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Abstract. Let Nb 1 and p > 1. Let F be a compact set and W be a bounded

open set of RN satisfying F HWHR
N . We de®ne a generalized p-harmonic operator

Lp which is elliptic in WnF and degenerated on F. We shall study the genuinely

degenerate elliptic equations with absorption term. In connection with these equations

we shall treat two topics in the present paper. Namely, the one is concerned with

removable singularities of solutions and the other is the unique existence property of

bounded solutions for the Dirichlet boundary problem.

0. Introduction.

Let Nb 1 and p > 1. Let F be a compact set and W be a bounded open

set of R
N satisfying F HWHR

N . We also set W 0 � WnqF , where qF � F nF
�
.

Here by F
�
we denote the interior of F, which may be empty. We assume that

the measure of qF is zero.

By H 1;p�W� we denote the space of all functions on W, whose generalized

derivatives qgu of ordera 1 satisfy

kuk1;p �
X

jgja1

�

W

jqgu�x�jp dx

� �1=p

< �y;�0-1�

and also, H
1;p
loc �W� is a local version of H 1;p�W�. For the precise de®nition of

function spaces, see §2. For u A H
1;p
loc �W

0�, we de®ne a generalized p-harmonic

operator by

Lpu � ÿdiv�A�x�j`ujpÿ2
`u�;�0-2�

where `u � �qu=qx1; qu=qx2; . . . ; qu=qxN�, and A�x� A C1�W 0� is positive in WnF

and vanishes in F
�
. Roughly speaking, the operators Lp considered here are not
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only permitted to vanish identically on a compact set F HW, but also may be

unbounded on qF . We shall consider the genuinely degenerate elliptic equations

with absorption term BQ�u�, which are de®ned by

Lpu� B�x�Q�u� � f ; in W 0 � WnqF :�0-3�

Here B�x� is a nonnegative function on W, and Q�t� is continuous and strictly

monotone increasing on R satisfying the growth condition (1-6). For instance

we can adopt jtjqÿ1
t with q > 1 and �ejtj ÿ 1� sgn�t� for Q�t�. Since A � 0 in

F
�
, Lp�u� is de®ned on H

1;p
loc �WnF �VLy

loc�W
0� in a natural way by setting

Lpu � ÿdiv�A�x�j`ujpÿ2
`u� in WnF and Lpu � 0 in F

�
.

In connection with these equations we shall treat two topics in the present

paper. Namely, the one is concerned with removable singularities of solutions

for (0-3) and the other is the unique existence property of bounded solutions for

the Dirichlet boundary problem (0-7) below.

First we shall explain our results on removable singularities of solutions for

(0-3). We assume that u A H
1;p
loc �WnF �VLy�W 0� satis®es (0-3) for f A L1

loc�W
0� in

the weak sense. More precisely, we assume that u satis®es
�

W 0
�Aj`ujpÿ2

`u`j� BQ�u�j
�

dx �

�

W 0
f j dx; for all j A Cy

0 �W 0�:�0-4�

Then we shall show in Theorem 1 under some additional conditions that

lim sup
x!qF

ju�x�j < �y:�0-5�

From this result we see in Theorem 2 that there is a bounded solution for (0-3)

in W which coincides with u in W 0 � WnqF . Namely, we shall show that every

solution u A H
1;p
loc �WnF�VLy�W 0� of (0-3) can possess only removable singularities

on qF . Our main assumption [H-3] is concerned with a variant of the so-called

Minkowski content of tubular neighborhoods of qF . In order to see the geo-

metrical meaning of this assumption we also introduce a relative capacity

CK�F ;W� in §1 by the use of the conjugate function of the nonlinear term Q,

assuming that Q is strictly convex. Then we shall show that F has a vanishing

capacity if our conditions are satis®ed. Roughly speaking, the boundary set qF

is so small under our assumptions that the support of the distribution Lpu and the

set qF have no point in common. Here we remark that u � Qÿ1� f =B� in F
�

provided that u satis®es (0-3). Moreover we shall also see the sharpness of our

results in the special case that F is either a discrete set or an m-dimensional

compact smooth submanifolds �0 < maN ÿ 1� of R
N , and

A�x� � d�x�pa;B�x� � d�x�pb;C�x� � d�x�pg;

Q�t� � jtjqÿ1
t; d�x� � dist�x; qF �;

(

�0-6�
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where q > 1 and a; b; g are real numbers. (For the role of C�x�, see Theorem 1

in §2.) For example, there exists a characteristic number p�
m de®ned by (4-2)

such that if q > p�
m, then every solution u A H

1;p
loc �W

0�VLy�W 0� of (0-3) can

possess only removable singularities on qF .

When F consists of ®nite points, p � 2, Q�t� � jtjqÿ1
t and A�x�;B�x�;C�x�

are positive constants, H. Brezis and L. Veron initially studied in [BV] that

if u satis®es (0-3) with some additional assumptions on p, u can possess only

removable singularities on F. (See also [VV1], [VV2] and [V] for the quasilinear

case.) In this paper we generalize their results for an arbitrary compact set F in

place of ®nite set and for a wider class of (degenerate) elliptic operators Lp. We

note that if p � 2, then this topics was already treated in the author's paper [H2]

under the similar framework. By virtue of Kato's inequality and a maximum

principle, the unique existence of bounded solutions was established. Since

Kato's inequality does not work e¨ectively in the quasilinear case, we shall

employ a comparison principle, a priori estimates and a weak maximum principle

instead. Since the operators Lp are quasilinear and rather general, we need to

modify them suitably so that they are applicable to our problems.

Secondly we explain the existence and uniqueness result which is a direct

application of the ®rst part. We shall consider the Dirichlet boundary problem

for the operators Lp with absorption term, that is

Lpu� B�x�Q�u� � f �x�; in W,

u � 0; on qW.

�

�0-7�

Then we shall establish the existence and uniqueness of bounded solutions u for

this problem with f =B A Ly�W�. When the operator Lp is uniformly elliptic on

W, this problem has been treated by many authors. When p � 2, H. Brezis and

W. A. Strauss studied similar problems in [BS] for f A L1�W� with a monotone

increasing non-linear term in u (possibly multi-valued). As for the degenerate

case, the author proved in [H2] the existence and uniqueness of solutions of (0-7)

for f =B A Ly�W�.

This paper is organized in the following way. In §1 we shall describe our

precise framework and assumptions in this paper. We also introduce relative

capacities by virtue of the conjugate function of the nonlinear term, and we study

the meaning of our assumptions. In §2 and §3 we shall state our main results

which concerns removable of singularities and the unique existence of solutions

for Dirichlet boundary problem (0-7). In §4 we shall construct examples showing

that in certain respects Theorem 1 gives best possible results. The §5 is devoted

to prepare auxiliary lemmas which are needed to establish our theorems. In §6

we shall prove Theorem 1 by the use of a priori inequalities in §5 and the weak

maximum principle. Theorem 3 will be ®nally established in §7 as an application
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of Theorem 1. In Appendix we shall prove Lemma 1-2 in §1 concerned with

capacities.

1. Preliminaries.

In this section we prepare our basic framework and notations which are of

importance through the present paper.

