0�

and DM ful®lls the relation D�
M

� ÿDM . We insert this integral representation.

If we further make use of relation

exp�ÿitHa�jH � exp�ÿitl�jH

and of formula

�

exp�it�l 0 ÿ l�� dt � 2pd�l 0 ÿ l�;

then we obtain

S2�o
0;o; l 0; l� � �i=4p�I�o 0;o; l 0; l�d�l 0 ÿ l�

by a formal computation, where

I�o 0;o; l 0; l� � ÿ�Wÿ�H;Ha�j��� ; l;o�;DMjÿ�� ; l
0;o 0��:

Since Wÿ�H;Ha� is represented in the integral form

Wÿ�H;Ha� � wyM ÿ i

�0

ÿy

exp�itH�DM exp�ÿitHa� dt;

we have

S2�o
0;o; l 0; l� � �i=4p�I�o 0;o; l�d�l 0 ÿ l�

again by a formal computation, where

I�o 0;o; l� � ��ÿwyM � R�l� i0;H�DM�j��� ; l;o�;DMjÿ�� ; l;o
0��:
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Thus S�l;H;H0� : L2�S1� ! L2�S1� has the integral kernel

S�o 0;o; l;H;H0� � S�o 0;o; l;Ha;H0� � S2�o 0;o; l�;

where

S2�o 0;o; l� � ÿ�i=4p��c��� ; l;o�;DMjÿ�� ; l;o 0��

with

c��x; l;o� � �wyM ÿ R�l� i0;H�DM�j��x; l;o�: �2:7�

As is easily seen, c��x; l;o� is a unique solution to equation �H ÿ l�c� � 0 such

that c� ÿ j��x; l;o� satis®es the outgoing radiation condition at in®nity.

We now de®ne the scattering amplitude in question. The scattering

amplitude f �o ! o 0
; l� for scattering from initial direction o A S1 to ®nal one o 0

at energy l > 0 is de®ned by

f �o ! o 0
; l� � c�l��S�o 0;o; l;H;H0� ÿ d�o 0 ÿ o��

with c�l� � �2p=i
���

l
p

�1=2. We obtain the following proposition.

Proposition 2.2. Assume that o0o 0. Then the scattering amplitude

f �o ! o 0
; l� is represented as

f �o ! o 0
; l� � c�l�� fa�o 0 ÿ o� ÿ �i=4p�ga�o ! o 0

; l��

with c�l� � �2p=i
���

l
p

�1=2, where

fa�o 0 ÿ o� � ÿ�i sin ap=p�e i�a��o 0ÿo�F0�o 0 ÿ o�

with F0�y� � e iy=�e iy ÿ 1�, and

ga�o ! o 0
; l� � �c��� ; l;o�;DMjÿ�� ; l;o 0��

with c��x; ; l;o� de®ned by (2.7).

3. Proof of Theorem 1.1: reduction to three lemmas.

In this section we prove Theorem 1.1. The proof is done by reduction to

three lemmas. We recall the notation. Let bj A Cy

0 �R2�, j � 1; 2, be two given

magnetic ®elds with total ¯ux aj. We assume that bj has support in the unit ball

fjxj < 1g. By Proposition 2.1, we can construct the smooth magnetic potential

Aj�x� associated with bj such that Aj�x� � Aaj �x� for jxj > 2, where

Aaj �x� � aj�ÿx2=jxj2; x1=jxj2� �3:1�

for j � 1; 2. We de®ne Hj � H�Aj� with this potential Aj�x� and denote by

fj�o ! o 0
; l� the scattering amplitude for the pair �H j;H0�.
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Proof of Theorem 1.1. For brevity, we assume that a2 � 0. Then the ®eld

b�x� � b1�x� � b2�xÿ d� has the ¯ux a � a1 and is supported in fjxj < Mg with

M � jdj � 1. According to Proposition 2.1, there exists a magnetic potential

A�x� associated with b such that

A�x� � Aa�x� � a�ÿx2=jxj
2; x1=jxj

2�

for jxj > 2M. Note that A2�x� � 0 for jxj > 2.

