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Asymptotic behavior of the transition probability of a simple random walk

on a line graph

By Tomoyuki SHIRAI

(Received Jun. 8, 1998)

Abstract. For simple random walks {P;} on a homogeneous graph G and {P’Z(G)}
on its line graph L(G), we obtain the relationship between the asymptotic behavior of the
n-step transition probability P2(x,x) and that of Pl (x,x) as n — co.

1. Introduction.

Let G be an infinite connected graph and P (x,x) the probability that a simple
random walk (the definition will be given in Section 2) on G starting at x returns to x
at time n. It is well-known that for even n,

2dd/2
(27m)d/2

n

(X, X) ~

(n — o), (1.1)
where Z“ is the d-dimensional lattice [8]. Similarly, for the hexagonal lattice and the
Kagome lattice, one can show

Wi

1
iy x,x) ~3V3——— (even n— ), P! —_—
(x.%) ( ) "

Hexagonal (27_[”) dj2 Kagome (X, X) ~

(n—o0)

(1.2)

by the calculation of Fourier series. Here the power d equals 2, which depends on the
fact that the vertices of both infinite lattices can be embedded in Z? periodically.

Now when the transition probability of a random walk on a graph G which has
periodic structure in some sense behaves asymptotically as

Co

Pg(xa x) ~ (27m)d/2

(n — o0), (1.3)
what is the meaning of the constant Cg ([6])? One geometrical interpretation of Cg is
given in [4]. In this paper, in connection with the problem above, we investigate how
the constant Cg changes under the graph theoretical operation of G which is called line
graph.

First we prepare some definitions. Let G = (V(G), E(G)) be a connected infinite
graph, where the sets V(G) and E(G) are the vertex set and the unordered edge set of
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Figure 1: Hexagonal-lattice and Kagome-lattice.

G

G, respectively. We assume a graph G is simple, that is, G has no self loops and no
multiple edges. A set Ny ={ye V(G);xy e E(G)} is the neighborhood of a vertex x.
A graph G is called d-regular if |[N,| = d for all x € V'(G), where |A4| is the cardinality of
a set A. Throughout this paper, we deal with only d-regular graphs.

Now we define a line graph L(G) of G as follows:

o E(L(G) = {(x,»)(32); xyeE(G) and yze E(G), x #7)

The vertex set of L(G) is the edge set of G and vertices « and f in L(G) are adjacent if «
and S as edges in G have a common vertex in G.

ReEmMARK 1.1. One can check in Figure 1 that the line graph of the hexagonal-lattice
is the Kagome-lattice, that is, L(hexagonal-lattice) = Kagome-lattice

Next we define a notion of homogeneity of graphs. A graph G is said to be
homogeneous if for any pair of vertices x and y, there exists a graph automorphism
which maps x to y. (We remark that the homogeneity in the sense above is usually
called vertex transitivity in graph theory.) When G is homogeneous, G is necessarily a
regular graph and for all n € N there exists a constant 0 < C, <1 such that

Pi(x,x)=C, (VxeV(G)).
For example, Z d(d-dimensional lattice), triangular-lattice, hexagonal-lattice, Kagome-

lattice, Ty(d-regular tree) and etc. are homogeneous in the sense above. Before we

x w (x, w)

ﬁ (X,y) (W, Z)

y z (¥:2)
G L(G)

Figure 2: Line graph.
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mention our main theorem, we recall the definition of a bipartite graph. A graph G is
called a bipartite graph if G has no cycles of odd length, in other words, the vertex set
V(G) can be partitioned into two disjoint subsets ¥} and V, in such a way that
V(G) = Vi 11V, and every edge in E(G) connects a vertex in V| with a vertex in V,. If
G is bipartite, the simple random walk on G has period 2 and the spectrum o(Pg) is
symmetric with respect to the origin (see [Lemma 2.3).

