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Abstract. The Wick product of operators on Fock space is introduced on the basis of
the analytic characterization theorem for operator symbols established within the
framework of white noise distribution theory. Existence and uniqueness of solutions are
proved for a certain class of ordinary differential equations for Fock space operators.
Quantum stochastic differential equations of It6 type and their generalizations involving
higher powers of quantum white noises enter into our consideration.

Introduction.

This paper aims at fusing the ideas of infinite dimensional analysis (in particular,
white noise distribution theory over Gaussian space) and quantum probability in order
to solve differential equations for operators acting in a Boson Fock space. It is ex-
pected that our approach offers not only an interesting aspect to quantum stochastic
differential equations of Itd type but also a prototype of general theory of non-
commutative differential equations on an infinite dimensional space.

The white noise distribution theory was initiated by Hida and has been
discussed extensively in connection with stochastic analysis and harmonic analysis, see
e.g., [23] for recent progress. The fundamental framework is an infinite di-
mensional analogue of Schwartz type distribution theory and is based on the Gelfand
triple:

(E)y = L*(E*,u) = I'(L*(R)) = (E);, (0.1)

where E* = 9'(R) and p is the standard Gaussian measure on it. The triple is
referred to as the Hida-Kubo-Takenaka space for f =0 and as the Kondratiev-
Streit space for a general 0 < f < 1. Note that elements of these spaces are
(generalized) functions on the infinite dimensional vector space E*. Since L?(E*, u) is
canonically identified with the Boson Fock space I"(L*(R)) through the Wiener-It6-Segal
isomorphism, the white noise distribution theory has been applied to some questions in
quantum physics as well, see e.g., and references therein.

Since the exponential vectors {¢;;¢ € Ec} span a dense subspace of (E)s; any
operator = € Z((E);, (E) ;) is determined uniquely by its action on exponential vectors,
see §1. This leads us to the idea of the symbol of an operator, originally due to Berezin
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[8], [9], see also Krée-Raczka [21].  The symbol calculus is very successful at least at an
algebraic level, see e.g. [12], where a certain non-commutative stochastic differential
equation is solved by means of formal power series. It is therefore crucial to obtain
analytic properties of operators from their symbols. From that aspect the most re-
markable is that operators in 3((E)ﬁ,(E);) are completely characterized by simple
analytic properties of their symbols, see [Theorem 1.6 This result, known as the
analytic characterization theorem for operator symbols, was established in [27],
with many applications, see e.g., [10], [14], [30], [31], [32]. In particular, it offers a
natural method of defining a function of operators (generally speaking, there is no
canonical method of defining a function of non-commuting objects). We also note that
the idea of symbol shares a common spirit with those of pseudo-differential operators,
see e.g., [26].

In this paper, keeping applications in mind, we discuss Hilbert space-valued white
noise functions based on the triple:

(E)y® # = L*(E*, 1) ® # < (E); @ A, (0.2)

where # is another Hilbert space. This scheme appears often in physical problems of
an interacting system such as “System + Reservoir”” model; whence # is called a system
Hilbert space. In Section 1 we assemble a few preliminary results and develop a general
theory of operators in ¥ = Z((E); ® #, (E) ; ® ') along with [29]. In particular, we
obtain a criterion for continuity of a map ¢ — =, € &, t running over a locally compact
space, in terms of symbols (Theorems and [L.9).

In Section 2 we introduce the Wick product < of operators by means of the
analytic characterization of symbols. This is an analytic extension of the well known
notion of the Wick product (or normal-ordered product) in physics. Moreover, we
prove (Theorems and [2.8) that the Wick exponential function of = and the time-
ordered Wick exponential of {L,} converge in Z((E); ® #',(E); ® #) whenever = and
L, are of finite degree <2/(1 —f).

In Section 3 we discuss unique existence of a solution to a linear differential
equation of the form:

Az _
Z:Ltoﬂ‘i_M[, (()3)

where t+— L, e &, t — M, € & are continuous. In fact, if degL, <2/(1 — p) for all ¢
there exists a unique solution in Z((E); ® A, (E)kk ® ) which is given by means of
the time-ordered Wick exponential function ([Theorem 3.1 and its corollaries). In a
broad sense such an equation as in might be called a quantum stochastic dif-
ferential equation.