We set H � H�A�. By Proposition 2.2, the scattering amplitude

fd�o ! o 0
; l� for the pair �H;H0� takes the form

fd�o ! o 0
; l� � c�l�� fa�o

0 ÿ o� ÿ �i=4p�ga�o ! o 0
; l�� �3:2�

under natural modi®cation of the notation in Proposition 2.2. Since a2 � 0, we

have fa2�y� � 0 and

fa�y� � fa1�y� � ÿ�i sin a1p=p� exp�i�a1�y�F0�y�

for y0 0. Hence the ®rst term fa�o
0 ÿ o� on the right side of (3.2) is

decomposed into

fa�o
0 ÿ o� � fa1�o

0 ÿ o� � exp�ia1t�d;o;o
0�� fa2�o

0 ÿ o�: �3:3�

On the other hand, the second term ga�o ! o 0
; l� is represented as

ga�o ! o 0
; l� � �c��� ; l;o�;DMjÿ�� ; l;o

0��;

where jH�x; l;o� is the generalized eigenfunction of the Hamiltonian Ha �

H�Aa� � H�Aa1� with d-like magnetic ®eld 2pa1d�x� at the origin.

The two Hamiltonians H and Hd have the same magnetic ®eld b and hence

H � e igHde
ÿig

for some smooth real function g�x�. The function g satis®es

A�x� � A1�x� � A2�xÿ d� � `g�x�

and we have `g � 0 for jxjg 1 large enough. This function is uniquely

determined up to a constant. If g�x� ! 0 at in®nity, then

e ig�x� � 1; jxjg 1: �3:4�

We turn back to ga�o ! o 0
; l�. This term is rewritten as

ga�o ! o 0
; l� � �c�g�� ; l;o�; e

ÿigDMjÿ�� ; l;o
0�� �3:5�

with c�g�x; l;o� � eÿig�x�c��x; l;o�. Recall that c��x; l;o� satis®es �H ÿ l�c�

� 0 and that c� ÿ j� obeys the outgoing radiation condition at in®nity. Hence
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c�g�x; l;o� is a unique solution to �Hd ÿ l�c�g � 0 such that c�g ÿ j� obeys

the outgoing radiation condition. By construction, A1�x� � Aa1�x� for jxj > 2,

and A2d�x� � A2�xÿ d� � 0 for jxÿ dj > 2. Hence

Hd � H�A1� � Ha1 �3:6�

on the region Pd � fjxj > 2gV fjxÿ dj > 2g. This implies that j��x; l;o�

satis®es �Hd ÿ l�j� � 0 in Pd . We now set

w0�x� � w0�r� � w�r=2�; w0d�x� � w0�xÿ d� �3:7�

and wyd�x� � 1ÿ w0�x� ÿ w0d�x� for the cut-o¨ function w A Cy

0 �0;y� with

property (2.2). The function wyd has support in Pd and w0�x�w0d�x� � 0 for

jdjg 1. By uniqueness theorem, the solution c�g�x; l;o� is represented as

c�g � �wyd ÿ R�l� i0;Hd�D1d ÿ R�l� i0;Hd�D2d�j�; �3:8�

where

D1d � �w0;Hd �; D2d � �w0d ;Hd �: �3:9�

We consider the term eÿigDMjÿ�x; l;o
0� on the right side of (3.5). By (3.6),

jÿ�x; l;o
0� obeys wyd�Hd ÿ l�jÿ � 0. Recall the notation DM � �H; wyM � in

(2.6) with M � jdj � 1. Since

wyM�H ÿ l�jÿ � wyM�Ha1 ÿ l�jÿ � 0;

we may write the term eÿigDMjÿ as

eÿigDMjÿ � eÿig�H ÿ l�wyMjÿ � �Hd ÿ l�wyMeÿigjÿ:

Thus we obtain

eÿigDMjÿ � �Hd ÿ l��wyMeÿigjÿ ÿ wydjÿ� � �D1d �D2d�jÿ; �3:10�

where D1d and D2d are the commutators de®ned in (3.9). By (3.4), eÿigjÿ ÿ jÿ
has compact support and c�g obeys �Hd ÿ l�c�g � 0. We combine (3.10) with

(3.8) to obtain that ga�o ! o 0
; l� admits the decomposition

ga�o ! o 0
; l� � g1�d� � g2�d� � g12�d� � g21�d�;

where

g1�d� � ���1ÿ w0� ÿ R�l� i0;Hd�D1d�j��� ; l;o�;D1djÿ�� ; l;o
0��

g2�d� � ���1ÿ w0d� ÿ R�l� i0;Hd�D2d�j��� ; l;o�;D2djÿ�� ; l;o
0��

gjk�d� � ÿ�R�l� i0;Hd�Djdj��� ; l;o�;Dkdjÿ�� ; l;o
0��:

This is the desired representation.
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Lemma 3.1. One has

g12�d�; g21�d� ! 0

as jdj ! y.

