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On the orientability of singularity submanifolds
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Abstract. As an application of the generalized Pontrjagin—-Thom construction (see
[5]) here we prove some results on the orientability of singularity submanifolds. Our
approach is based on the computation of symmetries of singularities and is different from
the one based on the fundamental work of Boardman ([3]) which involves the high intrinsic
derivatives. As an example we apply our method to all the X" and X singularities.

The integer k > 0 will be fixed throughout the paper. Let #: (R",0) — (R"**,0)
be a smooth map germ. From now on, we will restrict ourselves to simple singularities.
By a suspension of # we mean a germ X7 : (R"*",0) — (R0 0) defined by (x,u) —
(n(x), u)—otherwise we will use the standard notations of singularity theory, see e.g. [2].
For a C*-stable map f : N — P between smooth manifolds we define the singularity
submanifold

n(f)={yeP|f'(y) has only one element and the germ of f
at f~'(y) is </-equivalent to a suspension of #}.

We may think of #(f) either as an abstract manifold (not necessarily closed), or a
submanifold of P, or a submanifold f~'(4(f)) of N.

Now let # be a C™-stable germ, and suppose that it is not .&Z-equivalent to the
suspension of any other germ—germs having this property will be called ‘“‘isolated”.
Another description of an isolated stable germ # is that d,(n, #") = its target dimension
(see [2; p. 166] for the definition of d.( ,#")). According to Mather’s classification
theorem: .o7-equivalence classes of isolated stable singularities are in one-to-one cor-
respondence with finite dimensional local R-algebras. In [5] the maximal compact
subgroup G of #x’s automorphism group

Aut,n = {(p, ) € Diff(R",0) x Diff(R"™,0) |gonop™" =y}

is considered. We can assume it is linear, and its representation on the source and
target spaces will be denoted by A; and /,. The vector bundle associated to the
universal principal G-bundle using the representation A; will be denoted by EA; — BG.

The following two theorems are byproducts of the mail lemma in [S]. The letters N
and P will always denote closed smooth manifolds, and the letter v will refer to normal
bundles.

1991 Mathematics Subject Classification. 5TR4S5.

Key Words and Phrases. Singularities, singularity submanifold, generalized Pontryagin-Thom construction.

The author received financial support from OTKA 014906. The author thanks the referee the very useful
comments.



92 R. RIMANYI

THEOREM 1. For any stable smooth map f : N™ — P™* there exists a continuous
map ¢ :n(f) — BG, such that

v(n(f) = N)=g*Eh, v(n(f) < P)=g"Eh.

THEOREM 2. For any closed manifold K and any continuous map g : K — BG there
exist smooth manifolds N, P and a stable smooth map f : N — P, such that K is a
component of n(f) and

VK cN)=g"ElL, v(KcP)=g'El.

REMARK. Observe that these two theorems together completely describe the normal
bundles of the singularity submanifolds #(f) in the source and in the target manifolds.
Namely, these normal bundles can be any pull-back bundles (so any finite dimensional
approximations) of E4; and EZ, using the same map into BG.

The smooth map f: N — P will be called k-codimensional if dim P —dim N = k.
The following two statements are easy consequences.

THEOREM 3. The following two conditions are equivalent:

(1) for every k-codimensional map f : N — P, where P is orientable, the manifold
n(f) is orientable;

(2) detia(g) >0 for all g€ G.

THEOREM 4. The following two conditions are equivalent:

(3) for every k-codimensional map f : N — P, where N is orientable, the manifold
n(f) is orientable;

(4) detii(g) >0 for all g€ G.

Proor. Condition (1) is equivalent to the following: for every k-codimensional
map f : N — P, where P is orientable, v((f) = P) is an orientable bundle. Because of
it implies that for all K and ¢g: K — BG the bundle g*E/, is orientable.
Then it follows that EZ, is orientable, which is equivalent to condition (2).

Conversely, if EJ, is orientable, then (using Theorem 1) for any f : N — P™*k the
bundle v(5(f) = P) is orientable. If P is orientable, then this implies that #(f) is also
orientable.

The proof of [Theorem 4 goes the same way. O

Now we turn to the investigation of conditions (2) and (4). First we recall from [5]
some results about the maximal compact automorphism group of 5 : R" — R"™™*. 1If 5
is a miniversal unfolding of { : R* — R***, where d{(0) =0, and V is a complement of
the subspace #((0,) + {*m(a + k)0; in the vector space 0, then 5 is .o/-equivalent to

RXV SR xV
(x,¢) = (x+ ¢(x), 4).

