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Abstract. We prove Abel’s theorem for divisors on an arbitrary compact complex

manifold by combining the Čech cohomology of sheaves, a logarithmic residue formula for

1-forms and de Rham’s theory applied to open submanifolds.

0. Introduction.

Let M be a compact complex manifold of dimension n, DivðMÞ be the abelian

group of divisors on M and MðMÞ be the field of meromorphic functions on M. The

main purpose of the present paper is to prove the following

Abel’s Theorem for Divisors. Let D A DivðMÞ. Then, D is linearly equivalent to

0 (i.e. D ¼ ðF Þ for some F A MðMÞ�) if and only if the class of D in H2nÿ2ðM;ZÞ is 0

and for any integral ð2nÿ 1Þ-chain Q on M with D ¼ qQ there exists an integral ð2nÿ 1Þ-

cycle G on M such that for all ½o� A H
n;nÿ1

q
ðMÞ we have

ð
Q

o ¼

ð
G

o:

Notice that
Ð
Q
o and

Ð
G
o depend only on the Dolbeault cohomology class ½o� A

H
n;nÿ1

q
ðMÞ. If M is Kähler, one can deduce this theorem from results of Kodaira [K1]

and others. But the validity of it on an arbitrary compact complex manifold M was

not known even conjecturally. One proved Abel’s Theorem on a compact Kähler

manifold M, following Weyl’s book ‘‘Die Idee der Riemannschen Fläche,’’ 1913 (3rd

ed., 1955), by giving a necessary and su‰cient condition for a multiplicative function

(which was a kind of multi-valued meromorphic function on M ) to be single-valued by

means of the theory of harmonic integrals.

In 1983 I found out another proof which was based, after Siegel’s book [Si2], on the

consideration of a multiplicative function by means of a logarithmic residue formula,

de Rham’s theory applied to the open submanifold M ÿ SuppD and the Hodge

decomposition and I noticed that the Kählerness of M was not essential for the validity.

In 1990, on the occasion of a joint work with T. Segawa concerning generalizations

of Abel’s theorem, I recognize that this proof holds true for the necessity on an arbitrary

M (where only the residue formula and de Rham’s theory are used). After an

investigation, I find that this proof holds true for the su‰ciency on such an M whose

Picard variety (Kodaira [K4]) is a complex torus, by an e¤ective use of the cohomology

theory of sheaves. Trying to carry out this proof on an arbitrary M is rather
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hopeless. Immediately after the finding, I notice a natural method of proof in which

the cohomology theory of sheaves is used more e¤ectively. It is to compute directly the

composite injection

Cl0ðMÞ ,! Pic0ðMÞGH 1ðM;OMÞ=H 1ðM;ZÞ

GH
n;nÿ1

q
ðMÞ�=H2nÿ1ðM;ZÞ

using the Čech cohomology and to show that the map is induced by

Div0ðMÞ C D 7! ðH n;nÿ1

q
ðMÞ C ½o� 7!

ð
Q

o A C ÞmodH2nÿ1ðM;ZÞ;

where Q is an integral ð2nÿ 1Þ-chain on M with qQ ¼ D and

Div0ðMÞ :¼ fD A DivðMÞ j the class of D in H2nÿ2ðM;ZÞ is 0g;

Cl 0ðMÞ :¼ Div0ðMÞ=fðFÞ A DivðMÞ jF A MðMÞ�g:

(If M is Kähler, this fact is essentially shown in Weil [W2], p. 893 by means of

Kodaira’s formula [K1], Theorem 3. The key point of my new method is to reverse the

order of arguments.) It turns out this new method is available on an arbitrary M.

The new method is based, so to speak, on the consideration of a Cy solution to a

multiplicative Cousin problem (which is single-valued and has ‘poles’ on M ) by means

of the residue formula, de Rham’s theory and the Serre duality. In §1, I explain the

residue formula and prove, as an application of it, the well-known fact that under the

isomorphism by Poincaré duality

H 2ðM;ZÞG ĤH2nÿ2ðM;ZÞ;

cð½D�Þ corresponds to the homology class of D, where M can be paracompact,

ĤH2nÿ2ðM;ZÞ is the ð2nÿ 2Þ-homology group of infinite chains on M and cð½D�Þ is the

Chern class of the line bundle ½D� A PicðMÞ. This fact plays a fundamental role in the

new method and implies in particular that if D is linearly equivalent to 0 then the class

of D in ĤH2nÿ2ðM;ZÞ is 0. In §2, I accomplish the proof of Abel’s Theorem and show

how this theorem implies Kodaira’s formula mentioned earlier, Abel’s theorem for

families of e¤ective divisors on a projective algebraic surface due to Severi [Sev1] and

Igusa’s formula in his theory [I ] of the Picard variety of a projective complex manifold.