A quantum stochastic differential equation of Ito type is typically of the form

dU = (LidA + LydA + LydA* + Lydi)U, (0.4)

where L; are operators acting on , and {A4,},{A4,},{4,} are the annihilation process,
the creation process and the number process, respectively. According to the standard

theory originally due to Hudson and Parthasarathy [18], the equation is solved
by means of a quantum analogue of It6 theory where the role of infinitesimal increment
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of the Brownian motion dB; in the classical Ito theory is played by dA,, dA;
and dA,. The quantum It6 theory has been developed extensively by Attal [5], [6],
Belavkin [7], Lindsay [24], Meyer [25], Parthasarathy [35], among others. The angle
in this paper is different from them. From our point of view (0.4) is brought into a
normal form:

dU

E:Lla;kUa,+L2Ua,+L3at*U—|—L4U

= (Llal*a, + Lzat + L3at* + L4) & U, (05)

which is, obviously, a particular case of (0.3). In the recent study of stochastic limit of
quantum theory [2], see also [3], there appears a new type of a quantum stochastic
differential equation such as

dU

= (Mya? + Mya?)U, (0.6)

which is highly singular from the usual aspect (though the above equation is understood
in a formal sense at the moment). Obviously, the normal form of i1s a simple
example of our case [0.3).

In conclusion, having introduced a space of white noise distributions properly (that
is, the Kondratiev-Streit space), we are able to grasp a unique solution of a differential
equation of the form [0.3]. Moreover, our approach covers typical quantum stochastic
differential equations of Ito type and their generalizations. The next steps in this line of
research are to study regularity properties of the solutions and to explore the possibility
of non-linear extension. These are now in progress.

ACKNOWLEDGEMENTS. The author is grateful for interesting conversation with
Professors L. Accardi, D. M. Chung and Yu. G. Kondratiev.

General Notation. Let X, %), 3 be locally convex spaces.

Xc: the complexification of X when it is a real space.

Z(X,9): the space of continuous linear operators from X into 9); equipped with
the topology of bounded convergence.

$(X,9;3): the space of continuous bilinear maps from X x 9 into J; equipped
with the topology of bi-bounded convergence.

X*: the space of continuous linear functionals on X; equipped with the strong dual
topology after our convention above.

X®9: the Hilbert space tensor product when both X,9) are Hilbert spaces.

X®,9: the completed n-tensor product. When there is no danger of confusion,
®, 1s denoted by ® for simplicity.

1. Preliminary results on white noise operators.

1.1. White noise distributions.
We start with the real Gelfand triple

E=9%(R)c H=L*R,dl)c E*=%'(R).
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The norm of H is denoted by | - |, and since compatible the real inner product of H and
the canonical bilinear form on E* x E are denoted by the same symbol <., ->. Let u
be the standard Gaussian measure on E* and L?(E*,u) the Hilbert space of C-valued
L>-functions on E*. The celebrated Wiener-Ito-Segal theorem says that L2(E*,u) is
unitarily isomorphic to the Boson Fock space I'(Hc¢). The isomorphism is a unique
linear extension of the following correspondence between exponential functions and
exponential vectors:

g é®2 é@ﬂ
¢é(x):e<"é> &or (1,5,7,..., | e Ec.

If geL*(E*,u) and (f,)", e '(Hc) are related through the Wiener-Ito-Segal iso-
morphism, we write

¢~ (/)
for simplicity. It is then noted that
146 =>_n!1lo. (L)
n=0

where [|¢||, is the L>-norm of ¢ e L*(E*, u).

In order to introduce white noise distributions we need a particular family of
seminorms defining the topology of £ = .%(R). By means of the differential operator
A =1+ 1> —d*/dr* we introduce a sequence of norms in Hc in such a way that |&] =
|A?&],.  The numbers:

1

0<p=1d4"op= 5 < L 6= [4"Yus
are frequently used. Let E, be the Hilbert space obtained by completing E with respect
to the norm | - [,. Then it is known that

E >~ projlimE,, E*= indlmE_,.

p— 0 p—

The norms | - are naturally extended to the tensor products E®” and their

[y
complexification EC®”. The canonical bilinear form <{-,-)> is also extended to a
C-bilinear form on (E2")" x EZ".

Let f be a fixed number with 0 < < 1. For ¢ e L>(E*,u) we introduce a new
norm

Il s =>4, 4~ (f). (1.2)

n=0

For any p >0, (E,); = {4:[|4ll, 5 < o} becomes a Hilbert space. We put

(E)/; = proj lim(El’)[)’7

pP— X0

which becomes a countable Hilbert nuclear space. In fact,



Wick product and quantum stochastic differential equations 617

LemMA 1.1. For any p >0 the canonical map 1, : (Ey1); — (Ep)g is of Hilbert-
Schmidt type with |1, s = HF(A)AHHS, where I'(A) is the second quantization of A
acting in I'(Hc).

