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Abel’s theorem for divisors on an arbitrary compact complex manifold
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(Received Apr. 27, 1998)

Abstract. We prove Abel’s theorem for divisors on an arbitrary compact complex
manifold by combining the Cech cohomology of sheaves, a logarithmic residue formula for
I-forms and de Rham’s theory applied to open submanifolds.

0. Introduction.

Let M be a compact complex manifold of dimension n, Div(M) be the abelian
group of divisors on M and .#(M) be the field of meromorphic functions on M. The
main purpose of the present paper is to prove the following

ABEL’Ss THEOREM FOR DIVISORS. Let D € Div(M). Then, D is linearly equivalent to
0 (ie. D = (F) for some Fe .#(M)") if and only if the class of D in Hyy, »(M,Z) is 0
and for any integral (2n — 1)-chain Q on M with D = 0Q there exists an integral (2n — 1)-
cycle ' on M such that for all o) eHg’”_l(M) we have

o)

Notice that cho and [ depend only on the Dolbeault cohomology class [w] €
H g’"*l(M ). If M is Kéhler, one can deduce this theorem from results of Kodaira
and others. But the validity of it on an arbitrary compact complex manifold M was
not known even conjecturally. One proved Abel’s Theorem on a compact Kéhler
manifold M, following Weyl’s book “Die Idee der Riemannschen Fldche,” 1913 (3rd
ed., 1955), by giving a necessary and sufficient condition for a multiplicative function
(which was a kind of multi-valued meromorphic function on M) to be single-valued by
means of the theory of harmonic integrals.

In 1983 I found out another proof which was based, after Siegel’s book [Si2], on the
consideration of a multiplicative function by means of a logarithmic residue formula,
de Rham’s theory applied to the open submanifold M — SuppD and the Hodge
decomposition and I noticed that the Kdhlerness of M was not essential for the validity.

In 1990, on the occasion of a joint work with T. Segawa concerning generalizations
of Abel’s theorem, I recognize that this proof holds true for the necessity on an arbitrary
M (where only the residue formula and de Rham’s theory are used). After an
investigation, I find that this proof holds true for the sufficiency on such an M whose
Picard variety (Kodaira [K4]) is a complex torus, by an effective use of the cohomology
theory of sheaves. Trying to carry out this proof on an arbitrary M is rather
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hopeless. Immediately after the finding, I notice a natural method of proof in which
the cohomology theory of sheaves is used more effectively. It is to compute directly the
composite injection

CI°(M) — Pic’(M) =~ H' (M, 0y)/H (M, Z)

~ H!" (M) [ Hy 1 (M, Z)

using the Cech cohomology and to show that the map is induced by

Div'(M) > D — (Hg”"_l(M) 3 (o] — J we C)mod Hy, (M, Z),
0

where Q is an integral (2n — 1)-chain on M with dQ = D and
Div’(M) := {D e Div(M) | the class of D in Ha,_2(M,Z) is 0},

CI°(M) := Div’(M)/{(F) e Div(M) | F € .#(M)"}.

(If M is Kéihler, this fact is essentially shown in Weil [W2], p. 893 by means of
Kodaira’s formula [K1], Theorem 3. The key point of my new method is to reverse the
order of arguments.) It turns out this new method is available on an arbitrary M.
The new method is based, so to speak, on the consideration of a C* solution to a
multiplicative Cousin problem (which is single-valued and has ‘poles’ on M) by means
of the residue formula, de Rham’s theory and the Serre duality. In §1, I explain the
residue formula and prove, as an application of it, the well-known fact that under the
isomorphism by Poincaré duality

HZ(MaZ) gHZn—Z(Mvz)a

¢([D]) corresponds to the homology class of D, where M can be paracompact,
Hy,_»(M,Z) is the (2n — 2)-homology group of infinite chains on M and ¢([D]) is the
Chern class of the line bundle [D] € Pic(M). This fact plays a fundamental role in the
new method and implies in particular that if D is linearly equivalent to 0 then the class
of D in FIzn_z(M ,Z) 1s 0. In §2, T accomplish the proof of Abel’s Theorem and show
how this theorem implies Kodaira’s formula mentioned earlier, Abel’s theorem for
families of effective divisors on a projective algebraic surface due to Severi [Sevl] and
Igusa’s formula in his theory [I] of the Picard variety of a projective complex manifold.

