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Abstract. In knot theory, it is well-known that two links in the Euclidean 3-space
are ambient isotopic if and only if they are related by a finite number of combinatorial
moves along 2-simplices. This fact is generalized for submanifolds in a manifold whose
codimensions are positive.

1. Introduction.

In knot theory, it is well-known that two links in the Euclidean 3-space are
ambient isotopic if and only if they are related by a finite number of combin-
atorial moves along 2-simplices (cf. [7], [8], [2], [6]). Such combinatorial moves
are referred to Reidemeister’s 4-moves in [2]. In fact, the link isotopy type of a
link is often defined to be the equivalence class of the link in this combinatorial
sense, cf. [3], [1] The purpose of this paper is to generalize this fact for
submanifolds in a manifold whose codimensions are positive.

Let W4 be a PL g-manifold, which may be non-compact, non-orientable, or
disconnected.

THEOREM 1.1. Let L and L' be compact proper locally flat n-manifolds in
W1 with n < q, and Y a (q — 1)-submanifold of the boundary W4 of W4. The
following conditions are mutually equivalent.

(1) L is ambient isotopic to L' by an ambient isotopy keeping Y fixed.
(2) L is transformed into L' by proper moves of W1 relative to Y.
(3) L is transformed into L' by cellular moves relative to Y.
4)

(

It is well-known that (4) — (3) — (2) — (1). [(4) — (3) is obvious by def-
inition. (3) — (2) is the cellular move lemma (see Proposition 4.15 of [9]).
(2) — (1) is for example proved in Lemma 6.1 of [4].] The converse (1) — (2) is

also well-known in a special case that W9 is compact and Y is empty (see
Theorem 6.2 of [4]).

L is transformed into L' by simplex moves relative to Y.
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As well as Reidemeister’s 4-moves for knots are generalized to moves for
graphs in the 3-space (cf. [5], [10]), our moves are generalized to moves for
polyhedra in a g-manifold such that the dimensions of the non-locally flat point
sets are smaller than 2. (It remains open to treat such moves in a more general
situation, since the argument might be complicated.)

Let G be an n-dimensional compact polyhedron in a g-manifold W4, and I"
the set of points of G at which G is not locally flat in W4. (We say that G is
locally flat at x e G in W1 if there exists a regular neighborhood N(x) of x in
W4 such that the triple (N(x), GN N(x),x) is homeomorphic to (D4, D", O) or
(D?,D",0), where (D4, D") is the standard (¢, n)-disk pair, (D, D) is the half
disk pair of (D%, D"), and O is the origin.)

THEOREM 1.2. Suppose that dim(I") <1 and dim(I'NoW?) <0. If G is
ambient isotopic to G' by an ambient isotopy of W4 keeping I' and a (q—1)-
submanifold Y of 0W 1 fixed, then G is transformed into G' by a finite sequence of
(n+ 1)-simplex moves relative to Y.

When dim(I") <0 and W4 is simply connected, the assumption of
1.2 1s more relaxed by the following proposition.

ProrosiTION 1.3.  Let W1 be a simply connected q-manifold with q > 3, and
I' a finite set of interior points of W4. If there is an ambient isotopy {h;}
(te[0,1]) of W1 keeping a (q — 1)-submanifold Y of 0W 1 fixed such that h|, =
id, then there is an ambient isotopy {h;} (t€[0,1]) of W such that h{ = h; and
{h}} keeps I' and Y fixed.

For example, a singular X-knot, that is the image of a generic map of a
closed surface X into the 4-space R*, is a 2-dimensional compact polyhedron such
that I" is a finite set of points of R*.

As a simple case, we formulate the 3-dimensional version of the above
arguments.