The proof is straightforward modification of [28, Lemma 3.1.2]. We next consider
the dual spaces. For 0 <f <1 and p >0 we put

o0

9155 = 2Ly ¢~ () (13)
Then || - |[_, 4 is a Hilbertian norm on L*(E*,u) and we denote by (E_p)_p the

completion. The dual space of (E), is obtained as

(E)p = indlim(E_) 5= () (E-,) 4,

p=o p=0
and we come to a complex Gelfand triple:

(E)ﬂcLz(E*,,u) C(E)ﬂ* (1.4)

This is called the Kondratiev-Streit space [20], see also [23]; while the case of =0 is
referred to as the Hida-Kubo-Takenaka space and is denoted simply by (E) <
L*(E*,u) < (E)". Obviously, (E); < (E) and (E)* c (E);. The canonical bilinear
form on (E); x (E),; will be denoted by (-,-)». Then

(D.py =S nkE £, B~ (F)e(E) ¢~ (f,)e(E), (15)
n=0

We note that (1.1), (1.2), (1.3) and (1.5) are all compatible.

Let # be another Hilbert space with norm | - |,. We assume that # = #g+
iA# g, where #'g is a real Hilbert space with real inner product <-, - >y, and that # is
equipped with the canonical C-bilinear form {-,-)», induced from <-,-),. This
rather curious assumption, which can be in fact removed, is posed in order to avoid
notational trouble; thus both -, -» and (-, -)», are C-bilinear forms. Then (1.4) is
extended to a triple of #-valued white noise functions:

(E)y @A = LXE*,u) @ # = (E); @ #)" = (E); ® A, (1.6)

where # and #* are identified. The canonical C-bilinear form on (E); ® A X
(E); ® A is denoted again by (-, ). Note that (E), ® # is nuclear if and only if
dim # < o0.

1.2. White noise operators.
On the basis of (1.6) we study operators in the class Z((E), ® #,(E); ® #). We
first note the following

PROPOSITION 1.2.  The canonical correspondence = «— Z given by

(CEP@u Y @vy =(E(¢@ o)y, dVe(E)y wvet,  (L7)
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yields a topological isomorphism:
L(E)y @A, (E)y @A) = L(E)p® (E)g, L (). (1.8)

Proor. It is immediate that (1.8) holds in the algebraic sense. We shall prove that
their topologies coincide. Let By, B, be two bounded subsets of (E), and put

Ci={p@u;geBilul, <1}, C={Yy®uvyeBy|v], <1}
Obviously, Ci,C; are bounded subsets of (E), ®@ #. In view of we obtain
||E(¢® lp)HOP = Sup{| <<E(¢®u),¢ ® U>> ];u,v € %7 |u|9f < 17 |u|f < 1}7
and hence

sup{|Z(6 @ ¥)llopi ¢ € B, ¥ € Ba} = sup{|{ E(w), 0" Y [jw e Cr,0" € Co}. (1.9)

In general, any bounded subset of X ® 9), where X is a Fréchet space and 9) is a nuclear
Fréchet space, is contained in the closed convex balanced hull of a set of the form
B ® B, ={¢p® ;¢ e B,y € B} where B; and B, are bounded subsets of X and 9),
respectively, see e.g., [36, Chapter IV, §9.8]. In other words, uniform convergence on
any bounded subset of X ® ¥ follows from uniform convergence on any set of the form
B| ® B,, where B; and B, are bounded subsets of X and %), respectively. Then we see
from (1.9) that the topologies of both sides of (1.8) coincide. O

We need mutual estimates of norms of 5 and %.

ProposITION 1.3. We keep the notations as in Proposition 1.2.
(1) For each £ € Z((E)y ® (E)g, L (H)) there exist C >0 and p >0 such that

1Z(@)llop < Clloll, 5, @€ (E)s ® (E)y,

where |||, 5 is the Hilbertian norm of ((E)z ® (E)4),. In that case

IED-e1y—p < CIA) zzsllBllps1p0 b€ (E)p® .
2) For each 5 L((E), @ #,(E); @ #) there exist C >0 and p >0 such that
B B
IZ@)I_p,—p < Cligll, 5o de(E)y@H.

In that case we have
- -1
[Z(0)]lop < ClII'(A4) ||iIS||w||p+l7ﬂ7 we (E)/z ® (E)/z

Proor. This is a simple consequence of [Lemma [.1 and a general relation between
Hilbert space tensor product and z-tensor product, see [29, Proposition A.9]. (]

For simplicity we put
L=L(E)y@A (E)y@H)=L(E)y® (E)y, £(A)) = (E)y @ (E)p)" @ L(H),

where the second isomorphism is due to the kernel theorem, see in the Ap-
pendix. From now on, we use the same symbol for corresponding elements under the
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isomorphism above. We shall introduce a stratification of ¥ = Z((E),; ® (E)s, L (H)).
For p >0 we put

1Z]] 4, = sup{l|Z(@)l[op; @ € (E)y ® (E)p, loll, p <1}, E€Z.