I would like to thank T. Segawa for useful conversations during the last period of
this work.

1. Logarithmic residue formula for 1-forms.

Our proof of Abel’s theorem for divisors can be regarded as a generalization of the
proof in Siegel and 1s based on the following logarithmic residue formula for 1-forms:

THEOREM 1.1 (Kodaira [K1], (24), (30)). Let U be a paracompact complex manifold
of dimension n, Fe M(U)*. Then the closed meromorphic 1-form dlogF on U
determines a 1-current [dlog F| on U by integrals of absolute convergence and one has

dldlog F| = 2ni(F)
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as 2-currents on U, where (F) € Div(U) determines a closed 2-current on U as an infinite
(2n — 2)-cycle on U.

THeEOREM 1.1’ (Kodaira [K2]|, (2.14)). Let U, F as above. Then for any finite 2-
chain C on U with SuppdC < U — Supp(F) one has

J dlogF =2nil (C, (F)),
le

where I(-, ), denotes the intersection number on U.

We shall give a proof of the implication [Theorem 1.1 = MTheorem 1.1, whose
method is used in our proof of Abel’s theorem for divisors (Theorem 2.2 below). First
of all, from [Theorem 1.1 follows that

(F) = 20

for some infinite real (2n — 1)-chain Q on U, by de Rham theory ([R], Chapitre IV, §23,
6 line after Théoréme 19, p. 117).

Put G := U — Supp(F). Applying de Rham theory to open submanifold G, we can
take a C* closed (2n — 1)-form ¥ on G with compact support which corresponds to the
I-cycle dC on G under the isomorphism by Poincaré duality

H*" N I.(G,.«,) ~ H" (G,C) = H((G, C).

(For de Rham theory, see also Weil [W3], especially §2, p. 127 and §4, p. 139.) This ¥,
considered as a C* closed (2n — 1)-form on U with compact support, corresponds to the
I-cycle 0C on U under the isomorphism by Poincaré duality

H" N (I(U, o)) = H" ' (U,C) =~ H|(U,C).
Since C is a 2-chain on U, dC is homologous to 0 on U. Hence,
VY =do

for some C*(2n — 2)-form @ on U with compact support. Then

J dlogF:J Y AdlogF (. dlogF, considered on G, is a C* closed 1-form)
ocC G

:J YA dlogF:J d® A dlogF = —J dlogF A d®
= —[dlog F](d®) = —d[dlog F](®) = —2ri(F)(®) (" Theorem 1.1)

— _2midQ(®) = —2miQ(dD) = —2miQ(P) —27ziJ w
0

= —2mil(Q,0C),
(. Q, considered on G, is an infinite real (2n — 1)-cycle)

= —2mil(Q,3C),, = 2mil(2C, Q) = 2mil(C,30Q), = 2mil(C, (F)),
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(. In general, for any finite k-chain C and infinite (d —k + 1)-chain Q on an
oriented topological manifold U of dimension d with Supp dC N Supp dQ = ¢, one has

(=D)*1(2C, Q)y = 1(C,0Q)y
(see Seifert-Threlfall [ST], Zehntes Kapitel, §74, (10)).). O

ReEMARK 1.2. (i) One can read an equality in Weil [W1], p. 114 which is es-
sentially the same as Theorem 1.1’. See also Weil [W2], p. 874.

(i) In 1924, Lefschetz already used Theorem 1.1" for a topological proof of the
period relations concerning meromorphic functions of n complex variables with 2n
independent periods (see Siegel [Sil], p. 119).

The next fact is well-known (see, e.g., Serre [Ser], §II, n° 6, p. 61 and Grauert-
Remmert [GR], Einleitung, Nr.1 and Kapitel V, §2, Abschnitt 4), although its proof is
rarely found in the literature even if M is compact. (One often attempts to prove it by
means of the Z-valued pairings with a 2-cycle on M or the C-valued pairings with a C®
closed (2n — 2)-form on M with compact support, but this method establishes only the
correspondence modulo torsion in case M is compact.)

