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Abstract. In knot theory, it is well-known that two links in the Euclidean 3-space

are ambient isotopic if and only if they are related by a ®nite number of combinatorial

moves along 2-simplices. This fact is generalized for submanifolds in a manifold whose

codimensions are positive.

1. Introduction.

In knot theory, it is well-known that two links in the Euclidean 3-space are

ambient isotopic if and only if they are related by a ®nite number of combin-

atorial moves along 2-simplices (cf. [7], [8], [2], [6]). Such combinatorial moves

are referred to Reidemeister's D-moves in [2]. In fact, the link isotopy type of a

link is often de®ned to be the equivalence class of the link in this combinatorial

sense, cf. [3], [1]. The purpose of this paper is to generalize this fact for

submanifolds in a manifold whose codimensions are positive.

Let W q be a PL q-manifold, which may be non-compact, non-orientable, or

disconnected.

Theorem 1.1. Let L and L 0 be compact proper locally ¯at n-manifolds in

W q with n < q, and Y a �qÿ 1�-submanifold of the boundary qW q of W q. The

following conditions are mutually equivalent.

(1) L is ambient isotopic to L 0 by an ambient isotopy keeping Y ®xed.

(2) L is transformed into L 0 by proper moves of W q relative to Y.

(3) L is transformed into L 0 by cellular moves relative to Y.

(4) L is transformed into L 0 by simplex moves relative to Y.

It is well-known that (4) ! (3) ! (2) ! (1). [(4) ! (3) is obvious by def-

inition. (3) ! (2) is the cellular move lemma (see Proposition 4.15 of [9]).

(2) ! (1) is for example proved in Lemma 6.1 of [4].] The converse (1) ! (2) is

also well-known in a special case that W q is compact and Y is empty (see

Theorem 6.2 of [4]).
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As well as Reidemeister's D-moves for knots are generalized to moves for

graphs in the 3-space (cf. [5], [10]), our moves are generalized to moves for

polyhedra in a q-manifold such that the dimensions of the non-locally ¯at point

sets are smaller than 2. (It remains open to treat such moves in a more general

situation, since the argument might be complicated.)

Let G be an n-dimensional compact polyhedron in a q-manifold W q, and G

the set of points of G at which G is not locally ¯at in W q. (We say that G is

locally ¯at at x A G in W q if there exists a regular neighborhood N�x� of x in

W q such that the triple �N�x�;GVN�x�; x� is homeomorphic to �Dq
;Dn

;O� or

�Dq
�;Dn

�;O�, where �Dq
;Dn� is the standard �q; n�-disk pair, �Dq

�;Dn
�� is the half

disk pair of �Dq
;Dn�, and O is the origin.)

Theorem 1.2. Suppose that dim�G�U 1 and dim�G V qW q�U 0. If G is

ambient isotopic to G 0 by an ambient isotopy of W q keeping G and a �qÿ 1�-

submanifold Y of qW q ®xed, then G is transformed into G 0 by a ®nite sequence of

�n� 1�-simplex moves relative to Y.

When dim�G�U 0 and W q is simply connected, the assumption of Theorem

1.2 is more relaxed by the following proposition.

Proposition 1.3. Let W q be a simply connected q-manifold with qV 3, and

G a ®nite set of interior points of W q. If there is an ambient isotopy fhtg

�t A �0; 1�� of W q keeping a �qÿ 1�-submanifold Y of qW q ®xed such that h1jG �

id, then there is an ambient isotopy fh 0
tg �t A �0; 1�� of W q such that h 0

1 � h1 and

fh 0
tg keeps G and Y ®xed.

For example, a singular S-knot, that is the image of a generic map of a

closed surface S into the 4-space R4, is a 2-dimensional compact polyhedron such

that G is a ®nite set of points of R4.

As a simple case, we formulate the 3-dimensional version of the above

arguments.

Corollary 1.4. Let W 3 be a 3-manifold, and L a compact proper 1-

manifold in W 3. If L is ambient isotopic to L 0 by an ambient isotopy of W 3

keeping a 2-submanifold Y of qW 3 ®xed, then L is transformed into L 0 by a ®nite

sequence of 2-simplex moves relative to Y. For a ®nite graph G in W 3 such that

GV qW 3 is the set of degree-one vertices of G, if G is ambient isotopic to G 0 by an

ambient isotopy fhtg (t A �0; 1�) of W 3 keeping a 2-submanifold Y of qW 3 and the

degreeV 3 vertices of G ®xed, then G is transformed into G 0 by a ®nite sequence of

2-simplex moves relative to Y. Furthermore, when W 3 is simply connected, we can

replace the assumption that fhtg keeps the degreeV 3 vertices of G ®xed by that h1
preserves the degreeV 3 vertices of G.

