Combinatorial moves on ambient isotopic submanifolds in a manifold

By Seiichi KAMADA, Akio KAWAUCHI and Takao MATUMOTO

(Received Jun. 22, 1998) (Revised Oct. 26, 1999)

Abstract. In knot theory, it is well-known that two links in the Euclidean 3-space are ambient isotopic if and only if they are related by a finite number of combinatorial moves along 2-simplices. This fact is generalized for submanifolds in a manifold whose codimensions are positive.

1. Introduction.

In knot theory, it is well-known that two links in the Euclidean 3-space are ambient isotopic if and only if they are related by a finite number of combinatorial moves along 2-simplices (cf. [7], [8], [2], [6]). Such combinatorial moves are referred to Reidemeister's Δ -moves in [2]. In fact, the link isotopy type of a link is often defined to be the equivalence class of the link in this combinatorial sense, cf. [3], [1]. The purpose of this paper is to generalize this fact for submanifolds in a manifold whose codimensions are positive.

Let W^q be a PL q-manifold, which may be non-compact, non-orientable, or disconnected.

THEOREM 1.1. Let L and L' be compact proper locally flat n-manifolds in W^q with n < q, and Y a (q - 1)-submanifold of the boundary ∂W^q of W^q . The following conditions are mutually equivalent.

- (1) L is ambient isotopic to L' by an ambient isotopy keeping Y fixed.
- (2) L is transformed into L' by proper moves of W^q relative to Y.
- (3) L is transformed into L' by cellular moves relative to Y.
- (4) L is transformed into L' by simplex moves relative to Y.

It is well-known that $(4) \rightarrow (3) \rightarrow (2) \rightarrow (1)$. $[(4) \rightarrow (3)$ is obvious by definition. $(3) \rightarrow (2)$ is the cellular move lemma (see Proposition 4.15 of [9]). $(2) \rightarrow (1)$ is for example proved in Lemma 6.1 of [4].] The converse $(1) \rightarrow (2)$ is also well-known in a special case that W^q is compact and Y is empty (see Theorem 6.2 of [4]).

²⁰⁰⁰ Mathematics Subject Classification. Primary 57Q45; Secondary 57Q35, 57Q37, 57M25. Key Words and Phrases. Combinatorial moves, knots and links, equivalence, isotopy.

As well as Reidemeister's Δ -moves for knots are generalized to moves for graphs in the 3-space (cf. [5], [10]), our moves are generalized to moves for polyhedra in a q-manifold such that the dimensions of the non-locally flat point sets are smaller than 2. (It remains open to treat such moves in a more general situation, since the argument might be complicated.)

Let G be an n-dimensional compact polyhedron in a q-manifold W^q , and Γ the set of points of G at which G is not locally flat in W^q . (We say that G is locally flat at $x \in G$ in W^q if there exists a regular neighborhood N(x) of x in W^q such that the triple $(N(x), G \cap N(x), x)$ is homeomorphic to (D^q, D^n, O) or (D^q_+, D^n_+, O) , where (D^q, D^n) is the standard (q, n)-disk pair, (D^q_+, D^n_+) is the half disk pair of (D^q, D^n) , and O is the origin.)

THEOREM 1.2. Suppose that $\dim(\Gamma) \leq 1$ and $\dim(\Gamma \cap \partial W^q) \leq 0$. If G is ambient isotopic to G' by an ambient isotopy of W^q keeping Γ and a (q-1)submanifold Y of ∂W^q fixed, then G is transformed into G' by a finite sequence of (n+1)-simplex moves relative to Y.

When dim(Γ) ≤ 0 and W^q is simply connected, the assumption of Theorem 1.2 is more relaxed by the following proposition.

PROPOSITION 1.3. Let W^q be a simply connected q-manifold with $q \ge 3$, and Γ a finite set of interior points of W^q . If there is an ambient isotopy $\{h_t\}$ $(t \in [0,1])$ of W^q keeping a (q-1)-submanifold Y of ∂W^q fixed such that $h_1|_{\Gamma} =$ id, then there is an ambient isotopy $\{h'_t\}$ $(t \in [0,1])$ of W^q such that $h'_1 = h_1$ and $\{h'_t\}$ keeps Γ and Y fixed.

For example, a singular Σ -knot, that is the image of a generic map of a closed surface Σ into the 4-space R^4 , is a 2-dimensional compact polyhedron such that Γ is a finite set of points of R^4 .

As a simple case, we formulate the 3-dimensional version of the above arguments.

