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Ahlfors functions on compact bordered Riemann surfaces

By Akira Yamada

(Received Aug. 4, 1999)

Abstract. Let R be a compact bordered Riemann surface which is non-planar.

We solve a conjecture posed by Gouma concerning the distribution of degrees of Ahlfors

functions on R whose double is hyperelliptic. Besides we consider the problem when a

linear transformation of an Ahlfors function on R is again an Ahlfors function. We

give a necessary and su½cient condition for this problem when the degree of the Ahlfors

function is maximal.

1. Introduction.

Let S be the set of Riemann surfaces R which is the interior of a compact

bordered Riemann surface R of genus r with N �V 1� boundary components.

For R A S we shall denote by f the canonical anti-conformal involution of R̂

®xing the boundary qR, where R̂ is the Schottky double [2] of R which is a

compact Riemann surface of genus g � 2r�N ÿ 1. Let B�R� be the set of

bounded holomorphic functions f �z� on R such that j f �z�jU 1 for all z A R.

Given a A R, a function fa A B�R� is called the Ahlfors function if f 0
a �a� �

supfRe f 0�a� j f A B�R�g. Here the derivative f 0�a� is evaluated with respect to

a ®xed holomorphic local coordinate z centered at a. By considering a linear

transformation of fa�z�, it is easy to see that fa�a� � 0.

More generally, given a; b A R �a0 b� a function fa;b A B�R� is also called

the Ahlfors function if fa;b�b� � supfRe f �b� j f A B�R�; f �a� � 0g. For conve-

nience sake we extend the de®nition of fa;b so that fa;b � fa when a � b.

Ahlfors [1] showed that if R A S, then for any a; b A R the Ahlfors function

fa;b is unique and that it gives an n-sheeted unlimited branched covering of R

onto the unit disk D, where the integer n satis®es the inequality

NU nU g� 1:�1�

The number n is called the degree of the Ahlfors function f and is denoted

by deg f . The inequality (1) means that R is a disjoint union of the sets Rj
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� j � N; . . . ; g� 1� where Rj is the subset fa A R j deg fa � jg of R. In view of

this inequality there naturally arises the following question. What can be said

about the distribution of the sets Rj in R when the surface R is of special

type? When R is planar, i.e. r � 0, this problem becomes a trivial one, that is,

the inequality (1) immediately gives R � RN or deg fa � N for all a A R. On the

other hand, for non-planar surfaces, our knowledge about the above question is

very incomplete.

Definition 1.1. Let SH denote the set of Riemann surfaces R A S whose

double R̂ is hyperelliptic of genus gV 2. Let SL denote the set of Riemann

surfaces R A S with gV 2 which possesses an Ahlfors function fa whose linear

transformation is again an Ahlfors function fb with some b0 a �a; b A R�.

We summarize here some known facts about the degree of the Ahlfors

function for non-planar surfaces with hyperelliptic double. In 1978 the author

showed that a neighborhood of the set of the Weierstrass points of R̂ in R is

contained in the set Rg�1 [7 ]. Also, in the same paper, the author constructed

an example of a bordered surface R A SH of genus one with two boundary

components such that the set R2 has nonempty interior. This result easily implies

the fact that the metric induced by the analytic capacity is not always real-

analytic for non-planar surfaces [7]. Recently Gouma [5] showed that if R A SH

is non-planar, then (i) R � R2 URg�1 and (ii) Rg�1 is a nonempty open subset

in R.

Our ®rst result concerns about the problem when a linear transformation of

an Ahlfors function is also an Ahlfors function. Theorem 2.1 gives a necessary

and su½cient condition for this problem in case the degree of the Ahlfors function

is maximal, which extends our result [7] to non-planar surfaces. We next show

by an example that SH is a proper subset of SL (Theorem 3.1).

By observing some examples of the case �r;N� � �1; 1� with a help of

computer graphics, Gouma stated a conjecture [5] that if R A SH is non-planar,

then (i) R2 is always nonempty, (ii) Rg�1 consists of g� 1 simply connected

components and (iii) if the g� 1 Weierstrass points of R̂ contained in R are

su½ciently close, then the region Rg�1 is ``very small''. The main objective of

this paper is to answer a½rmatively to his conjectures (i) (Theorem 4.1) and

(iii) (Main Theorem 5.1). In fact, our Theorem 5.1 is slightly stronger than the

above conjecture (iii) in the sense that all Weierstrass points need not to be close

together.

The author would like to express his thanks to the members of Yamaguchi-

Hiroshima SeminarÐProfessors T. Kato, M. Shiba, M. Masumoto, H. Yana-

gihara and T. GoumaÐfor their interest and helpful comments on the present

paper.
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2. Linear transformations of Ahlfors functions.

When R A S is planar, Fay [3] gave a representation of Ahlfors functions

by means of the Riemann theta function. Applying the trisecant formula to this

representation, we obtained [7 ] a necessary and su½cient condition when a linear

transformation of an Ahlfors function is also an Ahlfors function. In this section,

we shall extend this result, by using duality argument, to the case where surfaces

may have positive genus. Thus, we have eliminated the use of theta functions

from the treatment of linear transformations of Ahlfors functions. For relevant

properties of dual extremal problems on compact bordered Riemann surfaces, the

reader is referred to [6].

Let MoÈb�D� denote the set of linear transformations mapping D onto itself

and let divK f denote the divisor of a meromorphic function or di¨erential f on

the set K .

First we recall the so-called dual extremal problem associated to Ahlfors

functions: given a; b A R, minimize the integral
�

qR
jcj among the di¨erentials c A

Da;b�R� with residue 1 at b, where Da;b�R� is the set of meromorphic di¨erentials

c0 0 on RU qR with divRUqR cVÿaÿ b. Of course, when a � b, the condition

on the singularity of the competing di¨erential c must be modi®ed. Indeed in

this case we require that c is holomorphic except at a where it has a double pole

of the form c � zÿ2 �O�zÿ1� for the same local coordinate z used to evaluate the

derivative at a.

Ahlfors [1] showed that if R A S, then for any a; b A R there exists a

(not necessarily unique) di¨erential ca;b extremal to the above problem. The

di¨erential ca;b is called a Garabedian di¨erential associated to the Ahlfors

function fa;b. As in the case of Ahlfors function we write ca � ca;a for short.

Definition 2.1. A function f on RU qR is said to be unitary if j f j � 1 on

qR. For a A R let Ua�R� be the set of holomorphic unitary functions f on RU

qR vanishing at a. Given a; b A R, a pair � f ;c� A Ua�R� �Da;b�R� is said to be

positive (respectively strictly positive) if fcV 0 (respectively fc > 0) on qR.

We summarize a result [1] which is crucial to our paper.

Lemma 2.1 (Ahlfors). Let R A S. Then for any a; b A R the following hold:

(a) � fa;b;ca;b=
�������

ÿ1
p

� A Ua�R� �Da;b�R� and it is positive.

(b) If � f ;c� A Ua�R� �Da;b�R� is positive then f � efa;b for some constant e

of absolute value one.

Lemma 2.2. Let R A S. Then there exists a linear transformation T A

M�ob�D� such that fc;d � T � fa;b if and only if there exists a meromorphic function

h0 0 on RU qR such that divRUqR hca;b Vÿcÿ d and hV 0 on qR.
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Proof. Note that when j f j � 1, the identity

f ÿ a

1ÿ af
� �1ÿ af �2c � j f ÿ aj2fc�2�

holds.