I would like to thank T. Segawa for useful conversations during the last period of

this work.

1. Logarithmic residue formula for 1-forms.

Our proof of Abel’s theorem for divisors can be regarded as a generalization of the

proof in Siegel [Si2] and is based on the following logarithmic residue formula for 1-forms:

Theorem 1.1 (Kodaira [K1], (24), (30)). Let U be a paracompact complex manifold

of dimension n, F A MðUÞ�. Then the closed meromorphic 1-form d logF on U

determines a 1-current ½d logF � on U by integrals of absolute convergence and one has

d½d logF � ¼ 2piðF Þ
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as 2-currents on U, where ðFÞ A DivðUÞ determines a closed 2-current on U as an infinite

ð2nÿ 2Þ-cycle on U.

Theorem 1.1 0 (Kodaira [K2], (2.14)). Let U, F as above. Then for any finite 2-

chain C on U with Supp qCHU ÿ SuppðF Þ one has

ð
qC

d logF ¼ 2piIðC; ðF ÞÞU ;

where Ið � ; � ÞU denotes the intersection number on U.

We shall give a proof of the implication Theorem 1.1 ) Theorem 1.1 0, whose

method is used in our proof of Abel’s theorem for divisors (Theorem 2.2 below). First

of all, from Theorem 1.1 follows that

ðFÞ ¼ qQ

for some infinite real ð2nÿ 1Þ-chain Q on U, by de Rham theory ([R], Chapitre IV, §23,

6 line after Théorème 19, p. 117).

Put G :¼ U ÿ SuppðF Þ. Applying de Rham theory to open submanifold G, we can

take a Cy closed ð2nÿ 1Þ-form C on G with compact support which corresponds to the

1-cycle qC on G under the isomorphism by Poincaré duality

H 2nÿ1ðGcðG;A
�
GÞÞGH 2nÿ1

c ðG;CÞGH1ðG;CÞ:

(For de Rham theory, see also Weil [W3], especially §2, p. 127 and §4, p. 139.) This C ,

considered as a Cy closed ð2nÿ 1Þ-form on U with compact support, corresponds to the

1-cycle qC on U under the isomorphism by Poincaré duality

H 2nÿ1ðGcðU ;A
�
U ÞÞGH 2nÿ1

c ðU ;CÞGH1ðU ;CÞ:

Since C is a 2-chain on U, qC is homologous to 0 on U. Hence,

C ¼ dF

for some Cyð2nÿ 2Þ-form F on U with compact support. Then

ð
qC

d logF ¼

ð
G

C5 d logF ð9 d logF ; considered on G; is a Cy closed 1-formÞ

¼

ð
U

C5 d logF ¼

ð
U

dF5 d logF ¼ ÿ

ð
U

d logF5 dF

¼ ÿ½d logF �ðdFÞ ¼ ÿd½d logF �ðFÞ ¼ ÿ2piðF ÞðFÞ ð9 Theorem 1:1Þ

¼ ÿ2piqQðFÞ ¼ ÿ2piQðdFÞ ¼ ÿ2piQðCÞ ¼ ÿ2pi

ð
Q

C

¼ ÿ2piIðQ; qCÞG

ð9Q; considered on G; is an infinite real ð2nÿ 1Þ-cycleÞ

¼ ÿ2piIðQ; qCÞU ¼ 2piIðqC;QÞU ¼ 2piIðC; qQÞU ¼ 2piIðC; ðF ÞÞU
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(9 In general, for any finite k-chain C and infinite ðd ÿ k þ 1Þ-chain Q on an

oriented topological manifold U of dimension d with Supp qC V Supp qQ ¼ f, one has

ðÿ1ÞkIðqC;QÞU ¼ IðC; qQÞU

(see Seifert-Threlfall [ST ], Zehntes Kapitel, §74, (10)).). r

Remark 1.2. (i) One can read an equality in Weil [W1], p. 114 which is es-

sentially the same as Theorem 1.1 0. See also Weil [W2], p. 874.

(ii) In 1924, Lefschetz already used Theorem 1.1 0 for a topological proof of the

period relations concerning meromorphic functions of n complex variables with 2n

independent periods (see Siegel [Si1], p. 119).

The next fact is well-known (see, e.g., Serre [Ser], §II, n0 6, p. 61 and Grauert-

Remmert [GR], Einleitung, Nr.1 and Kapitel V, §2, Abschnitt 4), although its proof is

rarely found in the literature even if M is compact. (One often attempts to prove it by

means of the Z-valued pairings with a 2-cycle on M or the C-valued pairings with a Cy

closed ð2nÿ 2Þ-form on M with compact support, but this method establishes only the

correspondence modulo torsion in case M is compact.)