Throughout this paper we work in the piecewise linear category.
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2. Cellular moves and simplex moves.

An ambient isotopy of a manifold W means an isotopy ht : W ! W

�t A �0; 1�� with h0 the identity map. We say that two subsets of W are ambient

isotopic (by an ambient isotopy keeping a subset Y of W ®xed) if there exists an

ambient isotopy fhtg of W whose terminal map h1 carries one to the other (and

each map ht is identical on Y ).

From now on, let W q be a q-manifold and Y a �qÿ 1�-submanifold of the

boundary qW q of W q.

Let D be an �n� 1�-disk. An i-disk in qD is called a PL i-face of D, where

i A fÿ1; 0; 1; 2; . . . ; ng. We assume that a PL �ÿ1�-face is the empty set. In

order to avoid confusion, for an �n� 1�-simplex V, we shall call an i-face of V in

the usual sense a canonical i-face. By a combinatorial i-face of V, we mean a PL

i-face of V which is the union of some canonical i-faces of V.

For a homeomorphism h : W q ! W q, we denote by supp�h� the support of

h, that is the closure of fx A W q j h�x�0 xg in W q. If there exists a q-disk D

in W q such that supp�h�HD, then the homeomorphism h is called a move

supported by the q-disk D. Moreover, if hj
qW q � id or if DV qW q is a PL

�qÿ 1�-face of D, then the move is called a proper move supported by D. A

homeomorphism h : W q ! W q is a proper move supported by D if and only

if it is isotopic to the identity map by an ambient isotopy of W q keeping

cl�qW q ÿD� ®xed, see Lemma 6.1 of [4].

Let L be a compact proper locally ¯at n-manifold in W q and D an �n� 1�-

disk in W q, where we assume n < q. Put D0 � DVL and D1 � DV qW q.

Suppose that D0 is a PL n-face of D and one of the following conditions is

satis®ed:

(1) D1 is a PL i-face of D0 for some i A fÿ1; 0; . . . ; nÿ 1g.

(2) D1 is a PL n-face of D such that D0 VD1 is a common PL �nÿ 1�-face

of D0 and D1.

Replacing D0 with the PL n-face cl�qDÿ �D0 UD1�� of D, we obtain another

proper n-manifold in W q from L. We call this replacement a cellular move for L

along D. According as the case (1) or (2) occurs, we say that the cellular move

is of type 1 or type 2. Let Y be a �qÿ 1�-submanifold of qW q. A cellular

move for L along D is called a cellular move relative to Y if it is of type 1 or if it

is of type 2 such that D1 VY is a PL i-face of the �nÿ 1�-disk D0 VD1 for some

i A fÿ1; 0; . . . ; nÿ 2g.

The cellular move lemma (cf. Proposition 4.15 of [9]) states that if L 0 is

obtained from L by a cellular move along an �n� 1�-disk D relative to Y, then

for any regular neighborhood U of D, there exists an ambient isotopy fhtg

�t A �0; 1�� of W q which carries L to L 0 and keeps cl�W q ÿU� and Y ®xed. In

particular, a cellular move is a proper move.
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Let L be a compact proper locally ¯at n-manifold in W q and V an �n� 1�-

simplex in W q. Put V0 � V VL and V1 � V V qW q. Suppose that V0 is a

combinatorial n-face of V and that one of the following conditions is satis®ed:

(1) V1 is a combinatorial i-face of V0 for some i A fÿ1; 0; . . . ; nÿ 1g.

(2) V1 is a combinatorial n-face of V such that V0 VV1 is a common

combinatorial �nÿ 1�-face of V0 and V1.

We call the cellular move (relative to Y ) along V an �n� 1�-simplex move

(relative to Y ).

Notice that an �n� 1�-simplex move of type 1 does not change qL. If L 0 is

obtained from L by an �n� 1�-simplex move along V of type 2, then qL is moved

into qL 0 by a cellular move in qW q along the n-disk V1 � V V qW q.