COROLLARY 1.4. Let W^3 be a 3-manifold, and L a compact proper 1manifold in W^3 . If L is ambient isotopic to L' by an ambient isotopy of W^3 keeping a 2-submanifold Y of ∂W^3 fixed, then L is transformed into L' by a finite sequence of 2-simplex moves relative to Y. For a finite graph G in W^3 such that $G \cap \partial W^3$ is the set of degree-one vertices of G, if G is ambient isotopic to G' by an ambient isotopy $\{h_t\}$ ($t \in [0, 1]$) of W^3 keeping a 2-submanifold Y of ∂W^3 and the degree ≥ 3 vertices of G fixed, then G is transformed into G' by a finite sequence of 2-simplex moves relative to Y. Furthermore, when W^3 is simply connected, we can replace the assumption that $\{h_t\}$ keeps the degree ≥ 3 vertices of G fixed by that h_1 preserves the degree ≥ 3 vertices of G.

Throughout this paper we work in the piecewise linear category.

2. Cellular moves and simplex moves.

An *ambient isotopy* of a manifold W means an isotopy $h_t: W \to W$ $(t \in [0, 1])$ with h_0 the identity map. We say that two subsets of W are *ambient isotopic* (by an ambient isotopy keeping a subset Y of W fixed) if there exists an ambient isotopy $\{h_t\}$ of W whose terminal map h_1 carries one to the other (and each map h_t is identical on Y).

From now on, let W^q be a q-manifold and Y a (q-1)-submanifold of the boundary ∂W^q of W^q .

Let *D* be an (n + 1)-disk. An *i*-disk in ∂D is called a *PL i-face* of *D*, where $i \in \{-1, 0, 1, 2, ..., n\}$. We assume that a PL (-1)-face is the empty set. In order to avoid confusion, for an (n + 1)-simplex *V*, we shall call an *i*-face of *V* in the usual sense a *canonical i-face*. By a *combinatorial i-face* of *V*, we mean a PL *i*-face of *V* which is the union of some canonical *i*-faces of *V*.

For a homeomorphism $h: W^q \to W^q$, we denote by $\operatorname{supp}(h)$ the support of h, that is the closure of $\{x \in W^q \mid h(x) \neq x\}$ in W^q . If there exists a q-disk D in W^q such that $\operatorname{supp}(h) \subset D$, then the homeomorphism h is called a move supported by the q-disk D. Moreover, if $h|_{\partial W^q} = \operatorname{id}$ or if $D \cap \partial W^q$ is a PL (q-1)-face of D, then the move is called a proper move supported by D. A homeomorphism $h: W^q \to W^q$ is a proper move supported by D if and only if it is isotopic to the identity map by an ambient isotopy of W^q keeping $\operatorname{cl}(\partial W^q - D)$ fixed, see Lemma 6.1 of [4].

Let *L* be a compact proper locally flat *n*-manifold in W^q and *D* an (n + 1)disk in W^q , where we assume n < q. Put $D_0 = D \cap L$ and $D_1 = D \cap \partial W^q$. Suppose that D_0 is a PL *n*-face of *D* and one of the following conditions is satisfied:

- (1) D_1 is a PL *i*-face of D_0 for some $i \in \{-1, 0, ..., n-1\}$.
- (2) D_1 is a PL *n*-face of D such that $D_0 \cap D_1$ is a common PL (n-1)-face of D_0 and D_1 .

Replacing D_0 with the PL *n*-face $cl(\partial D - (D_0 \cup D_1))$ of D, we obtain another proper *n*-manifold in W^q from L. We call this replacement a *cellular move* for Lalong D. According as the case (1) or (2) occurs, we say that the cellular move is of *type* 1 or *type* 2. Let Y be a (q-1)-submanifold of ∂W^q . A cellular move for L along D is called a *cellular move relative to* Y if it is of type 1 or if it is of type 2 such that $D_1 \cap Y$ is a PL *i*-face of the (n-1)-disk $D_0 \cap D_1$ for some $i \in \{-1, 0, \ldots, n-2\}$.

The cellular move lemma (cf. Proposition 4.15 of [9]) states that if L' is obtained from L by a cellular move along an (n + 1)-disk D relative to Y, then for any regular neighborhood U of D, there exists an ambient isotopy $\{h_t\}$ $(t \in [0, 1])$ of W^q which carries L to L' and keeps $cl(W^q - U)$ and Y fixed. In particular, a cellular move is a proper move.