Theorem 1.3 (Dolbeault [D], Chap. II, §B, n0 3, Théorème 2.7). Let M be

a paracompact complex manifold of dimension n, D A DivðMÞ. Then under the

isomorphism by Poincaré duality

H 2ðM;ZÞG ĤH2nÿ2ðM;ZÞ;

cð½D�Þ corresponds to the homology class of D, where ĤH2nÿ2ðM;ZÞ is the ð2nÿ 2Þ-

homology group of infinite chains on M and cð½D�Þ is the Chern class of the line bundle

½D� A PicðMÞ ¼ H 1ðM;O�
MÞ.

Remark 1.4. Kodaira [K2], pp. 851–852, p. 854 already contained a special case of

Theorem 1.3 where M was compact, the correspondence was modulo torsion and D was

a canonical divisor apparently. Kodaira [K6], §3.6, (3.166) gives another proof of this

case for the general D. (Kodaira-Spencer [KS ], p. 876 contained the case where M was

compact and torsion was included, but their proof was incorrect. The next proof gives

just a correction of it in case M is compact; in [KS ] they claimed Iðsijk;DÞM ¼ cijk
instead of Iðsijk;DÞM ¼ cijk þ ðdaÞijk.)

We shall give a proof of Theorem 1.3 as an application of Theorem 1.1 0, following

Dolbeault [D], pp. 112–115 and Kodaira [K6], pp. 167–170 in substance.

Take a su‰ciently fine simplicial decomposition of M, whose vertices, 1-simplices, 2-

simplices, . . . are denoted by pk; sjk ð j < kÞ, sijk ði < j < kÞ, . . . and satisfy qsjk ¼ pk ÿ

pj, qsijk ¼ sjk ÿ sik þ sij; . . . : Let Uk be the open star of pk. One gets an open cover

fUkg of M. One may assume that DjUk
¼ ðFkÞ for some Fk A MðUkÞ

�. Then one has

½D� ¼ ½f fjkg� A H 1ðfUkg;O
�
MÞHH 1ðM;O�

MÞ with fjk ¼ Fj=Fk

and has

cð½D�Þ ¼ ½fci jkg� A H 2ðfUkg;ZÞ ¼ H 2ðM;ZÞ
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with

cijk ¼ 1

2p
ffiffiffiffiffiffiffi

ÿ1
p ðlog fjk ÿ log fik þ log fijÞ:

On the other hand, one may also assume that SuppD does not meet any 1-simplex

sjk. Denoting by b A H 2ðM;ZÞ the cohomology class which corresponds to the

homology class of D in ĤH2nÿ2ðM;ZÞ under the isomorphism by Poincaré duality, one

has

b ¼ ½fbijkg� A H 2ðfUkg;ZÞ ¼ H 2ðM;ZÞ

with

bijk ¼ Iðsijk;DÞM :

What is required is to show that b ¼ cð½D�Þ, i.e. there is a 1-cochain

a ¼ fajkg A C1ðfUkg;ZÞ

such that

bijk ÿ cijk ¼ ðdaÞijk

¼ ajk ÿ aik þ aij

for all Ui VUj VUk 0q.

In order to calculate bijk ¼ Iðsijk;DÞM for any 2-simplex sijk, denoting by pijk; pjk; pik;

pij the barycenter of sijk; sjk; sik; sij respectively and joining pjk; pik; pij to pijk by three line

segments, one decomposes the 2-simplex sijk into three 2-cells eijk HUi, ejki HUj, ekij H

Uk (see Figure 5 in Kodaira [K6], p. 169). One may assume that SuppD does not meet

the three line segments. Then

Iðsijk;DÞM ¼ Iðeijk;DÞUi
þ Iðejki;DÞUj

þ Iðekij ;DÞUk

¼ Iðeijk; ðFiÞÞUi
þ Iðejki; ðFjÞÞUj

þ Iðekij; ðFkÞÞUk
:

Applying Theorem 1.1 0 to Ui;Uj;Uk respectively, we get

2p
ffiffiffiffiffiffiffi

ÿ1
p

Iðsijk;DÞM ¼
ð

qei j k

d logFi þ
ð

qej k i

d logFj þ
ð

qek i j

d logFk

¼
ð pi j k

pi j

d logFi ÿ
ð pi j k

pi k

d logFi þ
ð pi j k

pjk

d logFj

ÿ
ð pi j k

pij

d logFj þ
ð pi j k

pi k

d logFk ÿ
ð pi j k

pj k

d logFk þ ðdxÞijk

¼
ð pi j k

pj k

d log fjk ÿ
ð pi j k

pik

d log fik þ
ð pi j k

pi j

d log fij þ ðdxÞijk;

where we put
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xjk :¼
ð pjk

pj

d logFj ÿ
ð pjk

pk

d logFk:

Hence

2p
ffiffiffiffiffiffiffi

ÿ1
p

Iðsijk;DÞM ¼ log fjkðpijkÞ ÿ log fjkðpjkÞ ÿ log fikðpijkÞ

þ log fikðpikÞ þ log fijðpijkÞ ÿ log fijðpijÞ þ ðdxÞijk

¼ 2p
ffiffiffiffiffiffiffi

ÿ1
p

cijk ÿ ðdyÞijk þ ðdxÞijk

¼ 2p
ffiffiffiffiffiffiffi

ÿ1
p

cijk þ ðdzÞijk;

where we put

yjk :¼ log fjkðpjkÞ;

zjk :¼
ð pj k

pj

d logFj ÿ
ð pj k

pk

d logFk ÿ log fjkðpjkÞ:

Since

exp zjk ¼ FjðpjkÞFjðpjÞÿ1
FkðpjkÞÿ1

FkðpkÞ fjkðpjkÞÿ1

¼ FjðpjÞÿ1
FkðpkÞ;

putting

ajk :¼ 1

2p
ffiffiffiffiffiffiffi

ÿ1
p ðzjk þ logFjðpjÞ ÿ logFkðpkÞÞ A Z;

we have

Iðsijk;DÞM ¼ cijk þ ðdaÞijk
as required. r

For Theorem 1.3 and the second Cousin problem, see Remark 2.3.

2. Abel’s theorem for divisors.

Let M be a compact complex manifold of dimension n throughout this section.

The diagram in the next proposition is important in our proof of Abel’s theorem for

divisors.

Proposition 2.1. The following diagram is commutative:

H 1ðM;OMÞ G H
0;1

q
ðMÞ G H

n;nÿ1

q
ðMÞ�

x

?

?

?

x

?

?

?

H 1ðM;ZÞ G H2nÿ1ðM;ZÞ;
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where the top row is Dolbeault isomorphism and Serre duality, the bottom row is the

isomorphism by Poincaré duality, the left-hand injection is induced by the exact sequence

0 ! ZM ! OM ! O�
M ! 0 and the right-hand arrow is defined as follows:

H2nÿ1ðM;ZÞ C ½G � 7! H
n;nÿ1

q
ðMÞ C ½o� 7!

ð

G

o A C

� �

:

Proof. One has only to compute the composite map a:

H2nÿ1ðM;ZÞGH 1ðM;ZÞ ,! H 1ðM;OMÞGH
0;1

q
ðMÞGH

n;nÿ1

q
ðMÞ�:

Let ½G � A H2nÿ1ðM;ZÞ. The image of it by the composite map

H2nÿ1ðM;ZÞGH 1ðM;ZÞ ,! H 1ðM;CÞGH 1ðGðM;A �
MÞÞ

is represented by Cy closed 1-form y such that
Ð

G
C ¼

Ð

M
y5C for all Cy closed

ð2nÿ 1Þ-form C . The image of ½y� by the composite map

H 1ðGðM;A �
MÞÞGH 1ðM;CÞ ! H 1ðM;OMÞGH

0;1

q
ðMÞ

is represented by q-closed ð0; 1Þ-form y0;1 ¼ ð0; 1Þ-part of y. (9 ½y � corresponds to

½fcijg� A H 1ðM;CÞ, where 1-cocycle fcijg A Z1ðfUig;CÞ with some open cover fUig of

M satisfies y ¼ dfi for some fi A GðUi;A
0
MÞ and cij ¼ fj ÿ fi on Ui VUj 0q. The

image of ½fcijg� by the composite map H 1ðM;CÞ ! H 1ðM;OMÞGH
0;1

q
ðMÞ is repre-

sented by q-closed ð0; 1Þ-form j with j ¼ qfi on Ui. Then j ¼ y0;1.)

Therefore, the image of ½G � by the composite map a is given by the linear form

H
n;nÿ1

q
ðMÞ C ½o� 7!