Let G be an n-dimensional compact polyhedron in W q such that dim�G�U 1

and dim�G V qW q�U 0, where G is the set of non-locally ¯at points of G in W q.

Let v1; . . . ; vs be the vertices of G and B1; . . . ;Bs regular neighborhoods of them

in W q. If vi is an interior point (resp. a boundary point) of W q, let q�Bi be the

�qÿ 1�-sphere qBi (resp. the �qÿ 1�-disk cl�qBi V int�W q���. We assume that Bi

is the cone over q�Bi with vi as the cone vertex. Put Li � GV q�Bi which is an

�nÿ 1�-dimensional compact polyhedron in q�Bi such that the dimension of the

non-locally ¯at point set is 0 or ÿ1. Put W1 � cl�W q ÿ6Bi� and G1 � G VW1.

Then W1 is a q-manifold and G1 is the union of some proper simple arcs e1; . . . ; et
in W1 (or the empty set). Let Dj � j � 1; . . . ; t� be a regular neighborhood of ej
in W1. We regard the union �6s

i�1
Bi�U �6 t

j�1
Dj� as a regular neighborhood

N�G� of G in W q. If necessary taking a subdivision of G, we may assume that

for each j, the pair �Dj; ej� is a cone of �qDj; qej� over a cone vertex wj.

Let V be an �n� 1�-simplex in W q and put V0 � V VG and V1 � V V qW q.

Suppose that V0 and V1 satisfy the condition of the de®nition of an �n� 1�-

simplex move as before. Moreover we suppose that one of the following

conditions is satis®ed:

(1) V is in W2 � cl�W q ÿN�G��.

(2) V is in Bi for some i so that it is the join of vi and an n-simplex in q�Bi

and V VG is an i-face of V0 for i � 0 or 1.

(3) V is in Dj for some j so that it is the join of a point of ej and an n-

simplex in q�Bi or the join of an edge in ej and an �nÿ 1�-simplex in

q�Bi and V VG is an i-face of V0 for i � 0 or 1.

Then we de®ne an �n� 1�-simplex move along V (with respect to N�G� on G ) to

be the replacement of V0 by cl�qV ÿ �V0 UV1��.

3. Proof of Theorem 1.1.

Let V be an �n� 1�-simplex in a Euclidean space Rl and V0 a canonical n-

face of V. Suppose that V � jv0; v1; . . . ; vn�1j and V0 � jv0; v1; . . . ; vnj. Consider
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a linear map p : V ! V0 such that p�vi� � vi for i � 0; 1; . . . ; n and p�vn�1� is a

point of V
�

0 (� points of V0 not contained in any face).

Let K be a simplicial complex with jK j � V , and K0 its restriction to

V0. We say that K is in rapport with p if p is a simplicial map from K to K0.

Lemma 3.1. Let V, V0 and p be as above. For any simplicial complex K

with jK j � V, there exists a subdivision K 0 of K which is in rapport with p.

Proof. For each A A K , the image p�A� is a convex linear cell. There

exists an rth derived subdivision K
�r�
0 of K0 such that for all A A K , p�A� are

subdivided as subcomplexes of K
�r�
0 . Let K 1 be the set fAV pÿ1�B� jA A K;

B A K
�r�
0 g, which is a cellular subdivision of K such that the restriction over V0 is

K
�r�
0 . Since p is a linear map carrying vertices of K 1 onto those of K

�r�
0 , we

obtain a desired subdivision K 0 by subdividing K 1 without introducing vertices.

r

Let K be a simplicial complex with jK j � V which is in rapport with

p : V ! V0. Each �n� 1�-simplex A � ja0; a1; . . . ; an�1j A K is mapped linearly

onto an n-simplex B � jb0; b1; . . . ; bnj A K0. We may assume that

(1) p�ai� � bi for i � 0; 1; . . . ; n,

(2) p�an�1� � b0, and

(3) dist�an�1;V0� > dist�a0;V0�.

In this situation, we call the canonical n-face ja0; . . . ; anj the bottom face of A,

and the canonical n-face ja1; . . . ; an�1j the top face of A. For each n-simplex

B A K0, there exists a unique ordering A1;A2; . . . ;Ar of all the �n� 1�-simplices in

K jpÿ1�B� such that

(1) the bottom face of A1 is B,

(2) the top face of Ai is the bottom face of Ai�1 for i � 1; . . . ; rÿ 1.