Then ¥, ={5¢e Z;||Z|, < oo} becomes a Banach space with norm || - [l . It
follows from [Proposition 1.3 that

By definition for any = e %, we have

IZ(@)llop < 1214,

156 @ Wy < 10l glul §€ (B} ue .

w“p,[b we (E)/)’® (E)/f7

1.3. Integral kernel operators and Fock expansion.

We have in [28], established the theory of Fock space operators based on the
Hida-Kubo-Takenaka space i.e., the case of f =0. Most results obtained there admit
straightforward generalization to the case of Kondratiev-Streit space, i.e., for general
0 <f <1, in this connection see also [23].

The annihilation operator at a point t € R, denoted by a,, 1s a unique operator in

ZL((E)g: (E)p) having the property

ap: = E(t)g:, E€Ec.

The adjoint operator a; € Z((E)g, (E);) is called the creation operator at a point t. It
is known that both t+ a, € L((E), (E);) and t+ a/ € Z((E);, (E)p) are C*-maps.
For ke (EE""Y @ () = L(EE"™, #(#)) we put

1/2
el Sup{ZKK i, 03 P le()] |u|%31,|v|%sl} ,

where {e(i)} is the canonical orthonormal basis of H® !+ see [29, §3]. For such a x
we associate an integral kernel operator whose formal integral expression is given by

S1

Eim(k) = J . K(S1,. ooy S1 8,y ty)ay - ay gy g, dsy - dsydty - dby,
R m

where a; stands for a, ® I. Tt is known that = ,,(x) € Z((E); ® A, (E); ® #') for any
0<p<1. In fact, we have

ProrosiTION 1.4. Put
(1-p""
- p(—elog(@pn)

Then, for any p > ro/2 with ||x||_, < oo it holds that

—_ 7 —pe— (I4+m)/2
1E1m () _ ity —p < 2720~ (U m™) P2 A2 k]| N6, 1 e (1.10)

ro = inf{r > 0;log(6*p") < 0}.
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for de (E); ® #'.  Moreover,

—_ Cpo— — my (1— I+m)/2
1Z0m (), < o778 (A s (™) 2AG P ], (11D
PrOOF. Inequality is a simple generalization of [29, Theorem 3.9]. Then
(1.11) follows from with the help of [Proposition 1.3 O
Moreover,

THEOREM 1.5.  Any operator Ee€ L((E); ® #,(E)y ® H') admits an infinite series
expansion in terms of integral kernel operators:

g = Z Eim(Kim)y Kim€ (E® l+m) ® L(H), (1.12)

where the series converges in £((E)y @ #,(E)y ® ).

Expansion ((1.12) is referred to as Fock expansion in [28] and has wide applica-
tions. In fact, such an expansion has appeared often in physical literatures since Haag

[13]. In view of we put
deg Z = sup{l + m;x; , # 0} < 0.

REMARK. By definition, for any 0 < <1 we have
L(E)® #,(E)’ ® #) = L((E); ® #,(E); ® ).

However, any operator in Z((E); ® A, (E); ® A) with finite degree belongs auto-
matically to L((E) ® #,(E)" ® #). The parameter f§ is essential when we consider
infinite series of integral kernel operators such as (1.12), see the sequel.

1.4. Operator symbols.
For 5e ¥ =2((E);®H,(E); ® #) an Z(A)-valued function E on Ec x Ec
defined by

< (fa’?)ua@}f:<<E(¢§®”)>¢;7®U>>7 é,i’]eEc‘, u,ve%,

is called the symbol of Z. By means of the isomorphism (1.8) we may write Z(&, ) =
Z(¢: ® ¢,). In case of # = C the symbol is reduced to a C-valued function. Since
{¢: ®u;C € Ec,ue A} spans a dense subspace of (E); ® #, an operator Ze€ % is
determined uniquely by the symbol. Note here simple relations:

E*(é7ﬂ):‘§(”vé)*v Fe,

(E1®L)(En) =E1(E )L, Z1e L((E)y, (E))), Le Z2(#),

where &(¢,5) is a complex number.

[I] >

REMARK. There is a similar notion called the Wick symbol also due to Berezin [8],
[9], which is given by e <SP E(& ) for € #. Although the Wick symbol has an
advantage in some contexts, we do not use the Wick symbol in this paper just to avoid
confusion.
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The next assertion is known as the analytic characterization of symbols.