Let Nb 1 and p > 1. Let F and W be a compact set and bounded open

subset of R
N respectively, satisfying F HW, and set

W 0 � WnqF :�1-1�

Here qF is de®ned as qF � FnF
�
. We assume that the measure of qF is zero.

We de®ne a distance to qF .

Definition 1. By d�x� we denote a distance function d�x� � dist�x; qF �.

Remark 1. A distance function d�x� is Lipschitz continuous and di¨er-

entiable almost everywhere. Moreover one can approximate it by a smooth

function. Namely there exists a nonnegative smooth function D�x� A Cy�W 0�

such that

C�0�ÿ1
a

D�x�

d�x�
aC�0�;�1-2�

jqgD�x�jaC�jgj�d�x�1ÿjgj
; x A W 0

;

where g is an arbitrary multi-index and C�jgj� is a positive number depending on

jgj. Therefore one can assume that d�x� is smooth as well without a loss of

generality. (For the construction of D�x�, see [T] for example.)

In this paper we treat the following degenerate nonlinear operator

Lpu� B�x�Q�u��1-3�

� ÿdiv�A�x�j`ujpÿ2
`u� � B�x�Q�u�; in W:

First we assume the following [H-1] on the nonnegative functions A�x� and

B�x�.

[H-1]

A�x� A C1�W 0�VL1
loc�W�;

A�x� � 0 in F
�
� FnqF ,

A�x� > 0 in WnF ,

8

>

<

>

:

�1-4�

and

B�x� A Ly

loc�W
0�VL1

loc�W�;

B�x� > 0 in W 0 � WnqF .

�

�1-5�
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Secondly we assume the following [H-2] on the nonlinear term Q�t�.

[H-2]

Q�t� is a strictly monotone increasing and continuous function such that

Q�0� � 0 and t �Q�t� > 0 on Rnf0g. Moreover we assume that there is a

positive number d0 such that

lim sup
jtj!y

jtjpÿ1�d0

jQ�t�j
< �y:�1:6�

We need more notations.

Definition 2. Let d0 be a positive number. Let us set for any t > 0 and

any x A W
0 � WnqF ,

~A�x� � A�x� � d�x�j`A�x�j;

M�x� � ess-supfy AW:1=4<d�y�=d�x�<3g

~A�y�

B�y�
;

K�x; t� � 2� �M�x� � tp��pÿ1�=d0 :

8

>

>

>

<

>

>

>

:

�1-7�

In this de®nition of K�x; t� the constant term 2 can be replaced by any

number strictly greater than 1. The following assumption is crucial in the

present work.

[H-3]

For the same positive number d0 > 0 as in [H-2], it holds that

lim inf
e#0

1

ep

�

e=2<d�x�<e

A�x�K x;
1

d�x�

� �

dx < �y:�1-8�

We also assume that:

[H-4]

Let B�x� and C�x� satisfy

C�x� A Ly

loc�W
0�VL1

loc�W�; C�x�b 0 in W;�1-9�

and

sup
x AW

C�x�

B�x�
< �y:�1-10�

In order to make clear in advance the role of the condition [H-3] as well as

what it means, we shall trace the de®nition of the kernel K�x; t� to its origin, and
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then we shall reconstruct it by using the conjugate function of the nonlinear

term. After we have reconstructed the kernel K�x; t�, we shall interpret the

condition [H-3] using the notion of the vanishing relative p-capacities of qF .

Originally the de®nition of the kernel K�x; t� comes from the pointwise

estimate of the supersolutions of the equation (0-3) under some additional

assumptions (see Lemma 6-1). More precisely, we shall prove in §6 that every

solution u of (0-3) in H
1;p
loc �WnF �VLy

loc�W
0� is dominated by K�x; 1=d�1=�pÿ1� up

to constant times. Roughly speaking, the condition [H-3] guarantees the inte-

grability of the term B �Q�u� near qF with u being the solution of (0-3).

Then we can ®nally show the boundedness of the solution, which is one of the

main purpose in the present paper.

It is very interesting that we can reconstruct the kernel without making use

of the explicit supersolutions. To this end, we shall de®ne the conjugate function

of the nonlinear term in place of supersolutions. In the rest of this subsection we

assume that Q is strictly convex. We need more notations.

Definition 3. For x A WnF and t > 0, we set

F0�x; t� �
B�x�

A�x�
�Q�t1=�pÿ1��;

F1�x; t� �
B�x�

A�x�
� t1�d0=�pÿ1�;

Cj�x; t� � sups>0�tsÿFj�x; s��; for j � 0; 1.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�1-11�

We also set

Definition 4. For any t > 0 and x A WnF

Gj�x; t� � c�p; d0�
ÿ1
Cj�x; t

p�
1

tp
� 2; for j � 0; 1;

c�p; d0� �
d0

pÿ 1� d0

pÿ 1

pÿ 1� d0

� ��pÿ1�=d0

:

8

>

>

>

<

>

>

>

:

�1-12�

Then by a direct calculation we have

C1�x; t� � c�p; d0�
A�x�

B�x�

� ��pÿ1�=d0

� t1��pÿ1�=d0 ;

G1�x; t� � 2�
A�x�

B�x�
� tp

� ��pÿ1�=d0

:

8

>

>

>

>

<

>

>

>

>

:

�1-13�

From the de®nition it immediately follows that
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Lemma 1-1. (1) (Young's inequality) For any positive numbers s; t and for

almost all x A WnF , it holds that

staFj�x; s� �Cj�x; t� for j � 0; 1:�1-14�

(2) For any positive number C1, there is a positive number C2 such that for

tbC1

F1�x; t�aC2 �F0�x; t�;

C0�x; t�aC2 �C1�x; t�;

G0�x; t�aC2 � G1�x; t�;

C1�x; t
p�aG1�x; t� � t

p
aK�x; t� � tp:

8

>

>

>

<

>

>

>

:

�1-15�

(3) For any x A WnF , it holds that

K�x; t� � sup
1=4<d�y�=d�x�<3

G1�y; t�:�1-16�

Now we de®ne the relative capacities of compactum eHW to W, and we

shall explain [H-3] in terms of capacities.

Definition 5. For an arbitrary compactum eHW we de®ne the weighted

p-capacities relative to W by

�1-17�

C�e;W� � inf

�

W

Aj`hjp dx; hb 1 on e; h A Cy

0 �W�

� �

CK�e;W�� inf

�

W

A � K x;
1

d

� �

j`hjp dx; hb 1 on e; h A Cy

0 �W�

� �

C
log
K �e;W� � inf

�

W

A � K x;
1

d

� �

logK x;
1

d

� �� �p

j`hjp dx; h>1 on e; h A Cy

0 �W�

� �

:

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

Clearly it holds that C�e;W�aCK�e;W�aC
log
K �e;W�. Moreover we show

in §8 (Appendix) the following.

Lemma 1-2. Assume that [H-1]. Then [H-3] implies that CK�qF ;W� � 0,

namely, qF has a vanishing capacity.

If qF is su½ciently smooth, say, Cy compact submanifolds of R
n without

boundary, then we can show that the opposite implication. Namely, the

condition CK�qF ;W� � 0 implies [H-3] under the assumption [H-1]. This lemma

is not essentially new, but we shall show it in Appendix for the sake of self-

containedness.