Let D be an �n� 1�-disk in a q-manifold W q. Suppose that a (possibly

non-proper) n-manifold L in W q intersects with D such that LVD � D0 for a

PL n-face D0 of D. Replacing D0 with cl�qDÿD0�, we obtain another (possibly

non-proper) n-manifold in W q from L. We call this replacement a pseudo-

cellular move along D. (Notice that the result may be non-proper even if L is

proper.)

Lemma 3.2. Let V be an �n� 1�-simplex and V0 a canonical n-face of V.

For any simplicial complex K with jKj � V, there exists a subdivision K 0 of K

such that the canonical n-face V0 is transformed into the combinatorial n-face

cl�qV ÿ V0� by a ®nite sequence of pseudo-cellular moves along the �n� 1�-

simplices of K 0.

Proof. We use the induction on n. The case of n � 0 is obvious, for K

itself is a desired one. Assume that n > 0. By Lemma 3.1, we may assume that
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K is in rapport with a linear projection p : V ! V0 being as in the lemma. By

the induction hypothesis, there exists a subdivision K 0
0 of K0 such that a canonical

�nÿ 1�-face V00 of V0 is transformed into cl�qV0 ÿ V00� by a ®nite sequence of

pseudo-cellular moves along the n-simplices of K 0
0. Let B1; . . . ;Bm be the n-

simplices of K 0
0 and we assume that the sequence of pseudo-cellular moves is

performed along B1; . . . ;Bm in this order. Take a subdivision K 0 of K such that

the projection p : V ! V0 is a simplicial map from K 0 to K 0
0. We claim that K 0

is a desired subdivision of K. For each n-simplex Bk �k � 1; . . . ;m� of K 0
0, let

Ak
1 ; . . . ;A

k
rk
be the �n� 1�-simplices mapped onto Bk such that the bottom face of

Ak
1 is Bk and, for each i �i � 1; . . . ; rk ÿ 1�, the top face of Ak

i is the bottom face

of Ak
i�1. Then V0 is transformed into cl�qV ÿ V0� by a sequence of pseudo-

cellular moves along the �n� 1�-simplices A1
1 ; . . . ;A

1
r1
;A2

1 ; . . . ;A
2
r2
; . . . ;Am

1 ; . . . ;A
m
rm

in this order. r

Corollary 3.3. Let �W ;L� be homeomorphic to a standard disk pair

�Dq;Dn�. Then L is transformed into an n-disk L 0 contained in qW by a ®nite

sequence of pseudo-cellular moves keeping qL ®xed.

Corollary 3.4. If an n-manifold L in W q is transformed into L 0 by a

cellular move of type 1, then it is transformed into L 0 by a ®nite sequence of

�n� 1�-simplex moves of type 1.

Proof. Let D be the �n� 1�-disk in W q along which L 0 is obtained from

L by a cellular move of type 1, and put D0 � DVL and D1 � DV qW q. We

notice that dim�D1 V qW q�U nÿ 1. Take a homeomorphism f : �D;D0� !

�V ;V0�, where V and V0 are as in Lemma 3.2. There exist simplicial complexes

K1 and K2 such that jK1j � D, jK2j � V and f is a simplicial map from K1 to

K2. Let K 0
2 be a subdivision of K2 as in Lemma 3.2 and K 0

1 be the

corresponding subdivision of K1. A sequence of pseudo-cellular moves as in

Lemma 3.2 induces a sequence of �n� 1�-simplex moves of type 1 transforming

L into L 0. r

Lemma 3.5. Let �W ;L� be homeomorphic to a standard disk pair �Dq;Dn�

and h : W ! W an orientation-preserving homeomorphism with hj
qL � id. Then

h�L� is transformed into L by a ®nite sequence of �n� 1�-simplex moves relative to

qW .

Proof. First we consider a special case that h : W ! W is a homeo-

morphism with hj
qW � id. Let N�qW�G qW � �0; 1� be a collar neighborhood

of qW in W with qW � f0g � qW and N 0�qW� the subset of N�qW� corre-

sponding to qW � �0; 1=2�. Let N�qL; qW�G qL�Dqÿn be a tubular neigh-

borhood of qL in qW . For each point y A qL, we denote by Dqÿn
y the ®ber of
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N�qL; qW�G qL�Dqÿn over y, which is a �qÿ n�-disk in qW . Let Cy and C 0
y

be the cones �y� f0g� � �Dqÿn
y � f1g� in qW � �0; 1� and �y� f0g� � �Dqÿn

y �

f1=2g� in qW � �0; 1=2�, respectively. Put C � 6
y A qL

Cy and C 0 � 6
y A qL

C 0
y.