THEOREM 1.6. An L(H)-valued function © defined on Ec x Ec is the symbol of an
operator 5 e ¥((E); ® H,(E)y @ #) if and only if
(i) for any & &\ n,n € Ec and u,v € A the function

(Za W) = <@(Zf + flaWﬂ + ”I)U,U>

is entire holomorphic on C x C;
(ii) there exist constant numbers C >0, K >0 and p >0 such that

|0 mlop < Cexp K(E ™ + a3/ ), &neEc.
In that case, 5 € Lpiqy3 for q>q = qi(p,p) >0 and
1Z]4,.,., < CL(1 - M), (1.13)

where L= L(p,q) >0 and 0 < M = M(p,K,q) <1 are constant numbers defined for
q>4q1-

PrOOF. In case of f =0 a complete proof is given in [28], [29]. The proof for
general 0 < f < 1 is a simple modification. In fact, given a function O : E¢c x Ec —
& (A) satistying (i) and (ii), we can construct = € & by an infinite series as in
where x;,, satisfies

<2l pi1y < Ce(I'm™) " P2 {es(2e(K + 1)) A2y 1m, (1.14)
Then, in view of we have
< p Pt r(a) | s CM T,

||El,m(’cl,rn)||$p+q+3

where

M = M(q) = p4,

segin) @ (2e(K + 1) P72,

Keeping in mind that lim, .., M(q) =0, we put

q1 = q1(p,B) = inf{g > 0; M(q) < 1}.

Then for g > ¢ the infinite series >/, o |27, m(x1,m) | #,.,., 18 convergent and we obtain
(T.13) with L = p~(rtatDs= 1| 1(4)7"||7,¢ and M above. O
THeOREM 1.7. Let Z € %), with Fock expansion (1.12). Then
1=B)/2 grl+m|| =
Itmll iy < 2Pe(t'm™) PRS2

where
Ky = ed{2e((1 — p)2@F-D/0=H) 4. 1)y =P2,

Proor. For an exponential vector ¢; we have

1611, 5 < 2772 exp{(1 — p)22A-D/=P /=Py - £ e E, (1.15)
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see [23, §5.2]. Then for any 5 e %, it holds that

IZ(E M) op < 2813 4 exp{(1 — B2 DD (/0P 4 |y /0Py, (1.16)
The assertion follows by combining (1.14) and (1.16). O

1.5. Convergence of operators.

The convergence of operators in Z((E), ® A, (E) ﬂ* ® ) is rephrased in terms of
convergence of symbols.

THEOREM 1.8. Let T be a locally compact space. Then for the map t— =, € L,
te T, the following four conditions are equivalent:
(i) t— E, e is continuous;

(ii) for any tye T there exist p >0 and an open neighborhood U of t, such that
{Este Ut c P, and }Ln% =, — E,OH% —0.

(i) for any toe T there exist an open neighborhood U of ty, a set of positive

numbers {e;t€ U} converging to 0 as t — ty, constant numbers K >0 and p >0 such
that

I1Z:(&,m) = E ()l op < ecexp K(E/ P + 1/, & neEe, teU.

(iv) for any ty € T there exist C >0, K >0, p > 0 and an open neighborhood U of
to such that

IZ:(Emllop < Cexp KA 4l "), EneEe, 1e v, (L.17)

and
}anlo 1Z:(&m) = ZoEmllop =0, &neEc.

Proor. (i) < (ii) The proof is deferred to the Appendix.
(i) = (iii)) In view of (1.16) we have

188 m) = B (& mllop < 271150 = Zy 4 exp{(1 = B2 DR (LD + /1)),

from which the assertion is clear.

(iii) = (iv) is obvious.

(iv) = (i) Let #, be fixed and we shall prove the continuity of 7+ &, at t = f.
For that purpose it may be assumed without loss of generality that =, = 0. Applying

Theorem 1.6, we see from [1.17) that there exist ¢ >0 and M > 0 such that
1Zdlg,, <M, tel. (1.18)

On the other hand, by assumption

1Z:(¢: ® by)llop = IZ(E ) op = 0, 1= 1. (1.19)

Since the exponential vectors span a dense subspace of (E)s for any we (E);®
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(E); and &> 0 there exists a finite linear combination of exponential vectors o’ =
>_i9: @4, such that [w—o'||,,, ;<& Then by the triangle inequality

1Z/(@)]lop < 15— )|l op + [1E() | op

<|Zdlg,,

@ =g pt H >_Ei¢:®4,)

’01)
<é|Zllg,,, + Y NEde, ® 6, ops
i

and in view of and (1.19) we come to

limsup || Z/(w)||pp < eM.
—ty

Consequently,

lim [|Zi(w)[lpp =0, @€ (E); ® (E)

t—1y

It then follows from the Banach-Steinhaus theorem that Z; converges to 0 uniformly
on any compact subset of (E),; ® (E);, and hence on any bounded subset due to the
nuclearity of (E); ® (E)j. O

THEOREM 1.9. Forn=1,2,... let 5, € & be given. Then the sequence =, converges
to some Z in & if and only if
(i) there exist C >0, K >0 and p >0 such that

I€.&mllop < Cexp KD +1n}/ ), eneke, n=12....