Let L be a compact proper locally flat *n*-manifold in W^q and V an (n + 1)simplex in W^q . Put $V_0 = V \cap L$ and $V_1 = V \cap \partial W^q$. Suppose that V_0 is a
combinatorial *n*-face of V and that one of the following conditions is satisfied:

- (1) V_1 is a combinatorial *i*-face of V_0 for some $i \in \{-1, 0, ..., n-1\}$.
- (2) V_1 is a combinatorial *n*-face of V such that $V_0 \cap V_1$ is a common combinatorial (n-1)-face of V_0 and V_1 .

We call the cellular move (relative to Y) along V an (n+1)-simplex move (relative to Y).

Notice that an (n + 1)-simplex move of type 1 does not change ∂L . If L' is obtained from L by an (n + 1)-simplex move along V of type 2, then ∂L is moved into $\partial L'$ by a cellular move in ∂W^q along the *n*-disk $V_1 = V \cap \partial W^q$.

Let G be an n-dimensional compact polyhedron in W^q such that $\dim(\Gamma) \leq 1$ and $\dim(\Gamma \cap \partial W^q) \leq 0$, where Γ is the set of non-locally flat points of G in W^q . Let v_1, \ldots, v_s be the vertices of Γ and B_1, \ldots, B_s regular neighborhoods of them in W^q . If v_i is an interior point (resp. a boundary point) of W^q , let $\partial_+ B_i$ be the (q-1)-sphere ∂B_i (resp. the (q-1)-disk $\operatorname{cl}(\partial B_i \cap \operatorname{int}(W^q))$). We assume that B_i is the cone over $\partial_+ B_i$ with v_i as the cone vertex. Put $A_i = G \cap \partial_+ B_i$ which is an (n-1)-dimensional compact polyhedron in $\partial_+ B_i$ such that the dimension of the non-locally flat point set is 0 or -1. Put $W_1 = \operatorname{cl}(W^q - \bigcup B_i)$ and $\Gamma_1 = \Gamma \cap W_1$. Then W_1 is a q-manifold and Γ_1 is the union of some proper simple arcs e_1, \ldots, e_t in W_1 (or the empty set). Let D_j $(j = 1, \ldots, t)$ be a regular neighborhood of e_j in W_1 . We regard the union $(\bigcup_{i=1}^s B_i) \cup (\bigcup_{j=1}^t D_j)$ as a regular neighborhood $N(\Gamma)$ of Γ in W^q . If necessary taking a subdivision of Γ , we may assume that for each j, the pair (D_i, e_i) is a cone of $(\partial D_i, \partial e_j)$ over a cone vertex w_i .

Let V be an (n+1)-simplex in W^q and put $V_0 = V \cap G$ and $V_1 = V \cap \partial W^q$. Suppose that V_0 and V_1 satisfy the condition of the definition of an (n+1)-simplex move as before. Moreover we suppose that one of the following conditions is satisfied:

- (1) *V* is in $W_2 = cl(W^q N(\Gamma))$.
- (2) V is in B_i for some *i* so that it is the join of v_i and an *n*-simplex in $\partial_+ B_i$ and $V \cap \Gamma$ is an *i*-face of V_0 for i = 0 or 1.
- (3) V is in D_j for some j so that it is the join of a point of e_j and an n-simplex in $\partial_+ B_i$ or the join of an edge in e_j and an (n-1)-simplex in $\partial_+ B_i$ and $V \cap \Gamma$ is an *i*-face of V_0 for i = 0 or 1.

Then we define an (n + 1)-simplex move along V (with respect to $N(\Gamma)$ on G) to be the replacement of V_0 by $cl(\partial V - (V_0 \cup V_1))$.

3. Proof of Theorem 1.1.

Let V be an (n + 1)-simplex in a Euclidean space R^{ℓ} and V_0 a canonical *n*-face of V. Suppose that $V = |v_0, v_1, \dots, v_{n+1}|$ and $V_0 = |v_0, v_1, \dots, v_n|$. Consider

a linear map $p: V \to V_0$ such that $p(v_i) = v_i$ for i = 0, 1, ..., n and $p(v_{n+1})$ is a point of \mathring{V}_0 (= points of V_0 not contained in any face).

Let K be a simplicial complex with |K| = V, and K_0 its restriction to V_0 . We say that K is *in rapport with* p if p is a simplicial map from K to K_0 .

LEMMA 3.1. Let V, V_0 and p be as above. For any simplicial complex K with |K| = V, there exists a subdivision K' of K which is in rapport with p.

PROOF. For each $A \in K$, the image p(A) is a convex linear cell. There exists an *r*th derived subdivision $K_0^{(r)}$ of K_0 such that for all $A \in K$, p(A) are subdivided as subcomplexes of $K_0^{(r)}$. Let K^1 be the set $\{A \cap p^{-1}(B) | A \in K, B \in K_0^{(r)}\}$, which is a cellular subdivision of K such that the restriction over V_0 is $K_0^{(r)}$. Since p is a linear map carrying vertices of K^1 onto those of $K_0^{(r)}$, we obtain a desired subdivision K' by subdividing K^1 without introducing vertices.