TueOREM 1.3 (Dolbeault [D], Chap. II, §B, n° 3, Théoréme 2.7). Let M be
a paracompact complex manifold of dimension n, D e Div(M). Then under the
isomorphism by Poincaré duality

H*(M,Z) =~ Hy, »(M,Z),

¢([D]) corresponds to the homology class of D, where Ha, (M, Z) is the (2n—?2)-
homology group of infinite chains on M and c([D]) is the Chern class of the line bundle
[D] € Pic(M) = H' (M, OY,).

ReMARK 1.4. Kodaira [K2], pp. 851-852, p. 854 already contained a special case of
Theorem 1.3 where M was compact, the correspondence was modulo torsion and D was
a canonical divisor apparently. Kodaira [K6], §3.6, (3.166) gives another proof of this
case for the general D. (Kodaira-Spencer [KS], p. 876 contained the case where M was
compact and torsion was included, but their proof was incorrect. The next proof gives
just a correction of it in case M is compact; in [KS] they claimed I(syx,D),, = cji
instead of I(sji, D)y, = ¢j + (0a) .)

We shall give a proof of Theorem 1.3 as an application of Theorem 1.1’, following
Dolbeault [D], pp. 112-115 and Kodaira [K6], pp. 167-170 in substance.

Take a sufficiently fine simplicial decomposition of M, whose vertices, 1-simplices, 2-
simplices, ... are denoted by py,si (j < k), sjx (i <j<k),... and satisfy sy = p; —
Pj> OSik = Sjk — Sik + S, ... Let U be the open star of p;. One gets an open cover
{Ui} of M. One may assume that D|, = (Fy) for some Fj € .#(U;)". Then one has

D] = [{f3}l e H'({U:}, 05) =« H' (M, 03)  with f; = Fj/Fy
and has

c([D]) = {ew}) € H*({Uk}, Z) = H* (M, Z)
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with

1
cik = ——= (log f —log fy +log f:).
ijk 27[\/_—1 ( gf]‘k gfk gf])

On the other hand, one may also assume that Supp D does not meet any 1-simplex
si. Denoting by Be H*(M,Z) the cohomology class which corresponds to the
homology class of D in I:IZn_Z(M ,Z) under the isomorphism by Poincaré duality, one
has
p=[{bu} e H*({Us}, Z2) = H* (M, Z)
with
bijk = I(S,'jk,D)M.

What is required is to show that = ¢([D]), i.e. there is a l-cochain

a={ap} e C'({Ui}, Z)
such that

bijk — ¢y = (0a)

= djk — ik + i

for all UyNU;NU; # .

In order to calculate by = (s, D), for any 2-simplex s, denoting by p, s Pikcs
p;; the barycenter of s, Sk, Sik, s respectively and joining py., py, p;; to py; by three line
segments, one decomposes the 2-simplex s into three 2-cells e;p = Uj, e = Uj, ey <
Uy (see Figure 5 in Kodaira [K6], p. 169). One may assume that Supp D does not meet
the three line segments. Then

I(sijk; D)y = 1(ejic, D)y, + 1(ejxi D)y, + 1 (exij, D)y,

= ey, (Fi)) y, + 1(ejwi, (F))) y, + 1 (exj, (Fk))

Applying [Theorem 1.1" to U;, U;, Uy respectively, we get

2n\/—11(sl~jk,D)M:J dlogF,-+J dlogFj+J dlog Fy
deijk Oejki deyij
Dijk Dijk Dijk
:J dlogFi—J dlogFi—l—J dlog F;
Dij Dik Dj
Dijk Dijk Pijk
_J d]ogFj+J a’long—J dlog Fy + (0x)
Pij Dik Djk
Dijk Dijk Dijk
:J dlogfjk—J dlogfl-k—i-J legfij—'_@x)ijkv
Dik Dik DPij

where we put
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Pjk Djk
Xj = J dlog F; — J dlog Fy.