Our main theorem is the following:

THEOREM. Let G be a homogeneous d-reqular graph with d > 3, Pg the transition
operator associated with a simple random walk on G, and Ay(G) = supa(Pg) and 41(G) =
inf (Pg). Assume that there exists a positive constant Cg > 0 and p >0 such that

Pi(x,x) ~ %{EG)H (1.4)
as n— oo (as even n — oo for (2)).
(1) When 20(G) > |41(G)],
2Cq ((2d —2)20(L(G))\ 4o(L(G))"
Pltn) ~ 2o (L= 20LONY 4LIG) s
for any o€ V(L(G)) as n — oo. Especially, for A(G) =1, as n — oo,
2C6 (2d —2\" 1
P gy(o, o) ~ TG (T) e (1.6)

(2) When G is bipartite (automatically 4y(G) = |A1(G)|), the asymptotic formulas (1.5)
and (1.6) with the coefficient 2Cg replaced by Cg hold, that is,

Ce ((2d — 2)20(L(G))\” Ao(L(G))"
for any o€ V(L(G)) as n — oo. Especially, for 1(G) =1,
2d —2\" 1
Pl g0 0) ~ % (T) " (1.8)

as n — oo.

REMARK 1.2, The upper bound of the spectrum of P, 40(L(G)) in equations
and [1.7), can be expressed by 4y(G) by Lemma 2.1(4)’, namely,

1
Ao(L(G)) = m(dzlo((?) +(d - 2)). (1.9)
In particular, 4o(G) =1 and Ay(L(G)) =1 are equivalent.

Remark 1.3. If G is the hexagonal lattice, then it is a bipartite 3-regular graph,
and it is easy to check that 1o(G) =1 =1|4,(G)|, d =3, p=1. Noting Remark 1.1 we
obtain from
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Cr6) =z Ca. (1.10)

. . : . 4/3 .
This is the relationship between the coefficients %_ and 3v/3 in (1.2).

REMARK 1.4. In the case where 4y(G) = 1, there are many examples for which the
assumption holds, for example, abelian covering graphs [4]. In the case where
J0(G) < 1, there are only a few examples such as d-regular trees. However, we
conjecture that the assumption holds for all homogeneous graphs.

2. Lemmas.

Let G be a homogeneous d-regular graph and L(G) its line graph which is
automatically (2d — 2)-regular graph. We note that L(G) is not in general a homo-
geneous graph even if G is homogeneous. We consider a simple random walk on G,

that is, (Pg(x, ), ,c1(g) 1S the transition probability matrix which is defined as follows:

1/d, if yeN,,
0, otherwise,

Pe(x,y) = {

where N, is the neighborhood of x. Then P; is a bounded self-adjoint operator on
/*(G) which is the set of real-valued functions on ¥(G) which satisfy > _ vigd-f (x)?
< oo with the inner product <{f,g) =3 .y d - f(x)g(x). Since Pg is a contraction
operator, its spectrum is contained in [—1,1]. We denote the transition probability of
a simple random walk on L(G) by P;;. We have obtained the relationship between
the spectrum of Pg and that of Py in [7]

Lemma 2.1, Let ¢ :/*(G) — (*(L(G)) and ¢* : /*(L(G)) — /*(G) be defined by

0/ (x,0) = Ca(f(x) + [ (), "F(x) = C;' Y F(x,r),
re Ny

where Cy = (d/(2d—2))1/2 and (*(L(G)) is identified with the space of symmetric
/2-functions {F(x,y);xy e E(G),|F||* = > wer) (2d = 2)|F(x, Y)|? < o). Then

(1) ¢ and ¢ are linear bounded operators and ¢* is the adjoint operator of ¢,
2 $h=d(Po+1), ¢ = (2d —2)(Pug) + 1/(d - 1)),
3) ¢ Pug) = h(Pe)§", where h(x) = (1/(2d = 2){dx + (d — 2)},
4)  o(Pre) ={-1/(d—1)}Uh(a(Pg)), where {—1/(d —1)} are eigenvalues of

infinite multiplicity. In particular,
@) A(L(G)) = h(A(GQ)), where 1o(G) (resp. Ao(L(G))) is the upper bound of the

spectrum a(Pg) (resp. a(Pr(g))).