Let K be a simplicial complex with |K| = V which is in rapport with $p: V \to V_0$. Each (n+1)-simplex $A = |a_0, a_1, \dots, a_{n+1}| \in K$ is mapped linearly onto an *n*-simplex $B = |b_0, b_1, \dots, b_n| \in K_0$. We may assume that

- (1) $p(a_i) = b_i$ for i = 0, 1, ..., n,
- (2) $p(a_{n+1}) = b_0$, and
- (3) $\operatorname{dist}(a_{n+1}, V_0) > \operatorname{dist}(a_0, V_0).$

In this situation, we call the canonical *n*-face $|a_0, \ldots, a_n|$ the bottom face of A, and the canonical *n*-face $|a_1, \ldots, a_{n+1}|$ the top face of A. For each *n*-simplex $B \in K_0$, there exists a unique ordering A_1, A_2, \ldots, A_r of all the (n + 1)-simplices in $K|p^{-1}(B)$ such that

(1) the bottom face of A_1 is B,

(2) the top face of A_i is the bottom face of A_{i+1} for i = 1, ..., r-1.

Let *D* be an (n + 1)-disk in a *q*-manifold W^q . Suppose that a (possibly non-proper) *n*-manifold *L* in W^q intersects with *D* such that $L \cap D = D_0$ for a PL *n*-face D_0 of *D*. Replacing D_0 with $cl(\partial D - D_0)$, we obtain another (possibly non-proper) *n*-manifold in W^q from *L*. We call this replacement a *pseudocellular move* along *D*. (Notice that the result may be non-proper even if *L* is proper.)

LEMMA 3.2. Let V be an (n + 1)-simplex and V_0 a canonical n-face of V. For any simplicial complex K with |K| = V, there exists a subdivision K' of K such that the canonical n-face V_0 is transformed into the combinatorial n-face $cl(\partial V - V_0)$ by a finite sequence of pseudo-cellular moves along the (n + 1)simplices of K'.

PROOF. We use the induction on n. The case of n = 0 is obvious, for K itself is a desired one. Assume that n > 0. By Lemma 3.1, we may assume that

K is in rapport with a linear projection $p: V \to V_0$ being as in the lemma. By the induction hypothesis, there exists a subdivision K'_0 of K_0 such that a canonical (n-1)-face V_{00} of V_0 is transformed into $cl(\partial V_0 - V_{00})$ by a finite sequence of pseudo-cellular moves along the *n*-simplices of K'_0 . Let B_1, \ldots, B_m be the *n*simplices of K'_0 and we assume that the sequence of pseudo-cellular moves is performed along B_1, \ldots, B_m in this order. Take a subdivision K' of K such that the projection $p: V \to V_0$ is a simplicial map from K' to K'_0 . We claim that K'is a desired subdivision of K. For each *n*-simplex B_k ($k = 1, \ldots, m$) of K'_0 , let $A_1^k, \ldots, A_{r_k}^k$ be the (n + 1)-simplices mapped onto B_k such that the bottom face of A_1^k is B_k and, for each i ($i = 1, \ldots, r_k - 1$), the top face of A_i^k is the bottom face of A_{i+1}^k . Then V_0 is transformed into $cl(\partial V - V_0)$ by a sequence of pseudocellular moves along the (n + 1)-simplices $A_1^1, \ldots, A_{r_1}^1, A_1^2, \ldots, A_{r_2}^2, \ldots, A_1^m, \ldots, A_{r_m}^m$ in this order.

COROLLARY 3.3. Let (W, L) be homeomorphic to a standard disk pair (D^q, D^n) . Then L is transformed into an n-disk L' contained in ∂W by a finite sequence of pseudo-cellular moves keeping ∂L fixed.

COROLLARY 3.4. If an n-manifold L in W^q is transformed into L' by a cellular move of type 1, then it is transformed into L' by a finite sequence of (n+1)-simplex moves of type 1.

PROOF. Let D be the (n + 1)-disk in W^q along which L' is obtained from L by a cellular move of type 1, and put $D_0 = D \cap L$ and $D_1 = D \cap \partial W^q$. We notice that $\dim(D_1 \cap \partial W^q) \le n - 1$. Take a homeomorphism $f: (D, D_0) \to (V, V_0)$, where V and V_0 are as in Lemma 3.2. There exist simplicial complexes K_1 and K_2 such that $|K_1| = D$, $|K_2| = V$ and f is a simplicial map from K_1 to K_2 . Let K'_2 be a subdivision of K_2 as in Lemma 3.2 and K'_1 be the corresponding subdivision of K_1 . A sequence of pseudo-cellular moves as in Lemma 3.2 induces a sequence of (n + 1)-simplex moves of type 1 transforming L into L'.