COROLLARY 1.4. Let W3 be a 3-manifold, and L a compact proper 1I-
manifold in W3. If L is ambient isotopic to L' by an ambient isotopy of W3
keeping a 2-submanifold Y of 0W? fixed, then L is transformed into L' by a finite
sequence of 2-simplex moves relative to Y. For a finite graph G in W?* such that
GNOW?3 is the set of degree-one vertices of G, if G is ambient isotopic to G' by an
ambient isotopy {h;} (t€[0,1]) of W3 keeping a 2-submanifold Y of 0W?> and the
degree > 3 vertices of G fixed, then G is transformed into G' by a finite sequence of
2-simplex moves relative to Y.  Furthermore, when W3 is simply connected, we can
replace the assumption that {h,} keeps the degree > 3 vertices of G fixed by that h
preserves the degree > 3 vertices of G.

Throughout this paper we work in the piecewise linear category.
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2. Cellular moves and simplex moves.

An ambient isotopy of a manifold W means an isotopy h,: W — W
(t€[0,1]) with Ay the identity map. We say that two subsets of W are ambient
isotopic (by an ambient isotopy keeping a subset Y of W fixed) if there exists an
ambient isotopy {/,} of W whose terminal map /; carries one to the other (and
each map #, is identical on Y).

From now on, let W7 be a g-manifold and Y a (¢ — 1)-submanifold of the
boundary oW4? of W4,

Let D be an (n+ 1)-disk. An i-disk in 0D is called a PL i-face of D, where
ie{-1,0,1,2,...,n}. We assume that a PL (—1)-face is the empty set. In
order to avoid confusion, for an (n + 1)-simplex V, we shall call an i-face of V' in
the usual sense a canonical i-face. By a combinatorial i-face of V, we mean a PL
i-face of V' which is the union of some canonical i-faces of V.

For a homeomorphism % : W7 — W4, we denote by supp(/) the support of
h, that is the closure of {x e W?|h(x) # x} in W4, If there exists a ¢g-disk D
in W49 such that supp(#) = D, then the homeomorphism / is called a move
supported by the g-disk D. Moreover, if h|,,, =id or if DNOW? is a PL
(¢ — 1)-face of D, then the move is called a proper move supported by D. A
homeomorphism 4 : W? — W? is a proper move supported by D if and only
if it 1s isotopic to the identity map by an ambient isotopy of W7 keeping
cl(¢W? — D) fixed, see Lemma 6.1 of [4].

Let L be a compact proper locally flat n-manifold in W? and D an (n+ 1)-
disk in W4, where we assume n<gq. Put Dy=DNL and D, =DNoWH1.
Suppose that Dy is a PL n-face of D and one of the following conditions is
satisfied:

(1) Dy is a PL i-face of Dy for some ie {—1,0,...,n—1}.

(2) Dy is a PL n-face of D such that DyN D is a common PL (n — 1)-face

of Dy and D;.

Replacing Dy with the PL n-face cl(0D — (DyUD;)) of D, we obtain another
proper n-manifold in WY from L. We call this replacement a cellular move for L
along D. According as the case (1) or (2) occurs, we say that the cellular move
is of type 1 or type 2. Let Y be a (¢ — 1)-submanifold of dW49. A cellular
move for L along D is called a cellular move relative to Y if it is of type 1 or if it
is of type 2 such that D;N Y is a PL i-face of the (n — 1)-disk Dy N D; for some
ie{-1,0,...,n—2}.

The cellular move lemma (cf. Proposition 4.15 of [9]) states that if L’ is
obtained from L by a cellular move along an (n + 1)-disk D relative to Y, then
for any regular neighborhood U of D, there exists an ambient isotopy {/}
(te€[0,1]) of W4 which carries L to L’ and keeps cl(W?— U) and Y fixed. In
particular, a cellular move is a proper move.
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Let L be a compact proper locally flat n-manifold in W% and V an (n+ 1)-
simplex in W4, Put Vo=VNL and Vi =VNoW4. Suppose that V, is a
combinatorial n-face of ¥ and that one of the following conditions is satisfied:

(1) Vp is a combinatorial i-face of ¥V, for some ie {-1,0,...,n—1}.