Lastly we de®ne the following condition which is stronger than the condition

CK�qF ;W� � 0.
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[H-5]

C
log
K �qF ;W� � 0:�1-17�

Remark 2. We shall see that [H-3] can be replaced by the condition [H-5]

in many places. In Appendix we shall study more on capacities.

Remark 3. The condition (1-8) in [H-3] means that B�x� does not vanish

much faster than A�x�. If 1aNa 2, then either ~A�x� or M�x� must vanish on

qF in order to satisfy [H-3].

2. Removable singularities.

We use the following notations. Let D be an open subset of R
N . Let

qb 1 and let j be a positive integer. By H j;q�D� we denote the spaces of all

functions on D, whose generalized derivatives qgu of ordera j satisfy

kukj;q �
X

jgjaj

�

D

jqgu�x�jq dx

� �1=q

< �y;�2-1�

and also, H
j;q
loc �D� is a local version of H j;q�D�, and by kuk

y
we denote the

essential supremum of u. By H
1;q
0 �D� we denote the completion of Cy

0 �D� with

respect to the norm de®ned by (2-1). By D 0�D� we denote the space of all

distributions on D.

Now we are able to state our main results for removable singularities.

Theorem 1. Assume that [H-1], [H-2], [H-3] and [H-4]. Assume that u A

H
1;p
loc �WnF�VLy

loc�W
0� satis®es Lpu A L1

loc�W
0� in the distribution sense. Moreover

we assume that for almost all x A fx A W 0; u�x�b 0g,

Lpu� B�x�Q�u�aC�x�:�2-2�

Then we have u� A Ly

loc�W�, where u� � max�u; 0�.

Moreover the condition [H-3] can be replaced by [H-5].

Remark 4. From Theorem 1 it follows that u� A Ly

loc�W
0� can be extended

as a locally bounded function on a whole W. Since the measure of qF is zero,

this extension coincides with u� except on a set of measure zero. Theorem 1 will

be established in §7.

Admitting this for the moment, we shall establish the result concerning

removable singularities. To this end we give de®nitions of a weak solution of the

equation

Lpu� BQ�u� � f in D;�2-3�

where D is an open subset of W. We recall that Lpu is de®ned on

H
1;p
loc �WnF �VLy

loc�W
0� by setting Lpu � 0 in F

�
.
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Definition 6 (A weak solution in W 0). For f A L1
loc�W

0� and u A H
1;p
loc �WnF �V

Ly
loc�W

0�, u is said to be a weak solution of (2-3) in W 0, if it satis®es

�

W 0
�Aj`ujpÿ2

`u`j� BQ�u�j� dx �

�

W 0
f j dx; for all j A Cy

0 �W 0�:�2-4�

Since the assumption on the coe½cient A is rather weak, we have to be

careful to consider a weak solution of (2-3) in a whole W. Namely

Definition 7 (A weak solution in W). For f A L1
loc�W� and u A H

1;p
loc �WnF �V

Ly
loc�W�, u is said to be a weak solution of (2-3) in W, if it satis®es that Aj`ujp A

L1
loc�W� and

�

W

�Aj`ujpÿ2
`u`j� BQ�u�j� dx �

�

W

f j dx; for all j A Cy
0 �W�:�2-5�

Then it follows from Theorem 1 that we have the following result:

Theorem 2. Assume that [H-1], [H-2] and either [H-3] or [H-5]. Instead of

[H-4] assume that f �x� A Ly
loc�W

0�VL1
loc�W� satis®es for some positive number C

j f �x�jaC � B�x�; for almost all x A W:�2-6�

Assume that u A H
1;p
loc �WnF�VLy

loc�W
0� satis®es in the weak sense

Lpu� B�x�Q�u� � f ; in W 0:�2-7�

Then there exists a function v A H
1;p
loc �WnF �VLy

loc�W� such that v satis®es in the

weak sense

Lpv� B�x�Q�v� � f ; in W

vjW 0 � u:

�

�2-8�

Proof of Theorem 2. This is a direct consequence of Theorem 1. In fact

from Theorem 1 we have u� A Ly
loc�W�. The function ÿu satis®es (2-7) with

replacing f and Q�t� by ÿf and ÿQ�ÿt� respectively. Since ÿQ�ÿt� satis®es the

same assumption as the one for Q�t�, we see in a similar way uÿ A Ly
loc�W�, where

uÿ � max�ÿu; 0�. According to Remark 4, u is extended as a locally bounded

function on W. By v we denote this extension of u to a whole W. Thus v A

Ly
loc�W� and vjW 0 � u. From [H-1] and [H-2] we also see that B �Q�v� A L1

loc�W�.

Here we note that since A�x� � 0 on FnqF , u�x� � v�x� � Qÿ1� f �x�=B�x��� on

FnqF . Then it follows from Lemma 5-3 in §5 that v is extended as a solution of

the same equation on a whole W. Here we note that the uniqueness of solutions

in Ly
loc�W� follows from the same argument in the proof of Theorem 3 in §7. r

Remark 5. The monotonicity of the nonlinear term Q on R will be needed

to establish the uniqueness of solutions in Theorem 2 and Theorem 3. For the
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proof of the existence of solutions it su½ces to assume that there is a positive

number C such that Q�t� is monotone increasing for t A Rn�ÿC;C �.

3. Existence and uniqueness of solutions for Dirichlet problem.

As an application we consider the Dirichlet boundary value problem for

degenerate quasi-linear elliptic equation:

Lpu� B�x�Q�u� � f in W

u � 0 on qW.

�

�3-1�

Then we have the following result which will be established in §7.

Theorem 3. Assume that [H-1], [H-2] and [H-3]. Instead of [H-4] assume

that f �x� A Ly�W� satis®es for some positive number C

j f �x�jaC � B�x�; for almost all x A W:�3-2�

Moreover we assume that A�x�;B�x� A C 0�W�. Then there exists a unique function

u A Ly�W�VH
1;p
loc �WnF ��3-3�

which satis®es (3-1) in the weak sense and satis®es
�

W

�A�x�j`ujp � B�x�Q�u�u� dxaC�k f =Bkl

y
� k f k

y
�:�3-4�

Here l � �p� d0�=�pÿ 1� d0� and C is a positive number independent of each

function f .

Remark 6. The condition [H-3] can be replace by [H-5] as before. For the

proof of this Theorem 3 we shall regularize the problem. By virtue of Theorems

1 and 2, we shall prove that the unique solutions of this approximating nonlinear

elliptic equations converge to the unique bounded solution of the original

equation. Here we note that the operator Lp itself is not e-regularizable, because

it may be degenerate in®nitely on qF .

Remark 7. If we assume that qF is smooth, then we can also establish the

HoÈlder continuity of the gradient j`uj of the solution u under some additional

conditions. More precisely, in the coming paper we shall show j`uj belongs to

the weighted Schauder space if A�x� belongs to Muckenhoupt's Ap class and A�x�

is a power of the distance to qF .