Let M � cl�N�qW� ÿ C� and M 0 � cl�N 0�qW� ÿ C 0�, which are collar neigh-

borhoods of qW ÿ qL in W except qL. Since qL � qh�L�, taking N�qW� to

be su½ciently thin, we may assume that L and h�L� restricted to N�qW� are

contained in C (and hence those restricted to N 0�qW� are in C 0). Using

the collar structure of M, one can isotope h so that hjM 0 � id. Put B 0 �

cl�W ÿM 0�, which is a q-disk such that B 0 V qW � qL and the pair �B 0;L� is

homeomorphic to a standard disk pair �Dq;Dn�. By Corollary 3.3, the n-disk L

is transformed into an n-disk L 0 contained in qB 0 by a ®nite sequence of pseudo-

cellular moves (in B 0) keeping qL ®xed. This implies that L is transformed into

L 0 in W by a ®nite sequence of cellular moves relative to qW and that h�L� is

transformed into h�L 0� in W by a ®nite sequence of cellular moves relative to

qW . Since h�L 0� � L 0, L is transformed into h�L� in W by a ®nite sequence of

cellular moves relative to qW . By Corollary 3.4, we have the result in the case

that hj
qW � id.

Now we consider a general case that hj
qL � id. We assert that hj

qW is

isotopic (in qW ) to the identity map of qW keeping qL ®xed. To see this, we

use the following well-known fact due to Alexander (cf. [1, p. 161]).

Alexander's lemma: If f : Bm ! Bm is a homeomorphism from the conic

m-disk to itself such that it keeps qBm and a conic subset of Bm ®xed, then f is

isotopic to the identity map keeping qBm and the conic subset ®xed. (A conic

subset of Bm means a subset which is the cone from the origin over a subset of

qBm.)

Let N�x� be a regular neighborhood of a point x of qL in the sphere

qW . We may assume that hjN�x� � id. Identify the �qÿ 1�-disk B �

cl�qW ÿN�x�� with the unit �qÿ 1�-disk such that BV qL is a conic subset of

B. Since hj
qBU�BVqL� � id, using Alexander's lemma, we see that hj

qW is isotopic

(in qW ) to the identity map of qW keeping qL ®xed. Let fgtg �t A �0; 1�� be an

ambient isotopy of qW keeping qL ®xed such that g1 � hj
qW . Consider a collar

neighborhood N�qW� � qW � �0; 1� of qW in W with qW � qW � f1g. We

may assume that LVN�qW� � qL� �0; 1�H qW � �0; 1� � N�qW�. De®ne a

homeomorphism g : W ! W by

g�x� �
x for x A W ÿN�qW�

�gt�x
0�; t� for x � �x 0; t� A qW � �0; 1� � N�qW�.

�

Then g�L� � L and gj
qW � hj

qW . Put h 0 � h � gÿ1
: W ! W , then h 0j

qW � id

and h 0�L� � h�L�. From the previous case, we have the result. r
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Proof of Theorem 1.1. As stated before, it is su½cient to prove that

(1) ! (4). Suppose that L and L 0 are ambient isotopic by an ambient isotopy

fhtg �t A �0; 1�� of W keeping Y ®xed. There exists a ®nite sequence of

compact proper locally ¯at n-manifolds L � L0;L1; . . . ;Lr � L 0 in W and q-disks

B
q
1 ; . . . ;Bq

r in W q such that for each i �i � 1; . . . ; r�, the pair �Bq
i ;Liÿ1 VB

q
i � is

homeomorphic to the standard disk pair �Dq
;Dn� or the half pair �Dq

�;Dn
��, and

the n-manifold Liÿ1 is mapped to Li by a proper move fi : W ! W supported

by the q-disk B
q
i (see Theorem 6.2 and Remarks 6.2.1, 6.2.2, 6.2.4 of [4]).

Moreover without loss of generality we may assume that if B
q
i V qW q is a PL

�qÿ 1�-face of B
q
i , say B

�qÿ1�
i , and B

�qÿ1�
i VY is not the empty set, then

cl�B
�qÿ1�
i ÿ �Y VB

�qÿ1�
i �� is a PL �qÿ 1�-face of B

q
i , say B

�qÿ1�
i

0
, and the pair

�B
�qÿ1�
i

0
; qLiÿ1 VB

�qÿ1�
i

0
� is homeomorphic to the standard disk pair �Dqÿ1

;Dnÿ1�.

