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Ahlfors functions on compact bordered Riemann surfaces
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Abstract. Let R be a compact bordered Riemann surface which is non-planar.
We solve a conjecture posed by Gouma concerning the distribution of degrees of Ahlfors
functions on R whose double is hyperelliptic. Besides we consider the problem when a
linear transformation of an Ahlfors function on R is again an Ahlfors function. We
give a necessary and sufficient condition for this problem when the degree of the Ahlfors
function is maximal.

1. Introduction.

Let % be the set of Riemann surfaces R which is the interior of a compact
bordered Riemann surface R of genus p with N (> 1) boundary components.
For Re % we shall denote by ¢ the canonical anti-conformal involution of R
fixing the boundary AR, where R is the Schottky double [2] of R which is a
compact Riemann surface of genus g=2p+ N —1. Let B(R) be the set of
bounded holomorphic functions f(z) on R such that |f(z)] <1 for all z€ R.

Given a € R, a function f, € B(R) is called the Ahlfors function if f(a) =
sup{Re f"(a) | f € B(R)}. Here the derivative f'(a) is evaluated with respect to
a fixed holomorphic local coordinate z centered at a. By considering a linear
transformation of f,(z), it is easy to see that f,(a) = 0.

More generally, given a,b € R (a # b) a function f,, € B(R) is also called
the Ahlfors function if f, ,(b) =sup{Re f(b)|f € B(R), f(a) =0}. For conve-
nience sake we extend the definition of f,, so that f,, =f, when a=>.

Abhlfors showed that if R e %, then for any a,b € R the Ahlfors function
Jap 1s unique and that it gives an n-sheeted unlimited branched covering of R
onto the unit disk 4, where the integer n satisfies the inequality

(1) N<n<g+1

The number 7 is called the degree of the Ahlfors function f and is denoted
by deg f. The inequality (1) means that R is a disjoint union of the sets R;
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(J=N,...,g+1) where R; is the subset {a € R|deg f, =j} of R. In view of
this inequality there naturally arises the following question. What can be said
about the distribution of the sets R; in R when the surface R is of special
type? When R is planar, i.e. p = 0, this problem becomes a trivial one, that is,
the inequality (1) immediately gives R = Ry or deg f, = N for all ae R. On the
other hand, for non-planar surfaces, our knowledge about the above question is
very incomplete.

DerINITION 1.1. Let %y denote the set of Riemann surfaces R € % whose
double R is hyperelliptic of genus g >2. Let % denote the set of Riemann
surfaces R € & with g > 2 which possesses an Ahlfors function f, whose linear
transformation is again an Ahlfors function f, with some b # a (a,b € R).

We summarize here some known facts about the degree of the Ahlfors
function for non-planar surfaces with hyperelliptic double. In 1978 the author
showed that a neighborhood of the set of the Weierstrass points of R in R is
contained in the set R, [7]. Also, in the same paper, the author constructed
an example of a bordered surface Re ¥y of genus one with two boundary
components such that the set R, has nonempty interior. This result easily implies
the fact that the metric induced by the analytic capacity is not always real-
analytic for non-planar surfaces [7]. Recently Gouma [5] showed that if R e Sy
is non-planar, then (i) R=RyUR,;; and (ii) R,y is a nonempty open subset
in R.

Our first result concerns about the problem when a linear transformation of
an Ahlfors function is also an Ahlfors function. [Theorem 2.1 gives a necessary
and sufficient condition for this problem in case the degree of the Ahlfors function
is maximal, which extends our result to non-planar surfaces. We next show
by an example that %y is a proper subset of %7 (Theorem 3.1).

By observing some examples of the case (p,N)=(1,1) with a help of
computer graphics, Gouma stated a conjecture that if R e ¥ is non-planar,
then (i) R, is always nonempty, (ii) R, consists of g+ 1 simply connected
components and (iii) if the g+ 1 Weierstrass points of R contained in R are
sufficiently close, then the region R, is “very small”. The main objective of
this paper is to answer affirmatively to his conjectures (i) (Theorem 4.1) and
(iii) (Main Theorem 5.1). In fact, our is slightly stronger than the
above conjecture (iii) in the sense that all Weierstrass points need not to be close
together.

The author would like to express his thanks to the members of Yamaguchi-
Hiroshima Seminar—Professors T. Kato, M. Shiba, M. Masumoto, H. Yana-
gihara and T. Gouma—for their interest and helpful comments on the present

paper.
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2. Linear transformations of Ahlfors functions.

When R e ¥ is planar, Fay gave a representation of Ahlfors functions
by means of the Riemann theta function. Applying the trisecant formula to this
representation, we obtained |7 a necessary and sufficient condition when a linear
transformation of an Ahlfors function is also an Ahlfors function. In this section,
we shall extend this result, by using duality argument, to the case where surfaces
may have positive genus. Thus, we have eliminated the use of theta functions
from the treatment of linear transformations of Ahlfors functions. For relevant
properties of dual extremal problems on compact bordered Riemann surfaces, the
reader is referred to [6].

Let Mob(A4) denote the set of linear transformations mapping 4 onto itself
and let divg f/ denote the divisor of a meromorphic function or differential / on
the set K.

First we recall the so-called dual extremal problem associated to Ahlfors
functions: given a,b € R, minimize the integral [,, [/| among the differentials €
D, »(R) with residue 1 at b, where D, »(R) is the set of meromorphic differentials
Y # 0 on RUJR with divgysgry > —a — b. Of course, when a = b, the condition
on the singularity of the competing differential y must be modified. Indeed in
this case we require that Y is holomorphic except at a where it has a double pole
of the form = z=2 4+ O(z™") for the same local coordinate z used to evaluate the
derivative at a.

Ahlfors [1] showed that if Re.%, then for any a,be R there exists a
(not necessarily unique) differential i, , extremal to the above problem. The
differential ), , is called a Garabedian differential associated to the Ahlfors
function f, . As in the case of Ahlfors function we write y, =y, , for short.

DErFINITION 2.1. A function f on RUOR is said to be unitary if |f| =1 on
OR. For ae R let U,(R) be the set of holomorphic unitary functions f on RU
OR vanishing at a. Given a,b € R, a pair (f, ) € U,(R) x D, »(R) is said to be
positive (respectively strictly positive) if fiy >0 (respectively fiy > 0) on OR.
We summarize a result [1] which is crucial to our paper.

Lemma 2.1 (Ahlfors). Let Re . Then for any a,b € R the following hold:

(a) (ﬁ,7b,1ﬁa7b/\/—_1) € U,(R) x Dy p(R) and it is positive.