LEMMA 3.5. Let (W, L) be homeomorphic to a standard disk pair (D^q, D^n) and $h: W \to W$ an orientation-preserving homeomorphism with $h|_{\partial L} = \text{id.}$ Then h(L) is transformed into L by a finite sequence of (n + 1)-simplex moves relative to ∂W .

PROOF. First we consider a special case that $h: W \to W$ is a homeomorphism with $h|_{\partial W} = \text{id.}$ Let $N(\partial W) \cong \partial W \times [0,1]$ be a collar neighborhood of ∂W in W with $\partial W \times \{0\} = \partial W$ and $N'(\partial W)$ the subset of $N(\partial W)$ corresponding to $\partial W \times [0, 1/2]$. Let $N(\partial L; \partial W) \cong \partial L \times D^{q-n}$ be a tubular neighborhood of ∂L in ∂W . For each point $y \in \partial L$, we denote by D_y^{q-n} the fiber of $N(\partial L; \partial W) \cong \partial L \times D^{q-n}$ over y, which is a (q-n)-disk in ∂W . Let C_y and C'_y be the cones $(y \times \{0\}) * (D_y^{q-n} \times \{1\})$ in $\partial W \times [0,1]$ and $(y \times \{0\}) * (D_y^{q-n} \times \{1\})$ $\{1/2\}$ in $\partial W \times [0, 1/2]$, respectively. Put $C = \bigcup_{v \in \partial L} C_v$ and $C' = \bigcup_{v \in \partial L} C'_v$. Let $M = \operatorname{cl}(N(\partial W) - C)$ and $M' = \operatorname{cl}(N'(\partial W) - C')$, which are collar neighborhoods of $\partial W - \partial L$ in W except ∂L . Since $\partial L = \partial h(L)$, taking $N(\partial W)$ to be sufficiently thin, we may assume that L and h(L) restricted to $N(\partial W)$ are contained in C (and hence those restricted to $N'(\partial W)$ are in C'). Using the collar structure of M, one can isotope h so that $h|_{M'} = id$. Put B' =cl(W - M'), which is a q-disk such that $B' \cap \partial W = \partial L$ and the pair (B', L) is homeomorphic to a standard disk pair (D^q, D^n) . By Corollary 3.3, the *n*-disk L is transformed into an *n*-disk L' contained in $\partial B'$ by a finite sequence of pseudocellular moves (in B') keeping ∂L fixed. This implies that L is transformed into L' in W by a finite sequence of cellular moves relative to ∂W and that h(L) is transformed into h(L') in W by a finite sequence of cellular moves relative to ∂W . Since h(L') = L', L is transformed into h(L) in W by a finite sequence of cellular moves relative to ∂W . By Corollary 3.4, we have the result in the case that $h|_{\partial W} = \text{id}.$

Now we consider a general case that $h|_{\partial L} = \text{id.}$ We assert that $h|_{\partial W}$ is isotopic (in ∂W) to the identity map of ∂W keeping ∂L fixed. To see this, we use the following well-known fact due to Alexander (cf. [1, p. 161]).

ALEXANDER'S LEMMA: If $f: B^m \to B^m$ is a homeomorphism from the conic m-disk to itself such that it keeps ∂B^m and a conic subset of B^m fixed, then f is isotopic to the identity map keeping ∂B^m and the conic subset fixed. (A conic subset of B^m means a subset which is the cone from the origin over a subset of ∂B^m .)

Let N(x) be a regular neighborhood of a point x of ∂L in the sphere ∂W . We may assume that $h|_{N(x)} = \text{id}$. Identify the (q-1)-disk $B = cl(\partial W - N(x))$ with the unit (q-1)-disk such that $B \cap \partial L$ is a conic subset of B. Since $h|_{\partial B \cup (B \cap \partial L)} = \text{id}$, using Alexander's lemma, we see that $h|_{\partial W}$ is isotopic (in ∂W) to the identity map of ∂W keeping ∂L fixed. Let $\{g_t\}$ ($t \in [0, 1]$) be an ambient isotopy of ∂W keeping ∂L fixed such that $g_1 = h|_{\partial W}$. Consider a collar neighborhood $N(\partial W) = \partial W \times [0, 1]$ of ∂W in W with $\partial W = \partial W \times \{1\}$. We may assume that $L \cap N(\partial W) = \partial L \times [0, 1] \subset \partial W \times [0, 1] = N(\partial W)$. Define a homeomorphism $g: W \to W$ by

$$g(x) = \begin{cases} x & \text{for } x \in W - N(\partial W) \\ (g_t(x'), t) & \text{for } x = (x', t) \in \partial W \times [0, 1] = N(\partial W) \end{cases}$$