Lemma 3.2. Let D0 � �w0;H0�. Then one has

g1�d� � ga1�o ! o 0
; l� � o�1�

as jdj ! y, where

ga1�o ! o 0
; l� � �c�1�� ; l;o�;D0jÿ�� ; l;o 0��

and

c�1�x; l;o� � ��1ÿ w0� ÿ R�l� i0;H1�D0�j��x; l;o�

is a unique solution to �H1 ÿ l�c�1 � 0 such that c�1 ÿ j� obeys the outgoing

radiation condition at in®nity.

Lemma 3.3. Let j0�x; l;o� � exp�i
���

l
p

x � o� and let D0 � �w0;H0� be as in

Lemma 3.2. Then one has

g2�d� � exp�ia1t�d;o;o 0�� exp�ÿi
���

l
p

d � �o 0 ÿ o��ga2�o ! o 0
; l� � o�1�

as jdj ! y, where

ga2�o ! o 0
; l� � �c�2�� ; l;o�;D0j0�� ; l;o 0��

and

c�2�x; l;o� � ��1ÿ w0� ÿ R�l� i0;H2�D0�j0�x; l;o�
is a unique solution to �H2 ÿ l�c�2 � 0 such that c�2 ÿ j0 obeys the outgoing

radiation condition at in®nity.

We shall complete the proof of the theorem, accepting the above lemmas as

proved. These lemmas are proved in Section 5. If we recall the representation

for fj�o ! o 0
; l� in Proposition 2.2, then the theorem is obtained from (3.3) as

an immediate consequence of the three lemmas. r

4. Resolvent estimates.

In this section we study the resolvent estimate for R�l� i0;Hd� as a

preliminary step toward the proof of the three lemmas in the previous section.

Throughout the section, the ¯ux a2 is still assumed to be zero.

4.1. We require several auxiliary operators. Let zd A Cy�R� be a real-

valued periodic function with period 2p such that
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zd�s� � a1s; jdjÿs < s < 2pÿ jdjÿs; �4:1�

for 0 < sf 1 ®xed small enough, and

jz 0d�s�j � j�d=ds�zd�s�ja cjdjs; jz 00d �s�ja cjdj2s

for c > 0 independent of jdjg 1. We de®ne hd�x� � zd�y�x;ÿd̂ �� with d̂ �

d=jdj A S1. By de®nition, we have

`hd�x� � z 0d�y�x;ÿd̂��`y�x;ÿd̂� � z 0d�y�x;ÿd̂���ÿx2=jxj
2; x1=jxj

2�

and hence it follows from (4.1) that `hd�x� � Aa1�x� on the cone region

Gd � fx A R
2 : jdjÿs < y�x;ÿd̂� < 2pÿ jdjÿsg: �4:2�

We can construct a smooth (not necessarily real-valued) function p1d A Cy�R2�

such that jp1d�x�j > c > 0 and it satis®es

p1d�x� � exp�ihd�x�� �4:3�

for jxj > Rg 1 ®xed large enough. This function obeys the bound

j`p1d�x�j � jdjsO�jxjÿ1�; j``p1d�x�j � jdj2sO�jxjÿ2�; jxj ! y; �4:4�

uniformly in jdjg 1. If we set q1d�x� � 1=p1d�x�, then q1d also obeys the same

bound as above and

q1d�x� � p1d�x� � exp�ÿihd�x�� �4:5�

for jxj > R.

We now introduce the following two operators

K0d � p1dH0q1d ; K2d � p1dH2;dq1d � p1dH�A2d�q1d ;

as an auxiliary operator, and we write K1d � H1 � H�A1�. We set

S1d � fx A R
2 : jxjbR; x A Gc

dg; S2d � fx A R
2 : jxÿ dj < Rg;

and denote by pjd�x� the characteristic function of Sjd , where Gd is de®ned by

(4.2) and Gc
d is the complement of Gd . We consider the di¨erences

W1d � K1d ÿ K0d ; W2d � K2d ÿ K0d :