Now let G be the maximal compact subgroup of the #-equivalence group Aut,{. If {
is well chosen from its J#-equivalence class then we can suppose G acting linearly
on RYx R“**. Then, in particular, G acts as an ./ automorphism group, so it has
representations o and f on R and R*** respectively. The group G also acts on 0; by
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(0, 8) - ¢ = Bodoal—leaving t{(0,) + {*m(a+ k)0; invariant. If V is chosen to be
G-invariant (G compact, so it is possible) then G also acts on V. Let this action be j.
A theorem in [5] proves that the maximal compact subgroup of Auty,#n is G with the
representations 4, ;=0 @y, A =@y on the source (R® x V) and target (R“* x V)
spaces, respectively. This reduces the problem of finding MC Aut,#n to finding MC
Auty ¢ and the representations «, f. (MC stands for ‘maximal compact subgroup of’.)
This latter problem is also essentially solved (reduced to a finite dimensional one) in [5],
we will come back to these results in concrete examples.

NoraTiON. In what follows p, will always mean the standard r-dimensional
representation of O(r). If p, is written as a representation of O(r) x H then it really
means p, o pro().

ExampLE 1. For all r > 0 there is a unique isolated germ 5! (in codimension k)
corresponding to the local algebra R[[7]]/(#'*'). This germ is called the isolated
Morin singularity type of Z'*. This is the miniversal unfolding of (' : R — R, x —
(x"t1,0,...,0). It is clear that MC Aut,{" = O(1) x O(k), and the representations
o, f are as follows:

a=p;, B=p" ®p

Indeed, O(1) x O(k) < MC Aut, (" < MC Auty(", as the representations « and

p show. On the other hand—by in [5]—MC Aut, (" < MC Aut Q1 X

O(k —d) = O(1) x O(k) where Q,, is the local algebra of ¢ and d is its defect.
The space V' can be chosen to be spanned by the vectors

X — (x%,0,...,0) i=1,....,r—1
x+—  (0,0,...,0,x,0,...,0) j=1,...,r
the coordinate of x/ is from 2,... k+1

and (using the definition of y above) the action of O(1) x O(k) on V' can be computed:

r—1 r—1 r r
7=173 1@ 5 2R 3 P @ 3 p1 @ py.
As an application of this example and and 4 we can prove the following two
theorems about the orientability of the Morin-singularity submanifolds.

THEOREM 5. Let n'r be as in the example above. Then the following two conditions
are equivalent:
(5) for every k-codimensional map f : N — P, where P is orientable, the manifold
n'(f) is orientable;
(6) k is even and r =1 mod4.

THEOREM 6. Let n' be as in the example above. Then the following two conditions
are equivalent:
(7) for every k-codimensional map f : N — P, where N is orientable, the manifold
n'(f) is orientable;

(8) either k is odd and r is even, or k is even and r =0 mod4.
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ProoFs. According to the Theorems 3 and 4 we only have to analyse the sign of
the determinants of 4;(g), 42(g). Since explicit formulae are given for A; = « @ y and
Jy =P @y, easy computation gives the proofs. O

EXAMPLE 2. Let 7, be the miniversal unfolding of ¢, : R" — R™,

2 2
(X105 ey Xp) = (X7, ooy X0, X1 X2, X1X3, - o Xr1X, 0, ..., 0),

(where there are t =k — (;) 0’s at the end). This #, is the “simplest” singularity

of Thom-Boardman type X"°. The group MC Auty,{, is O(r) x O(¢). Indeed,
O(r) x O(t) clearly acts as a J-symmetry (in fact as an .o/-symmetry) group of
v, s0 O(r) x O(t) < MC Auty(,. On the other hand MC Auty{, < MC AutQ;, X
Ok —d) = O(r) x O(t), where Q; 1is (s local algebra, and d is its defect. The
representation o = p,, but we will not need to determine S explicitly.

If we choose V' to be spanned by

(x1,...,x)—  (0,...,0,x;,0,...,0) i=1,...,r
the coordinate is j=1,...,ri#j
(x1,.-,x) —  (0,...,0,x;,0,...,0) i=1,....r

the coordinate is j=r+1,...,r+k,

then 7 will be O(r) x O(t)-invariant.