Dj Pk

Hence

21V = U (s, D) yr = 108 fi1(Pye) — 10g [y (Pjr) — 108 fie (Pyi)
+ log fi(pi) +1og fi;(pyr) —1og f;(py) + (0x)
=21V —leg — (5y)ijk + (5x)ijk

= 2nV —lej + (02) .

where we put

Yik = log f;k(]?;k%

Pjk Djk
Zjg = J dlog F; —J dlog Fi, — logfjk(p/.k),

pi Px

Since

eXp Zjk = Fj(l’jk)l*}(l?j)_lFk(P/k)_le(Pk)ﬁk(P/k)_l

1
putting
1

ajk = /1 (zik +log Fi(p;) — log Fi(py)) € Z,

we have
I(sij, D)y = cijic + (5a)gjk
as required. ]
For and the second Cousin problem, see Remark 2.3.

2. Abel’s theorem for divisors.

Let M be a compact complex manifold of dimension n throughout this section.
The diagram in the next proposition is important in our proof of Abel’s theorem for
divisors.

ProPOSITION 2.1.  The following diagram is commutative:

H'(M,0y) = Hy'(M) = HM (M)

T T

HY(M,Z) Hyy (M, Z),

lle
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where the top row is Dolbeault isomorphism and Serre duality, the bottom row is the
isomorphism by Poincaré duality, the left-hand injection is induced by the exact sequence
0— Zy — Oy — O3, — 0 and the right-hand arrow is defined as follows:

Hyr(M,2) (1] (1277 01) 5 o]~ [ wec)

PrOOF. One has only to compute the composite map o:
Hy, (M, Z) =~ H'(M,Z) — H'(M,0y) = H}' (M) = H*"'(M)".
Let [I'] € Hy,—1(M,Z). The image of it by the composite map
Hy (M, Z) =~ H'(M,Z) — H'(M,C) =~ H(I'(M, .<Z,;))

is represented by C* closed 1-form 6 such that [, ¥ = [, 0 A ¥ for all C* closed
(2n — 1)-form ¥. The image of [f] by the composite map

H'(I(M, y) = H'(M,C) — H'(M,0y) = H}"' (M)

is represented by o-closed (0,1)-form 6%' = (0,1)-part of 6. (. [0] corresponds to
[{c;}] € H'(M, C), where 1-cocycle {c;} € Z!({U;}, C) with some open cover {U;} of
M satisfies 0 = d¢; for some ¢; € I'(U;, /) and c; = ¢;—¢; on UNU; #F. The

image of [{c;}] by the composite map H'(M,C) — H'(M,Oy) = H(S’I(M) is repre-
sented by d-closed (0, 1)-form ¢ with ¢ = d¢, on U;. Then ¢ = 6"')
Therefore, the image of [I'] by the composite map « is given by the linear form

H2" (M) 3 o] - |

90’1/\w:J 0 A w
M

M
:J weC (. dw=0w=0). O
r

Now we shall finish preparation. Put

Div’(M) := {D e Div(M)|the class of D in Ha, »(M,Z) is 0},

Pic’(M) := {L e Pic(M) = H' (M, 0},) | H* (M, Z) 5 ¢(L) = 0}.
It follows from that the inverse image of Pic’(M) by the map

Div(M) 3 D — [D] € Pic(M)

is equal to Div’(M). Hence, by

{D e Div(M)|Pic(M) > [D] =0} = {(F) e Div(M) | F e 4 (M)"},
this map induces an injection CI°(M) — Pic’(M), where we put

CI°(M) := Div’(M)/{(F) e Div(M) | F € ./ (M)*}.