(b) If (f.¥) € Uy(R) x Dy p(R) is positive then [ = ef, p for some constant &
of absolute value one.

LeMMA 2.2. Let Re . Then there exists a linear transformation T €
Mob(4) such that f. =T of, if and only if there exists a meromorphic function
h#0 on RUGOR such that divgyor M, , > —¢—d and h >0 on OR.
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Proor. Note that when |f| =1, the identity

f-o

g7 (1N =1/ —alfy

(2)
holds.

If fou=e(fur—o)/(1—af,,) for some |¢| =1 and |a| < 1, then setting h =
(e )/ (1 = af, b)zlﬁa’ ») we see that /1 is a function meromorphic on RUJR with
the divisor divrusr M, , = divruor Y,y = —c —d. Using the identity (2) we have
h=(feaVe.a)/(|fap — 2 fustlup) = 0 on IR by (a).

Conversely, assume that /& is a function satisfying the properties stated in
Lemma. Setting o = £, 5(c), T(z) = (z —a)/(1 — z) and ¥ = h- (1 — af, ;) Y,
we see from (2) the pair (T of,p,¥) € U.(R) x D 4(R) is positive. Hence from
Lemma 2.1 (b) we have f.,=¢T of,) for some constant ¢ of absolute value
one. L]

Let n(a,b) (>0) be the degree of the positive divisor a -+ b + divruar ¥,
where the zeros on 0R are counted with a half of its multiplicity. ~Although v, ,,
is not unique in general, the number n(a,b) is determined uniquely as follows.

Lemma 2.3. For Re & the following identity holds.
deg fu.» +n(a,b) =g+ 1.

PROOF. shows that by reflection the Ahlfors function f,, and
a Garabedian differential , , are both extended meromorphically to the double
R. Thus, their divisors have the form

divg fo,p = a+ o — ¢(a) — §(A),
divg ¥, p = —a = b+ B + ¢(a) — 9(b) + 20(/) + $(A),
divg faplbyp = —b+ A + B — §(b) + §(S) + $(#),

where o/ and % are positive divisors on RUJR defined by ./ = divgusr fup — @
and 4 =a+ b+ divgusr %7 »- Since the total degree of an Abelian differential
is 2g —2, we have deg.o/ +deg# =g¢g. Noting that degf,, =deg.e/ +1 and
n(a,b) = deg %, we obtain the desired identity. O

THEOREM 2.1. Let a,b,c,d be points in Re . Assume that the degree of
the Ahlfors function f,p is maximal i.e. degf,» =g+ 1. Then there exists a
linear transformation T € Mob(4) such that f.q =T of, if and only if there
exists a meromorphic function h # 0 on RUOR such that divgyogrh=a+b —c—d
and h >0 on 0R.
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Proor. Since deg f,, =g+ 1, we have divruorY, , = —a—b by Lemma
2.3. Thus divgysr M, , > —c —d if and only if divgyorh >a+b—-c—d. If
h satisfies an inequality h>0 on OR, then by reflection & is extended to a
meromorphic function on R whose divisor is symmetric about dR. Since the
total degree of the divisor of & on R is zero, the degree of divgysrh 1s also
zero. Thus divgyogrh >a+b—c—d and h > 0 on OR if and only if divgysr h =
a+b—c—d and >0 on dR. In view of this completes the

proof. [

RemMARK 2.1. If Re ¥ is planar, then by (1) we see that the degree of the
Ahlfors function is always maximal.

3. Example.

Theorem 2.1 shows that if there exist points a,b€ R (a # b) such that
fy» = 1o f, for some 7 € MSb(4) and if £, is of maximal degree, then the double R
possesses a nonconstant meromorphic function of degree four. In view of this it
1s of some interest to compare the sets /7 and %y. In fact we show that the set
S 1s strictly larger than the set ¥y by providing an example.

Consider the compact Riemann surface R defined by the algebraic equation

n_m X =0
G) 4 _Hl—oTx
j=1 J

where {ocj}]fi , 1s a set of distinct points in 4 and m and n are integers with
(4) m>n>2.

Let R be the open subset {p € R| Ix(p)| < 1} of R and define the mapping ¢ :
R — R by ¢(x,y) = (1/%,1/5). Then it is clear that (i) Re ¥, (ii) R is the
Schottky double of R and (iii) ¢ is the canonical anti-conformal involution of R
fixing 0R. Since the total branching number of the meromorphic function x is
2m(n — 1), we see from the Riemann-Hurwitz relation [4] that g = (m — 1)(n — 1)
> 2 and N = (m,n) (gcd). The degree of the function x, y is given by degx = n,
degy = m. Moreover, we find that a basis for the space of holomorphic dif-
ferentials on R is given by

xk dx
WL (1 - ax)

We remark that R has an automorphism J defined by

(6) J(x,y) = (x,exp(2zi/n)y)

(5) (j=1,....,n—1;k=0,....m—2).
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which is of order n and fFix(J) = 2m, where Fix(J) denotes the set of fixed
points of J.

The following Lemma is a slight extension of the fact well known for
hyperelliptic surfaces.

LEmMA 3.1. If f is a nonconstant meromorphic function on R with deg f <
m, then f is a rational function of x and deg f is a multiple of n. If deg f = n,
then f is a linear transformation of x.

Proor. From (4) we have an inequality #Fix(J) > 2deg f. Then it follows
from [4, Proposition V.1.4] that f is J-invariant, i.e. foJ =f. On the quotient
surface R/ {(J) the functions f and x pI'O]eCt to well-defined functions / and %.
Since degx =1, R/ (JY is of genus 0 and f 1s a rational function of X. Thus
there exists a rational function ¢ with f = go x. This implies deg / = deggdegx
so that deg f is a multiple of n. If deg f = n, then degg = 1 so that ¢ 1s a linear
transformation. ]

COROLLARY 3.1. The surface R is hyperelliptic if and only if n = 2.

Now we consider the special case where o; = re*Dm/m (0 < r < 1) for
j=1,...,m, so that the equation of the double R is given by

x}‘ﬂ + rm

(7) V' =

Let us write x~1(0) = {0y,...,0,} where O; is the point (0,r*¢¥™/") e R with
s=m/n (j=1,...,n).

LEMMA 3.2. Let y be a differential on R given by
I8 4 p=isym | gy
{I—I_Z + pmxm }l'XZ'

Then, for r sufficiently small, the pair (x,¥) € Ug,(R) % Do, 0,(R) is strictly

ns

positive.