Although we have not written up explicit formulae for f and y, we will need some
information on the sign of detf(g), dety(g) (9 € MC Autyn,). Let g1,92 € O(r) x O(t)
be given by

-1 -1

gl = . 7Il><t ) 92 = II‘><V7

Easy computation shows that

deta(gl) = —1, detﬁ<g1> = (—])r*l’ dety(gl) _ (_1)k7r+1’
det 06(92) = 1, detﬂ(gz) = —1, dety<gz) — (_l)r.

THEOREM 7. Let 1, be as in the example above. Then the following two conditions
are equivalent:
(9)  for every k-codimensional map f : N — P, where P is orientable, the manifold
n.(f) is orientable;
(10) k is even and r is odd.

THEOREM 8. Let , be as in the example above. Then the following two conditions
are equivalent:
(11) for every k-codimensional map f : N — P, where N is orientable, the manifold
n.(f) is orientable;
(12) k is even and r is even.
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PrOOF. According to condition (9) is equivalent to detf(g) - dety(g) >
0 for every ge O(r) x O(t). This latter is equivalent to detf(g;)-dety(g;) >0 and
detf(g2) - dety(g2) > 0, that is (using the computation above): r—1+k—r+1=
0 mod2 and 1 +r=0 mod2. This is exactly condition (10). The proof of
is similar. 0

For a stable map f: N — P we can define the submanifold
2"(f)={xe N|the germ of f at x is of Thom—Boardman type X".}.

Clearly /~'(5.(f)) = Z"(f), and the difference is a union of submanifolds all of co-
dimension >k. Since a manifold of codimension >2 can not alter orientability,
we have the following two corollaries.

COROLLARY 9. Let k,r > 1. The condition
(13) for every k-codimensional map f : N — P, where P is orientable, the manifold
2"(f) is orientable
is equivalent to condition (9) (and therefore to condition (10)).

CorROLLARY 10. Let k,r > 1. The condition
(14) for every k-codimensional map f : N — P, where N is orientable, the manifold
2"(f) is orientable
is equivalent to condition (11) (and therefore to condition (12)).

ExaMmpLE 3. We turn to 2%° germs, which is—according to the authors know-
ledge—the last Thom-Boardman type for which the .o7-classification is complete.
Mather proved that there are five infinite sequences of algebras corresponding to X2°
singularity types:

Lap R[x, Y]}/ (xp,x* + »") 2<a,b

I, R[[x, ¥]]/(xp, x* — y?) 2 <a,b both even
I, R[x, )]/ (xp, x4 p?) 2<a3<b

1V, R[x, ¥)]/(x* + »*,x) 3<a

Va R[x, yl]/(x* 4 p?, x%, yx71) 2<a

Here the only coincidenses are I, , = Ij 4, etc. (For convenience /II; , of Mather is
renamed as V> here, since—considering symmetries—/II, > is closer to the V, sequence.)
Using the method descibed above we can compute their maximal compact symmetry
groups (some more details in [4]), in which we will use the following notations: for the
groups O(2) and D, (dihedral group) p)’ means the two-dimensional representation

which maps
coso —sino . coswo  —sin wo
. 0 .
sinot  CoOSa sinwa,  COSwo.

1 0 . : .
and ( 0 1) to itself. Three one-dimensional representations of the dihedral groups
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will also be used. Let the dihedral group D, (of order 4a) be presented as {f,[f** =
2 =1,tft = 1y, The following define 1-dimensional representations of D,,:

Aiof——-1t— -1 k:f——-1t—1 7:f—11t— —1.

Moreover, ¢ and 0 will mean the non-trivial 1-dimensional representation of Z, (two
letters are needed when Z, x Z; is concerned). If one of the defined representations are
written as a representation of a group O(/) x H, Dy, X H, Z, x H then they really
mean to be a composition of that representation with the projection to O(/), Dy, or Z,.