If Bq
i V qW q is empty or contained in Y, then by Lemma 3.5 we see that Liÿ1

is transformed into Li by a ®nite sequence of �n� 1�-simplex moves relative to

qW 4. If Bq
i V qW q is not contained in Y, then B

q
i V qW q is a �qÿ 1�-face B

�qÿ1�
i

of B
q
i , cl�B

�qÿ1�
i ÿ �Y VB

�qÿ1�
i �� is a �qÿ 1�-face B

�qÿ1�
i

0
of B

q
i , and the pair

�B
�qÿ1�
i

0
; qLiÿ1 VB

�qÿ1�
i

0
� is homeomorphic to the standard disk pair �Dqÿ1

;Dnÿ1�.

Notice that the restriction of the homeomorphism fi to the �qÿ 1�-disk B
�qÿ1�
i

0

keeps qB
�qÿ1�
i

0
®xed and maps the �nÿ 1�-disk qLiÿ1 VB

�qÿ1�
i

0
onto qLi VB

�qÿ1�
i

0
.

By Lemma 3.5, there exists a ®nite sequence of n-simplex moves in B
�qÿ1�
i

0

transforming qLiÿ1 VB
�qÿ1�
i

0
into qLi VB

�qÿ1�
i

0
. Extending each n-simplex move

to an �n� 1�-simplex move in B
q
i , we have a ®nite sequence of �n� 1�-simplex

moves in W q relative to Y which transforms Liÿ1 VB
q
i into L 0

i VB
q
i , where L 0

i is

a compact proper locally ¯at n-manifold in W q with L 0
i V cl�W q ÿ B

q
i � � Liÿ1 V

cl�W q ÿ B
q
i � and qL 0

i � qLi. Since a simplex move is a proper move, there exists

an orientation-preserving homeomorphism ki : B
q
i ! B

q
i with ki�Liÿ1 VB

q
i � �

L 0
i VB

q
i . Using this homeomorphism and fi, we have an orientation-preserving

homeomorphism gi : B
q
i ! B

q
i with gi�L

0
i VB

q
i � � Li VB

q
i and gijqL 0

i
� id. By

Lemma 3.5 again, we see that L 0
i is transformed into Li by a ®nite sequence of

�n� 1�-simplex moves relative to qW q. r

4. Proof of Theorem 1.2.

Let G be an n-dimensional compact polyhedron in W q such that dim�G�U 1

and dim�G V qW�U 0, where G is the non-locally ¯at point set of G. Let

K0 HK be triangulations of G HW q, K 0
0 HK 0 ®rst derived subdivisions and

K 00
0 HK 00 second derived subdivisions. Let N�G� be the derived neighborhood

jN�K 00
0 ;K

00�j of G. Let v1; . . . ; vs be vertices of K 0
0 which are vertices K0, and

u1; . . . ; ut the other vertices of K 0
0. For each vertex vi �i � 1; . . . ; s�, let Bi �

star�vi;K
00� and for each vertex uj � j � 1; . . . ; t�, let Dj be star�uj;K

00�. Then
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N�G� � �6 s

i�1
Bi�U �6 t

j�1
Dj� and this is in a situation as in §2. In fact, put

W1 � cl�W q ÿ6Bi� and G1 � G VW1, which is the union of some proper simple

arcs e1; . . . ; et in W1. Each vertex uj � j � 1; . . . ; t� is on a unique edge ej and Dj

is a regular neigborhood of ej in W1. Put W2 � cl�W q ÿN�G�� and q�W2 �

cl�qW2 V int�W q��.

Proof of Theorem 1.2. In the above situation, suppose that G is ambient

isotopic to G 0 by an ambient isotopy fhtg �t A �0; 1�� of W q keeping G and Y

®xed. Without loss of generality, we may assume that fhtg preserves each Bi

�i � 1; . . . ; s� and Dj � j � 1; . . . ; t� setwise and that h1 restricted to K 00jN�G� is a

simplicial map. The intersection GVW2 is a compact proper locally ¯at n-

manifold in W2 and it is ambient isotopic to G 0 VW2 by the ambient isotopy fhtg

restricted to W2, which keeps Y VW2 ®xed. By Theorem 1.1, we have a ®nite

sequence of �n� 1�-simplex moves in W2 relative to Y VW2 carrying GVW2

to G 0 VW2. As stated in §2, the sequence of �n� 1�-simplex moves induces

a sequence of cellular moves in q�W2 carrying GV q�W2 to G 0 V q�W2. By

Theorem 1.1, each cellular move is replaced by a ®nite sequence of n-simplex

moves in q�W2.