The operator W1d takes the form

W1d � e1d�x� � `� e0d�x�;

where the coe½cients have support in S1d U fjxj < Rg. By (4.3) and (4.4), e0d
obeys e0d�x� � jdj2sO�jxjÿ2� at in®nity, and e1d satis®es
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e1d�x� � O�jdjs��ÿx2=jxj2; x1=jxj2� � O�jdjs�`y�x� �4:6�

for x A S1d , where y�x� is the azimuth angle from the positive x1 axis. On the

other hand, W2d has uniformly bounded coe½cients with support in S2d . As is

easily seen, Hd � K0d on

fx A R2
: jxÿ dj > R; jxj > R; x A Gdg:

We have Hd � K1d � K0d �W1d on S1d U fjxj < Rg and Hd � K2d � K0d �W2d

on S2d . Since these two regions are disjoint with each other for jdjg 1, we

obtain

Hd � K0d �W1d �W2d : �4:7�

We can write this relation as

Hd � K1d �W2d ; Hd � K2d �W1d : �4:8�

4.2. We denote by k k the norm of bounded operators on L2�R2�. The

remaining argument in this section is devoted to proving the following

proposition.

Proposition 4.1. Let r be ®xed as

1=2 < r < �1� s�=2 < 1 �4:9�

for 0 < sf 1 as in (4.1). Then one has

khxiÿrR�l� i0;Hd�p2dk � o�1�; jdj ! y:

The proof is done through a series of lemmas. Let Gd�x; y; l� be the Green

kernel of R�l� i0;K0d�. The resolvent R�l� i0;H0� has the kernel

G0�x; y : l� � �i=4�H�1�
0 �

���

l
p

jxÿ yj�;

where H
�1�
0 �z� is the Hankel function of ®rst kind and order zero. As is well

known, H
�1�
0 �z� behaves like

H
�1�
0 �z� � �2=p�1=2 exp�i�zÿ p=4��zÿ1=2�1�O�jzjÿ1��

at in®nity. Since R�l� i0;K0d� � p1dR�l� i0;H0�q1d , we have

Gd�x; y; l� � c0�l�p1d�x� exp�i
���

l
p

jxÿ yj�jxÿ yjÿ1=2
q1d�y��1�O�jxÿ yjÿ1��

as jxÿ yj ! y, where c0�l� � �1=8p�1=2 exp�ip=4�lÿ1=4.

Lemma 4.1. Let r be as in Proposition 4.1 and let f0�x� be a bounded

function with compact support. Then:
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(1) k f0R�l� i0;K0d�p2dk � o�jdjÿ2s�.

(2) khxiÿrR�l� i0;K0d�p2dk � o�1�.

(3) kp1dhxirÿ2R�l� i0;K0d�p2dk � o�jdjÿ2s�.

Proof. We prove (3) only. A similar argument applies to (1) and (2). To

prove (3), we consider the integral

Id �
��

x AS1d ;y AS2d

hxi2rÿ4jGd�x; y; l�j2 dxdy:

If x A S1d and y A S2d , then jxÿ yj > c�jxj � jdj� for some c > 0. Thus the

integral is evaluated as

Id � O�1�
�

S1d

hxi2rÿ4�jxj � jdj�ÿ1
dx � O�jdjÿ1ÿs�

�y

0

�1� r�2rÿ4
r dr

and hence Id � O�jdjÿ4s� �O�jdjÿ�1ÿ3s��. We can take s so small that

1ÿ 3s > 0. Then the desired estimate follows at once. r

Remark 4.1. By elliptic estimate, it follows from Lemma 4.1 (1) that

k f0`R�l� i0;K0d�p2dk � o�jdjÿs�:

The di¨erential operator K0d does not necessarily have coe½cients bounded

uniformly in d, but this can be easily shown by use of (4.4).

Next we calculate

I�x; y� � �`y � `� exp�i
���

l
p

jxÿ yj�; y � y�x�;

for y A S2d ®xed. A direct calculation yields

I�x; y� � i
���

l
p

jxjÿ1jxÿ yjÿ1jyj�x̂2ŷ1 ÿ x̂1ŷ2� exp�i
���

l
p

jxÿ yj�;

where x̂ � �x̂1; x̂2� � �x1=jxj; x2=jxj� A S1. If x A S1d , x̂ � ÿd̂ �O�jdjÿs�, and if

y A S2d , ŷ � d̂ �O�jdjÿ1�. Thus we have

x̂2ŷ1 ÿ x̂1ŷ2 � O�jdjÿs�

and hence it follows that

I�x; y� � O�jdj1ÿs�jxjÿ1jxÿ yjÿ1

uniformly in x A S1d and y A S2d . If r ful®lls (4.9), then we have

��

x AS1d ;y AS2d

jxj2rjI�x; y�j2jxÿ yjÿ1
dxdy � O�jdjÿ2s� �O�jdjÿ2k�
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with k � s=2ÿ �rÿ 1=2� > 0. Thus we have proved the following lemma.