If fc;d � e� fa;b ÿ a�=�1ÿ afa;b� for some jej � 1 and jaj < 1, then setting h �

�ecc;d�=��1ÿ afa;b�
2
ca;b� we see that h is a function meromorphic on RU qR with

the divisor divRUqR hca;b � divRUqR cc;d Vÿcÿ d. Using the identity (2) we have

h � � fc;dcc;d�=�j fa;b ÿ aj2fa;bca;b�V 0 on qR by Lemma 2.1 (a).

Conversely, assume that h is a function satisfying the properties stated in

Lemma. Setting a � fa;b�c�, T�z� � �zÿ a�=�1ÿ az� and c � h � �1ÿ afa;b�
2
ca;b

we see from (2) the pair �T � fa;b;c� A Uc�R� �Dc;d�R� is positive. Hence from

Lemma 2.1 (b) we have fc;d � eT � fa;b for some constant e of absolute value

one. r

Let n�a; b� �V 0� be the degree of the positive divisor a� b� divRUqR ca;b,

where the zeros on qR are counted with a half of its multiplicity. Although ca;b

is not unique in general, the number n�a; b� is determined uniquely as follows.

Lemma 2.3. For R A S the following identity holds.

deg fa;b � n�a; b� � g� 1:

Proof. Lemma 2.1 shows that by re¯ection the Ahlfors function fa;b and

a Garabedian di¨erential ca;b are both extended meromorphically to the double

R̂. Thus, their divisors have the form

divR̂ fa;b � a�Aÿ f�a� ÿ f�A�;

divR̂ ca;b � ÿaÿ b�B� f�a� ÿ f�b� � 2f�A� � f�B�;

divR̂ fa;bca;b � ÿb�A�Bÿ f�b� � f�A� � f�B�;

where A and B are positive divisors on RU qR de®ned by A � divRUqR fa;b ÿ a

and B � a� b� divRUqR ca;b. Since the total degree of an Abelian di¨erential

is 2gÿ 2, we have degA� degB � g. Noting that deg fa;b � degA� 1 and

n�a; b� � degB, we obtain the desired identity. r

Theorem 2.1. Let a; b; c; d be points in R A S. Assume that the degree of

the Ahlfors function fa;b is maximal i.e. deg fa;b � g� 1. Then there exists a

linear transformation T A M�ob�D� such that fc;d � T � fa;b if and only if there

exists a meromorphic function h0 0 on RU qR such that divRUqR h � a� bÿ cÿ d

and h > 0 on qR.
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Proof. Since deg fa;b � g� 1, we have divRUqR ca;b � ÿaÿ b by Lemma

2.3. Thus divRUqR hca;b Vÿcÿ d if and only if divRUqR hV a� bÿ cÿ d. If

h satis®es an inequality hV 0 on qR, then by re¯ection h is extended to a

meromorphic function on R̂ whose divisor is symmetric about qR. Since the

total degree of the divisor of h on R̂ is zero, the degree of divRUqR h is also

zero. Thus divRUqR hV a� bÿ cÿ d and hV 0 on qR if and only if divRUqR h �

a� bÿ cÿ d and h > 0 on qR. In view of Lemma 2.2 this completes the

proof. r

Remark 2.1. If R A S is planar, then by (1) we see that the degree of the

Ahlfors function is always maximal.

3. Example.

Theorem 2.1 shows that if there exist points a; b A R �a0 b� such that

fb � t � fa for some t A M�ob�D� and if fa is of maximal degree, then the double R̂

possesses a nonconstant meromorphic function of degree four. In view of this it

is of some interest to compare the sets SL and SH . In fact we show that the set

SL is strictly larger than the set SH by providing an example.

Consider the compact Riemann surface R̂ de®ned by the algebraic equation

yn �
Y

m

j�1

xÿ aj

1ÿ ajx
�3�

where fajg
m
j�1 is a set of distinct points in D and m and n are integers with

m > nV 2:�4�

Let R be the open subset f p A R̂
�

� jx�p�j < 1g of R̂ and de®ne the mapping f :

R̂ ! R̂ by f�x; y� � �1=x; 1=y�. Then it is clear that (i) R A S, (ii) R̂ is the

Schottky double of R and (iii) f is the canonical anti-conformal involution of R̂

®xing qR. Since the total branching number of the meromorphic function x is

2m�nÿ 1�, we see from the Riemann-Hurwitz relation [4] that g � �mÿ 1��nÿ 1�

V 2 and N � �m; n� (gcd). The degree of the function x; y is given by deg x � n,

deg y � m. Moreover, we ®nd that a basis for the space of holomorphic dif-

ferentials on R̂ is given by

xk dx

y j
Qm

l�1�1ÿ alx�
� j � 1; . . . ; nÿ 1; k � 0; . . . ;mÿ 2�:�5�

We remark that R̂ has an automorphism J de®ned by

J�x; y� � �x; exp�2pi=n�y��6�
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which is of order n and ]Fix�J� � 2m, where Fix�J� denotes the set of ®xed

points of J.

The following Lemma is a slight extension of the fact well known for

hyperelliptic surfaces.

Lemma 3.1. If f is a nonconstant meromorphic function on R̂ with deg f <

m, then f is a rational function of x and deg f is a multiple of n. If deg f � n,

then f is a linear transformation of x.

Proof. From (4) we have an inequality ]Fix�J� > 2 deg f . Then it follows

from [4, Proposition V.1.4] that f is J-invariant, i.e. f � J � f . On the quotient

surface R̂=hJi the functions f and x project to well-de®ned functions ~f and ~x.

Since deg ~x � 1, R̂=hJi is of genus 0 and ~f is a rational function of ~x. Thus

there exists a rational function q with f � q � x. This implies deg f � deg q deg x

so that deg f is a multiple of n. If deg f � n, then deg q � 1 so that q is a linear

transformation. r

Corollary 3.1. The surface R̂ is hyperelliptic if and only if n � 2.

Now we consider the special case where aj � re�2j�1�pi=m �0 < r < 1� for

j � 1; . . . ;m, so that the equation of the double R̂ is given by

yn �
xm � rm

1� rmxm
:�7�

Let us write xÿ1�0� � fO1; . . . ;Ong where Oj is the point �0; rse2jpi=n� A R with

s � m=n � j � 1; . . . ; n�.

Lemma 3.2. Let c be a di¨erential on R̂ given by

c � 1�
X

nÿ1

j�1

r js � r�nÿj�sxm

y j�1� rmxm�

( )

dx

ix2
:

Then, for r su½ciently small, the pair �x;c� A UOn
�R� �DOn;On

�R� is strictly

positive.

Proof. Clearly x is a unitary function vanishing at On. On qR, using

jxj � jyj � 1 and (7), we have

xc

dx=�ix�
� 1�

X

nÿ1

j�1

ynÿj�r js � r�nÿj�sxm�

xm � rm
� 1�

X

nÿ1

j�1

r�nÿj�s � r jsxm

ynÿj�1� rmxm�

� 1�Re
X

nÿ1

j�1

r js � r�nÿj�sxm

y j�1� rmxm�

( )

V 1ÿ
X

nÿ1

j�1

r js � r�nÿj�s

1ÿ rm
:
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Since the last sum tends to 0 as r ! 0 and the di¨erential dx=�ix� > 0 on qR, we

see that xc is strictly positive for r su½ciently small.