(2) ¥y is a combinatorial n-face of ¥ such that VyNV; is a common

combinatorial (n — 1)-face of V, and V.
We call the cellular move (relative to Y) along V an (n+ 1)-simplex move
(relative to Y).

Notice that an (n + 1)-simplex move of type 1 does not change L. If L’ is
obtained from L by an (n + 1)-simplex move along V' of type 2, then JL is moved
into dL’ by a cellular move in W49 along the n-disk V; =V NoWw4.

Let G be an n-dimensional compact polyhedron in ¢ such that dim(I") < 1
and dim(I"NdW1?) <0, where I is the set of non-locally flat points of G in W4,
Let vy,...,v, be the vertices of I" and By, ..., B; regular neighborhoods of them
in W4 If v; is an interior point (resp. a boundary point) of W4, let 0, B; be the
(¢ — 1)-sphere 0B, (resp. the (¢ — 1)-disk cl(0B; Nint(W?))). We assume that B,
is the cone over d,B; with v; as the cone vertex. Put 4; = GN?d.B; which is an
(n — 1)-dimensional compact polyhedron in 0, B; such that the dimension of the
non-locally flat point set is 0 or —1. Put W, =cl(W1 — U B)and I'y = TN W,.
Then W is a g-manifold and 7"y is the union of some proper simple arcs e, ..., e
in W, (or the empty set). Let D; (j=1,...,¢) be a regular neighborhood of ¢;
in W;. We regard the union (| J;_, B/)U (th:le) as a regular neighborhood
N(I') of I' in W4, 1If necessary taking a subdivision of I', we may assume that
for each j, the pair (D;,e;) is a cone of (0D;,0e;) over a cone vertex wj.

Let V' be an (n+ 1)-simplex in W? and put Vo= VNG and V; =V NIWH4.
Suppose that V and V) satisfy the condition of the definition of an (n+ 1)-
simplex move as before. Moreover we suppose that one of the following
conditions is satisfied:

(1) Visin Wy =cl(W?—N(I)).

(2) Visin B; for some i so that it is the join of v; and an n-simplex in 0. B;

and VNI 1s an i-face of V, for i=0 or 1.
(3) Vis in D; for some j so that it is the join of a point of ¢; and an n-
simplex in 0. B; or the join of an edge in ¢; and an (n — 1)-simplex in
0+B; and VNI is an i-face of Vy for i=0 or 1.
Then we define an (n + 1)-simplex move along V (with respect to N(I") on G) to
be the replacement of Vy by cl(dV — (VoU 17)).

3. Proof of Theorem 1.1.

Let V be an (n+ 1)-simplex in a Euclidean space R’ and V; a canonical n-
face of V. Suppose that V = |vy, vy,...,0,41| and Vi = |vo,v1,...,v,|. Consider
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a linear map p: V' — V such that p(v;) =v; for i=0,1,...,n and p(v,41) is a
point of I;O (= points of ¥} not contained in any face).

Let K be a simplicial complex with |K| =V, and K; its restriction to
Vo. We say that K is in rapport with p if p 1s a simplicial map from K to Kj.

LemmA 3.1. Let V, Vo and p be as above. For any simplicial complex K
with |K| =V, there exists a subdivision K' of K which is in rapport with p.

Proor. For each A € K, the image p(A4) is a convex linear cell. There
exists an rth derived subdivision Kér) of Ky such that for all 4 €K, p(4) are

subdivided as subcomplexes of K.”. Let K' be the set {4Np~'(B)|4 €K,
Be Kér)}, which is a cellular subdivision of K such that the restriction over Vj is
Kér). Since p is a linear map carrying vertices of K! onto those of Kér), we
obtain a desired subdivision K’ by subdividing K! without introducing vertices.

[

Let K be a simplicial complex with |K| =V which is in rapport with
p:V —Vy. Each (n+ 1)-simplex A = |ap,ay,...,a,+1| € K is mapped linearly
onto an n-simplex B = |by,by,...,b,| € Ko. We may assume that

(1) p(a;) =b; for i=0,1,...,n,

(2)  plans1) = bo, and

(3) dist(anH, V()) > diSt(a(), V()).