ð

M

y0;1 5o ¼

ð

M

y5o

¼

ð

G

o A C ð9 do ¼ qo ¼ 0Þ: r

Now we shall finish preparation. Put

Div0ðMÞ :¼ fD A DivðMÞ j the class of D in H2nÿ2ðM;ZÞ is 0g;

Pic0ðMÞ :¼ fL A PicðMÞ ¼ H 1ðM;O�
MÞ jH 2ðM;ZÞ C cðLÞ ¼ 0g:

It follows from Theorem 1.3 that the inverse image of Pic0ðMÞ by the map

DivðMÞ C D 7! ½D� A PicðMÞ

is equal to Div0ðMÞ. Hence, by

fD A DivðMÞ jPicðMÞ C ½D� ¼ 0g ¼ fðFÞ A DivðMÞ jF A MðMÞ�g;

this map induces an injection Cl 0ðMÞ ,! Pic0ðMÞ, where we put

Cl0ðMÞ :¼ Div0ðMÞ=fðFÞ A DivðMÞ jF A MðMÞ�g:

The exponential exact sequence 0 ! ZM ! OM ! O�
M ! 0 gives rise to

H 1ðM;OMÞ=H 1ðM;ZÞGPic0ðMÞ:
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By Proposition 2.1, the map H2nÿ1ðM;ZÞ ! H
n;nÿ1

q
ðMÞ� is an injection and

H 1ðM;OMÞ=H 1ðM;ZÞGH
n;nÿ1

q
ðMÞ�=H2nÿ1ðM;ZÞ:

Theorem 2.2 (Abel’s Theorem for Divisors). In the above circumstances, the

composite injection

Cl 0ðMÞ ,! Pic0ðMÞGH 1ðM;OMÞ=H 1ðM;ZÞ

GH
n;nÿ1

q
ðMÞ�=H2nÿ1ðM;ZÞ

is induced by

Div0ðMÞ C D 7! H
n;nÿ1

q
ðMÞ C ½o� 7!

ð

Q

o A C

� �

modH2nÿ1ðM;ZÞ;

where Q is an integral ð2nÿ 1Þ-chain on M with qQ ¼ D.

Proof. Let D A Div0ðMÞ. Then for some su‰ciently fine open cover fUlg of M

and some

½fhlmg� A H 1ðfUlg;OMÞHH 1ðM;OMÞ;

one has DjUl
¼ ðFlÞ for some Fl A MðUlÞ

� and Fl=Fm ¼ exp 2pihlm on Ul VUm 0q.

By H 1ðM;OMÞGH
0;1

q
ðMÞ, ½fhlmg� corresponds to ½j�, where q-closed ð0; 1Þ-form j

satisfies hlm ¼ fm ÿ fl on Ul VUm 0q for some fl A GðUl;A
0;0
M Þ and j ¼ qfl on

Ul. Then one gets a non-vanishing Cy function ~FF on M ÿ SuppD with the property

~FF jUl
¼ Fl exp 2pifl:

d log ~FF is a Cy closed 1-form on M ÿ SuppD and satisfies

d log ~FF jUl
¼ d logFl þ 2pidfl:

Now, for any ½o� A H
n;nÿ1

q
ðMÞ one has

ð

M

j5o ¼
1

2pi

ð

M

d log ~FF5o

ð9ð0; 1Þ-part of
1

2pi
d log ~FF is equal to jÞ:

Claim 2.2.

1

2pi

ð

M

d log ~FF 5o ¼

ð

Q

oþ
X

j

ð

G j

o �
1

2pi

ð

gj

d log ~FF ÿ Iðgj;QÞM

" #

;

where ½gj � A H1ðM;ZÞ ð1Y jY b1ðMÞÞ constitute a basis of H1ðM;ZÞ/torsion, each

representative 1-cycle gj is taken such that Supp gj HM ÿ SuppD and ½G j � ð1Y jY

b2nÿ1ðMÞÞ is the basis of H2nÿ1ðM;ZÞ dual to the basis ½gj� mod torsion ð1Y jY b1ðMÞÞ

by Poincaré duality
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H2nÿ1ðM;ZÞGH 1ðM;ZÞ !
@

HomZðH1ðM;ZÞ=torsion;ZÞ;

i.e. Iðgj ;GkÞM ¼ djk (Kronecker delta).

Since

1

2pi

ð
gj

d log ~FF A Z for all j;

it follows from Claim 2.2 that

ðH n;nÿ1

q
ðMÞ C ½o� 7!

ð
M

j5o A CÞ

1 ðH n;nÿ1

q
ðMÞ C ½o� 7!

ð
Q

o A CÞmodH2nÿ1ðM;ZÞ;

as required.