Next we show that c A DOn;On
�R�. However, it is easy to see that c is

regular on RU qR unless x � 0. In a neighborhood of xÿ1�0� we have

c � 1�
X

nÿ1

j�1

r js=y j �O�xm�

 !

dx

ix2
:

Noting that (7) implies y � rse2jpi=n �O�xm� near Oj � j � 1; . . . ; n� and using the

identity yn ÿ rm � �yÿ rs�ynÿ1�1�
Pnÿ1

j�1 r js=y j� we have

divRUqR cVÿ2On � �mÿ 2�O1 � � � � � �mÿ 2�Onÿ1:

Thus c A DOn;On
�R� because m > 2 by the inequality (4). r

Theorem 3.1. For every integer nV 3 there exist a non-planar Riemann

surface R A SnSH and a nonempty open set U HRn such that fb is a linear

transformation of fa for every a; b A U . In particular, the set SH is a proper

subset of SL.

Proof. Choose an integer nV 3 and, for r su½ciently small, let R be the

surface considered above whose double is given by (7). Then Corollary 3.1

implies that R B SH . Now we show that R A SL. By using x itself as the local

coordinate centered at On (with which the derivatives at On are evaluated) it

follows from Lemmas 2.1 and 3.2 that x is the Ahlfors function at On.

Moreover, since xc is strictly positive by Lemma 3.2, [7, Lemma 4] implies that

there exists a neighborhood U of On such that deg fa � n for all a A U . From

Lemma 3.1 we conclude that fa is a linear transformation of x for a A U . In

particular, R A SL. That SH is contained in SL is clear from [7, Theorem 2].

r

Remark 3.1. Let S0 be the set of surfaces R A S which is planar, then we

know that SH VS0 � SL VS0 [7].

4. Surfaces with hyperelliptic double.

From now on (to the end of the paper) we assume that all surfaces R A S

are non-planar with hyperelliptic double unless otherwise stated. Then it is

known that the number N of components of qR is one or two [7 ] and that,

by applying a conformal mapping, R may be regarded as the open subset

f p A R̂
�

� jx� p�j < 1g of the compact Riemann surface R̂ expressed by the algebraic

equation of the form

Y 2 �
Y

g�1

j�1

�xÿ aj��1ÿ ajx�; jaj j < 1 � j � 1; . . . ; g� 1��8�
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[5, Lemma 2]. We denote by Bk the set of subsets of D consisting of k distinct

points. Then we have fajgg�1
j�1 A Bg�1 which is called a branch parameter of R.

The equation (8) is birationally equivalent to (3) with n � 2 and m � g� 1.

Hence we may also assume that R is the subset xÿ1�D� of the compact Riemann

surface R̂ given by an equation of the form

y2 �
Y

g�1

j�1

xÿ aj

1ÿ ajx
:�9�

Note that gV 2 because R is non-planar. As in (5) a basis for the space

of holomorphic di¨erentials on R̂ is given by xk dx=�y
Qg�1

j�1 �1ÿ ajx��
�k � 0; . . . ; gÿ 1�.

By conformal invariance (up to a constant of absolute value one) of the

Ahlfors functions, the set Rj is J-invariant where J denotes the hyperelliptic

involution on R̂ de®ned by (6) with n � 2. Thus we may identify the set Rj with

the subset x�R j� of D, which we also denote by Rj. When we need to distinguish

a branch parameter a A Bg�1 of R, we use the notation R�a�, R̂�a� and Rj�a� in

the obvious meaning.

For our application it is convenient to rewrite Lemma 2.1 as follows.

Lemma 4.1. Assume that f is a holomorphic function on RU qR with R A S.

Then f is the Ahlfors function fa up to a multiplicative constant of absolute value

one if and only if the following conditions (i)±(iii) are satis®ed:

(i) f �a� � 0,

(ii) j f j � 1 on qR,

(iii) there exists a meromorphic di¨erential c0 0 on RU qR such that

divRUqR cVÿ2a� divRUqR f and cV 0 on qR.

Proof. First assume that f � efa �jej � 1�. Then by (a) in Lemma 2.1 the

conditions (i)±(iii) are trivial if we choose c � faca=
�������

ÿ1
p

. Conversely, assume

that the conditions (i)±(iii) hold. Then the pair � f ;c=f � A Ua �Da;a is positive.

From (b) in Lemma 2.1 we have f � efa �jej � 1�. r

Definition 4.1. For n A N U f0g we denote by Pn the R-linear space of

polynomials p such that Ln�p� � p where Ln�p��x� � xnp�1=x��� xnf�p�x��.
Note that p A Pn if and only if p�x� is a polynomial of the form p�x� �

Pn
k�0 ckx

k with ck � cnÿk for all k � 0; . . . ; n. We list now some elementary

properties about the set Pk.

Lemma 4.2. Let p and q be polynomials. Then, for m; n A N U f0g,
(i) p A Pn if and only if p�x�=xn=2 A R for all jxj � 1.

(ii) If deg pU n then pLn�p� A P2n.

(iii) Assume p A Pm and p0 0. Then pq A Pm�n if and only if q A Pn.
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Proof. Easy. r

Lemma 4.3. Let a A R and let o be a meromorphic di¨erential on R̂. Then

(i) o is holomorphic on R and real on qR if and only if o has the form

p�x� dx

iy
Qg�1

j�1 �1ÿ ajx�

with p A Pgÿ1.

(ii) o is real on qR and satis®es divRUqR oVÿaÿ J�a� if and only if o has

the form

c dx

i�xÿ xa��1ÿ xax�
�

p�x� dx

i�xÿ xa��1ÿ xax�y
Qg�1

j�1 �1ÿ ajx�
�10�

where c A R, p A Pg�1 and xa � x�a�.

Proof. A di¨erential o is holomorphic on R̂ if and only if o is of the form

p�x� dx

iy
Qg�1

j�1 �1ÿ ajx�

where p�x� is a polynomial of degreeU gÿ 1. In view of the identities f��dx� �

ÿxÿ2 dx and f��y
Qg�1

j�1 �1ÿ ajx�� � xÿgÿ1y
Qg�1

j�1 �1ÿ ajx�, we have

f� p�x� dx

iy
Qg�1

j�1 �1ÿ ajx�

 !

�
�Lgÿ1 p��x� dx

iy
Qg�1

j�1 �1ÿ ajx�
:

Hence f�o � o if and only if p A Pgÿ1. This proves (i).

Since the di¨erential dx=�i�xÿ xa��1ÿ xax�� is positive, it is easily veri®ed

as above that the di¨erential of the form (10) is real and its divisor satis®es

divRUqR Vÿaÿ J�a�. From the Riemann-Roch theorem and the symmetry f, it

is seen that the real-dimension of the space of such di¨erentials is g� 3, which

is the same as the real-dimension of the space of di¨erentials of the form (10).

This completes the proof of (ii). r

Lemma 4.4. For any a A R, the di¨erential

ha �
�y� ya��1� yay� dx

�xÿ xa��1ÿ xax�iy

is strictly positive on qR and is a meromorphic di¨erential of the third kind on R̂

with simple poles at a and f�a� where xa � x�a� and ya � y�a�.
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Proof. The possible singularity of ha occurs at the Weierstrass points, a,

J�a�, f�a� and f�J�a��. From the identity y � J � ÿy, it is easy to see that ha is

regular analytic on R̂ except for simple poles only at a and f�a�. Since jyj �

jxj � 1 on qR, for p A qR we have

ha�p� �
jy�p� � yaj

2
dx

jx�p� ÿ xaj
2
ix

:

Thus ha is strictly positive. r

Theorem 4.1. If R A SH is non-planar, then R2 contains a neighborhood of

the critical points of the function y. In particular R2 0q.