ProoOF. Clearly x is a unitary function vanishing at O,. On 0R, using
|x| =|y| =1 and (7), we have

xw 1+ nz—l yn—j(rjs + r(n—j)sxm) 14 ”Z—l ,,(n—j)s + rjs)—cm
dx /(ix) = XM 4 pm = yr(1 4+ rmxm)

n—1 n—1 i —
7S + y\n=J r/s + r(n ])S
= >1_ - .
{le] mem}— 12—1: b=
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Since the last sum tends to 0 as r — 0 and the differential dx/(ix) > 0 on JR, we
see that xy is strictly positive for r sufficiently small.

Next we show that € Dy, o,(R). However, it is easy to see that y is
regular on RUOR unless x = 0. In a neighborhood of x~!(0) we have

<I—I—Zr/9/y + O(x )) i);

Noting that (7) implies y = rée¥™/" 4 0( ") near O; (j=1,...,n) and using the
identity y" —r" = (y —r")y" (1 + 31 Lris 1y)) we have

divrusr Y = =20, + (m —2)01 + - -+ (m — 2) 0,
Thus ¥ € Do, 0,(R) because m > 2 by the inequality (4). O

THEOREM 3.1. For every integer n >3 there exist a non-planar Riemann
surface Re S\Sy and a nonempty open set U < R, such that f, is a linear
transformation of f, for every a,be U. In particular, the set Sy is a proper
subset of 7.

Proor. Choose an integer n > 3 and, for r sufficiently small, let R be the
surface considered above whose double is given by (7). Then |Corollary 3.1
implies that R ¢ ;. Now we show that Re ¥;. By using x itself as the local
coordinate centered at O, (with which the derivatives at O, are evaluated) it
follows from Lemmas 2.1 and B.2 that x is the Ahlfors function at O,.
Moreover, since xi is strictly positive by [Lemma 3.2, [7, Lemma 4] implies that
there exists a neighborhood U of O, such that deg f, =n for all ae U. From
we conclude that f, is a linear transformation of x for ae U. In
particular, R e 7. That %y is contained in %7 is clear from [7, Theorem 2].

[

ReEmARK 3.1. Let ¥ be the set of surfaces R € ¥ which is planar, then we
know that %y NSy = % NS [7]

4. Surfaces with hyperelliptic double.

From now on (to the end of the paper) we assume that all surfaces R € ¥
are non-planar with hyperelliptic double unless otherwise stated. Then it is
known that the number N of components of dR is one or two and that,
by applying a conformal mapping, R may be regarded as the open subset

{pe R ] |x(p)| < 1} of the compact Riemann surface R expressed by the algebraic
equation of the form

g+l
(8) V2 =J[(x—a)(1—ax), |y<1(j=1,...,9+1)

J=1
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[5, Lemma 2]. We denote by %; the set of subsets of A consisting of k distinct
points. Then we have {ocj}jgjll € #,.1 which is called a branch parameter of R.

The equation (8) is birationally equivalent to (3) with n =2 and m =g + 1.
Hence we may also assume that R is the subset x~!'(4) of the compact Riemann
surface R given by an equation of the form

9) y =

Note that g > 2 because R is non-planar. As in (5) a basis for the space
of holomorphic differentials on R is given by xFdx/(y j’;l (1 —ax))
(k=0,...,9—1).

By conformal invariance (up to a constant of absolute value one) of the
Abhlfors functions, the set R; is J-invariant where J denotes the hyperelliptic
involution on R defined by (6) with n = 2. Thus we may identify the set R; with
the subset x(R;) of 4, which we also denote by R;. When we need to distinguish
a branch parameter o € 4,,; of R, we use the notation R(x), R(«) and R;(«) in
the obvious meaning.

For our application it is convenient to rewrite as follows.

LemMA 4.1.  Assume that f is a holomorphic function on RUJR with Re & .
Then f is the Ahlfors function f, up to a multiplicative constant of absolute value
one if and only if the following conditions (1)—(iil) are satisfied:

1) fla)=0,

(ii) |f|=1 on OR,

(iii) there exists a meromorphic differential Wy #0 on RUOJIR such that

divguor ¥ = —2a + divgyer f and y >0 on OR.

Proor. First assume that f =¢f, (|¢f =1). Then by (a) in the
conditions (i)—(iii) are trivial if we choose W = fyi),/v/—1. Conversely, assume
that the conditions (i)—(iii) hold. Then the pair (f,y//f) € U, x D, , i3 positive.
From (b) in [Lemma 2.1 we have f =c¢f, (|¢] =1). O]

DEerFINITION 4.1. For ne NU{0} we denote by %, the R-linear space of
polynomials p such that L,(p) =p where L,(p)(x) = x"p(1/%)(= x"¢ p(x)).

Note that p € %, if and only if p(x) is a polynomial of the form p(x) =
> o cxx® with ¢ = ¢, for all k=0,...,n. We list now some elementary
properties about the set Z.

LemMA 4.2, Let p and q be polynomials. Then, for m,ne N U{0},
() pe, if and only if p(x)/x"* e R for all |x| =1.

(i) If degp <n then pL,(p) € P2,

(iii) Assume pe P, and p #0. Then pqe€ Py if and only if q € Z,.
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Proor. Easy. [

LEMMA 4.3. Let a€ R and let  be a meromorphic differential on R.  Then
(i) o is holomorphic on R and real on OR if and only if w has the form

p(X) dx
Iy H (1 — %X)
with p e Z,_1.
(ii) o is real on OR and satisfies divgysr @ > —a — J(a) if and only if ® has
the form
(10) cdx N p(x)dx

(v = xa) (1= %ax) i — x,) (1 = Fx)p [T (1 — &)
where ce R, pe %, and x, = x(a).
Proor. A differential e is holomorphic on R if and only if e is of the form

p(x) dx
iy (1 — ox)

where p(x) is a polynomial of degree < g — 1. In view of the identities ¢*(dx) =
—x2dx and ¢* (yH L1 —@x)) = x9" 1y]_[gﬂ( — &;x), we have

w( plx) dx )(Lg1p><>dx_
oI (1 -2x)) T (1 - )

Hence ¢*w = w if and only if pe #,_;. This proves (i).