Proof of Claim 2.2 (by a method used in the proof of the Riemann-Roch theorem in

Kodaira [K5]):

Put G :¼ M ÿ SuppD. In the same way as in the proof of the implication

Theorem 1.1 ) Theorem 1.1 0, we can take a Cy closed ð2nÿ 1Þ-form kGðgjÞ on G with

compact support which corresponds to the 1-cycle gj on G. Then, kGðgjÞ ð1Y jY

b1ðMÞÞ considered on M constitute a basis of H 2nÿ1ðGðM;A �
MÞÞ. Hence

o ¼
X
j

ajkGðgjÞ þ dF

for some aj A C and some Cyð2nÿ 2Þ-form F on M ð9 do ¼ qo ¼ 0Þ, where

ð
Gk

o ¼
X
j

aj

ð
Gk

kGðgjÞ

¼
X
j

ajIðGk; gjÞM ¼ ÿ
X
j

ajIðgj;GkÞM ¼ ÿak

for all k. Then

X
j

aj
1

2pi

ð
gj

d log ~FF

¼
X
j

aj
1

2pi

ð
G

kGðgjÞ5 d log ~FF ð9 d log ~FF is Cy closed on GÞ

¼ ÿ
1

2pi

ð
M

d log ~FF 5oþ
1

2pi

ð
M

d log ~FF5dF:

Hence
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1

2pi

ð
M

d log ~FF 5oþ
X
j

aj
1

2pi

ð
gj

d log ~FF

¼
1

2pi

ð
M

d log ~FF 5 dF

¼
1

2pi
½d log ~FF �ðdFÞ ¼

1

2pi
d½d log ~FF �ðFÞ

¼ DðFÞ ð9Theorem 1:1 on UlÞ

¼ qQðFÞ ¼ QðdFÞ ¼ QðoÞ ÿ
X
j

ajQðkGðgjÞÞ

¼

ð
Q

oÿ
X
j

ajIðQ; gjÞG ð9Q is an infinite cycle on GÞ

¼

ð
Q

oþ
X
j

ajIðgj;QÞM : r

Remark 2.3. The function ~FF appearing in the proof of Theorem 2.2 is just a Cy

solution to the multiplicative Cousin problem with the data D A Div0ðMÞ. Recall that

given a data D A DivðX Þ, where X is a paracompact complex manifold of dimension n,

the problem has a continuous (in fact, a Cy) solution if and only if cð½D�Þ ¼ 0 (or, by

Theorem 1.3, the class of D in ĤH2nÿ2ðX ;ZÞ is 0). When H 1ðX ;OX Þ ¼ 0, this condition

implies that ½D� ¼ 0, i.e. the problem has an analytic solution. For the second Cousin

problem and Oka’s principle, see Serre [Ser], §II and Grauert-Remmert [GR], Kapitel V,

§§2–3. We refer the reader to Nagashima [N ], §2 for relations between Theorem 1.1 0,

Theorem 1.3 and the solubility of the second Cousin problem.

Remark 2.4. (i) If the canonical injection H 1ðM;RÞ ,! H 1ðM;OMÞ is surjective

or, equivalently, the Picard variety H 1ðM;OMÞ=H
1ðM;ZÞ of M is a complex torus

(Kodaira [K4], pp. 13–15; these are valid if M is Kähler, see Kodaira-Spencer [KS ], p.

872), then we have: D ¼ ðFÞ for some multiplicative function F on M whose multiplier

wF A HomZðH1ðM;ZÞ;Uð1ÞÞ  
@

H 1ðM;Uð1ÞÞ; wF ð½g�Þ ¼ exp

ð
g

d logF ;

belongs to the subgroup

HomZðH1ðM;ZÞ=torsion;Uð1ÞÞ  
@

H 1ðM;RÞ=H 1ðM;ZÞ

, D A Div0ðMÞ. (In general, we see as in the proof of Theorem 1.3 that D ¼ ðF Þ

for some multiplicative function F on M with w ¼ wF if and only if w maps to ½D�

under H 1ðM;Uð1ÞÞ ,! H 1ðM;O�MÞ (see Nagashima [N ], §2 for details). Hence the

implication ) holds on an arbitrary M. ( is shown by taking hlm as real constants in

the proof of Theorem 2.2 and then F is given by d logF jUl
¼ d logFl. In case M is

Kähler, Kodaira has given a result ([K1], Theorem 1) which says that D ¼ ðFÞ for some

multiplicative function F on M if and only if the class of D in H2nÿ2ðM;ZÞ is a torsion
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element and then Igusa [I ], pp. 13–14 has treated the torsion element using the duality

of finite abelian groups

HomZðT1ðMÞ;Q=ZÞ  
@

T 2ðMÞGT2nÿ2ðMÞ

(where TjðMÞHHjðM;ZÞ, T kðMÞHH kðM;ZÞ are the torsion subgroups; cf. Seifert-

Threlfall [ST ], Zehntes Kapitel, §77, Aufgabe 2 and Hattori [Ha], Chapter 8, Problem 7,

p. 307) and obtained the equivalence ,; see also Weil [W1], [W2].)