Proof. Let E be the set of critical points of y in RU qR. Since y is unitary,

E is a subset of R. We show next that E0q. Observe that the di¨erential dy

has zeros at E U f�E� and has double poles at the g� 1 Weierstrass points of R̂

in f�R�. Since the divisor of dy on R̂ has degree 2gÿ 2, we see easily that the

function y has, counting multiplicities, 2g �V 4� critical points in R. Thus

E0q.

For any a A E the function y� ya has at least double zero at J�a�. Hence,

divRUqR ha V J�a� ÿ a. Putting f � �xÿ xa�=�1ÿ xax� and applying Lemmas 4.1

and 4.4 we see that fa � ef �jej � 1�, which implies that a A R2. Thus R2

contains E. Since ha is strictly positive for all a A E, by [7, Lemma 4] R2

contains some neighborhood of E. r

Lemma 4.5. For a A R the following conditions are equivalent:

(i) a A R2.

(ii) There exists a polynomial p A Pgÿ1 such that the di¨erential o � ha �

�p�x� dx�=�iy
Qg�1

j�1 �1ÿ ajx�� vanishes at J�a� and o is positive on qR.

(iii) There exists a polynomial p A Pg�1 such that Y 2 � p�x�2 �O��xÿ xa�
2�

near x � xa�� x�a�� A D and jY 2jV j p�x�j2 on qD where Y 2 A P2g�2 is

the polynomial of x given by (8).

Proof. By Lemma 3.1 every meromorphic function on R̂ of degree two is

a linear transformation of the function x. In view of Lemma 4.1, we see that

deg fa � 2 if and only if there exists a meromorphic di¨erential o0 0 such that

o is positive on qR and satis®es divRUqR oV J�a� ÿ a. Since there exists no

nontrivial holomorphic positive di¨erential, we remark that a A R2 implies that

J�a�0 a, i.e. a is not a Weierstrass point.

Multiplying o with a suitable positive constant we may assume that oÿ ha
is regular on R. Since oÿ ha is real by Lemma 4.4, it is regarded as a holo-

morphic di¨erential on R̂. In view of Lemma 4.3 this established the equi-

valence of (i) and (ii).
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To show that (i) and (iii) are equivalent, we make use of (ii) of Lemma 4.3.

Now we know that the di¨erential o is of the form o � o1 � o2 where

o1 �
c dx

i�xÿ xa��1ÿ xax�
; o2 �

p�x� dx

i�xÿ xa��1ÿ xax�Y

with c A R and p A Pg�1. Since Y � J � ÿY the sum of the residues of o2 at

a and J�a� vanishes. Thus by the residue theorem we have c � �1ÿ jxaj
2�=�4p��

qR
o > 0. Therefore we may assume that c � 1 and o is of the form

o �
�1� p�x�=Y � dx

i�xÿ xa��1ÿ xax�
:

Since the di¨erential dx=�i�xÿ xa��1ÿ xax�� is strictly positive, o is positive if

and only if 1� p�x�=Y V 0 on qR. Since qR is J-invariant and Y � J � ÿY ,

this is equivalent to the inequality 1V j p�x�=Y j on qR or jY 2jV jp�x�j2 on qD.

On the other hand, we show next that divRUqR oV J�a� ÿ a with J�a�0 a if and

only if Y 2 ÿ p�x�2 � O��xÿ xa�
2� near x � xa. In fact, divRUqR oV J�a� ÿ a

with J�a�0 a if and only if Y � p�x� � O��xÿ xa�
2� near J�a� �0 a�, which

easily implies that Y 2 ÿ p�x�2 � O��xÿ xa�
2� near x � xa. Conversely, assume

that Y 2 ÿ p�x�2 � O��xÿ xa�
2�. Then we claim that Y �a�0 0. If this were

not the case, then we would have p�xa� � 0. Thus p�x�2 � O��xÿ xa�
2�, which

implies that Y 2 � O��xÿ xa�
2�. However, this contradicts the de®nition of Y 2.

Thus Y�a�0 0. Therefore Y � p�x� and Y ÿ p�x� cannot vanish simultaneously

at J�a�. Hence by taking ÿp�x� for p�x�, if necessary, we conclude from the

identity Y 2 ÿ p�x�2 � �Y � p�x���Y ÿ p�x�� that Y � p�x� � O��xÿ xa�
2� near

J�a� �0 a�. This completes the proof of the equivalence of (i) and (iii). r

Remark 4.1. Lemma 4.5 (iii) shows that the problem on the degrees of

Ahlfors functions on a surface with hyperelliptic double is reduced to one on

polynomials in Pg�1 on the closed unit disk.

To show that R2�a� is ``big'' we will decompose a general d-nonisolated set

(c.f. De®nition 5.1) into a union of such sets with simpler types. This is assured

by the following

Lemma 4.6. If a A Bg�1 and a
0 A Bg 0�1 are branch parameters with aV a

0 �

q, then we have R2�aU a
0�IR2�a�VR2�a

0� (as subsets of D).

Proof. Lemma 4.5 (iii) implies that if a A R2�a�VR2�a
0�, then there exist

polynomials p A Pg�1 and q A Pg 0�1 such that

Y 2 � p�x�2 �O��xÿ xa�
2�; jY 2jV j p�x�j2 on qD�11�

Z2 � q�x�2 �O��xÿ xa�
2�; jZ2jV jq�x�j2 on qD�12�
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where Z2 �
Qg 0�1

j�1 �xÿ a 0
j ��1ÿ a 0

jx� with a 0 � fa 0
jg. Multiplying (11) and (12) we

see immediately that a A R2�aU a 0�, for pq A Pg�g 0�2 by Lemma 4.2. r

For a � �a1; . . . ; an� A C
n we de®ne jaj � maxfja1j; . . . ; janjg and write 0 �

�0; . . . ; 0� A C
n for short. Also for a A C and r > 0 the open disk of radius r

with center at a is denoted by D�a; r� � fz A C
�

� jzÿ aj < rg.

Lemma 4.7. For n A N let F : Dn � A� X ! C be a continuous function,

where A is a compact subset of C such that fr0 U jzjU 1gHAHD with 0 <

r0 < 1 and X is a neighborhood of qD. Let E be either q or qD. Assume that,

for some k A N , Fa � F�a; �; �� satis®es the following four conditions:

(i) For any �a; a� A Dn � A, Fa�a; �� is a holomorphic function on X which is

real-valued on qD,

(ii) For any �a; a� A Dn � E and r with r0 < r < 1, the function Fa�ra; �� has

at least k zeros, counting multiplicities, in D�a; 2�1ÿ r��nqD,

(iii) F0 > 0 on the set A� qDnf�x; x� j x A Eg,

(iv) For any a A E there exist a neighborhood Va of a in qD and a constant

b � b�a� > 0 such that F0�a; x�V bjxÿ ajk for all x in Va.

Then there exists a constant d > 0 such that Fa�a; x� > 0 for all jaj < d and for all

�a; x� A �AnqD� � qD.

Proof. First, we claim that there exists a positive constant d such that if

jaj < d, then Fa�a; x�0 0 for all �a; x� A �AnqD� � qD. We show this by con-

tradiction. If our claim were false, then there would exist sequences fangHDn,

fangHAnqD and fxngH qD such that an ! 0 �n ! y� and Fan�an; xn� � 0.

Since both the sets A and qD are compact, we may assume without loss of

generality that an ! a and xn ! x �n ! y� for some points a A A and x A qD.