4. Examples.

In this subsection we shall construct examples showing that in certain

respects Theorem 1 gives best possible results. Let F be either the origin 0 or an
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m-dimensional Cy compact submanifolds in R
N without boundary for 0 < ma

N ÿ 1, and let d�x� be a distance function. For example, if F consists of the

origin 0, then we put d�x� � jxj and m � 0. For p > 1 and q > 0, we set

Pu � ÿdiv�d�x�paj`ujpÿ2
`u� � b�x� � d�x�pb � jujqÿ1

u;�4-1�

where b�x� is a positive continuous function.

Assume that real numbers a, b and g satisfy the following conditions. First

we assume (h-1) and (h-2) which are equivalent to [H-1] and [H-2] respectively.

min�a; b; g� > ÿ
N ÿm

p
:�h-1�

q > pÿ 1:�h-2�

From (h-2) we see that the condition [H-2] is satis®ed for d0 � qÿ p� 1

> 0. We need more notations. Let us set for 0amaN ÿ 1 and a >

ÿ�N ÿmÿ p�=p

p�
m �

�pÿ 1� � 1� p
1ÿ a� b

N � paÿ pÿm

� �

; if a < b � 1,

pÿ 1; if ab b � 1.

8

<

:

�4-2�

Then we assume (h-3) which is equivalent to (1-8) in [H-3]. (See the proof

of Theorem 4.)

qb p�
m; if a < b � 1,

q > p�
m � pÿ 1; if ab b � 1,

a > ÿ
N ÿmÿ p

p
:

8

>

>

>

<

>

>

>

:

�h-3�

Lastly we assume (h-4) which is equivalent to [H-4].

ba g:�h-4�

Let us set u� � max�0; u� and uÿ � max�0;ÿu�. Then it follows from Theorem 1

that we have Theorem 4.

Theorem 4. Let F be either the origin or an m-dimensional Cy compact

submanifolds in R
n without boundary for 0 < maN ÿ 1. Assume that (h-1),

(h-2), (h-3) and (h-4). Assume that u A H
1;p
loc �W

0�VLy

loc�W
0� satis®es Pu A L1

loc�W
0�

in the distribution sense. Moreover we assume that for almost all x A fx A W;

u�x�b 0g

Pua c�x�d�x�pg;�4-3�

for some positive continuous function c�x�. Then we have u� A Ly

loc�W�.
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Proof of Theorem 4. Since Q�u� � jujqÿ1
u, we can put d0 � qÿ p� 1

to obtain (1-6) in [H-2]. Putting A�x� � d�x�pa, B�x� � b�x�d�x�pb and C�x� �

c�x�d�x�pg, we shall apply Theorem 1. Since the conditions [H-1], [H-2] and

[H-4] are clearly satis®ed, it su½ces to examine the condition [H-3]. Note

that M�x� is equivalent to d�x�p�aÿb� and so K�x; 1=d�x�� is equivalent to 1�

d�x�ÿp�pÿ1���1ÿa�b�=d0�. Therefore we see

1

ep

�

e=2<d�x�<e

A�x�K x;
1

d�x�

� �

dx�4-4�

�
1

ep

� e

e=2

dr

�

fd�x��rg

�1� d�x�ÿp� pÿ1���1ÿa�b�=d0��d�x�pa dHNÿ1�x�

aC diam�F �m
1

ep

� e

e=2

�1� rÿp�pÿ1���1ÿa�b�=d0��rpa�Nÿmÿ1 dr

aC 0 diam�F�m � �e��paÿp�Nÿm�=�qÿp�1���qÿp�
m� � ep�a���Nÿmÿp�=p���

� O�1�: �h-1� and �h-3�

This proves the assertion. Here HNÿ1��� is the �N ÿ 1�-dimensional Hausdor¨

measure, and we used the fact:

Since F is compact and smooth, there is a positive number C such that we

have

jf0 < d�x� < egjaCeNÿm diam�F�m; 0 < e < 1:�4-5�

Here by jSj we denote the Lebesgue measure of the set SHR
N . r

Counter-examples to Theorem 4. We shall see that Theorem 4 is best

possible in certain respects. We note that F � qF holds. Since it su½ces to

construct counter-examples in a su½ciently small neighborhood W of F, we may

assume d�x� � dist�x;F� is smooth so that we have j`d�x�j � 1 in WnF . Now

we construct a null solution U for (4-7) in WnF of the form

U�x� � d�x�ÿM ; for M > 0:�4-6�

Namely we want U to solve the following equation for some M > 0 and a

suitable positive continuous function b�x�.

PU�x� � 0; in WnF :�4-7�

To do so, it su½ces to put

b�x� � M pÿ1E�x� � d�x�M�pÿ1ÿq�ÿp�1ÿa�b�

E�x� � M�pÿ 1� ÿ pa� pÿ 1ÿ d�x�Dd�x�

(

�4-8�
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Since qF and d�x� � dist�x;F� are smooth, we see that

lim
x!F

d�x� � Dd�x� � N ÿmÿ 1;�4-9�

where m � dim�F�. In fact, if F is ¯at, then d�x�Dd�x�1N ÿmÿ 1.

Therefore, if the following conditions (4-10) are satis®ed, we see that M > 0 and

b�x� is a positive continuous function, so that U�x� becomes an unbounded null

solution of (4.7).

qa pÿ 1�
p�1ÿ a� b�

M
; M > max

N ÿm� paÿ p

pÿ 1
; 0

� �

:�4-10�

After all we get

Proposition 4-1. Assume that (h-1) and a > ÿ�N ÿmÿ p�=p. Then there

exist unbounded null solutions for (4-7), if �p; q; a; b� satis®es one of the conditions

listed below:

�1� q < p�
m and a < b � 1,

�2� qa pÿ 1 and a � b � 1,

�3� q < pÿ 1 and a > b � 1:

8

<

:

�4-11�

Remark 8. If p � 2 and q � 1, then the operator P is linear. Hence we

can construct a local fundamental solution E�x; y� of P in many cases. (If a �

0, it is clear because P is elliptic.) Then E�x; y� for y A F also becomes an

unbounded solution of (4-7).

Remark 9. If q � pÿ 1 and b � p�aÿ b ÿ 1� > 0, then we can also con-

struct a null solution of the form ed�x�
ÿM

near F. In fact, if we put U�x� �

ed�x�
ÿM

, then we have in a similar way

b�x� � M pÿ1E�x� � d�x�ÿMp�b�p�aÿbÿ1�

E�x� � M�pÿ 1� � ��M � 1��pÿ 1� ÿ apÿ d�x�Dd�x��d�x�M :

(

�4-12�

Therefore if b � p�aÿ b ÿ 1� > 0 we see b�x� is bounded and positive in a small

neighborhood of F for su½ciently small M > 0.

Remark 10. Now we assume that aaÿ�N ÿmÿ p�=p holds. Then we

immediately see that there exist unbounded null solutions of (4-7) for an arbitrary

q (respectively q < pÿ 1) provided a < 1� b (respectively ab b � 1). In fact we

can choose any positive number for M in (4-10).

Lastly we consider (h-4). We can show the following:

Proposition 4-2. Assume that (h-1) and dim�F � � m for 0amaN ÿ 1.