(
(
(

PrOOF. The proof can be found in [7]. O

We remark that /*(L(G)) is decomposed into two closed subspaces, that is,
/*(L(G)) = ¢(/*(G)) ® ¢(/*(G))*. The spectrum of Py restricted to the subspace
$(/*(G)) is h(o(Pg)) and that of Py restricted to ¢(/*(G))* is {—1/(d —1)}.
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Let e, e/*(G) and e, e/*(L(G)) be defined by e,=d '?5,e/*(G), e, =
(2d —2)7"%5, € /*(L(G)). Then {exterig (resp. {es},cp(()) 18 an orthonormal
basis of /%(G) (resp. /*(L(G))). We can show the following lemma.

LemMmA 2.2. Let G be a homogeneous d-regular graph. Then for each o= xy €
V(L(G)) = E(G),

(d = )P} (%) + P}y (2,0) = (1 + PG)h(Pg)"ex, ex). (2.1)
Proor. We calculate I, = <¢*PZ(G)e1,¢*ea> in two ways. Firstly by
(1) and (2), we obtain

* n 1 n
I, = {¢¢ PL(G)eomea> = <(2d —2) (PL(G) +ﬂ)PL(G)eaaecx>
= (2d — 2)PZEFG1)(OC, %) + 2P} (o, ).
On the other hand, using (3) and the definition of ¢*, we have
I, = <h(PG)n¢*eoca ¢*ea> = <h(PG)n(ex + €y), (ex + ey)>
= 2(<h(PG)neX7 ey + <h(PG)n€xa ey>>7

where o = xy and we used the homogeneity of G for the last equality. Then we obtain

(d = )Py (,0) + Py (0,9) = <h(P6)"ex, e) + <h(Pg)"evse,  (22)

where the function /4 is the same one as in (3).
For any homogeneous graph G, it is easy to see that for 1e C\o(Pg)

2g,(x,x) =14+ ¢,(r,x) (VreNy),

where ¢,(x,y) is a green function (or a resolvent kernel), that is, g,(x,y)=
(A—Pg) '(x,y). Then using the functional calculus, for any function k analytic on
a neighborhood of the spectrum o(Pg), especially for any polynomial k, we have

Pok(Pg)(x,x) = k(Pg)(r,x) (Vre Ny). (2.3)

Hence by using the equality (2.3) in (2.2) we obtain the lemma. O

Next lemma can be considered as part of an extension of the Perron—Frobenius
theorem for positive matrices, which is essentially obtained in [2].

LemmA 2.3. Let T be a bounded self-adjoint operator on a Hilbert space H having
the positivity preserving property, that is, Tf >0 if f >0. Put (T) = sup(a(T)) and
M(T) =inf(a(T)). Then,

20(T)+ A (T) > 0. (2.4)
In particular, for the transition operator Pg associated with a simple random walk on G,

20(G) 4+ 41(G) =0, (2.5)
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where Ao(G) =sup(a(Pg)) and 21(G) =inf(a(Pg)). The equality Ay(G)+ A1(G) =0
holds if G is bipartite.

ProOF. By the positivity preserving property, for any f € H, we obtain

QDI+ LTL > =TI LI+ <Tf, f

KTAST+ )N+ L2+ LTAS T = 1) 1= 1)

KIS [0 +<T 1 f2))
, (2.6)

I
S N NI

\Y

where f, = max(f,0) and /= = max(—/,0). We can choose a sequence of f, such that
(T — Ai(T))f,| — 0 and || f,]| =1 by Weyl’s criterion [5]. Consequently, putting f =
f, in and letting n — oo, we obtain

iQ(T) + ﬂ.l(T) > 0. (2.7)

For a bipartite graph G with bipartition V(G)= V|1l V5, we define a unitary
operator U : /*(G) — /*(G) as Uf(x) = f(x) if xe Vy; Uf(x)=—f(x) if xe Vs It
is easy to check that —P; = UPcU~!' and so P; and —P; are unitarily equivalent.
Consequently, 49(G) = —4(G). ]

The asymptotic behaviors of Pzzré)(a,oc) and PZ(G)<O(, a) are a little different in
strongly transient case. Indeed, we have the following lemma.