Since the differential dx/(i(x — x,)(1 — X;x)) is positive, it is easily verified
as above that the differential of the form is real and its divisor satisfies
divrysr = —a — J(a). From the Riemann-Roch theorem and the symmetry ¢, it
1s seen that the real-dimension of the space of such differentials is g + 3, which
is the same as the real-dimension of the space of differentials of the form [10).
This completes the proof of (ii). O

Lemma 4.4. For any a€ R, the differential

_ 421+ yay) dx
(= x) (1 = Xax)iy

is strictly positive on OR and is a meromorphic differential of the third kind on R
with simple poles at a and ¢(a) where x, = x(a) and y, = y(a).
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ProoF. The possible singularity of #, occurs at the Weierstrass points, a,
J(a), #(a) and ¢(J(a)). From the identity yoJ = —y, it is easy to see that 7, is
regular analytic on R except for simple poles only at ¢ and ¢(a). Since |y| =
|x| =1 on 0R, for pe dR we have

7(p) +yal” dx.
x(p) — x| i

N.(p) =

Thus #, is strictly positive. ]

THEOREM 4.1. If R € Sy is non-planar, then R, contains a neighborhood of
the critical points of the function y. In particular R, # (5.

Proor. Let E be the set of critical points of y in RUJR. Since y is unitary,
E is a subset of R. We show next that £ # (. Observe that the differential dy
has zeros at EU¢(E) and has double poles at the g + 1 Weierstrass points of R
in ¢(R). Since the divisor of dy on R has degree 2g — 2, we see easily that the
function y has, counting multiplicities, 2g (>4) critical points in R. Thus
E # .

For any «a € E the function y + y, has at least double zero at J(a). Hence,
divrusrn, = J(a) —a. Putting f = (x — x,)/(1 — X;x) and applying Lemmas 4.1
and 4.4 we see that f, =¢f (J¢/ =1), which implies that a € R,. Thus R,
contains E. Since 5, is strictly positive for all ae E, by [7, Lemma 4] R,
contains some neighborhood of E. ]

Lemma 4.5. For ae R the following conditions are equivalent:
(1) ae Rz.
(it) There exists a polynomial p € #,_; such that the differential w =n,+
(p(x)dx)/(iy jg.;’ll(l — a;x)) vanishes at J(a) and o is positive on OR.
(iti) There exists a polynomial p € #,.1 such that Y? = p(x)* + O((x — x4)*)
near x = x,(= x(a)) € 4 and | Y?| > | p(x)|* on 04 where Y* € Py, is
the polynomial of x given by (8).

PrOOF. By every meromorphic function on R of degree two is
a linear transformation of the function x. In view of [Lemma 4.1, we see that
deg f, = 2 if and only if there exists a meromorphic differential w # 0 such that
 is positive on JR and satisfies divgysr @ > J(a) —a. Since there exists no
nontrivial holomorphic positive differential, we remark that a € R, implies that
J(a) # a, i.e. a is not a Weierstrass point.

Multiplying « with a suitable positive constant we may assume that o — 7,
is regular on R. Since w — 7, is real by [Lemma 4.4, it is regarded as a holo-
morphic differential on R. In view of this established the equi-
valence of (i) and (ii).
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To show that (i) and (iii) are equivalent, we make use of (ii) of Lemma 4.3.
Now we know that the differential w is of the form w = w; + w, where

cdx p(x)dx
w1 =+ — ., W=~ —
i(x — x,)(1 = Xzx) i(x —x,)(1 = X;x)Y
with ce R and pe #,,,. Since YoJ = —Y the sum of the residues of w, at

a and J(a) vanishes. Thus by the residue theorem we have ¢ = (1 — |x,|?)/(4n)
Jog@ > 0. Therefore we may assume that ¢ =1 and  is of the form

(1+px)/Y)dx

P —x)( —mn)

Since the differential dx/(i(x — x,)(1 — X,x)) is strictly positive, w is positive if
and only if 1+p(x)/Y >0 on dR. Since OR is J-invariant and YoJ =-Y,
this is equivalent to the inequality 1 > |p(x)/ Y| on R or |Y2| > |p(x)|* on a4.
On the other hand, we show next that divgysr @ > J(a) — a with J(a) # a if and
only if Y2 —p(x)? = O((x — x,)?) near x=x, In fact, divguorw > J(a) —a
with J(a) #a if and only if Y + p(x) = O((x — x,)?) near J(a) (# a), which
easily implies that Y2 — p(x)? = O((x — x,)?) near x = x,. Conversely, assume
that Y2 —p(x)* = O((x — x,)?). Then we claim that Y(a) #0. If this were
not the case, then we would have p(x,) =0. Thus p(x)* = O((x — x,)*), which
implies that Y2 = O((x — x,)?). However, this contradicts the definition of ¥2.
Thus Y(a) #0. Therefore Y + p(x) and Y — p(x) cannot vanish simultaneously
at J(a). Hence by taking —p(x) for p(x), if necessary, we conclude from the
identity Y2 — p(x)> = (Y 4+ p(x))(Y — p(x)) that Y + p(x) = O((x — x,)*) near
J(a) (# a). This completes the proof of the equivalence of (i) and (iii). []

REMARK 4.1. [Lemma 4.5 (iii) shows that the problem on the degrees of
Ahlfors functions on a surface with hyperelliptic double is reduced to one on
polynomials in #,;; on the closed unit disk.

To show that Ry(a) is “big” we will decompose a general d-nonisolated set
(c.f. [Definition 5.1) into a union of such sets with simpler types. This is assured
by the following

Lemma 4.6. If o€ B,y and o € Byy1 are branch parameters with oNa' =
O, then we have Ry(aUa’) o Ry(a) N Ry(a) (as subsets of A).

PROOF. (iii) implies that if a € Ry(a) N Ry(a’), then there exist
polynomials p € %, and g€ %, such that

(11) Y? = p(x)* +0((x—x)%),  |¥?[ = [p(x)|* on 04

(12) Z* = q(x)* + O((x = x)"), 2% = |g(x)|* on 04
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where Z% = H;/jll(x —a)(1 - oc_]fx) with o’ = {o/}.  Multiplying (11) and (12) we

see immediately that a € Ry(aUa’), for pge 2., by Lemma 4.2, O
For o= (ay,...,2,) € C" we define |¢| = max{|o],...,|o,|} and write 0 =

(0,...,0) e C" for short. Also for a e C and r > 0 the open disk of radius r
with center at a is denoted by 4(a,r) ={ze C||z—a| <r}.

LEmMMA 4.7. For neN let @ : 4" x A x X — C be a continuous function,
where A is a compact subset of C such that {ry <|z| <1} c Ac 4 with 0 <
ro < 1 and X is a neighborhood of 04. Let E be either (J or 04. Assume that,
for some ke N, &, =®d(a,-,-) satisfies the following four conditions:

(i) For any (a,a) € A" x A, ®,(a,-) is a holomorphic function on X which is
real-valued on 04,

(i) For any (a,a) € A" X E and r with ro < r < 1, the function ®@,(ra,-) has

at least k zeros, counting multiplicities, in A(a,2(1 —r))\d4,

(iil) &> 0 on the set A x dA\{(x,x)|x € E},

(iv) For any a € E there exist a neighborhood V, of a in 04 and a constant

B =p(a) >0 such that ®y(a,x) > flx—a|* for all x in V.
Then there exists a constant 6 > 0 such that ®,(a,x) > 0 for all |o| < 0 and for all
(a,x) e (A\04) x 4.