Lemma 4.2. Assume that r satis®es (4.9). Then

kp1dhxi
r�`y � `�R�l� i0;K0d�p2dk � o�jdjÿs�:

Lemma 4.3.

khxirW1dR�l� i0;K0d�p2dk � o�1�:

Proof. If we take account of (4.6), the lemma immediately follows from

Lemmas 4.1 and 4.2 (see Remark 4.1 also). r

Remark 4.2. We can show in a similar way that

khxirW1dR�lÿ i0;K0d�p2dk � o�1�

and hence we have

kp2dR�l� i0;K0d�W1dhxi
rk � o�1�

by adjoint. Such immediate consequences are often used without further ref-

erences in the discussion below.

Lemma 4.4.

khxiÿrR�l� i0;K1d�p2dk � o�1�:

Proof. Since K1d � K0d �W1d , we have

R�l� i0;K1d� � R�l� i0;K0d� ÿ R�l� i0;K1d�W1dR�l� i0;K0d�

by the resolvent identity. By the principle of limiting absorption, we know ([6])

that

hxiÿrR�l� i0;K1d�hxi
ÿr � hxiÿrR�l� i0;H1�hxi

ÿr
: L2�R2� ! L2�R2�

is bounded uniformly in d. This, together with Lemmas 4.1 and 4.3, proves the

lemma. r

Lemma 4.5.

khxirW1dR�l� i0;K2d�p2dk � o�1�:

Proof. The proof is almost the same as that of Lemma 4.4. Since K2d �

K0d �W2d , we have

R�l� i0;K2d� � R�l� i0;K0d� ÿ R�l� i0;K0d�W2dR�l� i0;K2d�

by the resolvent identity. The operator
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p2dR�l� i0;K2d�p2d � p2dp1dR�l� i0;H2;d�q1dp2d : L2�R2� ! L2�R2�

is bounded uniformly in d. The coe½cients of K2d � p1dH2;dq1d are bounded

uniformly in d on S2d . Hence

kp2d`R�l� i0;K2d�p2dk � O�1�

by elliptic estimate. Thus the lemma follows from Lemma 4.3. r

We are now in a position to prove the proposition in question.

Proof of Proposition 4.1. Since Hd � K2d �W1d by (4.8), we have

R�l� i0;Hd� � R�l� i0;K2d� ÿ R�l� i0;Hd�W1dR�l� i0;K2d�

by the resolvent identity. Set

e1 � kp2dR�l� i0;Hd�hxiÿrk; e2 � kp2dR�l� i0;Hd�p2dk:

Then it follows from Lemma 4.5 that

e2 � O�1� � o�1�e1:

On the other hand, Hd � K1d �W2d by (4.8) again. This yields

R�l� i0;Hd� � R�l� i0;K1d� ÿ R�l� i0;Hd�W2dR�l� i0;K1d�:

By Lemma 4.4, we have

kp2d`R�l� i0;K1d�hxiÿrk � o�1�

and hence it follows that

e1 � o�1� � o�1�e2:

The proposition is obtained by combining the two relations above. r

5. Proof of Lemmas 3.1, 3.2 and 3.3.

In this section we prove Lemmas 3.1, 3.2 and 3.3, which remain unproved.

To prove these lemmas, the asymptotic behavior at in®nity of eigenfunction

jH�x; l;o� plays an important role besides the resolvent estimates in the previous

section.

Proposition 5.1. Let jH�x; l;o� be de®ned by (2.4). If x=jxj0o, then

j��x; l;o� behaves like

j��x; l;o� � exp�ia�y�x;o� ÿ p�� exp�i
���

l
p

x � o��1� o�1��
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as jxj ! y, where the order estimate is uniform in x=jxj A S1 with jx=jxj ÿ oj > d,

d > 0 being ®xed arbitrarily. Similarly the incoming eigenfunction jÿ�x; l;o�
obeys

jÿ�x; l;o� � exp�ia�y�x;ÿo� ÿ p�� exp�i
���

l
p

x � o��1� o�1��

for jx=jxj � oj > d.