Then g(L) = L and $g|_{\partial W} = h|_{\partial W}$. Put $h' = h \circ g^{-1} : W \to W$, then $h'|_{\partial W} = id$ and h'(L) = h(L). From the previous case, we have the result. PROOF OF THEOREM 1.1. As stated before, it is sufficient to prove that $(1) \rightarrow (4)$. Suppose that L and L' are ambient isotopic by an ambient isotopy $\{h_i\}$ $(t \in [0,1])$ of W keeping Y fixed. There exists a finite sequence of compact proper locally flat *n*-manifolds $L = L_0, L_1, \ldots, L_r = L'$ in W and q-disks B_1^q, \ldots, B_r^q in W^q such that for each i $(i = 1, \ldots, r)$, the pair $(B_i^q, L_{i-1} \cap B_i^q)$ is homeomorphic to the standard disk pair (D^q, D^n) or the half pair (D_+^q, D_+^n) , and the *n*-manifold L_{i-1} is mapped to L_i by a proper move $f_i : W \rightarrow W$ supported by the q-disk B_i^q (see Theorem 6.2 and Remarks 6.2.1, 6.2.2, 6.2.4 of [4]). Moreover without loss of generality we may assume that if $B_i^q \cap \partial W^q$ is a PL (q-1)-face of B_i^q , say $B_i^{(q-1)}$, and $B_i^{(q-1)} \cap Y$ is not the empty set, then $cl(B_i^{(q-1)} - (Y \cap B_i^{(q-1)}))$ is a PL (q-1)-face of B_i^q , say $B_i^{(q-1)}$ is homeomorphic to the standard disk pair (D^{q-1}, D^{n-1}) .

If $B_i^q \cap \partial W^q$ is empty or contained in Y, then by Lemma 3.5 we see that L_{i-1} is transformed into L_i by a finite sequence of (n + 1)-simplex moves relative to ∂W^4 . If $B_i^q \cap \partial W^q$ is not contained in Y, then $B_i^q \cap \partial W^q$ is a (q-1)-face $B_i^{(q-1)}$ of B_i^q , $cl(B_i^{(q-1)} - (Y \cap B_i^{(q-1)}))$ is a (q-1)-face $B_i^{(q-1)'}$ of B_i^q , and the pair $(B_i^{(q-1)'}, \partial L_{i-1} \cap B_i^{(q-1)'})$ is homeomorphic to the standard disk pair (D^{q-1}, D^{n-1}) . Notice that the restriction of the homeomorphism f_i to the (q-1)-disk $B_i^{(q-1)'}$ keeps $\partial B_i^{(q-1)'}$ fixed and maps the (n-1)-disk $\partial L_{i-1} \cap B_i^{(q-1)'}$ onto $\partial L_i \cap B_i^{(q-1)'}$. By Lemma 3.5, there exists a finite sequence of *n*-simplex moves in $B_i^{(q-1)'}$ transforming $\partial L_{i-1} \cap B_i^{(q-1)'}$ into $\partial L_i \cap B_i^{(q-1)'}$. Extending each *n*-simplex move to an (n+1)-simplex move in B_i^q , we have a finite sequence of (n+1)-simplex moves in W^q relative to Y which transforms $L_{i-1} \cap B_i^q$ with $L_i' \cap cl(W^q - B_i^q) = L_{i-1} \cap cl(W^q - B_i^q)$ and $\partial L_i' = \partial L_i$. Since a simplex move is a proper move, there exists an orientation-preserving homeomorphism d_i , we have an orientation-preserving homeomorphism d_i , we have an orientation-preserving homeomorphism d_i , we have an orientation-preserving homeomorphism d_i is transformed into $L_i \cap B_i^q$ and $g_i|_{\partial L_i'} = id$. By Lemma 3.5 again, we see that L_i' is transformed into L_i by a finite sequence of (n+1)-simplex moves relative to ∂W^q .