In this situation, we call the canonical n-face |ay,...,a,| the bottom face of A,
and the canonical n-face |ay,...,a,.1| the top face of A. For each n-simplex
B € K, there exists a unique ordering A, Ay, ..., A, of all the (n + 1)-simplices in
K|p~'(B) such that

(1) the bottom face of A4, is B,

(2) the top face of A; is the bottom face of A4, for i=1,...,r—1.

Let D be an (n+ 1)-disk in a g-manifold W9?. Suppose that a (possibly
non-proper) n-manifold L in W intersects with D such that LN D = D, for a
PL n-face Dy of D. Replacing Dy with cl(0D — D), we obtain another (possibly
non-proper) n-manifold in W49 from L. We call this replacement a pseudo-
cellular move along D. (Notice that the result may be non-proper even if L is

proper.)

LemMA 3.2. Let V be an (n+ 1)-simplex and Vi a canonical n-face of V.
For any simplicial complex K with |K| =V, there exists a subdivision K' of K
such that the canonical n-face Vy is transformed into the combinatorial n-face
cl(0V = Vy) by a finite sequence of pseudo-cellular moves along the (n+1)-
simplices of K'.

Proor. We use the induction on n. The case of n =0 is obvious, for K
itself is a desired one. Assume that » > 0. By [Lemma 3.1, we may assume that
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K is in rapport with a linear projection p: V' — V), being as in the lemma. By
the induction hypothesis, there exists a subdivision K|; of Kj such that a canonical
(n— 1)-face Vyo of Vp is transformed into cl(0Vy — Vi) by a finite sequence of
pseudo-cellular moves along the n-simplices of K;. Let Bi,...,B, be the n-
simplices of K; and we assume that the sequence of pseudo-cellular moves is
performed along Bj,..., B, in this order. Take a subdivision K’ of K such that
the projection p : V' — ¥} is a simplicial map from K’ to K;. We claim that K’
is a desired subdivision of K. For each n-simplex By (k=1,...,m) of K, let
A{‘ e ,A,f‘k be the (n + 1)-simplices mapped onto By such that the bottom face of
A{‘ is By and, for each i (i=1,...,r, — 1), the top face of A{‘ is the bottom face
of Alﬁl. Then V; is transformed into cl(0V — V) by a sequence of pseudo-
cellular moves along the (n + 1)-simplices 4{,..., A} A3 ... A2, ... A" ... A"

r? ) ’ 'm

in this order. L]

CorOLLARY 3.3. Let (W,L) be homeomorphic to a standard disk pair
(D4,D"). Then L is transformed into an n-disk L' contained in OW by a finite
sequence of pseudo-cellular moves keeping 0L fixed.

COROLLARY 3.4. If an n-manifold L in W1 is transformed into L' by a
cellular move of type 1, then it is transformed into L' by a finite sequence of
(n+ 1)-simplex moves of type 1.

Proor. Let D be the (n+ 1)-disk in W? along which L' is obtained from
L by a cellular move of type 1, and put Dy = DNL and Dy =DNIW4. We
notice that dim(D;NoW?) <n—1. Take a homeomorphism f :(D,D,) —
(V,Vy), where V and ¥V} are as in [Lemma 3.2. There exist simplicial complexes
K; and K, such that |K;| =D, |K;| =V and f is a simplicial map from K; to
K,. Let K be a subdivision of K as in and K{ be the
corresponding subdivision of K;. A sequence of pseudo-cellular moves as in
induces a sequence of (n+ 1)-simplex moves of type 1 transforming
L into L'. ]

LemmA 3.5. Let (W, L) be homeomorphic to a standard disk pair (D4,D")
and h: W — W an orientation-preserving homeomorphism with h|,; =1id. Then

h(L) is transformed into L by a finite sequence of (n+ 1)-simplex moves relative to
ow.