The exponential exact sequence 0 — Z; — Oy — Oy, — 0 gives rise to

HY(M,0y)/H (M, Z) = Pic"(M).
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By [Proposition 2.1, the map H,, (M, Z) — Hg’"_l(M)* is an injection and
H'(M,0u)/H"(M,Z) = HY""'(M)"/Hy, 1 (M, Z).
THEOREM 2.2 (Abel’s Theorem for Divisors). In the above circumstances, the
composite injection
CI°(M) — Pic’(M) ~ H' (M, 0y)/H' (M, Z)
~ H" (M) [Hy 1 (M, Z)

is induced by
Div'(M)>D — (Hg’”‘l(M) 3 [0] = J w e C) mod Hy,-1(M, Z),
/ 0

where Q is an integral (2n — 1)-chain on M with 0Q = D.

Proor. Let D e Div’(M). Then for some sufficiently fine open cover {U,} of M
and some

[{h}) e H'({U:}, On) = H' (M, Onr),
one has D|, = (F;) for some F; € ./#(U;)" and F;/F, = exp2nih;, on U;NU, # &.

)
By H'(M,Oy) Hgl(M), [{h;,}] corresponds to [p], where d-closed (0, 1)-form ¢

satisfies /), =, — ¢, on U,NU,# J for some ¢, e F(Ui,&/ﬁf) and ¢ = 0¢;, on
U,. Then one gets a non-vanishing C* function ¥ on M — Supp D with the property
F\Ui = F)exp2rig,.
dlogF is a C* closed 1-form on M — Supp D and satisfies
dlogF|U/_' =dlogF, + 2nid¢,.

Now, for any [w] eHg’”*l(M) one has
1 5
J go/\w:—_J dlogF A @
M 2mi M

1 -
(*.7(0,1)-part of . dlogF is equal to ¢).

CLAM 2.2.

1 - 1 .
— | dlogF = < |=— | dlogF — I(y;
27ziJM oerne@ JQw—i—;ij [27ziLj % (y],Q)M]7
where [y;] € Hi(M,Z) (1 £j <bi(M)) constitute a basis of H\(M,Z)/torsion, each
representative 1-cycle y; is taken such that Suppy, = M —SuppD and [I;] (1 <)<
ba-1(M)) is the basis of Hy,—\(M,Z) dual to the basis [y;] mod torsion (1 < j < by(M))
by Poincaré duality
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Hy, ((M,Z)~H'(M,Z) > Homg(H(M,Z)/torsion, Z),
i.e. 1(y;, ')y = O (Kronecker delta).

Since

1 J dlogF e Z for all |,
2mi

it follows from Claim 2.2 that

(H" (M) 3 0] — J oA weC)
! M

= (H"' (M) 5 [0] = J w e C)mod Hay (M, Z),
0

as required.
Proof of Claim 2.2 (by a method used in the proof of the Riemann-Roch theorem in

Kodaira [K5]):

Put G:= M —SuppD. In the same way as in the proof of the implication
Theorem 1.1 = Theorem 1.1', we can take a C* closed (2n — 1)-form kg(y;) on G with
compact support which corresponds to the l-cycle y; on G. Then, kg(y;) (1 =)=
b1 (M)) considered on M constitute a basis of H*~'(I'(M, .</,;)). Hence

W= ZajkG(Vj) +do
J

for some a; € C and some C*(2n—2)-form & on M (. dw = dw = 0), where

J, o= a] k)

j Ik

—Zaj (Iy, y] Za] y],Fk

for all k. Then
Za-LJ dlog F
— 27 ) £
J J
_Zafz J kg(y;) A dlogF (- dlogF is C* closed on G)

:—L_J dlogF/\w—kL,J dlog F Ad®.
27l |y 27i )y

Hence
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1 . 1 .
— log F P — log F
2niJMd ogF A w+¥a12nij dlog

Vi

:LJ dlogﬁ' A do
M

2mi
—L[dl F](dcb)—id[dl F](@)
27 8 Qi 8

= D(®) (. [Theorem I.1 on U;)
= 90(®) = Q(d®) = Q(w) = Y_ 410(ka ()

:J ®— ZajI(Q, 77)¢ (".Q is an infinite cycle on G)
Q j

=Lw+§j@umgur O
J

REMARK 2.3. The function F appearing in the proof of [Theorem 2.2 is just a C*
solution to the multiplicative Cousin problem with the data D € Div’(M). Recall that
given a data D € Div(X), where X is a paracompact complex manifold of dimension 7,
the problem has a continuous (in fact, a C*) solution if and only if ¢([D]) =0 (or, by
Theorem 1.3, the class of D in Hy, »(X,Z) is 0). When H'(X,Oyx) = 0, this condition
implies that [D] = 0, i.e. the problem has an analytic solution. For the second Cousin
problem and Oka’s principle, see Serre [Ser], §II and Grauert-Remmert [GR], Kapitel V,
§§2-3. We refer the reader to Nagashima [N], §2 for relations between Theorem 111’
and the solubility of the second Cousin problem.