THEOREM 11. If 5 is an isolated singularity of type X>° then MC Aut,n and its
representations Ay = o @y, ly =@y are given by

n MC Autpy o p
Iy, I, p 2<a<b both even D, x O(k) P T®1®p;
I b 2<aodd, 2<beven Z;x O(k) 1®ee®l @py
I b 2<a<b both odd Z,x O(k) 2¢ 1®e®p,
I, 4 2 <a odd D, x O(k) Py 1 OK®p,
I, 4 2 <a even Dy x O(k) Py AD1Dp,
11, , 2 < a even Dy x O(k) Py ADKDp;
Ih,» 0(2) x O(k) Py PI®p
11, , 2 < a even Dy x Ok —1) Py AD1OK®p_
1,, 2<aodd Dy x O(k—1) Py A@ P, ®pr_y
Il,, 2<a<b ZyxZryx0k—1)e®0 (c6@0)@e® @0%° @ p,
v, 3<a Dy, x O(k) P 1 @ck®p,
V, 2<a 0(2) x O(k —1) P 1 @ p3 @ pry
n 7
Lo p, 11, b 2 <a < b both even sz(@bgai@a—i_i_é‘l}®(16—)pk)(—9pk
2a+b—4
Iop 2<a odd, 2<b even Ba@ %1} ® (1®pi) ® pi
b—2
Lo 2 < a<b both odd %(1@@@(1@,),()@(8@/),()
a—1
Lo.a 2 <a odd 5 (P @) @ (1©p) @ (2@ py)
a a—?2
Lo, 2 <a even 5P ® (10r)| @1 @) @ (k® py)

2 2
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—2

11, , 2 < a even sz @2 > (1 @K)} ® (1D p) @ (i)
1L 5 PO (P ®1)®p

a a—2
i, , 2 < a even lipz @ 5 (1 @K)} RULD1ID ]

—1
I1l,.4 2 <a odd TLr@p@ne(meler) @ )
i, 2<a<b B ®e® @ (02 ®py )] @

® @) 10°" @ 0% ® (2 @ py_y)]

v, 3<a (B @1 @) ® (A ®py)
Va 2<a C_Dja:_ll (pgij ® p§+j) S (@fz_llp@ ® Pr-1

As an application of this theorem and Theorems 3 and 4 we have the following
characterization of the orientability of X%°-singularity submanifolds.

THEOREM 12. In the next table—for some singularities of Thom—Boardman type
220 equivalent conditions are given to condition (2) (and therefore to condition (1)):

n=1,p: a=b=2 mod4 a#b k 1s even
n =1,y a=b=2 mod4 k 1s even
n=1,p: a=b=1 mod2 a#b k 1s odd
n=1up,1pa a=1, b=3 mod4

n =11,y 1, , a=2 b=3 mod4 k is even
n=1V, k 1s odd.

Moreover, for the X*° singularities above these are the only values of a, b, k for which
condition (2) holds.

THEOREM 13. In the next table—for some singularities of Thom—Boardman type
220 _equivalent conditions are given to condition (4) (and therefore to condition (3)):

n=1up,1pa a=1mod2, h=2 mod4 k is even
n=11,: a=b=3 mod4 a#b k 1s even
n=1II1,y: a=b=2 mod4 k is even
n="V a=0 mod2 k is even.

Moreover, for the Z*° singularities above these are the only values of a, b, k for which
condition (4) holds.

Besides Theorems 3 and 4 there is a third type of results we can prove about the
orientability of singularity submanifolds #(f), this time in case both the source N and
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the target P manifolds are oriented. The arguments follows the same line with the only
difference that now we must start with the “universal singular map” Y59t X507 in
[5]. The only change in this case is that we have to replace the group G = MC Aut,n
to

G* = GN (Diff"(R",0) x Diff *(R"**,0) UDIff ~(R",0) x Diff " (R"**,0))

for any map germ 7 : (R",0) — (R"%,0). Otherwise all the proofs goes the same way,
so we will restrict ourselves to only stating the results.

THEOREM 14. The following conditions are equivalent:
(15) for every f:N — P, where N and P are orientable, the manifold n(f) is
orientable;

(16) det1;(G*) > 0;

(17) detAi(G7) > 0;

(18) there is no g € G such that det(g) <0 and deti,(g) < 0;

(19) either detA,(g) > 0 for all g€ G or detiy(g) >0 for all ge G (& (2) or (4)).

In case # = n' of Example 1 condition (19) is equivalent to the condition: (6) or
(8). In case # =, of Example 2 condition (19) reads: (10) or (12), that is

(20) Kk is even.

Just like above, we can use that if & > 0 then the orientability of #, is equivalent to
the orientability of X"(f) therefore we have the following corollary.

COROLLARY 15. Let k> 1. The condition

(21)  for every k-codimensional map f : N — P, where N and P are orientable, the
manifold X" (f) is orientable;
is equivalent to condition (20).

This last corollary can also be derived from a result of Ando [1, Proposition 4.1].
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