Then by continuity we conclude that F0�a; x� � limn!y Fan�an; xn� � 0. If E �

q, then (iii) implies that F0�a; x� > 0 which immediately gives a contradiction.

On the other hand if E � qD, then from (iii) we see that a � x A qD. Since

continuity implies that F is uniformly continuous on compact sets we see by (i)

that the sequence of holomorphic functions fFan
�an; ��g converges uniformly to

F0�a; �� on a compact neighborhood of x � a. The condition (iv) implies that

the order of F0�a; �� at x � a is at most k. Thus by RoucheÂ's theorem the

function Fan
�an; ��, for su½ciently large n, has at most k zeros, counting mul-

tiplicities, in a neighborhood V of x � a. The condition (ii), however, implies

that Fan�an; ��, for su½ciently large n, has k zeros in V nqD. Thus we conclude

that Fan
�an; �� has no zeros on V V qD. This, however, contradicts the fact that

Fan
�an; xn� � 0 and xn A V V qD for su½ciently large n. Hence our claim is

proved.

For any ®xed �a; a; x� A Dn � �AnqD� � qD with jaj < d, consider a function

f : �0; 1� ! C de®ned by f �t� � Fta�a; x�. By (i) and (iii) the function f is real-
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valued, continuous and satis®es f �0� � F0�a; x� > 0. Moreover, we know from

our claim that f �t�0 0 for all t A �0; 1�. The intermediate value theorem then

implies that f �1� > 0. Thus Fa�a; x� > 0 which completes the proof. r

5. Main theorem and a reduction of the problem.

Definition 5.1. Let b � fbjg be a set consisting of m points in the complex

plane and assume that d > 0 is so small that the disks D�bj; d� � j � 1; . . . ;m� are

disjoint. A set a � fa1; . . . ; ang �ai 0 aj if i0 j� is said to be d-nonisolated with

respect to b if aHD�b1; d�U � � � UD�bm; d� and if nj � ]�aVD�bj; d��V 2 for every

j � 1; . . . ;m. The vector �n1; . . . ; nm� is called the type of d-nonisolated set a

where the numbers fnjg satisfy
Pm

j�1 nj � n. There exists a unique sequence ~a �

f~ajg
n
j�1 of points in C such that ~aj A b and jaj ÿ ~ajj < d � j � 1; . . . ; n�, which is

called the center of the set a.

With this de®nition our Main Theorem can be stated as follows.

Theorem 5.1. For every b � fbjg A Bs and every e > 0, there exists a d > 0

such that if a A Bg�1 �gV 2� is d-nonisolated with respect to b, then R2�a�I
Dn6s

j�1
D�bj; e�.

In order to prove Theorem 5.1, we ®rst study the condition a A R2 more

explicitly. From Lemma 4.5 (ii) we know that a A R2 if and only if there exists a

polynomial q A Pgÿ1 such that the meromorphic function

Ca�a; p� � �ha � oa�=
dx

ix
�

�y� y�a���yÿ1 � y�a��

�xÿ x�a���xÿ1 ÿ x�a��
�

xq�x�

y
Qg�1

j�1 �1ÿ ajx�

of p on R̂ vanishes at p � J�a� and is positive on qR, where oa�x� denotes the

di¨erential q�x� dx=�iy
Qg�1

j�1 �1ÿ ajx��. Letting p ! J�a� we evaluate Ca�a; J�a��.

Thus the condition for the function Ca�a; �� to vanish at J�a�, which we call the

vanishing condition, is given by

q�x�a�� �
1ÿ jy�a�j2

1ÿ jx�a�j2
y 0�a�

Y

g�1

j�1

�1ÿ ajx�a���13�

where y 0�a� denotes the derivative of y at a with respect to the local coordinate

x. Also, the positivity of Ca�a; �� on qR is given by the inequality

y� y�a�

xÿ x�a�

�

�

�

�

�

�

�

�

2

�
q�x�

x�gÿ1�=2
Qg�1

j�1 jxÿ ajj
V 0 on qR;�14�

which we call the boundary condition. Thus to prove our Main Theorem we

have to ®nd a polynomial q A Pgÿ1 satisfying both the vanishing and the boundary

conditions.
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To avoid considering general d-nonisolated sets, we introduce the following

reduction by decomposition of these sets. In fact, one veri®es easily that every d-

nonisolated set in Bn �nV 3� is a disjoint union of ®nitely many d-nonisolated

sets in Bn j �nj V 3� of the following special types:

(I) �n1; . . . ; nt� where n1 V 3 is odd and nj V 2 � j � 2; . . . ; t; tV 1� is even,

(II) �n1; . . . ; nt� where all nj V 2 is even.

In the next two sections we shall prove special cases of Main Theorem which

treats d-nonisolated set of the form (I) and (II) respectively. By noting that the

number of types of d-nonisolated set in Bg�1 is ®nite, a repeated application of

Lemma 4.6 will prove Main Theorem.

Remark 5.1. Theorem 5.1 disproves the assertion in [7, p. 168] that

``N�p� � 4 also in a neighborhood of qS'' which was stated without proof.

Indeed this erroneous statement was the starting point of the study in [5] and the

present paper.

6. Proof of Case (I).

In this section we assume that g � m� 2nÿ 1 is even and a � fa1; . . . ; ag�1g
is e-nonisolated with respect to fb0; b1; . . . ; bngHD. Here mV 3 is an odd

integer, nV 0 and the center ~a � f~ajgg�1
j�1 of a is such that ~a1 � � � � � ~am � b0 and

~am�2jÿ1 � ~am�2j � bj 0 b0 � j � 1; . . . ; n�. For simplicity's sake we do not require

that the points bj � j � 1; . . . ; n� are distinct. By choosing e su½ciently small we

may assume that D�bj; e�HD � j � 0; . . . ; n� and if bi 0 bj, then D�bi; e�VD�bj; e�
� q �i; j � 0; . . . ; n�. Since a linear transformation of the branch parameter

induces a conformal equivalence of surfaces in SH [5, Lemma 5], we may assume

without loss of generality that b0 � 0. In order to overcome the di½culty in

treating multi-valuedness of the function y it is convenient to introduce

a uniformizing variable x � t2. Thus substituting x ! x2 in (9), we see that the

function y � y�x� given by
������������������������

Y

g�1

j�1

x2 ÿ aj

1ÿ ajx2

v

u

u

t � xm
Y

n

j�1

x2 ÿ bj

1ÿ bjx
2

�����������������������������������������������������������������������������������������������

Y

m

j�1

1ÿ ajxÿ2

1ÿ ajx2

Qg�1
j�m�1�1ÿ �aj ÿ ~aj�=�x2 ÿ ~aj��

Qg�1
j�m�1�1ÿ �aj ÿ ~aj�=�xÿ2 ÿ ~aj��

v

u

u

t

is single-valued, odd, unitary, nowhere-vanishing and holomorphic on the

region X which is the interior of the set AUA 0, where A is a compact set Dn
6n

j�0
fx j x2 A D�bj ; e�g and A 0 � f1=x j x A Ag. The sign of the above square

root is so chosen that
���

1
p

� 1. Also it is important to observe that the function

y is real-analytic in the parameter �a; x� A A� X . Hence substituting x ! x2

and a ! a2 we may consider, instead of Ca�a; p�, the function

~Ca�a; x� �
�y� y�a���yÿ1 � y�a��
�x2 ÿ a2��xÿ2 ÿ a2� � x2q�x2�

y
Qg�1

j�1 �1ÿ ajx2�
�15�
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de®ned for �a; a; x� A fjaÿ ~aj < eg � A� X , where q�x� A Pgÿ1 is a suitable

polynomial to be determined later. Note that, as a meromorphic function of x,
~Ca�a; x� is regular except for simple poles, counting multiplicities, at a and 1=a.