Proor. First we consider a special case that A: W — W is a homeo-
morphism with /|,,, =id. Let N(0W) = oW x [0,1] be a collar neighborhood
of dW in W with W x {0} =W and N'(0W) the subset of N(dW) corre-
sponding to dW x [0,1/2]. Let N(OL;0W)=~dL x D™ be a tubular neigh-
borhood of JL in dW. For each point y € JL, we denote by D™ the fiber of
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N(0L;0W) =~ 0L x D7" over y, which is a (¢ —n)-disk in 0W. Let C, and C]
be the cones (y x {0})x (D" x{1}) in oW x [0,1] and (y x {0})* (D}™" x
{1/2}) in oW x[0,1/2], respectively. Put C=1|)J . C, and C'=1{],_, C).
Let M =cl(N(@W)—C) and M’ =cl(N'(0W)— C’), which are collar neigh-
borhoods of W — 0L in W except dL. Since 0L = 0h(L), taking N(0W) to
be sufficiently thin, we may assume that L and A(L) restricted to N(0W) are
contained in C (and hence those restricted to N'(0W) are in C’). Using
the collar structure of M, one can isotope h so that h|,, =id. Put B' =
cl(W — M'), which is a ¢-disk such that B'NdW = 0L and the pair (B',L) is
homeomorphic to a standard disk pair (D?, D"). By |Corollary 3.3, the n-disk L
is transformed into an n-disk L’ contained in dB’ by a finite sequence of pseudo-
cellular moves (in B’) keeping dL fixed. This implies that L is transformed into
L' in W by a finite sequence of cellular moves relative to 0W and that A(L) is
transformed into A(L’) in W by a finite sequence of cellular moves relative to
oW. Since h(L") = L', L is transformed into 4(L) in W by a finite sequence of
cellular moves relative to 0. By |Corollary 3.4, we have the result in the case
that 4|, =id.

Now we consider a general case that /|, =id. We assert that h|,, is
isotopic (in dW) to the identity map of W keeping 0L fixed. To see this, we
use the following well-known fact due to Alexander (cf. [1, p. 161]).

ALEXANDER’S LEMMA: If f : B™ — B™ is a homeomorphism from the conic
m-disk to itself such that it keeps 0B™ and a conic subset of B" fixed, then f is
isotopic to the identity map keeping 0B™ and the conic subset fixed. (A conic
subset of B means a subset which is the cone from the origin over a subset of
J0B™.)

Let N(x) be a regular neighborhood of a point x of dL in the sphere
ow. We may assume that hfy,) =id. Identify the (¢—1)-disk B=
cl(0W — N(x)) with the unit (¢ — 1)-disk such that BN JL is a conic subset of
B.  Since h|yppnsr) = 1d, using Alexander’s lemma, we see that 4|y, is isotopic
(in W) to the identity map of 0W keeping 0L fixed. Let {g;} (¢€[0,1]) be an
ambient isotopy of 0W keeping JL fixed such that g; = h|,,,. Consider a collar
neighborhood N(0W) =0W x [0,1] of W in W with W = oW x {1}. We
may assume that LNN(OW)=0L x [0,1] c 0W x [0,1] = N(0W). Define a
homeomorphism g : W — W by

C(x forxe W — N(OW)
9x) = { (g:(x"), 1) for x = (x',1) € OW x [0,1] = N(aW).

Then g(L) =L and g|,; = hl,yy. Put B =hog™': W — W, then I'|,, =id
and 4'(L) = h(L). From the previous case, we have the result. ]
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ProoF oF THEOREM 1.1. As stated before, it is sufficient to prove that
(1) — (4). Suppose that L and L’ are ambient isotopic by an ambient isotopy
{h;} (te]0,1]) of W keeping Y fixed. There exists a finite sequence of
compact proper locally flat n-manifolds L = Ly, Ly,...,L, = L’ in W and ¢-disks
B{,...,B4 in W1 such that for each i (i=1,...,r), the pair (B{,L,_y NB}) is
homeomorphic to the standard disk pair (D7, D") or the half pair (D{, D), and
the n-manifold L; | is mapped to L; by a proper move f;: W — W supported
by the g¢-disk B/ (see Theorem 6.2 and Remarks 6.2.1, 6.2.2, 6.2.4 of [4]).
Moreover without loss of generality we may assume that if B/NdW 7 is a PL
(q — 1)-face of B, say B, and Bl( YNY is not the empty set, then