LEMMA 2.4. Let G be a homogeneous d-regular graph, Pg the transition operator
associated with a simple random walk on G and 29(G) = supa(Pg).
1) When A(G) > |11(G)|,

fim 6 (%)

P x) 40(G)  for any x e V(G). (2.8)

In particular, for the line graph L(G) of a homogeneous d-regular graph G, 2o(L(G)) >
|21 (L(G))| holds if d >3, and then

lim Pilg) (%)

i oy — LGN Sor any e V(L(G)) (29)

2) When G is bipartite (and necessarily Ay(G) = |A1(G)]),

lim 26 (%)

s P2 (x, x) = io(G)z for any x e V(G). (2.10)
G )

Proor. 1) By the assumption and [Lemma 2.3, G is non-bipartite. Then a simple
random walk on G is aperiodic; Pf(x,x) > 0 for any sufficiently large integer n. Let
Eg(¢) is the resolution of the identity of Py and put dv(¢) = d||Eg(¢)ex||* (independent
of xe V(G) due to the homogeneity). Since A9(G) is in the spectrum ¢(Pg) and G
is homogeneous, it can be easily checked that v([Ao(G) — ¢, 4o(G)]) > 0 for any & > 0.
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Then we obtain

20(G) 20(G)
Pi(x,x) = J Edv(E) ~ J EMdv(&). (2.11)
/L](G) ;LO(G)_S
Hence we have
Pn—i—l(x x) Pn+1(x x)
J0(G) —e < liminf —¢—~""7 < [ ~G6 Y )G
0(G) — & < limin P im sup Piley) = 0(G)

and since ¢ > 0 is arbitrary, (2.8) holds.

For the second assertion, we remark on the structure of the spectrum of Pyg).
Since o(Pg) is contained in [—1,1] for any G, the image /(o(Pg)) is contained in
[—1/(d —1),1], where h is the same one as in (3). So because of [Lemmal
2.1 (4) we have

: -1
j.] (L(G)) = lan(PL(G)) = ﬁ
We also note that the upper bound of the spectra of d-regular graphs is greater than that
of the d-regular tree T, that is, 10(G) > Ao(T;) = 2v/d — 1/d for any d-regular graph G
[1]. When d >3, we obtain

-1
d—1

WA =1+ (d—2)) = h(Jo(Ty) < (L(G)).  (2.12)

(LG = || < 375

2) When G is bipartite, it is sufficient to note that PZ'(x,x) >0 and P2 (x,x) =0 for
any n. L]

RemArRk 2.5. This lemma holds for more general symmetric random walks on
infinite graphs under appropriate modification.

Next we consider the asymptotic behavior of moments.

LEMMA 2.6. Let |a| < Ay and u be a probability measure supported on |a, Ly such
that for p >0

Ao n
J E"du(E) ~ sy (2.13)

a np

as n— oo. Let ve C*(la,X)|) be a function which has the unique maximum at iy in
la, o] and v' () >0, and u be a function continuous at iy. Then we have

. u(f)v(é)"d,u(f) (iov’(io))p n?

ro _ Au(Zo)o(do)" v(%0)" (2.14)

as n — o0.