The hyperelliptic involution J now corresponds to the mapping J�x� � ÿx, so the

vanishing condition (13) is given by

q�a2� � B1�a; a��16�

where

B1�a; a� �
1ÿ jy�a�j2

1ÿ jaj4
y 0�a�

2a

Y

g�1

j�1

�1ÿ aja
2�:

We remark that, for ®xed a, B1�a; a� is an odd function of a.

Lemma 6.1. If g�z� is a function real-analytic in a neighborhood W of qD

which is identically zero on qD, then the function g�z�=�1ÿ jzj2� is extended to be

real-analytic on W.

Proof. Note that �1ÿ jzj2;Re z� or �1ÿ jzj2; Im z� is a real-analytic local

coordinate on a neighborhood of a point in C nf0g. Lemma is easily proved by

expanding g�z� in a power series using these coordinates. r

Lemma 6.2. If f �z� is holomorphic on a region containing D � fr < jzjU 1g

such that j f �z�j � 1 on qD and j f �z�jU 1 on D, then

lim
z!z A qD

1ÿ j f �z�j2

1ÿ jzj2
�

z f 0�z�

f �z�
V 0:

Equality holds if and only if f �z� is constant.

Proof. From Lemma 6.1, the function �1ÿj f �z�j2�=�1ÿjzj2� is real-analytic

near qD. Thus for z A qD we have

lim
z!z

1ÿ j f �z�j2

1ÿ jzj2
�

1

2

q

qr
j f �rz�j2

�

�

�

�

r�1

� Re �z f 0�z� f �z�� � Re
z f 0�z�

f �z�

� �

:

Also, by j f �z�j � 1 on qD we have

0 �
q

qy
j f �e iyz�j2

�

�

�

�

y�0

� ÿ2 Im
z f 0�z�

f �z�

� �

:

Thus z f 0�z�=f �z� A R. Since j f �z�jU 1, this implies that z f 0�z�=f �z�V 0.

Equality holds if and only if f 0�z� � 0. Since f �z� is unitary on qD, this implies

that f �z� must be a constant. r
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Lemma 6.3. B1�a; a� is real-analytic for �a; a� A fjaÿ ~aj < e=2g � A. If a A

qD, then

B1�a; a� �
ay 0�a�

2y�a�

� �2

agÿ1
Y

g�1

j�1

ja2 ÿ ajj:

In particular, a1ÿgB1�a; a� > 0 for a A qD.

Proof. Since y is unitary on qD Lemma 6.1 easily implies that B1�a; a� is

real-analytic on fjaÿ ~aj < e=2g � A. The remained assertions of Lemma follow

from Lemma 6.2. r

On the other hand, the boundary condition (14) is rewritten as

y� y�a�

x2 ÿ a2

�

�

�

�

�

�

�

�

2

�
q�x2�

xgÿ1
Qg�1

j�1 jx
2 ÿ aj j

V 0 for all jxj � 1:�17�

Our task is to ®nd a polynomial q A Pgÿ1 satisfying (16) and (17) under the

condition jaÿ ~aj < d for su½ciently small d.

In order to guess the form of the polynomial q�x� we ®rst consider the

limiting case a � ~a. By putting F�x� � xm
Qn

j�1�x
2 ÿ bj�=�1ÿ bjx

2�, the con-

ditions (16) and (17) are given respectively by

q�a2� � agÿ1 1ÿ jF�a�j2

1ÿ jaj4
aF 0�a�

2F �a�

Y

n

j�1

�a2 ÿ bj��a
ÿ2 ÿ bj ��18�

and

F�x� � F�a�

x2 ÿ a2

�

�

�

�

�

�

�

�

2

�
q�x2�

xgÿ1
Qn

j�1 jx
2 ÿ bjj

2
V 0 for all jxj � 1:

Observe that F�x� is of the form xp�x2�=�Lk p��x
2� where k � g=2 �

�mÿ 1�=2� n and p�x� is the polynomial x�mÿ1�=2
Qn

j�1�xÿ bj�. In this situation

the following lemma gives us a polynomial Qa�x� A Pgÿ1 which satis®es similar

but slightly di¨erent conditions as above.

Lemma 6.4. For k A N , let h�x� be a rational function xp�x2�=�Lk p��x
2�

where p�x� is a polynomial of degreeU k. Then for every a A C nhÿ1�y� there

exists a unique polynomial Qa�x� A P2kÿ1 satisfying

h�x� � h�a�

x2 ÿ a2

�

�

�

�

�

�

�

�

2

�
Qa�x

2�

x2kÿ1j p�x2�j2
�

1� jh�a�j2

1� jaj2
1

jxÿ aj2
for all jxj � 1
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and

Qa�a
2� � a2kÿ1p�a2�p�1=a2�

1ÿ jh�a�j2

1ÿ jaj4
ah 0�a�

2h�a�
ÿ

1� jh�a�j2

2�1� jaj2�2

( )

:�19�

Every coe½cient of the polynomial Qa�x� is an odd and real-analytic function of a

on the region C nhÿ1�y�.

Proof. By de®nition the rational function h�x� is unitary on qD. Thus

from an elementary identity

jh�x� � h�a�j2 � jh�x� ÿ h�a�j2 � c�jx� aj2 � jxÿ aj2� for all jxj � 1

with c � �1� jh�a�j2�=�1� jaj2�, we obtain for x A qD

c

jxÿ aj2
ÿ

h�x� � h�a�

x2 ÿ a2

�

�

�

�

�

�

�

�

2

�
h�x� ÿ h�a�

x2 ÿ a2

�

�

�

�

�

�

�

�

2

ÿ
c

jx� aj2
:

Then by analytic continuation both sides of the above identity are extended to a

rational function f �x� satisfying

f �x� �
c

�xÿ a��xÿ1 ÿ a�
ÿ

�h�x� � h�a���h�x�ÿ1 � h�a��

�x2 ÿ a2��xÿ2 ÿ a2�
�20�

�
�h�x� ÿ h�a���h�x�ÿ1 ÿ h�a��

�x2 ÿ a2��xÿ2 ÿ a2�
ÿ

c

�x� a��xÿ1 � a�
:

For ®xed a A C nhÿ1�y�, put g�x� � f �x�p�x2��Lk p��x
2�. Now we show that

g�x� is a polynomial. If a � 0, then 0 is not a pole of h�x�. Thus h�0� � 0

because h�x� is odd. Hence it is clear that f �x�1 0 and so g�x�1 0. If

a0 0, then we see easily from (20) that the rational function g�x� has possible

poles only at x � y;Ga and G1=a. Indeed, comparing the two expressions of

f �x� in (20) and noting that the function h�x� is odd and unitary, one veri®es

easily that g�x� has poles only at y of orderU 4k. Thus g�x� is a polynomial

of degreeU 4k. The identity (20) implies that f �x� is odd. Thus we ®nd a

polynomial Qa�x� such that

f �x�p�x2��Lk p��x
2� � xQa�x

2�:�21�

Since f �x� is by de®nition real-valued on qD, Lemma 4.2 implies that g�x� A

P4k. Again, by x A P2, Lemma 4.2 implies that Qa�x� A P2kÿ1. The uniqueness

of Qa�x� is obvious. The identity (19) is obtained by substituting x � a to the

right end of (20).