Proor. First, we claim that there exists a positive constant ¢ such that if
la| <0, then @,(a,x) #0 for all (a,x)e (A\d4) x d4. We show this by con-
tradiction. If our claim were false, then there would exist sequences {o,} < 4",
{a,} < A\04 and {x,} < d4 such that o, -0 (n — o) and @, (a,,x,)=0.
Since both the sets 4 and dA4 are compact, we may assume without loss of
generality that @, — a and x, — x (n — o0) for some points a € A and x € 04.
Then by continuity we conclude that ®@y(a, x) = lim,_,, &, (a,,x,) =0. If E =
&, then (iii) implies that @y(a,x) > 0 which immediately gives a contradiction.
On the other hand if E = 04, then from (iii) we see that ¢ = x e d4. Since
continuity implies that @ is uniformly continuous on compact sets we see by (i)
that the sequence of holomorphic functions {®,, (a,,-)} converges uniformly to
do(a,-) on a compact neighborhood of x =a. The condition (iv) implies that
the order of @®¢(a,-) at x =a is at most k. Thus by Rouché’s theorem the
function @, (a,,-), for sufficiently large n, has at most k zeros, counting mul-
tiplicities, in a neighborhood V' of x =a. The condition (ii), however, implies
that @, (a,,-), for sufficiently large n, has k zeros in V'\d4. Thus we conclude
that @, (a,,-) has no zeros on V' NdA. This, however, contradicts the fact that
D, (an,x,) =0 and x, e VNd4 for sufficiently large n. Hence our claim is
proved.

For any fixed (a,a,x) € 4" x (4\04) x d4 with |o| <, consider a function
f:10,1] — C defined by f(z) = @, (a,x). By (i) and (iii) the function f is real-
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valued, continuous and satisfies f(0) = ®@y(a,x) > 0. Moreover, we know from
our claim that f(¢) #0 for all z€[0,1]. The intermediate value theorem then
implies that f(1) > 0. Thus @,(a,x) >0 which completes the proof. O

5. Main theorem and a reduction of the problem.

DErFINITION 5.1. Let = {f;} be a set consisting of m points in the complex
plane and assume that 6 > 0 is so small that the disks 4(f;,0) (j =1,...,m) are
disjoint. A set o = {ay,...,a,} (a; # o if i #j) is said to be d-nonisolated with
respect to fif o = A(fy,6)U --- UA(p,,,0) and if n; = (N 4(B;,0)) = 2 for every
j=1,...,m. The vector (ni,...,n,) is called the type of J-nonisolated set o
where the numbers {n;} satisfy >°" n; =n. There exists a unique sequence & =
{9}/, of points in C such that &; € f and |o; — &| <6 (j =1,...,n), which is
called the center of the set a.

With this definition our Main Theorem can be stated as follows.

THEOREM 5.1.  For every = {f;} € #; and every & > 0, there exists a 6 > 0
such that if o€ By (g =2) is d-nonisolated with respect to [, then Rj(x) o

AN A(Be).

In order to prove [Theorem 5.1, we first study the condition a € R, more

explicitly. From (ii) we know that a € R, if and only if there exists a
polynomial ¢ € #,_; such that the meromorphic function

W, (a,p) = (n, + ‘”a)/f—;c _0Hy@)0 +y@)  xq(y)

(x = x(@)(x"! =x(@) I (1 - 7x)
of p on R vanishes at p = J(a) and is positive on dR, where w,(x) denotes the
differential ¢(x) dx/(iy Hj?ill(l —;x)). Letting p — J(a) we evaluate ¥,(a,J(a)).
Thus the condition for the function ¥,(a,-) to vanish at J(a), which we call the
vanishing condition, 1s given by

i a 2 g+1
=}ﬁ§£%f@ﬂja—@mw>

=1

(13) q(x(a))

where y’(a) denotes the derivative of y at a with respect to the local coordinate
x. Also, the positivity of ¥,(a,-) on dR is given by the inequality

? q(x)

XD v —

y+y(a)

(14) x — x(a)

>0 on 0OR,

which we call the boundary condition. Thus to prove our Main Theorem we
have to find a polynomial g € Z,_; satisfying both the vanishing and the boundary
conditions.
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To avoid considering general d-nonisolated sets, we introduce the following
reduction by decomposition of these sets. In fact, one verifies easily that every o-
nonisolated set in %, (n>3) is a disjoint union of finitely many J-nonisolated
sets in 4, (n; > 3) of the following special types:

(I (vi,...,v) where vy >3 isodd and v; >2 (j=2,...,t;t > 1) is even,

(II) (vi,...,v,) where all v; >2 is even.

In the next two sections we shall prove special cases of Main Theorem which
treats d-nonisolated set of the form (I) and (II) respectively. By noting that the
number of types of d-nonisolated set in %, is finite, a repeated application of
will prove Main Theorem.

RemMARK 5.1. [Theorem 5.1 disproves the assertion in [7, p. 168] that
“N(p) =4 also in a neighborhood of 0S” which was stated without proof.
Indeed this erroneous statement was the starting point of the study in [5] and the
present paper.

6. Proof of Case (I).

In this section we assume that g =m +2n— 1 is even and a = {oy,..., 0541}
is ¢-nonisolated with respect to {f,, /31, ...,p,} 4. Here m>3 is an odd
integer, n > 0 and the center o = {ocj}g , of ais such that ¢y =--- = a,, = ff, and
Omi2j—1 = Umpj =B # By (J=1,. n). For simplicity’s sake we do not require
that the points f8; (j =1,...,n) are distinct. By choosing ¢ sufficiently small we
may assume that A(je) =4 (j=0,...,n) and if B; # B;, then A(f;,&) N A(B;,¢)
= (i,j=0,...,n). Since a linear transformation of the branch parameter
induces a conformal equivalence of surfaces in ¥ [5, Lemma 5], we may assume
without loss of generality that f, =0. In order to overcome the difficulty in
treating multi-valuedness of the function p it is convenient to introduce
a uniformizing variable x = #>. Thus substituting x — x2 in (9), we see that the
function y = y(x) given by

] — e [1E 0 (1= (2 — &)/ (x* — %))