REMARK 2.4. (i) If the canonical injection H'(M,R) — H'(M,Oy,) is surjective
or, equivalently, the Picard variety H!(M,Oy)/H (M,Z) of M is a complex torus
(Kodaira [K4], pp. 13-15; these are valid if M is Kdhler, see Kodaira-Spencer [KS], p.
872), then we have: D = (F) for some multiplicative function F on M whose multiplier

hdmmmWJMMW”ﬂMWW,MMFwdm%R

belongs to the subgroup

Homy (H,(M, Z)/torsion, U(1)) — H'(M,R)/H' (M, Z)

& DeDiv'(M). (In general, we see as in the proof of that D = (F)
for some multiplicative function F on M with y = y, if and only if y maps to [D]
under H'(M,U(1)) — H'(M, O5,;) (see Nagashima [N], §2 for details). Hence the
implication = holds on an arbitrary M. < is shown by taking £, as real constants in
the proof of Theorem 2.2 and then F is given by dlogF|, =dlogF;. In case M is
Kihler, Kodaira has given a result ((K1], Theorem 1) which says that D = (F) for some
multiplicative function F on M if and only if the class of D in H,, »(M,Z) is a torsion
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element and then Igusa [I], pp. 13-14 has treated the torsion element using the duality
of finite abelian groups

Homy(T1(M),Q/Z) — T*(M) = T»,_2(M)

(where T;(M) < H{(M,Z), T*(M) =« H*(M, Z) are the torsion subgroups; cf. Seifert-
Threlfall [ST], Zehntes Kapitel, §77, Aufgabe 2 and Hattori [Ha], Chapter 8, Problem 7,
p. 307) and obtained the equivalence <; see also Weil [WI], [W2].)

In that case, we can show by the same method as in the proof of Claim 2.2 the
following formula for all [w] € H;"_I(M ):

0 sl

jo

. [2;] dlogF — 1(7,,0) ] 00 = (F).

follows also from (%) and gives a necessary and sufficient condition for a
multiplicative function to be single-valued.

(i) If M is Kihler, then for any w € H""'(M) := {harmonic (n,n — 1)-form on
M} we have

w= Zaijj
J

(H denotes the harmonic part of a current and «; is the same as in the proof of Claim
2.2). Hence, in this case (%) in (i) is seen to be equivalent to Kodaira’s formula (K1},
Theorem 3, [K3], §9):

1 .
ij dlogF =1(y;,0)y JQHyj for all j

by means of the Hodge decomposition

H* ' (M,C) ~H"" (M) ® H""(M).
(ii) When M is Kihler, denoting by € the Kéhler form on M, we have

HO (M, Q\) S H™ (M), A A rQ"!

by Hodge theory. Hence IQA A Q"1 appears in [Theorem 2.2, which corresponds to
Or(A A Q" 1) appearing in a condition for additive functions to be single-valued
(Kodaira [K2], (3.32), [K3], §7). When M is projective, for € obtained from a
hyperplane section E we get a formula

J A A QM1 :J A
0 Q.E”*l

(where E"! is a linear space section of codimension n — 1) which corresponds to a
formula rewriting Qr(4 A Q") (Kodaira [K2], (7.2), [K3], §7). Then
says: D e Div’(M) is linearly equivalent to 0 if and only if for any integral (2n — 1)-
chain Q on M with D = dQ there exists an integral (2n — 1)-cycle I" on M such that for
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all 4e H'(M,Q),)