(ii) for any & neEc the limit O(&,n) = lim,_., 5,(¢,n) exists in L(A).

Proor. The “only if” part is straightforward by Theorem 1.8. We shall prove the
“if” part. Given &,&;,n€ Ec and u,v € #, we consider

gn(z) = <En(25 +¢Lmu, vy, g(z) =0+ &, nu, vy, zeC.

Then g(z) is entire holomorphic by and g(z) = lim,_ ., g,(z) by assumption.
We shall prove that g(z) is holomorphic on C. Let y be a smooth closed curve in C.
Since y is a compact set, by assumption (i) there exists some M >0 such that

194(2)] < Clul 0]y exp K (jzE + &1/ + /Py <M, zey, n=12,....

It then follows from the bounded convergence theorem that

n—oo

0 = lim L gn(z) dz = Jy g(z) dz.

Therefore ¢(z) is holomorphic by Morera’s theorem. Since O satisfies the same
condition as in (i), by there exists = € % such that & = ©. Thus condition
(iv) in [Theorem 1.8 is satisfied and, consequently, =, converges to = in .. O
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1.6. Quantum stochastic processes.

A one-parameter family of operators {Z},.; =« & = Z((E);® #,(E); ® #),
where ¢ runs over an interval 7' < R, might be called a quantum stochastic process in full
generalities. In this paper, following the previous work a quantum stochastic
process is always assumed to be continuous, i.e., the continuity of 1 — =, € ¥. This
seemingly strong (in fact, rather weak) assumption is useful to avoid minor technical
consideration though weakened trivially in many contexts.

Lemma 1.10. (1) If {5,} = L((E)s, (E)g) is a quantum stochastic process, so is the
amplification {5, @I} =« L((E)y @ #,(E)y ® ).

2) If {L}=Z(E)y®H,(E); @ H) is a quantum stochastic process, so are
{Lia; = Li(a,® 1)} and {a;L, = (a] ® I)L,}.

PrOOF. One may check condition (iv) in easily. O

When there is no danger of confusion, the amplification =; ® I is denoted simply by
Z;. We use this convention particularly for {a;}, {a} and {W, =a, + a;}, where the
pair (a;,a;) or W, is referred to as the quantum white noise process.

Let {L:} =« Z((E)y® #,(E); ® #) be a quantum stochastic process. It then
follows from that for any compact interval [0, 7] there exists p > 0 such
that s+— L, is a continuous map from [0,7] into %,. Then one may introduce the
(Riemannian) integral:

t
E = J Lgds
0
in an obvious manner. Clearly, {Z,} becomes a quantum stochastic process which is
differentiable in %), hence in ¥ as well:

d
dt
2)

El - Ll"

Moreover, in view of (

we may define quantum stochastic processes:

t t
J a; L, ds, J Lgayds.
0 0

These are called quantum stochastic integrals against the creation and the annihilation
processes, respectively. In particular,

t t t
A, = J asds, A = J a;ds, A, = J a;ayds, (1.20)
0 0 0

are respectively the annihilation process, the creation process and the number process of
Hudson-Parthasarathy [18].
2. Wick product of white noise operators.

2.1. Definition.
We start with

Lemma 2.1. For two operators E1,5;€ L((E)y® #,(E); ® H) there exists
EeL(E)y®H,(E); ® H) uniquely determined by
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é(éa”) = e_<£’]7>évl (57’7>é2<f,’7>a 67’7 € EC' (21)

Proor. For simplicity we denote by ©(&,n) the right hand side of (2.1). It is
sufficient to show that @ satisfies conditions (i) and (ii) in [Theorem 1.6. 1In fact, (i) is
obvious. As for (ii) we note that