Pl a T (= (@ — &)/ (x 2 — &)

1s single-valued, odd, unitary, nowhere-vamshmg and holomorphic on the
region X which is the interior of the set AU A’, where 4 is a compact set 4\
Uj 0{x|x e A(f;,e)} and A" ={1/x|xe A}. The sign of the above square
root is so chosen that v/1 = 1. Also it is important to observe that the function
y is real-analytic in the parameter (o,x) € 4 x X. Hence substituting x — x>
2 we may consider, instead of ¥,(a,p), the function

Y (a,x) = v+ @)y + y(a)) x2q(x?)
(15) ¥ (a, x) (x2 — a?)(x2 2) +y ja l(l—oc]xz)

and a — a
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defined for (o, a,x)e{|la—a <e} xAx X, where g(x)eZ,_; is a suitable
polynomial to be determined later. Note that, as a meromorphic function of x,
lZ(a,x) is regular except for simple poles, counting multiplicities, at ¢ and 1/a.
The hyperelliptic involution J now corresponds to the mapping J(x) = —x, so the
vanishing condition i1s given by

(16) q(a*) = Bi(x,a)

where

L= y@y'(@ $7,, - >
Bi(a,a) = || 1 —oa”).
1( ) 1_ |a|4 261 j_l( J )

We remark that, for fixed «, Bj(x,a) is an odd function of a.

LemMa 6.1. If g(z) is a function real-analytic in a neighborhood Q of 04
which is identically zero on 04, then the function g(z)/(1 — |z|*) is extended to be
real-analytic on Q.

Proor. Note that (1 —|z|*,Rez) or (1 —|z|?,Imz) is a real-analytic local
coordinate on a neighborhood of a point in C\{0}. Lemma is easily proved by
expanding ¢g(z) in a power series using these coordinates. N

LemMmA 6.2. If f(z) is holomorphic on a region containing D = {r < |z| < 1}
such that |f(z)| =1 on 04 and |f(z)| <1 on D, then

1=/ U
m, -z f© =0

Equality holds if and only if f(z) is constant.

Proor. From [Cemma 6.1, the function (1—|f(z)[*)/(1—|z|?) is real-analytic
near 04. Thus for { € 04 we have

-l 10
z—( 1—|Z|2 20r

£ =Rellf(Of0)] = Re

- re [£9]

Also, by |f({)] =1 on 04 we have

_ 0 02
0—@|f(€ Ol

5 m lif’(é)}_

J©

Thus (f'(0)/f({)eR. Since |f(z)| <1, this implies that (f'({)/f () = 0.
Equality holds if and only if f/({) =0. Since f(z) is unitary on d4, this implies
that f(z) must be a constant. ]

0=0



276 A. YAMADA

LemMA 6.3.  Bi(a,a) is real-analytic for (o,a) € {|o —a| <¢/2} x A. If ae
04, then

a g+l
Bina) = (4 ) o [

In particular, a'~9B;(o,a) > 0 for a e dd.

Proor. Since y is unitary on 04 [Lemma 6.1 easily implies that B;(o,a) is
real-analytic on {|a — a| < &/2} x A. The remained assertions of Lemma follow

from Lemma 6.2 O

On the other hand, the boundary condition (14) is rewritten as

q(x?)
x9-1 Hg+1 |x2

2
y+y(a)
X2 . Cl2

(17)

>0 for all |x|=1.

Our task is to find a polynomial g€ #,_; satisfying and (17) under the
condition |0 — &| < ¢ for sufficiently small 0.

In order to guess the form of the polynomial ¢(x) we first consider the
limiting case o =a. By putting F(x) = x" j'.lzl(x2 - B;)/(1 —ﬂ:xz), the con-
ditions and (17) are given respectively by

/l

1 L= F@)]” aF'(a) ¥

(18) q(az) — |a| Ta0) g(az —ﬁj)(a_z —ﬁ_J)
and

F(x) + F(a)|” q(x?) _

| X2 — g2 +x9—‘ H;:l |X2—ﬁj\2 >0 for all |x|=1.

Observe that F(x) is of the form xp(x?)/(Lip)(x*) where k=g/2 =
(m —1)/2 4 n and p(x) is the polynomial x("~1/2 [[i-i(x = B;). In this situation
the following lemma gives us a polynomial Q,(x) € %,—; which satisfies similar
but slightly different conditions as above.

LeMMA 6.4. For ke N, let h(x) be a rational function xp(x*)/(Lip)(x?)
where p(x) is a polynomial of degree < k. Then for every ae C\h™'(x0) there
exists a unique polynomial Q,(x) € Py._1 satisfying

2
ZICOR G O S A

xt—a’ A p))F T falt |x -l

|h(x) + h(a)|?
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and

2y — 2 2 (a2 1 = |h(a)|’ ah'(a) _ 1 + |h(a)|®
1) Qula?) =™ pla®)p(1] >{ e 2(1+a|2)2}.

Every coefficient of the polynomial Q,(x) is an odd and real-analytic function of a
on the region C\h™!(c0).

ProoOF. By definition the rational function /(x) is unitary on d4. Thus
from an elementary identity

h(x) + h(a)|* + |h(x) = h(a)|* = c(]x + a|* + |x —a]?) for all |x| =1

with ¢ = (1 + |h(a)*)/(1 + |a|*), we obtain for x € 84

c

B |x-|—a|2'

¢ |h(x) + h(a)

x2 —a?

- ‘h(x> — h(a)|?

x2 —a?

x—a®

Then by analytic continuation both sides of the above identity are extended to a
rational function f(x) satisfying

) f)- -8

(x2 —a?)(x 2 —a?

For fixed ae C\h~!(0), put g(x) =f(x)p(x?)(Lip)(x*>). Now we show that
g(x) is a polynomial. If ¢ =0, then 0 is not a pole of /(x). Thus A(0) =0
because /(x) is odd. Hence it is clear that f(x) =0 and so g(x)=0. If
a # 0, then we see easily from that the rational function g(x) has possible
poles only at x = o0, +a and +1/a. Indeed, comparing the two expressions of
f(x) in and noting that the function A(x) is odd and unitary, one verifies
easily that g(x) has poles only at oo of order < 4k. Thus g(x) is a polynomial
of degree < 4k. The identity implies that f(x) is odd. Thus we find a
polynomial Q,(x) such that

(21) S () p(x?)(Lip) (x?) = xQu(x?).