Then for the validity of Theorem 4, the assumption ba g ((h-4)) is necessary if

ab g� 1.
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Proof of Proposition 4-2. Assume that b > g. Let us set U�x� �

ÿlog d�x� A L1
loc�W�. Then it is easy to see that U�x� becomes a counter-

example, provided that ab g� 1. In fact we see that

ÿdiv�d paj`U jpÿ2
`U� � O�d�x�apÿp� in WnF :�4-13�

Since U is unbounded, (h-4) is necessary to avoid this candidate. r

5. Auxiliary lemmas.

In this section we shall establish a chain of auxiliary lemmas concerning

basic estimates for weak solutions of the equation, which will be needed to

establish Theorems stated in §2. Without loss of generality we assume that a

®xed tubular neighborhood of F, say, fx : d�x� < 3g is contained in W.

Lemma 5-1 (A priori inequality 1). Assume that fx : d�x� < 3gHW.

Assume that [H-1], [H-2] and [H-4], and assume that u A H
1;p
loc �WnF�VLy�W 0�

satis®es Lpu A L1
loc�W

0� in the distribution sense. Moreover we assume that for

almost all x A fx A W 0
; u�x�b 0g,

Lpu� B�x� �Q�u�aC�x�:�5-1�

Then we have, for any number q > 0 and any nonnegative function h A

Cy
0 �fx A W : 0 < d�x� < 3g�,

�

W

A�x�j`�uÿ m��j
p�uÿ m�qÿ1

� hp dx�5-2�

a
p

q

� �p�

W

A�x�j`hjp�uÿ m�p�qÿ1
� dx;

�

W

A�x�j`�uÿ m��j
p�1� �uÿ m���

ÿ1
hp dx�5-3�

a pp

�

W 0
A�x�j`hjp�1� �uÿ m���

pÿ1�log�1� �uÿ m����
p
dx:

Here m is an arbitrary positive number satisfying

Q�m�bmax sup
x AW

C�x�

B�x�
; sup
2<d�x�<3

juj

" #

:�5-4�

Proof of Lemma 5-1. We use the following test functions in this section:
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fj�x� � h�x�prj��u�x� ÿ m���; � j � 1; 2�;�5-5�

where we set for positive number n

r1�t� �
t
q
�; if q > 0

log�1� t��; if q � 0.

�

r2�t� �

1; tb 1=n,

nt; 0a ta 1=n,

0; ta 0.

8

<

:

Since (5-3) can be treated in a similar way, we only prove (5-2) for q > 0.

Proof of (5-2). Using f1 as a test function, we have

q

�

W

A�x�j`�uÿ m��j
p�uÿ m�qÿ1

� hp dx�

�

W

�B �Q�u� ÿ C�x��f1�x� dx�5-6�

� p

�

W

A�x�j`ujpÿ2�`u � `h�hpÿ1r1��uÿ m��� dxa 0:

Since the second term is nonnegative from the de®nition of m, we have

q

�

W

A�x�j`�uÿ m��j
p�uÿ m�qÿ1

� hp dx�5-7�

a p

�

W

A�x�j`ujpÿ1j`hjhpÿ1r1��uÿ m��� dx

a p

�

W

A�x�j`ujp�uÿ m�qÿ1
� hp dx

� ��pÿ1�=p

�

�

W

A�x�j`hjp�uÿ m�p�qÿ1
� dx

� �1=p

:

Here we used the equality q � �qÿ 1��1ÿ 1=p� � �qÿ 1� p�=p. Hence the

desired estimate holds. r

Using this we can show the following lemma which is of importance in the

proof of Theorem 1.

Lemma 5-2 (A priori inequality 2). Assume the same assumptions as in

Lemma 5-1.

Then we have, for any number q > 0 and any nonnegative function h A

Cy
0 �fx A W : 0 < d�x� < 3g�,
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�

W

�B�x�Q�u� ÿ C�x���uÿ m�q�h
p dx�5-8�

a
pp

qpÿ1

�

W

A�x�j`hjp�uÿ m�p�qÿ1
� dx;

�

W

�B�x�Q�u� ÿ C�x�� log�1� �uÿ m���h
p dx�5-9�

a pp

�

W 0
A�x�j`hjp�1� �uÿ m���

pÿ1�log�1� �uÿ m����
p
dx;

�

fx;ubmg

�B�x�Q�u� ÿ C�x��hp dx�5-10�

a pp

�

W

A�x�j`hjp�uÿ m�p� dx

� ��pÿ1�=p

�

�

W

A�x�j`hjp dx

� �1=p

:

Here m is an arbitrary positive number satisfying (5-4).

Proof of Lemma 5-2. Since the arguments are quite similar, we concentrate

on proving (5-8) and (5-10). Using f1 as the same test function as before, we

have
�

W

�B�x�Q�u� ÿ C�x��f1�x� dx�5-11�

a p

�

W

A�x�j`ujpÿ1j`hjhpÿ1r1��uÿ m��� dx

a p

�

W

A�x�j`ujp�uÿ m�qÿ1
� hp dx

� ��pÿ1�=p

�

�

W

A�x�j`hjp�uÿ m�p�qÿ1
� dx

� �1=p

a
pp

qpÿ1

�

W

A�x�j`hjp�uÿ m�p�qÿ1
� dx: �Lemma 5-1�

This proves (5-8). In order to prove (5-10) we use f2 de®ned by (5-5) as a test

function and the inequality (5-2) with q � 1. Then by letting n ! �y the

desired inequality follows in a similar way. r

Lemma 5-3 (Extension). Assume that [H-1], [H-2] and [H-3]. Moreover we

assume that for f A L1
loc�W�, u A H

1;p
loc �WnF�VLy

loc�W� satis®es in the weak sense

Lpu� B�x� �Q�u� � f ; in W 0:�5-12�

Then u can be extended as a weak solution of the same equation in whole W.
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Remark 11. In this lemma, we may relpace the condition [H-3] by a

weaker condition C�e;W� � 0. (See (1-17), Lemma 1-2 and Lemma A-1.)

Proof. Since u is bounded, we see that B �Q�u� A L1
loc�W�. Let us set

ce �

0; if dist�x; qF �a e=2

2

e
dist�x; qFe=2�; if e=2a dist�x; qF�a e

1; if dist�x; qF �b e

8

>

>

>

<

>

>

>

:

�5-13�

Here Fe � fx A W; dist�x;F �a eg and e is su½ciently small. For any nonnegative

f A Cy

0 �W� we put h � u � �fce�
p for a test function. Then we see

ÿ

�

W

�BQ�u� ÿ f �u�fce�
p
dx�5-14�

�

�

W

Aj`ujpjfcej
p
dx� p

�

W

Aj`ujpÿ2
u�fce�

pÿ1
`u � `�fce� dx;

�

Aj`ujpÿ2
`u � `�fce�u�fce�

pÿ1
dx

�

�

�

�

�

�

�

�

�5-15�

a

�

Aj`ujpjfcej
p
dx

� �1ÿ�1=p�

�

�

Aj`�fce�j
pjujp dx

� �1=p

:

Therefore we have for a ®xed f

�

Aj`ujpjfcej
p
dxaC � C 0

�

Ajujpj`�fce�j
p
dx:�5-16�

From [H-3] we see that the right-hand side is bounded as e ! 0. Since ce ! 1

on supp f as e ! 0, it follows from Fatou's lemma that Aj`ujp A L1
loc�W�. Let

f A Cy

0 �W�. Now we put h � fce for a test function to obtain

�

W

Aj`ujpÿ2
`u`�fce� dx � ÿ

�

W

�BQ�u� ÿ f �fce dx:�5-17�

Note that

�

W

Aj`ujpÿ2
f`u � `ce dx

�

�

�

�

�

�

�

�

�5-18�

a

�

suppj`cej

Aj`ujpjfj dx

 !1ÿ�1=p�

�

�

suppj`cej

Aj`cej
p
f dx

 !1=p

:

Then from [H-3] and the local integrability of Aj`ujp, we can show by letting
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e ! 0 �ce ! 1� that the right-hand side tends to zero, hence the desired equality

follows. r

We recall the de®nition of M�x�.