”3(@’7)”0}’ < 20|15

2,exp{(1 = D (P 4 /Py i = 1,2, (2.2)

for some p >0, see (1.16). Using an obvious inequality a®> < 1+ a*(~#) we have
e PP 52 4 2y < o exp P (1ERIAB) 4 1 2/(0H)
|| < exp == (I&]}, + Inl,) < e exp —-(I<], + Il ). (2.3)
Then from (2.2) and (2.3) we obtain
10 M lop < CIE1ll 4, 122l 4 exp K17 + |2/ 1), (2.4)
where C =2%er” and K = (1 — B)28/07F) 4 p% /2. This proves (ii). H
The operator = defined in is denoted by
=505

and is called the Wick product. For 5,Z;e Z((E); ® #,(E)y ® #) it holds that

Moreover, if # = C we have
E1 05 =505, EieZ((E)(E)),

that is, equipped with the Wick product Z((E);, (E);) becomes a commutative algebra.
However, the Wick product is not commutative whenever dim .# > 1. In fact,

(El ® L]) <> (Ez ®L2) = (E] <> 52) ® (L]Lz), E,' € g((E)/;, (E);), Li € g(%)

PROPOSITION 2.2. For an operator Q€ L((E)y® #,(E); ® H) the following
conditions are equivalent:

(i) 20Q=25Q for any E€ L((E)y @ #,(E)y ® #);

(i) QOCE=Q"Z for any Ze L((E); ® H,(E); ® H);

(iii) the Fock expansion of Q contains only annihilation operators, i.e., is of the form:

Q= iEQm(KO,m)- (25)

m=0

Assume  that Q satisfies one of the above conditions and belongs to Z((E);®H,
(E)p@HA). Then E & Q= EQ holds for any Ee Z((E); ® A, (E)y @ H).
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Proor. (i) < (ii) is obvious by duality.
(i) = (ii) For (e Ec we put

D; = JR {(t)a, dt.

It is known that D; belongs both to Z((E)s, (E)s) and to L((E)s, (E)g). Then for
Z =D;®1I, where I is the identity operator on #, we have

EoQ=0QF. (2.6)
We shall prove (2.6) by symbols. Since Z(&,5) = & (¢ EV, we have
(ZOQ)(En) =e SPEENQEn) =L OL(E ). (2.7)
On the other hand, since
(QE(En)u,v), = QE(J: @u),d, @0
= QLI Qu), 4, @v)
= (L, EQE MU, v)

we have

QE(&,n) = (L EQ(E, ). (2.8)

Then (2.6) follows from [2.7) and [2.8). Now taking the assumption into account, we
see that ZQ = QF 1.e., Q commutes with any D; ® I, where { runs over Ec. In case
of # = C an operator commuting with all D; contains no creation operators in its Fock
expansion, see [30]. This fact admits a straightforward generalization to the case of an
arbitrary # and we obtain the desired assertion.

(iii) = (1) We first note that

EO,m(KO,m)(¢5 ® I/l) = ¢£j ® KO,m(é@)m)ua é € ECa ue %7
and hence
(Zo.m(K0.m)) (& 1) = €SP (E®™),  E e Ec.

We now assume that Q = 3" " ( Zo u(k0m). Then for Ze Z((E); ® #,(E); ® #),

(EQE MUYy = K EZom(kom)(b: @u), ¢, @V

3
o

E(¢: ® KO,fn@@m))“» ¢;7 ®vY

M 1M

CE(E mrom(E®™)u, v

3
<H:
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0

CE(E e P (o m(K0.m)) (& 7ty v
0

m

= CE(E, e S Q(E n)u, v

This implies that ZQ = 5 O Q.
For the last part we need only to repeat similar computation as above keeping in
mind that the expansion converges in Z((E); ® #,(E); ® ). O

A relevant result appears in Huang-Luo [17]| where the case of # = C is in
consideration.

COROLLARY 2.3. For any Ee Z((E);® H,(E)y @ #) it holds that

*
S1

* *

a a;k]Eatl e a[n = E (asl ’ a;atl U atm) = (asl a:]atl e a[m) O E

¥

In particular,

k- — * * — — — —
a, 2 =530a;, =a;, O 5, Za=230a=a4,0 58,

a; S ay=asay, a; Sap=aya;, ag>a;, =ajag, a; Saf =agay, (2.9)
where a; and a are short hand notations for the amplifications as usual.
As for topological properties of Wick products we only mention the following
PropPOSITION 2.4. The Wick product is a separately continuous bilinear map from

L((E)g, (E)p) x Z((E)g, (E)y) into L((E)y, (E)p)-

*

PROOF.  Suppose 1,2, € Z((E);, (E);) and put Z=25; O Ep. It follows from
(2.4) that

~ — — 2/(1— 2/(1—
E(& )| < ClE ] o 122 o exp K1) + g3/ ")

for some C >0 and K > 0. Then, applying Theorem 1.6, we see that there exist L > 0,
0<M<1 and ¢ > 0 such that