1 b

d(BYV —(ynBY ) is a PL (q— 1)-face of BY, say BV D' and the pair
(

1

(Bl.q_l)/, oL i ﬂBEq_l)/) is homeomorphic to the standard disk pair (D91, D" 1).

If B'N oW1 is empty or contained in Y, then by we see that L;_;
is transformed into L; by a finite sequence of (n+ 1)-simplex moves relative to
ows. If B" ﬂ 0W is not contained in Y, then BYNoW 4 is a (¢ — 1)-face B
of Bq cl( ; - (YﬂB( D)) is a (g — 1)-face B( D" of B!, and the pair
(B; B\ 8L,, ﬂB( n’ ) is homeomorphic to the standard disk pair (D71, D"~ 1)
Notice that the restriction of the homeomorphism f; to the (¢ — 1)-disk B -1’
keeps GB( D" fixed and maps the (n— 1)-disk dL;_ lﬂB(q D" onto oL; ﬂB(’] '
By _ there exists a finite sequence of n-simplex moves in B( '
transforming 0L;_ 1ﬂB(‘1 D" into oL; ﬂBq n’, Extending each n-simplex move
to an (n+ 1)-simplex move in Bf, we have a finite sequence of (n+ 1)-simplex
moves in W7 relative to Y which transforms L; ;N B! into L/ N B!, where L/ is
a compact proper locally flat n-manifold in W4 with L/Ncl(W49— Bl)=L; 1N
cl(W?— B!) and 0L/ = dL;. Since a simplex move is a proper move, there exists
an orientation-preserving homeomorphism k; : B — B! with k;(L;,_; N B]) =
L!NB!. Using this homeomorphism and f;, we have an orientation-preserving
homeomorphism g¢; : Bf — B! with ¢;(L/NB!)=L;NB! and g¢;|,;, =id. By
again, we see that L/ is transformed into L; by a finite sequence of
(n+ 1)-simplex moves relative to 0W9. [

4. Proof of Theorem 1.2.

Let G be an n-dimensional compact polyhedron in W such that dim(/") < 1
and dim(I"NJdW) <0, where I" is the non-locally flat point set of G. Let
Ky = K be triangulations of I" = W9, Kjc K’ first derived subdivisions and
Ky < K" second derived subdivisions. Let N(I") be the derived neighborhood
IN(Ky'; K")| of I Let vy,...,v, be vertices of Kj which are vertices K, and
up,...,u; the other vertices of K;. For each vertex v; (i=1,...,s), let B; =
star(v;; K”) and for each vertex u; (j=1,...,7), let D; be star(u;; K”). Then
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N(I) = (U, B)U (Uj[:le) and this is in a situation as in §2. In fact, put
Wy =cl(W4—\)B;) and I'y = I'N Wy, which is the union of some proper simple
arcs ej,...,e; in Wi. Each vertex u; (j=1,...,t) is on a unique edge ¢; and D;
is a regular neigborhood of ¢; in W;. Put Wr=cl(W?—-N(I')) and 0, W, =
cl(oW, Nint(W'?)).