Writing Qa�x� �
P2kÿ1

j�0 cj�a�x
j we next show that the coe½cients cj�a�

� j � 0; . . . ; 2k ÿ 1� depend real-analytically in a. For any ®xed a0 A C nhÿ1�y�,
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let E be the ®nite set hÿ1�f0;yg�U fGa0;G1=a0g. From the identities (20) and

(21) we see that, for ®xed x A C nE, Qa�x
2� is a real-analytic function of a on a

neighborhood of a0. Thus choosing 2k points x1; . . . ; x2k in C nE such that

x2
1 ; . . . ; x

2
2k are mutually distinct, the coe½cients fcj�a�g

2kÿ1
j�0 satisfy a system of

linear equations
P2kÿ1

j�0 cj�a�x
2j
k � Qa�x

2
k� �k � 1; . . . ; 2k�. By noting Vander-

monde's determinant det�x2j
k �0 0, Cramer's formula now yields that every cj�a�

is real-analytic on a neighborhood of a0. Since a0 A C nhÿ1�y� is arbitrary, cj�a�

is real-analytic on C nhÿ1�y�. The identity Qÿa�x� � ÿQa�x� follows from the

fact that f �x� is an odd function of a. Thus every cj�a� is odd. r

Remark 6.1. For k � 1 and p�x� � ax� b, a simple calculation gives

Qa�x� � cx� c with c � �jaj2 ÿ jbj2�a�aa� ba�=ja� ba2j2.

Now we shall modify Qa�x� to obtain the desired polynomial.

Definition 6.1. For k � g=2 and p�x� � x�mÿ1�=2
Qn

j�1�xÿ bj�, let Qa�x� A

Pgÿ1 be the polynomial given in Lemma 6.4. Then we de®ne a polynomial qa�x�

by

qa�x� � Qa�x� � x�gÿ2�=2�g0 � g1 � �g0 � g1�x�
Y

n

j�1

�xÿ bj��x
ÿ1 ÿ bj ��22�

where g0 � a�1� jF �a�j2�=�2�1� jaj2�3� and g1 � a�b1 ÿ jaj2b1�=�1ÿ jaj4� with

b1 � a1ÿg�B1�a; a� ÿ B1�~a; a��=
Qn

j�1�a
2 ÿ bj��a

ÿ2 ÿ bj�.

We remark that the identity qÿa�x� � ÿqa�x� holds. Now we show that

qa�x� is indeed a polynomial in Pgÿ1 satisfying (16) and (17).

Lemma 6.5. qa�x� is a polynomial in Pgÿ1 which satis®es the vanishing

condition (16) and is real-analytic for the variables �a; a; x� A fjaÿ ~aj < e=2g�

A� X .

Proof. Rewrite the function qa�x� ÿQa�x� as �g0 � g1 � �g0 � g1�x�x
�mÿ3�=2 �

Qn
j�1�xÿ bj��1ÿ bjx�. From our assumption that mV 3 is odd, we have im-

mediately g0 � g1 � �g0 � g1�x A P1, x�mÿ3�=2 A Pmÿ3 and �xÿ bj��1ÿ bjx� A P2.

Lemma 4.2 (iii) implies that qa�x� ÿQa�x� A Pmÿ2�2n � Pgÿ1. Thus qa�x� A Pgÿ1.

Simple calculation using (19) shows that qa�x� satis®es (16). By Lemmas

6.1 and 6.3 we see that the constant g1 is real-analytic in the parameter �a; a� A

fjaÿ ~aj < e=2g � A. This implies qa�x� is also real-analytic, as desired. r

Lemma 6.6. If a � ~a and a A A, then for all jxj � 1 we have an inequality

F �x��F �a�

x2ÿa2

�

�

�

�

�

�

�

�

2

�
qa�x

2�

xgÿ1
Qn

j�1 jx
2ÿbjj

2
V

1�jF�a�j2

1�jaj2
max

1

jxÿ aj2
ÿ1;

jx�aj2

2�1�jaj2�2

( )

:
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Proof. Since g1 � 0, in view of Lemma 6.4 we have, for jxj � 1,

F �x� � F �a�

x2 ÿ a2

�

�

�

�

�

�

�

�

2

�
qa�x

2�

xgÿ1
Qn

j�1 jx
2 ÿ bj j

2
�

1� jF�a�j2

1� jaj2
1

jxÿ aj2
�

Re�ax�

�1� jaj2�2

( )

V
1� jF �a�j2

1� jaj2
1

�1� jaj�2
�

jx� aj2 ÿ �1� jaj2�

2�1� jaj2�2

( )

�
1� jF�a�j2

1� jaj2
�1ÿ jaj�2

2�1� jaj�2�1� jaj2�
�

jx� aj2

2�1� jaj2�2

( )

:

This immediately gives the inequality of Lemma. r

Now we return to the proof of the special case of Theorem 5.1. For

�a; a; x� A Dn � A� X , de®ne a function Fa�a; x� by

Fa�a; x� � �x� a��xÿ1 � a� ~Cea=2�~a�ÿa; x�;

where ~C is the function (15) with the polynomial q�x� substituted by qa�x�.

We must show that the function Fa�a; x� satis®es all the assumptions of

Lemma 4.7. This is proved as follows. Putting a � ea 0=2� ~a and using qÿa �

ÿqa, we have

Fa 0�a; x� �
�yÿ y�a���yÿ1 ÿ y�a��

�xÿ a��xÿ1 ÿ a�
ÿ

�x� a��1� ax�xqa�x
2�

y
Qg�1

j�1 �1ÿ ajx2�
:�23�

One veri®es easily that by expanding in a power series the functions �yÿ y�a��=

�xÿ a� and �yÿ1 ÿ y�a��=�xÿ1 ÿ a� are real-analytic in the variables �a; a; x�.

Since y0 0;y on X , the second term of (23) is also real-analytic. Thus Fa�a; x�

is real-analytic in �a; a; x� A Dn � A� X which su½ces to prove the continuity of

F. Clearly, the function Fa�a; �� is holomorphic on X , and for x A qD we have

Fa 0�a; x� �
yÿ y�a�

xÿ a

�

�

�

�

�

�

�

�

2

ÿ
jx� aj2 qa�x

2�

xgÿ1
Qg�1

j�1 jx
2 ÿ ajj

;

so that Lemma 4.2 implies the real-valuedness of Fa�a; �� on qD. Thus the

condition (i) of Lemma 4.7 is proved. The condition (ii) with k � 2 and E � qD

is clear from Lemma 6.5 and the symmetry of the function Fa�a; �� with respect

to qD. Also, the conditions (iii) and (iv) are proved easily from Lemma 6.6.

We can now apply Lemma 4.7 to the function Fa�a; x�. By noting the

identity Fa�a; x� � jx� aj2 ~Cea=2�~a�ÿa; x� for x A qD, Lemma 4.7 implies that

there exists a d > 0 such that if jaÿ ~aj < d and if a2 A Dn6n

j�0
D�bj; e�, then

~Ca�a; �� is positive on qD. Thus both the vanishing and the boundary condi-
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tions are satis®ed for all a2 A Dn6n

j�0
D�bj ; e�. Therefore we have established

the inclusion R2�a�IDn6n

j�0
D�bj ; e�. This completes the proof of Case (I) of

Main Theorem.