Since f(x) is by definition real-valued on 04, implies that g(x) e
Py Again, by x € 25, implies that Q,(x) € 2. The uniqueness
of Q,(x) is obvious. The identity (19) is obtained by substituting x = a to the

right end of [20). |
Writing Q,(x) :Zfia lcj(a)x/ we next show that the coeflicients ¢;(a)

(j=0,...,2k — 1) depend real-analytically in a. For any fixed ag e C\h~'(0),
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let E be the finite set A~ !({0, 00})U{=+ao,+1/as}. From the identities and
we see that, for fixed x e C\E, Q,(x?) is a real-analytic function of ¢ on a
neighborhood of @p. Thus choosing 2k points xi,...,xy in C\E such that
x},...,x3, are mutually distinct, the coefficients {cj(a)}jzfo_ ! satisfy a system of
lmear equations Z " c,( )xk = Q.(x}) (k=1,...,2k). By noting Vander-
monde’s determlnant det(x,f) # 0, Cramer’s formula now yields that every c;(a)
is real-analytic on a neighborhood of ay. Since ag € C\h~!(o0) is arbitrary, c;(a)
is real-analytic on C\h~!'(c0). The identity Q_,(x) = —Q.(x) follows from the

fact that f(x) is an odd function of a. Thus every c;(a) is odd. O

ReMARK 6.1. For k=1 and p(x)=ax+p, a simple calculation gives
Qu(x) = &x + ¢ with ¢ = (| — |B|")a(oa + pa) /| + pa’|.
Now we shall modify Q,(x) to obtain the desired polynomial.

DEFINITION 6.1, For k = g/2 and p(x) = x"" V2T (x = §;), let Qu(x) €
Z,_1 be the polynomial given in Lemma 6.4. Then we deﬁne a polynomial ¢,(x
by

n

(22)  qu(x) = Qu(x) + X2 (g 4+ + (75 +77)%) H(X — B = )

where 7, = a(l +F(a)%)/(2(1 + [a*)°) and 3, = a(by — [a*B1)/(1 — |a|*) with
b = a"(Bi(2a) - Bi(3,0))/ TTL (@ — B)(a™2 ~ ).

We remark that the identity ¢_,(x) = —¢,(x) holds. Now we show that
¢.(x) is indeed a polynomial in Z,_; satisfying and (17).

LemMMA 6.5. gq.(x) is a polynomial in %,_, which satisfies the vanishing
condition (16) and is real-analytic for the variables (o, a,x) € {|o —a| <¢&/2} X
AxX.

ProOF. Rewrite the function g,(x) — Q,(x) as (yy + y; + (Jg + 77 )x)x"=3/2.
[l (x = B8)(1 - /3_jx). From our assumption that m >3 is odd, we have im-
mediately y, + 7, + (g +7)x €2, x""3I2e P, 5 and (x — B)(1 - ﬁ_]x) € P.
(iil) implies that g,(x) — Qu(x) € Pp_2i2n = Z—1.  Thus q.(x) € Z,_;.

Simple calculation using (19) shows that g,(x) satisfies [16]. By Lemmas
and we see that the constant y, is real-analytic in the parameter («,a) €

{lo. — a| < ¢/2} x A. This implies ¢g,(x) is also real-analytic, as desired. (]

LEmMMA 6.6. If o =0 and a€ A, then for all |x| =1 we have an inequality

'F(X)JrF(a) ’
2 — a2

4u(x?) >1+F<a>2max{ L _lxap }

- 2= 2 27 2
X9 iy X2 =Byl I+a| [x —d 2(1+lal")
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ProoF. Since y; =0, in view of [Lemma 6.4 we have, for |x| =1,

2 ga(x?) 1+ |F(a)|? ] Re(ax)
L —— 2~ 2 ;T 2\2
I iy [x* = Bl 1+ |al Ix—al”  (1+]a])

|F(x) + F(a)
2 — g2

_1+F<>{ 1 +x+a|2—<1§|a|2>}

L fal® (1 +]a))® 2(1 +|a]*)
L +|F(a)? (1 - )’ [x +af’
R {2(1 + la))*(1 + |al) ! 2(1+ az)z}'
This immediately gives the inequality of Lemma. ]
Now we return to the proof of the special case of [Theorem 5.1. For

(o0,a,x) € A" x A x X, define a function @,(a,x) by
¢a(aa X) = (X + a)(x_l + ﬁ) y?soc/2+&(_a’x)7

where ¥ is the function with the polynomial ¢(x) substituted by ¢,(x).

We must show that the function &,(a,x) satisfies all the assumptions of
[Lemma 4.7. This is proved as follows. Putting o =¢x'/2 + & and using ¢g_, =
—qq, We have

0@ —3@) (@)l + aag)
N e I I I

One verifies easily that by expanding in a power series the functions (y — y(a))/
(x—a) and (y~' —y(a))/(x~' —a) are real-analytic in the variables («,a,x).
Since y # 0,00 on X, the second term of is also real-analytic. Thus @,(a, x)
is real-analytic in (o, a,x) € A" x A x X which suffices to prove the continuity of
@. Clearly, the function @,(a,-) is holomorphic on X, and for x € 04 we have

e+ alqux?)
- +1 )
x9-1 ng'zl |x2 — oy

y - y()
X—d

D, (a,x) =

so that [Lemma 4.2 implies the real-valuedness of ®,(a,-) on d4. Thus the
condition (i () of _ ]is proved. The condition (ii) with k =2 and E = 04
is clear from [Lemma 6.3 and the symmetry of the function @,(a,-) with respect
to d4. Also, the conditions (iii) and (iv) are proved easily from [Lemma 6.6.

We can now apply to the function @,(a,x). By noting the
identity @,(a,x) = |x + a|? w/zﬂ( a,x) for xeadd, _ implies that
there exists a 0 >0 such that if |« —a| <J and if a eA\U A(p;,¢), then
¥ (a,-) is positive on d4. Thus both the vanishing and the boundary condi-
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tions are satisfied for all a eA\U B;¢). Therefore we have established
the inclusion Rj(a) o A\U 1) ThlS completes the proof of Case (I) of
Main Theorem.

7. Proof of Case (II).

In this section we assume that g =2n— 1 (n > 2) is an odd integer and that
o = {oy,..., 051} is e-nonisolated with center at & = {ay, ..., 041} Where dyj_; =
oy =p;ed for j=1,...,n. We do not require that the points f; (j=1,...,n)
are distinct. By choosing ¢ sufficiently small we may assume that A(f;,¢) = 4
(j=1,...,n) and if f; # f;, then A(f; &) NA(p;,e) = (i,j=1,...,n). Since
our argument here is similar as in the previous section, we merely outline the
proof.