Without loss of generality, we may assume that each n-simplex is contained

in some q�Bi or qDj . Extending each n-simplex move to an �n� 1�-simplex

move conically with vi in Bi or with wj in Dj, we have a sequence of �n� 1�-

simplex moves which carries GVN�G� to G 0 VN�G�. Thus we have a desired

®nite sequence of �n� 1�-simplex moves with respect to N�G�.

r

5. Proof of Proposition 1.3.

Proof of Proposition 1.3. Let G � fx1; . . . ; xsg. We claim that there

exists a one-parameter family (parametrized by u A �0; 1�) of ambient isotopies

f f u
t g �t A �0; 1�� of W q keeping qW ®xed such that f 0t �xi� � ht�xi�, f u

1 �xi� � xi
and f 1t � id for i A f1; . . . ; sg, t A �0; 1� and u A �0; 1�. For each i �i � 1; . . . ; s�,

let bi : �0; 1� ! W � �0; 1� be a path with bi�t� � �ht�xi�; t� for t A �0; 1�, and let b1i
be the image of bi. The images b11 ; . . . ; b1s are mutually disjoint monotone

arcs in W � �0; 1� connecting points �x1; 0�; . . . ; �xs; 0� of W � f0g to the cor-

responding points of W � f1g, where a monotone arc means an arc intersecting

W � ftg transversely for every t A �0; 1�. Let b01 ; . . . ; b0s be the straight arcs in

W � �0; 1� connecting the same points as b11 ; . . . ; b1s . Using a level-preserving

ambient isotopy of W � �0; 1� keeping q�W � �0; 1�� ®xed, we assume that b1j is

disjoint from b0i for any distinct i and j. Let ai : �0; 1� ! W be a path de-

termined from the trace of xi by the ambient isotopy fhtg of W; i.e., ai�t� � ht�xi�
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for t A �0; 1�. It is obtained from bi by the projection W � �0; 1� ! W . Since W

is simply connected, the path ai is homotopic to the identity. Thus there is a

one-parameter family fbu
i g (u A �0; 1�) of monotone arcs in W � �0; 1� between b0i

and b1i such that qbu
i � qb1i for u A �0; 1�. Let gi : D

2 � �0; 1� � �0; 1� ! W � �0; 1�

be a map determined from fbu
i g so that the image gi�u� �0; 1�� is bu

i for u A �0; 1�.

Since x1; . . . ; xs are interior points of W, we may assume that the image of gi is

disjoint from q�W � �0; 1�� except the end-points �xi; 0� and �xi; 1� of b1i . Since

qV 3, the arcs b11 ; . . . ; b
1
s (and b01 ; . . . ; b

0
s ) are of codimension q submanifolds

of W � �0; 1� and we may assume that the image of gi is disjoint from b1j (and

b0j ) for j A f1; . . . ; sg ÿ fig. Let Ki be a triangulation of D2 such that gi is a

simplicial map. Applying the cellular move lemma to the 2-simplices, we have a

level-preserving ambient isotopy of W � �0; 1� keeping q�W � �0; 1�� ®xed such

that b1i is deformed into b0i without moving the other arcs b1j (and b0j ), j A

f1; . . . ; sg ÿ fig. Using this argument inductively, we have a level-preserving

ambient isotopy of W � �0; 1� keeping q�W � �0; 1�� ®xed such that every b1i
�i � 1; . . . ; s� is deformed into b0i . Using this level-preserving ambient isotopy,

we have a one-parameter family f f u
t g as in the claim.

De®ne an ambient isotopy fh 0
tg of W by

h 0
t �

� f 0
2t�

ÿ1
h2t for t A �0; 1=2�

� f 2tÿ1
1 �ÿ1

h1 for t A �1=2; 1�,

(

then h 0
1 � h1 and for each t A �0; 1�, h 0

t�xi� � xi �i A f1; . . . ; sg� and h 0
t keeps Y

®xed.
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