M�x� � ess-sup
fy AW:1=4<d�y�=d�x�<3g

~A�y�

B�y�
; for x A WnF :�5-19�

We also de®ne

m�x� � sup
jyÿxjad�x�=2

~A�y�

B�y�
:�5-20�

Lastly we prepare the following.

Lemma 5-4 (The relation between m & M ). Assume that for some e0 > 0,

fx : d�x�a e0g is contained in W. Then it holds that

sup
d�x�=2ad�y�ad�x�

m�y�aM�x�;�a�

sup
e=2ad�y�ae

m�y�a inf
e=2ad�y�ae

M�y�; for any e A �0; e0�:�b�

Proof. Since fy : jyÿ xja d�x�=2gH fy : 1=2a d�y�=d�x�a 3=2gH

fy : 1=4a d�y�=d�x�a 3g, the inequality (a) is clear. We proceed to the proof

of (b). From the de®nition of m�x� we see that

sup
e=2ad�y�ae

m�y�a sup
�1=4�ead�y�a�3=2�e

~A�y�

B�y�
for any e A �0; e0�:�5-21�

Since it holds that f�1=4�ea d�y�a �3=2�egH f�1=4�ta d�y�a 3tg for any

t A �e=2; e�, we get

sup
�1=4�ead�y�a�3=2�e

~A�y�

B�y�
a inf

�1=2�eatae
sup

�1=4�tad�y�a3t

~A�y�

B�y�
� inf

�1=2�ead�y�ae
M�y�:�5-22�

Hence the desired estimate follows. r

6. Proof of Theorem 1.

In this section we shall establish Theorem 1 using the lemmas in the previous

section. First we show an a priori bound for weak solutions of (0-3).

Lemma 6-1 (Supersolution). Assume that u A H
1;p
loc �WnF�VLy

loc�W
0� satis®es

Lpu A L1
loc�W

0� in the distribution sense. Assume that [H-1], [H-2] and [H-4].

Moreover we assume that for almost all x A fx A W; u�x�b 0g
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Lpu� B�x�Q�u�aC�x�:�6-1�

Then we have, for some positive numbers C1, C2 and e0,

u�x�aC1�m�x�1=d0d�x�ÿp=d0 � 1�aC2 � K x;
1

d�x�

� �1=�pÿ1�

;�6-2�

for any x with 0 < d�x�a e0. Here m�x� is de®ned by (5-20).

Proof. First we note that the last inequality in (6-2) follows from the

de®nition of the kernel K�x; t� (See (1-7)). Let d satisfy

d � d0 � p:�6-3�

Let x0 A WnF , with 0 < d�x0� < 1=2. For R � d�x0�=2 and r � jxÿ x0j, we set

X � fx A R
N ; jxÿ x0j < Rg;�6-4�

m

2
� Qÿ1 3 sup

x AW

C�x�

B�x�

� �

;�6-5�

and for p 0 � p=�pÿ 1�,

v�x� � lwÿd � m; w � Rp 0

ÿ rp
0

; x A X :�6-6�

Now we determine constants l so that v satis®es

Lpv� B�x�Q�v�bC�x�; in X :�6-7�

From a direct calculation, the monotonicity of Q��� and the de®nition of m it

follows that

LpvbÿC0l
pÿ1 ~A�x�Rp 0

wÿd�pÿ1�ÿp;

Q�v�bC�x� �
1

3

ÿ

Q�m=2� �Q�lwÿd��

8

<

:

�6-8�

where C0 is a positive number independent of x0, x, and R. Then we have

Pv� B�x�Q�v��6-9�

bC�x� ÿ C0l
pÿ1 ~A�x�Rp 0

wÿd�pÿ1�ÿp �
1

3
B�x��Q�lwÿd� �Q�m=2��

� C�x� �
1

3
lÿd0B�x�Q�lwÿd� ld0 ÿ 3C0

~A�x�

B�x�

�lwÿd�d0�pÿ1

Q�lwÿd�
� Rp 0

 !

�
1

3
B�x�Q�m=2� in X :
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Now we put

ld0 � 3C0 �m�x0�R
p 0

max sup
jtj>1

td0�pÿ1

jQ�t�j
;

1

Q�m=2�

" #

:�6-10�

If lwÿd
b 1, we immediately get the desired inequality (6-7) by the use of (1-6) in

[H-2]. On the other hand, if lwÿd < 1, we make use of the inequalities

ld0
b 3C0 �m�x0�R

p 0 1

Q�m=2�
and lpÿ1wÿd�pÿ1�ÿp

a lÿd0 :�6-11�

Then we see

1

3
B�x�Q�m=2�bC0l

pÿ1 ~A�x�Rp 0

wÿd�pÿ1�ÿp:�6-12�

After all we get the desired conclusion. By the use of f � �uÿ v�� as a test

function we get
�

W

A�x��j`ujpÿ2
`uÿ j`vjpÿ2

`v� � `f dx�6-13�

�

�

W

B�x��Q�u� ÿQ�v��f dxa 0:

Since �uÿ v�� � 0 near qX and Q is monotone, it follows from a weak maximum

principle that

u�x0�a v�x0� � lRÿp 0d � m�6-14�

aC1�m�x0�
1=d0d�x0�

ÿp=d0 � 1�;

and this proves the assertion. Here we used [H-2], d�x0� � R=2 and Ra d�x�a

3R in X, and C1 is a positive number independent of R. As for the weak

maximum principle, see [To; Lemma 3.1] for example. r

In this stage, the solution u of the inequality (2-2) in the distribution sense

may still have singularities on qF . Combining this weak result with Lemma 5-2

we are able to show that u is bounded in W. First we assume [H-1], [H-2], [H-3]

and [H-4]. Moreover we assume that fx : d�x� < 3gHW as before. Now we

see from (5-10) in Lemma 5-2
�

fx;ubmg

�B�x�Q�u� ÿ C�x��hp dx�6-15�

a pp

�

W

A�x�j`hjp�uÿ m�p� dx

� ��pÿ1�=p

�

�

W

A�x�j`hjp dx

� �1=p

;

Here supp hH fx : 0 < d�x� < 3g and m is an arbitrary positive number satisfying
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Q�m=2�bmax 3 sup
x AW

C�x�

B�x�
; sup
2<d�x�<3

juj

" #

:�6-16�

For h, we choose a Lipschitz continuous function he for a su½ciently small e > 0

such that

he�x� �

0; if dist�x; qF �a e=2; or d�x�b 3,

2

e
dist�x; qFe=2�; if e=2a dist�x; qF �a e,

1; if ea dist�x; qF � and d�x�a 2.