4. Proof of Theorem 1.2.

Let G be an n-dimensional compact polyhedron in W^q such that $\dim(\Gamma) \leq 1$ and $\dim(\Gamma \cap \partial W) \leq 0$, where Γ is the non-locally flat point set of G. Let $K_0 \subset K$ be triangulations of $\Gamma \subset W^q$, $K'_0 \subset K'$ first derived subdivisions and $K''_0 \subset K''$ second derived subdivisions. Let $N(\Gamma)$ be the derived neighborhood $|N(K''_0; K'')|$ of Γ . Let v_1, \ldots, v_s be vertices of K'_0 which are vertices K_0 , and u_1, \ldots, u_t the other vertices of K'_0 . For each vertex v_i $(i = 1, \ldots, s)$, let $B_i = \overline{\operatorname{star}(v_i; K'')}$ and for each vertex u_j $(j = 1, \ldots, t)$, let D_j be $\overline{\operatorname{star}(u_j; K'')}$. Then $N(\Gamma) = (\bigcup_{i=1}^{s} B_i) \cup (\bigcup_{j=1}^{t} D_j)$ and this is in a situation as in §2. In fact, put $W_1 = \operatorname{cl}(W^q - \bigcup B_i)$ and $\Gamma_1 = \Gamma \cap W_1$, which is the union of some proper simple arcs e_1, \ldots, e_t in W_1 . Each vertex u_j $(j = 1, \ldots, t)$ is on a unique edge e_j and D_j is a regular neighborhood of e_j in W_1 . Put $W_2 = \operatorname{cl}(W^q - N(\Gamma))$ and $\partial_+ W_2 = \operatorname{cl}(\partial W_2 \cap \operatorname{int}(W^q))$.

PROOF OF THEOREM 1.2. In the above situation, suppose that G is ambient isotopic to G' by an ambient isotopy $\{h_t\}$ $(t \in [0,1])$ of W^q keeping Γ and Y fixed. Without loss of generality, we may assume that $\{h_t\}$ preserves each B_i (i = 1, ..., s) and D_j (j = 1, ..., t) setwise and that h_1 restricted to $K''|_{N(\Gamma)}$ is a simplicial map. The intersection $G \cap W_2$ is a compact proper locally flat *n*manifold in W_2 and it is ambient isotopic to $G' \cap W_2$ by the ambient isotopy $\{h_t\}$ restricted to W_2 , which keeps $Y \cap W_2$ fixed. By Theorem 1.1, we have a finite sequence of (n + 1)-simplex moves in W_2 relative to $Y \cap W_2$ carrying $G \cap W_2$ to $G' \cap W_2$. As stated in §2, the sequence of (n + 1)-simplex moves induces a sequence of cellular moves in $\partial_+ W_2$ carrying $G \cap \partial_+ W_2$. By Theorem 1.1, each cellular move is replaced by a finite sequence of *n*-simplex moves in $\partial_+ W_2$.

Without loss of generality, we may assume that each *n*-simplex is contained in some $\partial_+ B_i$ or ∂D_j . Extending each *n*-simplex move to an (n + 1)-simplex move conically with v_i in B_i or with w_j in D_j , we have a sequence of (n + 1)simplex moves which carries $G \cap N(\Gamma)$ to $G' \cap N(\Gamma)$. Thus we have a desired finite sequence of (n + 1)-simplex moves with respect to $N(\Gamma)$.

5. Proof of Proposition 1.3.

PROOF OF PROPOSITION 1.3. Let $\Gamma = \{x_1, \ldots, x_s\}$. We claim that there exists a one-parameter family (parametrized by $u \in [0,1]$) of ambient isotopies $\{f_t^u\}$ $(t \in [0,1])$ of W^q keeping ∂W fixed such that $f_t^0(x_i) = h_t(x_i)$, $f_1^u(x_i) = x_i$ and $f_t^{-1} = \text{id}$ for $i \in \{1, \ldots, s\}$, $t \in [0,1]$ and $u \in [0,1]$. For each i $(i = 1, \ldots, s)$, let $\beta_i : [0,1] \to W \times [0,1]$ be a path with $\beta_i(t) = (h_t(x_i), t)$ for $t \in [0,1]$, and let b_i^1 be the image of β_i . The images b_1^1, \ldots, b_s^1 are mutually disjoint monotone arcs in $W \times [0,1]$ connecting points $(x_1,0), \ldots, (x_s,0)$ of $W \times \{0\}$ to the corresponding points of $W \times \{1\}$, where a *monotone* arc means an arc intersecting $W \times \{t\}$ transversely for every $t \in [0,1]$. Let b_1^0, \ldots, b_s^0 be the straight arcs in $W \times [0,1]$ connecting the same points as b_1^1, \ldots, b_s^1 . Using a level-preserving ambient isotopy of $W \times [0,1]$ keeping $\partial(W \times [0,1])$ fixed, we assume that b_j^1 is disjoint from b_i^0 for any distinct i and j. Let $\alpha_i : [0,1] \to W$ be a path determined from the trace of x_i by the ambient isotopy $\{h_t\}$ of W; i.e., $\alpha_i(t) = h_t(x_i)$