In that case, we can show by the same method as in the proof of Claim 2.2 the

following formula for all ½o� A H
n;nÿ1

q
ðMÞ:

ð

Q

o ¼ ÿ
X

j

ð

G j

o �
1

2pi

ð

gj

d logF ÿ Iðgj;QÞM

" #

; qQ ¼ ðF Þ:ð�Þ

Theorem 2.2 follows also from ð�Þ and gives a necessary and su‰cient condition for a

multiplicative function to be single-valued.

(ii) If M is Kähler, then for any o A H n;nÿ1ðMÞ :¼ fharmonic ðn; nÿ 1Þ-form on

Mg we have

o ¼
X

j

ajHgj

(H denotes the harmonic part of a current and aj is the same as in the proof of Claim

2.2). Hence, in this case ð�Þ in (i) is seen to be equivalent to Kodaira’s formula ([K1],

Theorem 3, [K3], §9):

1

2pi

ð

gj

d logF ¼ Iðgj;QÞM þ

ð

Q

Hgj for all j

by means of the Hodge decomposition

H 2nÿ1ðM;CÞGH n;nÿ1ðMÞlH n;nÿ1ðMÞ:

(iii) When M is Kähler, denoting by W the Kähler form on M, we have

H 0ðM;W1
MÞ !

@

H n;nÿ1ðMÞ; A 7! A5Wnÿ1

by Hodge theory. Hence
Ð

Q
A5Wnÿ1 appears in Theorem 2.2, which corresponds to

Qf ðA5Wnÿ1Þ appearing in a condition for additive functions to be single-valued

(Kodaira [K2], (3.32), [K3], §7). When M is projective, for W obtained from a

hyperplane section E we get a formula

ð

Q

A5Wnÿ1 ¼

ð

Q :E nÿ1

A

(where E nÿ1 is a linear space section of codimension nÿ 1) which corresponds to a

formula rewriting Qf ðA5Wnÿ1Þ (Kodaira [K2], (7.2), [K3], §7). Then Theorem 2.2

says: D A Div0ðMÞ is linearly equivalent to 0 if and only if for any integral ð2nÿ 1Þ-

chain Q on M with D ¼ qQ there exists an integral ð2nÿ 1Þ-cycle G on M such that for
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all A A H 0ðM;W1
MÞ

ð

Q :E nÿ1

A ¼

ð

G :E nÿ1

A:

Especially, in case of n ¼ 2 this formulation implies the following result of Severi [Sev2],

§4 for algebraically equivalent e¤ective divisors D1;D2 on M: if for any integral 1-chain

t on E with D1 :E ÿD2 :E ¼ qt there exists an integral 1-cycle g on M (or, by

Lefschetz’s theorem, an integral 1-cycle g on E ) such that
Ð

t
A ¼

Ð

g
A for all A A

H 0ðM;W1
MÞ, then dD1 is linearly equivalent to dD2 for some d A N which depends only

on M. (To see this for nZ 2, take an integral ð2nÿ 1Þ-chain Q0 on M with D1 ÿD2 ¼

qQ0 and put t ¼ Q0 :E
nÿ1 on E nÿ1 and then notice that, by the strong Lefschetz’s

theorem

H2nÿ1ðM;QÞ !
@

H1ðM;QÞ; ½G � 7! ½G :E nÿ1�;

the free Z-module H2nÿ1ðM;ZÞ is embedded into the free Z-module H1ðM;ZÞ/torsion

of the same rank. Hence, for some d A N (which depends only on M ) the class of dg in

H1ðM;ZÞ/torsion is equal to the class of G :E nÿ1 with some integral ð2nÿ 1Þ-cycle G on

M. Put Q ¼ dQ0.) Abel’s theorem for a family fDsgs AS of e¤ective divisors due to

[Sev1] (see also Zariski [Z ], p. 104, p. 164) follows from this result by the fact that if dDs

are linearly equivalent for all s A S then Ds are also, provided that S is connected.

(This fact is readily seen by means of the Picard variety of M.) In the works of Severi,

E is assumed only to be an irreducible member of a continuous system of y
1 with

ðE2Þ > 0.

(iv) When M is projective, we find that Igusa’s formula ([I], p. 15, the last line) is

essentially equivalent to the following:

ð

Q :E nÿ1

A ¼ ÿ
X

j

ð

G j :E nÿ1

A �
1

2pi

ð

gj

d logF ÿ Iðgj;QÞM

" #

;ð� 0Þ

which follows from ð�Þ in (i) in the same way as in (iii), with the substitution of

ÿ

ð

G j :E nÿ1

A ¼
X

k

ð

gk

A � IðGk :G j;E
nÿ1ÞM :

If one denotes by Aa ð1Y aY h1;0ðMÞÞ a basis of H 0ðM;W1
MÞ, then a period matrix of

the Albanese variety of M is given by
Ð

gk
Aa and we see that a period matrix of the

Picard variety of M is given by
Ð

G j :E nÿ1 Aa. The intersection numbers IðGk :G j ;E
nÿ1ÞM

and the periods
Ð

G j :E nÿ1 Aa have already appeared in a generalization of the Riemann

period relations by Hodge [Ho], p. 114.