J A:J 4
Q.En—l . En-1

Especially, in case of n = 2 this formulation implies the following result of Severi [Sev2],
§4 for algebraically equivalent effective divisors D, D, on M: if for any integral 1-chain
t on E with D;.E— D,.E =0t there exists an integral l-cycle y on M (or, by
Lefschetz’s theorem, an integral l-cycle y on E) such that [ A= j A for all Ae
H'(M, Q! ), then dD; is linearly equivalent to dD; for some d € N Wthh depends only
on M. (To see this for n = 2, take an integral (2n — 1)-chain Qy on M with D — D, =
00y and put t = Qy.E"! on E"! and then notice that, by the strong Lefschetz’s
theorem

Hy\(M, Q) = Hi(M,Q); [ [[.E"™,

the free Z-module Hy, (M, Z) is embedded into the free Z-module H,(M, Z)/torsion
of the same rank. Hence, for some d € N (which depends only on M) the class of dy in
H,(M, Z)/torsion is equal to the class of I". E"~! with some integral (2n — 1)-cycle I" on
M. Put Q=dQy.) Abel’s theorem for a family {D,} ¢ of effective divisors due to
[Sevl] (see also Zariski [Z], p. 104, p. 164) follows from this result by the fact that if dD
are linearly equivalent for all se S then Dy are also, provided that S is connected.
(This fact is readily seen by means of the Picard variety of M.) In the works of Severi,
E is assumed only to be an irreducible member of a continuous system of oo! with
(E?) > 0.

(iv) When M is projective, we find that Igusa’s formula ([T}, p. 15, the last line) is
essentially equivalent to the following:

9 JQ.E”IA: _;Jr,-.EnlA'

which follows from (x) in (i) in the same way as in (iii), with the substitution of

1
i) d102F 103, Q>M],

).,
J

— A= JA-IFk.F-,E”‘l
J, s A=X] e,

If one denotes by 4, (1 < a < h"%(M)) a basis of H'(M,Q},), then a period matrix of
the Albanese Varlety of M is given by f A, and we see that a period matrix of the
Picard variety of M is given by L_ g1 Ay The intersection numbers Iy . I, E™ 1)
and the periods [ ., 4, have already appeared in a generalization of the Riemann
period relations by/ Hodge [Ho], p. 114.

In fact, using his notation, Igusa’s formula is essentially the same as

(211,Jd10gF 16,0 V)> () .

where Q is that of our notation. This can be rewritten as
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JQ.C(M)(tp):i 1 JP,J(@) (211J dlogF —1(y, O; V)) 'Elo,

that is to say

JQ o QD = Z a)ukEk,

J, k=1

, 1=2a=g,

i DoeF ~16.0.7)

where w, = Jyk ®@,. Now, Igusa’s Z-matrix E ([I], pp. 8-9) given by

E|O
I = (G0) and (), =16 CO) €0, 121752

(where B; (1 £ j =<2¢q) is the homology basis of rational “invariant cycles” on C(M)
such that f; ~y; (in V' mod. Q), f; (2¢+1=j=2p) is that of rational “vanishing
cycles” on C(M) and p is the genus of the curve C(M); see Zariski [Z], Chapter VI and
Appendix to it) is expressed simply as

Ej=I1(T'.T;,C(M): V) e Z,
where I'; (1 < j <2q) denotes that of our Claim 2.2, since we have
L(By, T . C(M); C(M))
=1(B, 1" I'; CM)) = (i) T'i; V)
=1y, IT;V) =0, 1=1=2q

(where i: C(M) — V is the inclusion) and
2q
Ie.CM) ~ > B I(I'c . T;, C(M); V) (on C(M)mod. Q)
=1

(" I'x.C(M) is obviously an “invariant cycle” on C(M) and hence is homologous on
C(M) to a linear combination of f; (1 < j = 2q). The coefficients of it are determined
by

2
I'c.C(M) ~ Zq:yj-l(l“k.FJ, CM); V) (in ¥V mod. Q)
J=1

which follows at once from I(I'x.C(M),I';; V) =I(lx.I;,C(M);V)).
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