We prove the three lemmas, accepting Proposition 5.1 as proved. The

proposition is veri®ed in the next section.

Proof of Lemma 3.1. Recall that jH�x; l;o� is the eigenfunction of

Ha�� Ha1�. By Proposition 5.1,

�

jp2d�x�jH�x; l;o�j2 dx � O�1� �5:1�

is bounded uniformly in d. By elliptic estimate, it follows from Proposition 4.1

that

k f0`R�l� i0;Hd�`p2dk � o�1�

for bounded function f0 with compact support. This, together with (5.1),

completes the proof. r

Proof of Lemma 3.2. We represent R�l� i0;Hd� as

R�l� i0;Hd� � R�l� i0;K1d� ÿ R�l� i0;Hd�W2dR�l� i0;K1d�

by use of the resolvent identity. Let w0�x� � w0�r� � w�r=2� be as in (3.7) and let

D1d � �w0;Hd � be de®ned by (3.9). The coe½cients of D1d have support in Q1 �
f2 < jxj < 4g. Hence it follows from Proposition 4.1 and Lemma 4.4 that

g1�d� � ���1ÿ w0� ÿ R�l� i0;K1d�D1d�j��� ; l;o�;D1djÿ�� ; l;o 0�� � o�1�

as jdj ! y. The operator Hd coincides with K1d � H1 � H�A1� on Q1, and

H1 is rotationally invariant there. Thus we have D1d � �w0;H1� � �w0;H0� � D0.

This implies that

g1�d� � ���1ÿ w0� ÿ R�l� i0;H1�D0�j��� ; l;o�;D0jÿ�� ; l;o 0�� � o�1�:

Thus the proof is completed. r

Proof of Lemma 3.3. We repeat the same argument as in the proof of

Lemma 3.2. Let D2d � �w0d ;Hd � be as in (3.9). The coe½cients of D2d have

support in Q2d � f2 < jxÿ dj < 4g. Set D0d � �w0d ;H0�. Then we can calculate

D2d as
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D2d � �w0d ;K2d � � p1d �w0d ;H2;d �q1d � p1dD0dq1d

and hence we have

R�l� i0;K2d�D2d � p1dR�l� i0;H2;d�D0dq1d :

By (4.5), p1d � q1d on Q2d . Thus it follows from Proposition 4.1 and Lemma 4.5

that g2�d� behaves like

g2�d� � ���1ÿ w0d� ÿ R�l� i0;H2;d�D0d�q1dj��� ; l;o�;D0dq1djÿ�� ; l;o 0�� � o�1�:

The term q1d�x�jH�x; l;o� is calculated as

q1djH � exp�ÿihd�x��jH�x; l;o�

� exp�ÿizd�y�x;ÿd̂���jH�x; l;o�

� exp�ÿia1y�x;ÿd̂��jH�x; l;o�

on Q2d . We apply Proposition 5.1 to jH�x; l;o�. Then we obtain that

q1djH � exp�ia1�y�x;Ho� ÿ y�x;ÿd̂� ÿ p��j0�x; l;o� � o�1�

on Q2d , where j0�x; l;o� � exp�i
���

l
p

x � o�. If x A Q2d , then y�x;Ho� � y�d;Ho�
�O�jdjÿ1� and

y�x;ÿd̂� � y�d;ÿd̂� �O�jdjÿ1� � p�O�jdjÿ1�:

Thus we see that q1d�x�jH�x; l;o� behaves like

q1djH � exp�ia1�y�d;Ho� ÿ 2p�� exp�i
���

l
p

d � o�j0�xÿ d; l;o� � o�1�

on Q2d . This yields the desired result and the proof is complete. r

6. Asymptotic behavior at in®nity of eigenfunction.

The Proposition 5.1 has played a basic role in proving the main theorem.