In fact, using his notation, Igusa’s formula is essentially the same as

1

2pi

ð

g

d logF ÿ Iðg;Q;VÞ

� �

¼ eðmÞ tEÿ1
;

where Q is that of our notation. This can be rewritten as
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ð

Q :CðMÞ

ðFÞ ¼
X

e

i¼1

X

q

j¼1

ðPi j

P 0
ij

ðFÞ ¼
1

2pi

ð

g

d logF ÿ Iðg;Q;VÞ

� �

� tE to;

that is to say

ð

Q :CðMÞ

Fa ¼
X

2q

j;k¼1

oakEkj �
1

2pi

ð

gj

d logF ÿ Iðgj;Q;VÞ

" #

; 1Y aY q;

where oak ¼
Ð

gk
Fa. Now, Igusa’s Z-matrix E ([I], pp. 8–9) given by

tIÿ1
b ¼

EjO

Oj�

� �

and ðIbÞij ¼ Iðbi; bj ;CðMÞÞ A Q; 1Y i; jY 2p

(where bj ð1Y jY 2qÞ is the homology basis of rational ‘‘invariant cycles’’ on CðMÞ

such that bj @ gj (in V mod. Q), bj ð2qþ 1Y jY 2pÞ is that of rational ‘‘vanishing

cycles’’ on CðMÞ and p is the genus of the curve CðMÞ; see Zariski [Z ], Chapter VI and

Appendix to it) is expressed simply as

Ekj ¼ IðGk :G j;CðMÞ;VÞ A Z;

where G j ð1Y jY 2qÞ denotes that of our Claim 2.2, since we have

Iðbl ;Gk :CðMÞ;CðMÞÞ

¼ Iðbl ; i
�Gk;CðMÞÞ ¼ Iði�bl ;Gk;VÞ

¼ Iðgl ;Gk;VÞ ¼ dlk; 1Y lY 2q

(where i : CðMÞ ,! V is the inclusion) and

Gk :CðMÞ@
X

2q

j¼1

bj � IðGk :G j;CðMÞ;VÞ ðon CðMÞmod:QÞ

(9Gk:CðMÞ is obviously an ‘‘invariant cycle’’ on CðMÞ and hence is homologous on

CðMÞ to a linear combination of bj ð1Y jY 2qÞ. The coe‰cients of it are determined

by

Gk:CðMÞ@
X

2q

j¼1

gj � IðGk :G j;CðMÞ;VÞ ðin V mod: QÞ

which follows at once from IðGk :CðMÞ;G j;VÞ ¼ IðGk :G j ;CðMÞ;VÞÞ.
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York, 1977.

[Ha] Hattori, A., Topology II (in Japanese), Iwanami, Tokyo, 1978.

[Ho] Hodge, W. V. D., A special type of Kähler manifold, Proc. London Math. Soc. (3) 1 (1951), 104–

117.

Abel’s theorem for divisors 1027



[I] Igusa, J.-I., On the Picard varieties attached to algebraic varieties, Amer. J. Math. 74 (1952), 1–22.

[K1] Kodaira, K., Harmonic Integrals, Part II, Institute for Advanced Study, Princeton, 1950 (in

‘‘Collected Works, Vol. I,’’ Iwanami and Princeton Univ. Press, 1975, pp. 325–338).

[K2] Kodaira, K., The theorem of Riemann-Roch on compact analytic surfaces, Amer. J. Math. 73

(1951), 813–875.

[K3] Kodaira, K., Some results in the transcendental theory of algebraic varieties, Ann. of Math. 59

(1954), 86–134.

[K4] Kodaira, K., The theory of complex analytic surfaces (in Japanese), Seminary note 32, Department

of Math., Tokyo Univ., Tokyo, 1974.

[K5] Kodaira, K., Complex Analysis III (in Japanese), Iwanami, Tokyo, 1978.

[K6] Kodaira, K., Complex Manifolds and Deformation of Complex Structures, Springer, New York

Berlin Heidelberg Tokyo, 1986.

[KS] Kodaira, K. and Spencer, D. C., Groups of complex line bundles over compact Kähler varieties;

Divisor class groups on algebraic varieties, Proc. Nat. Acad. Sci. USA 39 (1953), 868–872, 872–877.

[N] Nagashima, Y., On Stein’s topological criterion for the solubility of the second Cousin problem,

preprint.
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