Let X be the interior of AU A’ where 4 = A\U (B;,¢) and A" = {1/X]

xeA}. Since the genus g is odd, the function y=y(x)= \/Hg“(x—ocj)/(l—oc_jx)
has a single-valued branch on X

66 kaij—@vw—@p
(0 - (3 -3/ — &)
which is holomorphic and nowhere-vanishing, where G(x) is a finite Blaschke
product [[7;(x—p;)/(1 - B;x). Clearly, the function y is real-analytic in the
variable (oc x)e{|la—dl <&} x X. According to the sign of /y2=+y, we
define two functions, for («,a,x) e {|jo —a| <e&} x 4 x X,

t i D@0 +y(a) xq(x)
e e [ BT T
and
o =y@) T =) xg(x)
¥ (ax) = (x —a)(x~1 —a) Hg+1(1 — &x)

Note that, on the region X, ¥, (a,-) is holomorphic, while ¥,"(a,-) is mero-
morphic with poles only at ¢ and 1/a. Since y is unitary on 0d4, we have
1y +y(@))* + |y — y(a)|* = 2(1 +|y(a)|*) for all xedd. Then by analytic con-
tinuation we have the identity

2(1+ | p(@))

(24) Y (a,x)+ ¥, (a,x) = G —a)
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Our task is now to find a polynomial g(x) € %, such that ¥, (a,a) = 0 and
that the functions ¥,"(a,x) and ¥, (a,x) satisfy the boundary condition (14).
The vanishing condition ¥, (a,a) =0 is equivalent to g(a) = Ba(a,a) where

. a 2 g+1
= O ) [T0 - 0.

=1

LeMMA 7.1. For every ae C\G '(0) there exists a unique polynomial
FPi(x) e Z,_1 such that the function ¥ (a,x) defined with q(x) = P,(x) satisfies
V. (a,-) =0 and F,(a) = B2(a,a). Every coefficient of the polynomial F,(x) is a
real-analytic function of a on the region C\G~'(0).

PrOOF. The uniqueness is clear. Consider the function

which is easily seen to be a polynomial of degree <n — 1. Since G(x) is unitary,
we have

-1 _Cl n
Ln_lha(x) = G(X) — c_l; )H(X - ﬂ,)

x(x~1 P

Put P,(x) = hy(x)L,_1h,(x). Then applying we see that P,(x) € 2,
which satisfies

(G(x) = G(@)(G(x)"" ~ Gla)) _ XB(x)

(x—a)(x1 -a) Gx) [T/ (1 = Bix)*

Thus ¥, (a,-) =0, and the identity P,(a) = B,(a,a) is obvious.

o
The real-analyticity of the coefficients of P,(x) is proved similarly as in

Lemma 6.4 ]
DEerFINITION 7.1. We define a polynomial ¢,(x) by

ga(x) = B(x) = 70x" "2 (x —a) (x = @) + x' D2 (x4 7,

where 7, =1/8]]"_,(1 - [8;)* and y, =a(br—|al’by)/(1—|a*) with by =
a'=9/2(B,(a,a) — B (d,a)).

In view of our assumption g >3 is odd, we note that ¢,(x) is indeed a
polynomial. The following Lemmas show that the functions ¥,"(a,x) and
¥~ (a,x) defined with ¢,(x) satisfy both the vanishing and the boundary

o
conditions.
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LemMA 7.2. By(a,a) is real-analytic for (a,a)€{|lo—a| <e/2} x A. If
a € oA, then

g+1

2
ay'(a) (g-1)/2
By(o,a) = (—) av la — o
y(a) ,Hl !
In particular, a'"=9/2By(a,a) > 0 for a e oA.

Proor. See the proof of Lemma 6.3 n

LemMmA 7.3. The polynomial q,(x) € %, satisfies q,(a) = Ba(a,a). More-
over, ¢,(x) is real-analytic for the variables (o,a,x) € {|lo —a| <¢&/2} x A x X.

ProoF. See the proof of [Lemma 6.3. ]

LeMMA 7.4.  There exists a constant y, > 0 such that for (a,x) € A x 04 the
inequalities ¥ (a,x) > y5|x —a|* and |x — a\zg’; (a,x) >0 hold.

o

ProOF. Since y; =0, from [Lemma 7.1 we have

Consequently, for x e d4

V() = A

’ H7:1 X — ﬁj’

where 7, = 1/8 [T/, ((1 - I,])/(1 + \/)’j|))2 > 0. On the other hand, for x € d4
the identity implies

4
— 16
x — a* ¥ (a,x) = 2(1 + |G(a)|?) - ﬁ()'x 4l o> —— N
Hj:l |x _ﬂj| Hj:l(l - |ﬁ]|)
Here we have used the fact that G(a) # 0 for a € A. O]

Now we are ready to apply [Lemma 4.7. Define the functions @, (a, x) and
@, (a,x) by B (a.x) = (x — a) ("'~ @)W, (a,x) and B, (a,x) = ¥y, 5(a, ).
Then the hypothesis of is satisfied for @ (a,x) if E= ¢ and for
& (a,x) if k=2 and E = 04. This completes the proof of the special case (II)

of Mheorem 5.1 and thus we have finally established Main Theorem.

References

[1] L. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comm.
Math. Helv., 24 (1950), 100-134.



Abhlfors functions on compact bordered Riemann surfaces 283

L. Ahlfors-L. Sario, Riemann surfaces, Princeton Math. Series, vol. 26, Princeton Univ.
Press, Princeton, N.J., 1960.

J. D. Fay, Theta functions on Riemann surfaces, Lecture Notes in Mathematics, vol. 352,
Springer-Verlag, 1973.

H. M. Farkas-I. Kra, Riemann surfaces, Graduate Texts in Math., vol. 71, Springer-Verlag,
1980.

T. Gouma, Ahlfors functions on non-planar Riemann surfaces whose double are hyperelliptic,
J. Math. Soc. Japan, 50 (1998), 685-695.

H. L. Royden, The boundary values of analytic and harmonic functions, Math. Z., 78 (1962),
1-24.

A. Yamada, On the linear transformations of Ahlfors functions, Kodai Math. J., 1 (1978),
159-169.

Akira YAMADA

Department of Mathematics and Informatics
Tokyo Gakugei University

Tokyo 184

Japan

E-mail: yamada@u-gakugei.ac.jp



	1. Introduction.
	2. Linear transformations ...
	THEOREM 2.1. ...

	3. Example.
	THEOREM 3.1. ...

	4. Surfaces with hyperelliptic ...
	THEOREM 4.1. ...

	5. Main theorem and a ...
	THEOREM 5.1. ...

	6. Proof of Case (I).
	7. Proof of Case (II).
	References