PrOOF OF THEOREM 1.2. In the above situation, suppose that G is ambient
isotopic to G’ by an ambient isotopy {4} (€ [0,1]) of W keeping I" and Y
fixed. Without loss of generality, we may assume that {4} preserves each B;
(i=1,...,5) and D; (j=1,...,1) setwise and that A restricted to K"[y ) is a
simplicial map. The intersection GN W, is a compact proper locally flat n-
manifold in W, and it is ambient isotopic to G’ N W, by the ambient isotopy {/,}
restricted to W, which keeps Y N W, fixed. By [Theorem 1.1, we have a finite
sequence of (n+ 1)-simplex moves in W, relative to Y N W, carrying GN W,
to G'NW,. As stated in §2, the sequence of (n+ 1)-simplex moves induces
a sequence of cellular moves in 0, W, carrying GNd,. W, to G'Nd,.W,. By
Theorem 1.1, each cellular move is replaced by a finite sequence of n-simplex
moves in 0, W,.

Without loss of generality, we may assume that each n-simplex is contained
in some 04B; or 0D;. Extending each n-simplex move to an (n+ 1)-simplex
move conically with v; in B; or with w; in D;, we have a sequence of (n+ 1)-
simplex moves which carries GNN(I') to G'NN(I"). Thus we have a desired
finite sequence of (n + 1)-simplex moves with respect to N(I').

[

5. Proof of Proposition 1.3.

ProoF OF ProrosiTioN 1.3. Let I'={xj,...,x;}. We claim that there
exists a one-parameter family (parametrized by u € [0,1]) of ambient isotopies
{f“} (te[0,1]) of W4 keeping 0W fixed such that £’(x;) = hi(x)), f{“(x;) = x;
and f'=id for ie{l,...,s}, te[0,1] and ue[0,1]. For each i (i=1,...,s),
let B;:[0,1] — W x [0,1] be a path with f;(¢) = (h(x;),?) for 1€ [0,1], and let b}
be the image of B, The images b{,...,b! are mutually disjoint monotone
arcs in W x [0, 1] connecting points (x1,0),...,(x;,0) of W x {0} to the cor-
responding points of W x {1}, where a monotone arc means an arc intersecting
W x {t} transversely for every re[0,1]. Let b),...,b" be the straight arcs in
W x [0,1] connecting the same points as b{,...,b!. Using a level-preserving
ambient isotopy of W x [0, 1] keeping (W x [0,1]) fixed, we assume that bj1 is
disjoint from 4" for any distinct i and j. Let o; :[0,1] — W be a path de-
termined from the trace of x; by the ambient isotopy {4} of W;i.e., o;(t) = h/(x;)
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for € [0,1]. It is obtained from f; by the projection W x [0,1] — W. Since W
is simply connected, the path o; is homotopic to the identity. Thus there is a
one-parameter family {} (u € [0, 1]) of monotone arcs in W x [0, 1] between b?
and b such that 0b" = 0b! for ue[0,1]. Let y,: D* =1[0,1] x [0,1] — W x [0,1]
be a map determined from {b¥} so that the image y;(u x [0, 1]) is b} for u € [0, 1].
Since xi,...,x; are interior points of W, we may assume that the image of y; 1s
disjoint from o(W x [0, 1]) except the end-points (x;,0) and (x;,1) of b}. Since
q >3, the arcs b},...,b! (and bY,...,b") are of codimension ¢ submanifolds
of W x[0,1] and we may assume that the image of y; is disjoint from b].1 (and
bjo) for je{l,...,s} —{i}. Let K; be a triangulation of D? such that y, is a
simplicial map. Applying the cellular move lemma to the 2-simplices, we have a
level-preserving ambient isotopy of W x [0,1] keeping d(W x [0,1]) fixed such
that b; is deformed into b} without moving the other arcs b/ (and b)), je

{1,...,s} —{i}. Using this argument inductively, we have a level-preserving
ambient isotopy of W x [0,1] keeping (W x [0,1]) fixed such that every b!
(i=1,...,s) is deformed into b?. Using this level-preserving ambient isotopy,

we have a one-parameter family {f"} as in the claim.
Define an ambient isotopy {4;} of W by

b () 'hy  forte0,1/2]
L) e for e (1/2,1),

then iy = h; and for each 7€ [0,1], h/(x;) =x; (ie{l,...,s}) and h, keeps Y
fixed.
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