We here prove this proposition. As stated in Section 1, the asymptotic behav-

ior of eigenfunction jH�x; l;o� has been studied in the physical literatures [2],

[3], [9]. We copy the proof from [9], the original idea of which is due to

T. Takabayashi.

Proof of Proposition 5.1. If we write jH�x; l;o; a� for jH�x; l;o�, then

jÿ�x; l;o; a� � j��ÿx; l;o;ÿa�:

Hence the asymptotic formula for jÿ�x; l;o� follows from that for j��x; l;o� at

once. We consider only the case that a B Z is not an integer. The case a A Z is

much simpler to deal with and we skip this case.
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For brevity we assume that 0 < a < 1, and we write j�x;o� for j��x; l;o�

with l � 1. The proposition is veri®ed for j�x;o�. The proof uses the integral

representation

Jp�r� �
ip

p

� p

0

eÿir cos t cos pt dtÿ sin pp

�

y

0

eÿpt�ir cosh t dt

� �

�6:1�

for the Bessel function Jp�r�, r > 0, with p > 0 ([5]). We denote by

jinc�x;o� � exp�ia�y�x;o� ÿ p�� exp�ix � o�

the asymptotic form on the right side. If we make a change of variable

g � g�x;o� � y�x;o� ÿ p; ÿpa g < p;

then it follows from (2.4) that

j��x;o� �
X

l AZ

�ÿi�ne ilgJn�jxj�

with n � jl ÿ aj, and also we have jinc�x;o� � e iagÿijxj cos g. We expand jinc�x;o�

as the Fourier series

jinc�x;o� �
1

2p

X

l AZ

e ilg
� p

ÿp

e iatÿijxj cos teÿilt dt �
1

p

X

l AZ

e ilg
� p

0

eÿijxj cos t cos nt dt:

On the other hand, we have

j��x;o� �
1

p

X

l AZ

e ilg
� p

0

eÿijxj cos t cos nt dtÿ sin np

�

y

0

eÿnt�ijxj cosh t dt

� �

by use of (6.1). Hence

j��x;o� ÿ jinc�x;o� � ÿ
1

p

X

l AZ

e ilg sin np

�

y

0

eÿnt�ijxj cosh t dt:

We calculate the sum on the right side. By assumption, y�x;o�0 0 and hence

jgj < p. A simple computation shows that

X

l AZ

e ilgeÿnt sin np � sin ap
eat

1� eÿige t
�

eÿat

1� eÿigeÿt

� �

for 0 < a < 1. This yields

j��x;o� ÿ jinc�x;o� � ÿ
sin ap

p

�

y

ÿy

eÿat

1� eÿigeÿt
e ijxj cosh t dt �6:2�
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for jgj < p. By the stationary phase method, the integral obeys the bound

O�jxjÿ1=2� as jxj ! y. Thus the desired relation is obtained. r

Next we consider the asymptotic behavior of j��x; l;o� along the forward

direction o. This has been already studied by [3], although the argument there is

not rigorous.

Lemma 6.1. Let G � fx A R
2 : 0 < jx=jxj ÿ oj < cjxjÿ1g for some c > 0.

Then

j��x; l;o� � �cos ap� exp�i
���

l
p

x � o� � o�1�; jxj ! y;

for x A G.

Proof. We use the same notation as in the proof of Proposition 5.1. The

proof is rather sketchy but the justi®cation is easy. We ®x 0 < df 1 small

enough and we write g � g�x;o� � ÿp� e or g � pÿ e for x A G, where e > 0

and it obeys e � O�jxjÿ1�. Let I be the integral on the right side of (6.2). If

g � ÿp� e, then we have

I � e ijxj
�jxjÿ1=2�d

ÿjxjÿ1=2�d

1

t� ie
e ijxjt

2=2 dt� o�1� � e ijxj
�jxj d

ÿjxj d
1

s� iejxj1=2
e ijsj

2=2 ds� o�1�

by changing the variable s � jxj1=2t. Note that ejxj1=2 � O�jxjÿ1=2� and hence it

follows that

�jxj d

jxjÿd

1

s� iejxj1=2
ÿ 1

s

 !

e ijsj
2=2 ds � o�1�:

This yields

I � e ijxj
�jxjÿd

ÿjxjÿd

1

s� iejxj1=2
ds� o�1� � ÿipe ijxj � o�1�

for g � ÿp� e. Similarly we have I � ipe ijxj � o�1� for g � pÿ e. Thus the

lemma immediately follows from (6.2). r

Theorem 1.2 follows from Lemma 6.1. We end the paper by proving this

theorem.

Proof of Theorem 1.2. The theorem is proved in exactly the same way as

in the proof of Theorem 1.1. We have only to replace

exp�ia1y�d;o�� ! �1� exp�2ia1p��=2 � �cos a1p� exp�ia1p�

for o � d̂. Then we can get the desired asymptotic formula for fd�d̂ ! o 0; l�
with o 0 0ÿd̂. A similar argument applies to the other statements. r
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