for $t \in [0, 1]$. It is obtained from β_i by the projection $W \times [0, 1] \to W$. Since W is simply connected, the path α_i is homotopic to the identity. Thus there is a one-parameter family $\{b_i^u\}$ $(u \in [0, 1])$ of monotone arcs in $W \times [0, 1]$ between b_i^0 and b_i^1 such that $\partial b_i^u = \partial b_i^1$ for $u \in [0, 1]$. Let $\gamma_i : D^2 = [0, 1] \times [0, 1] \to W \times [0, 1]$ be a map determined from $\{b_i^u\}$ so that the image $\gamma_i(u \times [0, 1])$ is b_i^u for $u \in [0, 1]$. Since x_1, \ldots, x_s are interior points of W, we may assume that the image of γ_i is disjoint from $\partial(W \times [0,1])$ except the end-points $(x_i,0)$ and $(x_i,1)$ of b_i^1 . Since $q \ge 3$, the arcs b_1^1, \ldots, b_s^1 (and b_1^0, \ldots, b_s^0) are of codimension q submanifolds of $W \times [0,1]$ and we may assume that the image of γ_i is disjoint from b_i^1 (and b_i^0 for $j \in \{1, \ldots, s\} - \{i\}$. Let K_i be a triangulation of D^2 such that γ_i is a simplicial map. Applying the cellular move lemma to the 2-simplices, we have a level-preserving ambient isotopy of $W \times [0,1]$ keeping $\partial(W \times [0,1])$ fixed such that b_i^1 is deformed into b_i^0 without moving the other arcs b_j^1 (and b_j^0), $j \in \{1, \ldots, s\} - \{i\}$. Using this argument inductively, we have a level-preserving ambient isotopy of $W \times [0,1]$ keeping $\partial(W \times [0,1])$ fixed such that every b_i^1 (i = 1, ..., s) is deformed into b_i^0 . Using this level-preserving ambient isotopy, we have a one-parameter family $\{f_t^u\}$ as in the claim.

Define an ambient isotopy $\{h'_t\}$ of W by

$$h'_{t} = \begin{cases} (f_{2t}^{0})^{-1}h_{2t} & \text{for } t \in [0, 1/2] \\ (f_{1}^{2t-1})^{-1}h_{1} & \text{for } t \in (1/2, 1], \end{cases}$$

then $h'_1 = h_1$ and for each $t \in [0, 1]$, $h'_t(x_i) = x_i$ $(i \in \{1, \ldots, s\})$ and h'_t keeps Y fixed.

References

- [1] J. S. Birman, Braids, links, and mapping class groups, Ann. Math. Studies 82, Princeton Univ. Press, Princeton, N.J., 1974.
- [2] G. Burde and H. Zieschang, Knots, de Gruyter Studies in Math. 5, Walter de Gruyter, 1985.
- [3] R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Blaisdell Publ. Co., 1963.
- [4] J. F. P. Hudson, Piecewise linear topology, Benjamin N.Y., 1969.
- [5] L. H. Kauffman, Invariants of graphs in three space, Trans. Amer. Math. Soc., **311** (1989), 697–710.
- [6] A. Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel-Boston-Berlin, 1996.
- [7] K. Reidemeister, Elementare Begrundung der Knotentheorie, Abh. Math. Sem. Univ. Hamburg, **5** (1926), 24–32.
- [8] K. Reidemeister, Über Knotengruppen, Abh. Math. Sem. Univ. Hamburg, 6 (1928), 56-64.
- [9] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-Verlag, 1972.
- [10] S. Yamada, An invariant of spatial graphs, J. Graph Theory, 13 (1989), 537-551.
- [11] T. Yoshida, On foundations of surface knot types in the 4-sphere (in Japanese), Master Thesis, Osaka City University, 1995.

Seiichi KAMADA

Department of Mathematics Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan E-mail: kamada@sci.osaka-cu.ac.jp

Такао Матимото

Department of Mathematics Hiroshima University Higashi-Hiroshima Hiroshima 739-8526 Japan E-mail: matumoto@math.sci.hiroshima-u.ac.jp

Akio KAWAUCHI

Department of Mathematics Osaka City University Sumiyoshi-ku Osaka 558-8585 Japan E-mail: kawauchi@sci.osaka-cu.ac.jp