Proor. The asymptotic behavior depends only on ¢ near /4y and since u is
continuous at Ao
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20

Ao
j u(E)0(E)" du(&) ~ uuo)J o(&)" du(). (2.15)

a a

We first assume that Ao =1 and v(1) = 1. Since ve C?, one can check that

logv(¢) = (v'(1) + O(|1 = ¢])) log ¢ (2.16)
as ¢ — 1. So for any & > 0 there exists a positive constant 0 < &, < 1 such that
1 1
| o0 aue) < | &0 aue 2.17)
n 1
for &, < Vn < 1. Since v'(1) >0, for |a| <n <1, we have

1 1
lim sup an v(&)" du(¢) = limsup an v(E)" du(&)

n— oo a n— oo n

1
< hnnsupiﬂ’J M=) qyy(&)

n—oo i

A

= W)= (2.18)
Similarly, we obtain
! A
lim inf r” L v(&)"du() > CIOETR (2.19)
Since ¢ > 0 is arbitrary, we conclude that
RGRIGRr (2.20)

as n — oo. In general case, it is sufficient to consider v(4o¢)/v(4¢) as a function v(¢)
and du(Ap¢) as a measure du(¢). O

3. Proof of the theorem.

Using the lemmas which are obtained in the previous section, we can compute the
asymptotic behavior of PZ(G)(oc, o) as n— 0.
Assume that the following asymptotic behavior holds:

%m@~ﬁ%ﬂ—me) (3.1)
and first assume that
70(G) > 14 (G), (3.2)

where 1¢(G) = supa(Pg) and 1;(G) = inf 6(Pg). (Note that in general 1o(G) = |41(G)|
by Lemma 2.3
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THEOREM 3.1. Let G be a homogeneous d-regular graph. The assumptions (3.1),
(3.2) hold. Then, for any o€ V(L(G)), as n — o0,

. 2Cq ((2d = 2)A(L(G)\" 40 (L(G))"
Especially, for 70(G) =1, as n — oo,

i 2CG (2d —2\" 1

Pl ~ = <T> = (3.4)

ProOF. The assumption (3.1) says that

)\,O(G) C l G n

[ eraps@genp ~ <AL (33)
21(G) n

where Eg(&) is the resolution of the identity of Pg. Therefore by (3.2) and [Lemma 2.6,
for the function 4 in (3), we obtain

Z0(G)
A1+ PahPo)"ew e = | (14 &) dEo(Ee)
_ Co(1 + 4(G)h(20(G))" h(40(G))"
(Z0(G)h'(70(G)))" n?
= Co(1+ 20(G)) (Qd - dili‘éf””) AO(Z(pG)) (3.6)
as n — . By and (4)', we have
(d = 1)P}{g (2,0) + Pfgy(22) ~ ((d = DA(L(G)) + 1) - P (e, )
= S 00(G) + )Py ,2) (3
as n — oo. Therefore using we obtain the theorem. O

CoROLLARY 3.2. If G is a bipartite homogeneous d-regular graph (and so 1o(G) =
|21(G)|), and the assumption (3.1) holds for even n — oo, then

. Co ((2d —2)20(L(G))\" 4 (L(G))"
Especially, for 70(G) =1, as n — oo,
; Ce (2d —2\" 1
Pl (o) ~ 76 <T) e (3.9)

Proor. It is sufficient to note that if a graph G is bipartite then P and —Pg are
unitarily equivalent, which implies that (3.1) is equivalent to
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Cslo(G)"

o (3.10)

20(G) 5
jo Ed|Eg(E)es]> ~

as n — o0. ]

REMARK 3.3. The assumption (3.2) should be replaced with G being non-bipartite.
We conjecture that if G is homogeneous and the spectrum is symmetric (in the sense that
20(G) = |21(G)]) then G is bipartite. In general, if G is not homogeneous, the con-
jecture above is not true. For example, let Z' = (V(Z'), E(Z")) be the ordinary one-
dimensional lattice and G = (V(G), E(G)) the graph such that V(G) = V(Z')U{a} and
E(G) = E(Z"YU{(0,a),(1,a)}. Since the compact perturbation does not change the
essential spectrum we obtain o(Pg) =a(P,1) =[—1,1] and so the spectrum of G is
symmetric. However, G has a cycle of length 3 and so G is not bipartite. So far we
have shown that if G is homogeneous and non-bipartite, and 4y(G) =1 then |4,(G)| is
strictly less than 1, in other words, the spectrum is not symmetric [3].
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