8

>

>

>

<

>

>

>

:

�6-17�

Here Fe is a tubular neighborhood of F de®ned by

Fe � fx A W : dist�x;F� < eg:�6-18�

By virtue of Lemma 6-1 we have, for some positive number C1 independent of

each x and m > 0,

�u�x� ÿ m��aC1 � �1�m�x�1=d0 � d�x�ÿp=d0�:�6-19�

From Lemma 5-4 we have

sup
e=2ad�x�ae

�uÿ m��aC1 � sup
e=2ad�x�ae

�1�m�x�1=d0 � d�x�ÿp=d0��6-20�

aC 0
1 � inf

e=2ad�x�ae
�1�M�x�1=d0 � d�x�ÿp=d0�:

By the de®nition of K, we have for some positive number C

�1�M�x�1=d0 � d�x�ÿp=d0�pÿ1
aC � K x;

1

d�x�

� �

:�6-21�

Then, it follows from (6-15) that for some positive number C 0,
�

fx;ubmg

�B�x�Q�u� ÿ C�x��hp
e dx�6-22�

a pp

�

W

A�x�j`hej
p�uÿ m�pÿ1

� dx

� �� pÿ1�=p

�

�

W

A�x�j`hej
p sup
e=2ad� y�ae

�u�y� ÿ m�pÿ1
� dx

 !1=p

a pp

�

W

A�x�j`hej
p sup
e=2ad�y�ae

�u�y� ÿ m�pÿ1
� dx

aC 0 pp �
1

ep

�

fe=2ad�x�aeg

A�x�K x;
1

d�x�

� �

dx
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Since he ! 1 as e ! 0, it follows from [H-3] that BQ�u� A L1
loc�W�. Again from

(6-15) and [H-3] we have

�

fx;ubmg

�B�x�Q�u� ÿ C�x��hp
e dxaC

�

W

A�x�j`hej
p�uÿ m�pÿ1

� dx

� ��pÿ1�=p

:�6-23�

From Lemma 1-1 (Young's inequality ), (1-11), (1-13) and (1-15) we see that

Aj`hej
p
tpÿ1�6-24�

aA �F0�x;L
pÿ1tpÿ1� � A �C0�x; j`hej

p=Lpÿ1�

aB �Q�Lt� � C � A � Lÿ�pÿ1��1��� pÿ1�=d0��C1�x; j`hej
p�

aB �Q�Lt� � C � A � Lÿ�pÿ1��1��� pÿ1�=d0��K�x; j`hej�j`hej
p;

where L and t are arbitrary positive numbers. We used the following:

C1�x; t
p�aG1�x; t� � t

p
aK�x; t� � tp; �x A W 0; t > 0�:�6-25�

We note that d�x� is equivalent to e on the support of he and j`hej � 2=e holds

there. Hence for any positive number k, there is a large positive number L

independent of each e such that we have

�

W

Aj`hej
p�uÿ m�pÿ1

� dxa

�

supp he

B �Q�L�uÿ m��� dx�6-26�

�
C � eÿp

L�pÿ1��1���pÿ1�=d0��

�

supp h

A � K x;
1

d�x�

� �

dx

a

�

supp he

B �Q�L�uÿ m��� dx� k

As e ! 0, we easily see that

�

fx;ubmg

�B�x�Q�u� ÿ C�x�� dx � 0�6-27�

Therefore we have showed that the positive part of u is bounded in W.

Lastly we assume [H-5] in stead of [H-3]. In this case the boundedness of u

follows from (5-9) in Lemma 5-2, Lemma 6-1 and Lemma A1 in Appendix. Let

e and k be arbitrary small positive numbers. By virtue of [H-5] and Lemma A1,

we choose x A Cy

0 �Fe� such that xb 1 on F and

�

Fe

A � K x;
1

d

� �

logK x;
1

d

� �� �p

j`x�x�jp dx < k:�6-28�
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Here Fe denotes a tubular neighborhood of F. We choose f A Cy
0 �W� such that

f � 1 for fx : d�x� < 2g; 0 for fx : d�x� > 3g. Finally we set h � �1ÿ x� � f.

Since h is an admissible test function we have

�

W

�B�x�Q�u� ÿ C�x�� log�1� �uÿ m���h
p dx�6-29�

a pp

�

W 0
A�x�j`hjp�1� �uÿ m���

pÿ1�log�1� �uÿ m����
p
dx

a pp

�

W 0
A�x�j`xjpjfjp�1� �uÿ m���

pÿ1�log�1� �uÿ m����
p
dx

aC

�

W 0
A�x�j`xjpK x;

1

d�x�

� �

logK x;
1

d�x�

� �� �p

dx < Ck:

Therefore we see

�

WVfx:d�x�<3g

�B�x�Q�u� ÿ C�x�� log�1� �uÿ m��� dx � 0:�6-30�

This proves the assertion. r

7. Dirichlet boundary problem.

Uniqueness. First we prove the uniqueness of solutions in

T�W� � fu A Ly�W�VH
1;p
loc �WnF �; u � 0 on qWg:�7-1�

Assume that u and v are solutions to (3-1) in the space T�W�. Note that u � v in

FnqF (Monotonicity of Q). From (5-16) in Lemma 5-3 we immediately see that

A�j`ujp � j`vjp� A L1�W�. By subtraction we get in the sense of the distribution

Lp�uÿ v� � B�x��Q�u� ÿQ�v�� � 0; in W:�7-2�

By the use of f � �uÿ v�hp, where h A Cy�W� will be speci®ed later, we get

�

W

A�j`ujpÿ2
`uÿ j`vjpÿ2

`v� � `�uÿ v�hp dx�7-3�

� p

�

W

A�j`ujpÿ2
`uÿ j`vjpÿ2

`v� � `hhpÿ1�uÿ v� dx

�

�

W

B�Q�u� ÿQ�v���uÿ v�hp dx � 0:
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Now we take a sequence of smooth functions hj such that hj � 0 near qF ,

limj!y hj � 1 in W and

lim sup
j!y

�

W

A�x�j`hjj
p
dx < y:�7-4�

This is possible from [H-3]. Then replacing h for hj and letting j ! y, we get

�

W

A�j`ujpÿ2
`uÿ j`vjpÿ2

`v� � `�uÿ v� dx�7-5�

�

�

W

B�Q�u� ÿQ�v���uÿ v� dx � 0:

Since Q is monotone and u � v in FnqF , we see u1 v in W. Thus the

uniqueness holds.