7. Proof of Case (II).

In this section we assume that g � 2nÿ 1 �nV 2� is an odd integer and that

a � fa1; . . . ; ag�1g is e-nonisolated with center at ~a � f~a1; . . . ; ~ag�1g where ~a2jÿ1 �

~a2j � bj A D for j � 1; . . . ; n. We do not require that the points bj � j � 1; . . . ; n�

are distinct. By choosing e su½ciently small we may assume that D�bj; e�HD

� j � 1; . . . ; n� and if bi 0 bj , then D�bi; e�VD�bj; e� � q �i; j � 1; . . . ; n�. Since

our argument here is similar as in the previous section, we merely outline the

proof.

Let X be the interior of AUA 0 where A � Dn6n

j�1
D�bj; e� and A 0 � f1=x j

x AAg. Since the genus g is odd, the function y�y�x��
���������������������������������������������

Qg�1
j�1 �xÿaj�=�1ÿajx�

q

has a single-valued branch on X

G�x� �

���������������������������������������������������������������

Qg�1
j�1 �1ÿ �a j ÿ ~aj�=�xÿ ~aj��

Qg�1
j�1 �1ÿ �aj ÿ ~aj�=�xÿ1 ÿ ~aj��

v

u

u

t

which is holomorphic and nowhere-vanishing, where G�x� is a ®nite Blaschke

product
Qn

j�1�xÿ bj�=�1ÿ bjx�. Clearly, the function y is real-analytic in the

variable �a; x� A fjaÿ ~aj < eg � X . According to the sign of
�����

y2
p

�Gy, we

de®ne two functions, for �a; a; x� A fjaÿ ~aj < eg � A� X ,

C �
a �a; x� �

�y� y�a���yÿ1 � y�a��

�xÿ a��xÿ1 ÿ a�
�

xq�x�

y
Qg�1

j�1 �1ÿ ajx�

and

Cÿ
a �a; x� �

�yÿ y�a���yÿ1 ÿ y�a��

�xÿ a��xÿ1 ÿ a�
ÿ

xq�x�

y
Qg�1

j�1 �1ÿ ajx�
:

Note that, on the region X , Cÿ
a �a; �� is holomorphic, while C�

a �a; �� is mero-

morphic with poles only at a and 1=a. Since y is unitary on qD, we have

jy� y�a�j2 � jyÿ y�a�j2 � 2�1� jy�a�j2� for all x A qD. Then by analytic con-

tinuation we have the identity

C�
a �a; x� �Cÿ

a �a; x� �
2�1� jy�a�j2�

�xÿ a��xÿ1 ÿ a�
:�24�
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Our task is now to ®nd a polynomial q�x� A Pgÿ1 such that Cÿ
a �a; a� � 0 and

that the functions C�
a �a; x� and Cÿ

a �a; x� satisfy the boundary condition (14).

The vanishing condition Cÿ
a �a; a� � 0 is equivalent to q�a� � B2�a; a� where

B2�a; a� �
1ÿ jy�a�j2

1ÿ jaj2
y 0�a�

Yg�1

j�1

�1ÿ aja�:

Lemma 7.1. For every a A C nGÿ1�y� there exists a unique polynomial

Pa�x� A Pgÿ1 such that the function Cÿ
~a �a; x� de®ned with q�x� � Pa�x� satis®es

Cÿ
~a �a; ��1 0 and Pa�a� � B2�~a; a�. Every coe½cient of the polynomial Pa�x� is a

real-analytic function of a on the region C nGÿ1�y�.

Proof. The uniqueness is clear. Consider the function

ha�x� �
G�x� ÿ G�a�

xÿ a

Yn

j�1

�1ÿ bjx�

which is easily seen to be a polynomial of degreeU nÿ 1. Since G�x� is unitary,

we have

Lnÿ1ha�x� �
G�x�ÿ1 ÿ G�a�

x�xÿ1 ÿ a�

Yn

j�1

�xÿ bj�:

Put Pa�x� � ha�x�Lnÿ1ha�x�. Then applying Lemma 4.2 we see that Pa�x� A Pgÿ1

which satis®es

�G�x� ÿ G�a���G�x�ÿ1 ÿ G�a��

�xÿ a��xÿ1 ÿ a�
�

xPa�x�

G�x�
Qn

j�1�1ÿ bjx�
2
:

Thus Cÿ
~a �a; ��1 0, and the identity Pa�a� � B2�~a; a� is obvious.

The real-analyticity of the coe½cients of Pa�x� is proved similarly as in

Lemma 6.4. r

Definition 7.1. We de®ne a polynomial qa�x� by

qa�x� � Pa�x� ÿ g0x
�gÿ1�=2�xÿ a��xÿ1 ÿ a� � x�gÿ1�=2�g1x

ÿ1 � g1x�;

where g0 � 1=8
Qn

j�1�1ÿ jbjj�
2 and g1 � a�b2 ÿ jaj2b2�=�1ÿ jaj4� with b2 �

a�1ÿg�=2�B2�a; a� ÿ B2�~a; a��.

In view of our assumption gV 3 is odd, we note that qa�x� is indeed a

polynomial. The following Lemmas show that the functions C �
a �a; x� and

Cÿ
a �a; x� de®ned with qa�x� satisfy both the vanishing and the boundary

conditions.
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Lemma 7.2. B2�a; a� is real-analytic for �a; a� A fjaÿ ~aj < e=2g � A. If

a A qD, then

B2�a; a� �
ay 0�a�

y�a�

� �2

a�gÿ1�=2
Y

g�1

j�1

jaÿ ajj:

In particular, a�1ÿg�=2B2�a; a� > 0 for a A qD.

Proof. See the proof of Lemma 6.3. r

Lemma 7.3. The polynomial qa�x� A Pgÿ1 satis®es qa�a� � B2�a; a�. More-

over, qa�x� is real-analytic for the variables �a; a; x� A fjaÿ ~aj < e=2g � A� X .

Proof. See the proof of Lemma 6.5. r

Lemma 7.4. There exists a constant g2 > 0 such that for �a; x� A A� qD the

inequalities Cÿ
~a �a; x�V g2jxÿ aj2 and jxÿ aj2C�

~a �a; x� > 0 hold.

Proof. Since g1 � 0, from Lemma 7.1 we have

Cÿ
~a �a; x� �

g0x
n�xÿ a��xÿ1 ÿ a�

G�x�
Qn

j�1�1ÿ bjx�
2
:

Consequently, for x A qD

Cÿ
~a �a; x� �

g0jxÿ aj2

Qn
j�1 jxÿ bjj

2
V g2jxÿ aj2

where g2 � 1=8
Qn

j�1��1ÿ jbjj�=�1� jbj j��
2 > 0. On the other hand, for x A qD

the identity (24) implies

jxÿ aj2C�
~a �a; x� � 2�1� jG�a�j2� ÿ

g0jxÿ aj4

Qn
j�1 jxÿ bjj

2
> 2ÿ

16g0
Qn

j�1�1ÿ jbj j�
2
� 0:

Here we have used the fact that G�a�0 0 for a A A. r

Now we are ready to apply Lemma 4.7. De®ne the functions F�
a �a; x� and

Fÿ
a �a; x� by F�

a �a; x� � �xÿ a��xÿ1 ÿ a�C�
ea=2�~a

�a; x� and Fÿ
a �a; x� � Cÿ

ea=2�~a�a; x�.

Then the hypothesis of Lemma 4.7 is satis®ed for F�
a �a; x� if E � q and for

Fÿ
a �a; x� if k � 2 and E � qD. This completes the proof of the special case (II)

of Theorem 5.1 and thus we have ®nally established Main Theorem.
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