Existence. We assume that N > 1. If N � 1, the proof below still works

with obvious modi®cations. First we shall regularize the problem by approxi-

mating the operator Lp by uniformly elliptic operators fL
�e�
p ge>0 in the following

way. If Lp is uniformly elliptic, the existence of solutions to (3-1) in H
1;p
0 �W� is

well-known. Let us set for e > 0

L�e�
p u � ÿdiv��e� A�x��j`ujpÿ2

`u�; for u A H
1;p
0 �W�;�7-6�

and consider the Dirichlet problem:

L
�e�
p u� B�x�Q�u� � f ; in W,

u � 0; on qW.

(

�7-7�

Then we prepare a lemma which concerns the existence and regularity of

solutions of (7-7). We shall sketch the proof for convenience.

Lemma 7-1. Let N > 1. Assume that the same assumptions as those in

Theorem 2. Then there is a unique ue A H 1
0 �W� which satis®es (7-7) in the weak

sense. Moreover ue satis®es

BQ�ue�;BQ�ue�ue A L1�W�:�7-8�

Sketch of Proof. This lemma can be shown in the following way. We

replace Q for Qn�u� � min�jQ�u�j; n� sgn�u� and consider the truncated equation

below;

L�e�
p un � B�x�Qn�un� � f ; in W:�7-9�

u � 0; on qW:
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Since A, B and f A Ly�W�, we are able to prove the existence of bounded

solutions in H
1;p
0 �W� by the use of Schauder's ®xed point theorem and the

standard argument. It is easy to see that fung
y

n�1 is bounded in H
1;p
0 �W�. As

we make n tend to in®nity, we show the weak convergence of solutions in

H
1;p
0 �W� using a priori estimates for a ®xed e > 0. Then by the compactness

argument we see the limit ue satis®es (7-7) and (7-8). r

Remark 12. (1) For each compact set K HWnF , it holds that ue A H 1;p�K�

and BQ�ue�ue A L1�W�. Since the operator Lp is uniformly elliptic on K and

A A C0�W�, there is a positive number C�K� independent of each e > 0 such that

we have

sup
x AK

jue�x�jaC�K�:�7-10�

Moreover if Q is uniformly Lipschitz continuous, then we see ue A H
2;p
loc �WnF � as

well.

(2) Under a weaker assumption that f A L1�W�, a similar existence result

holds for the approximating problem (7-9). For the detailed, see [BS, Theorem

12 and its corollary].

End of the proof of Theorem 3. By ue we denote the solutions to (7-9) as

before. From Lemma 7-1 and its remarks we see ue A H
1;p
0 �W� and BQ�ue�ue A

H
1;p
0 �W�. First we prove that ue satis®es (3-4) uniformly in e > 0. We set

a �
p� d0

pÿ 1� d0
; and b � p� d0:�7-11�

From (1-6) in [H-2], we see juejaC��juej jQ�ue�j�
1=� p�d0� � 1� for some positive

number C. By young's inequality we have for any positive number h
�

W

j f j juej dxaC

�

W

j f j

B
��juej jQ�ue�j�

1=�p�d0� � 1�Bdx�7-12�

aCaÿ1hÿa

�

W

j f j

B

� �a

Bdx

� Cbÿ1hb

�

W

juejjQ�ue�jBdx� C

�

W

j f j dx:

Multilpying ue to the both side of (7-9) and integrating over W, we get
�

W

�e� A�j`uej
p
dx� �1ÿ Cbÿ1hb�

�

W

Bjuej jQ�ue�j dx�7-13�

aCaÿ1hÿa

�

W

j f j

B

� �a

Bdx� C

�

W

j f j dx:

Now we put hb � b�2C�ÿ1, then we have the desired inequality.
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Secondly, by the method of a priori estimate and compactness, we derive

a subsequence fuejg
y

j�1 from fuege>0 which converges weakly to some element

u A H 1
loc�WnF � and uej converges u a.e. in WnF . Then by virtue of Fatou's

lemma and a weakly lower semicontinuity of Lp-norm, we get

�

WnF

Aj`ujp dx�

�

WnF

BQ�u�u dxaC�k f =Bkl
y
� k f k

y
�:�7-14�

Now we show that BQ�uej � ! BQ�u� in the sense of distribution on WnF . From

the de®nition of weak convergence of fuejg
y

j�1 and the estimates (7-13) and (7-14),

we see that f ÿ L
�ej�
p uej ! f ÿ Lpu in the sense of distribution on WnF .

Therefore the limit of BQ�uej � in D 0�WnF � as j ! y exists. Hence it su½ces

to show that

�

W

B�Q�uej � ÿQ�u��j dx ! 0; for all j A Cy

0 �WnF �:�7-15�

From Remark 12 just after the proof of Lemma 7-1, supx A supp jjuej j is uniformly

bounded on the support of j, so that BQ�uej � is uniformly bounded with respect

to ej. Since uej ! u a.e. in WnF , (7-15) follows from the dominated convergence

theorem. After all we see that u satis®es (3-1) in WnF in the weak sense. Now

we de®ne

u�x� �
u�x�; if x A WnF ,

Qÿ1� f �x�=B�x��; if x A FnqF .

�

�7-16�

Then u clearly satis®es (3-1) in WnqF in the sense of distribution. In WnF the

operator Lp is elliptic and the right-hand side of (3-1) belongs to Ly�W�. Hence

we see that u A Ly

loc�W
0�. Then it follows from Theorem 1 that u is bounded in

W 0. From Theorem 2 we see that there exists a unique function v A Ly�W�

which satis®es (2-8). Since v � u in WnqF , we see that v A T�W� is a unique

weak solution to (3-1) in W and v satis®es (3-4) for some positive number C.

8. Appendix.

In this section we ®rst study the relative capacity, and we shall prove Lemma

1-2. We assume that Q is strictly convex as before. Then we have

Lemma 1-2. Assume that [H-1]. Then [H-3] implies CK�qF ;W� � 0, that is,

qF has a vanishing capacity.

Proof. Without loss of generality we assume that fx : d�x� < 3gHW. Let

us set hj�x� � hej �x� for ej � 2ÿj, j � 1; 2; . . . ; where he is de®ned by (6-17).

Putting zj � 1ÿ hj , j � 1; 2; . . . we set
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zN�x� �
1

N

X

N

j�1

zj�x�:�8-1�

Clearly zN A C
0;1
0 �W� satis®es zNb 1 on qF . Then it follows from [H-3] that

�

W

A�x� � K x;
1

d

� �

j`zN jp dx�8-2�

�
1

N p

X

N

j�1

�

ej�1ad�x�aej

A�x� � K x;
1

d

� �

j`zjj
p
dx

aC
1

N p

X

N

j�1

1

e
p
j

�

ej�1ad�x�aej

A�x� � K x;
1

d

� �

dx

� O�N 1ÿp�:

Here C is a positive number independent of each j. Since p > 1 we see the

capacity of qF must be zero. This proves the assertion. Lastly we state the

following lemma without the proof.

Lemma A-1. The followings are equivalent to each other.

(1) CK�qF ;W� � 0,

(2) CK�qF ;Fe� � 0, for some e > 0,

(3) CK�qF ;Fe� � 0, for any e > 0.

Here Fe � fx A W; dist�x;F �a eg.

From this we see that the removability of singularities does not depend on

the shape of the boundary qW. For the proof of this lemma it su½ces to note

that A�x� � 0 in the interior of F (c.f. [H4]).
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