—_ —_ =2 = — - =
151G Eallg,,,., < CL(1 = M) 7|51l 4, [ 22l 4, E1,E2€ %) (2.10)

+q+3 T
Suppose =, is fixed. Then (2.10) means that = — Z; & &, is a continuous linear map
from &, into #,,,43, and hence into . Since

= ((E)y®(E))" = indlim((E); ® (E)g)_, = indlim £,

p—0 p—o0
E1+— E1 O E; is a continuous linear map from Z((E),, (E)s) into itself. O

ReEMARK. The Wick product of white noise functions has been actively discussed,
see [19], and references therein; see also for relevant topics. Recall that each
@ e (E); gives rise to a multiplication operator Zg € Z((E);, (E);). For two white
noise functions @, ¥ € (E) ; we denote by @ & ¥ the Wick product. It is then easy to
see that Zp oy = 56 O Ey.
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2.2. Wick exponential function.
For simplicity we put

EON=_EFEO ... OE, EO'=T
%,_/’
1 times
THEOREM 2.5. Let Ee€ L((E)® #,(E) @ A#). 1If degZ <2/(1 —B), the infinite
series

“ ]
Yy S Eo (2.11)

o n!

converges in L((E)y @ #,(E); ® #). In particular, (2.11) converges in £ ((E) ® #,
(E)" @A) if deg& < 2.

Proor. Let Sy denote the N-th partial sum of (2.11). We note that by definition

5 ,7 — <& 17>Z —<c e ,7))’1,

and hence
Jim Sy (¢n) = exp(<Em) + e E(E ), EneEc
Then by [Theorem 1.9, Sy converges in Z((E); ® #,(E); ® #') if and only if there

exist some constant numbers C >0, K >0 and p > 0 such that
ISv(&mllop < CexpK(E" + a3 ), N=1.2.... (2.12)

Since the factor e<>” does not contribute to the estimate, (2.12) is equivalent to

N

Z —<<f mE & )"

0

We shall prove that condition (2.13) is satisfied if d = degZ <2/(1 — p).
Given Ze Z((E)® #,(E)" ® #) with d = degZ < oo we put

5= Z El,m(’cl,m)-

< CexpK(IE/" P+ g/, N=1,2,.... (213)
orP

I+m < d
Choose p >0 such that
K' = max 761, mll_, < o0.
I+m <
In view of
= — L&m Z K] é®m>
I+m <d

we have
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le P2 mlop < 3 Irinn® ©=llop

I+m < d

I}
< Z HKl,mH_p”ﬂp‘é‘;n

I+m < d

<K' e (2.14)
I+m<d
Since
S mllen < S (Il 125 = (k4 D[l + [€]5).

I+m=k l+m=k

which follows from an obvious inequality a'b™ < a™*” 4+ b'*™ a,b >0, we see that
(2.14) becomes

d
_ ~~ !
e <f’”>d(f,'7)||0P5K/Z Z 11, 1<l

k=0 [+m=k
d
K"k + 1)(Inls + 1¢15)
k=0
d
<K'(d+1)> (Inly+1€l3) (2.15)
k=0

In view of the inequality 1+a+a’>+---+a? <1+d+da?, a>0, (2.15) becomes
<K'(d+1)(1+d+dp|s+1+d+d|E[))
= 2K'(d +1)* + K'(d + 1)d(|n|5 +&]9). (2.16)
Since d <2/(1 —f), we have |17|Z <1+ \77|i/(1_ﬁ). Hence becomes
<2K'(d +1)* + K'(d + 1)d@ + g/ 4 |70,
Therefore,
le=“PEEnllop < €+ K(Inl, " + 12/,

where C' =2K'(d+1)(2d +1) and K = K'(d + 1)d. Consequently, we obtain
N1

(P EE )"

n=0""

N
Lo s
<Dl CrEEnls,
n=

OP

< eC/eXpK(|77|f,/(l_ﬁ) + |f|i/(l_ﬂ))’
as desired. L]
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REMARK. The condition deg=Z < 2/(1 — f§) seems almost best possible to have the
convergence in Z((E), ® #,(E); ® #). In fact, in case of # = C, it can be proved
that (2.12) implies degZ <2/(1 —f). Letting N — oo in (2.12) we have

-&m g 2/(1— 2/(1—
lexp(e P Z(&,m))| < Cexp K(nly " +1¢1/" ).
For simplicity we put
0(z) = e “SME(E zy), zeC.
Then F(z) = e%?) becomes an entire holomorphic function without zeroes of order

<2/(1 - p), ie.,

: loglogM (r) 2
< F
lim sup ogr S 1_f M(r) = rﬁf_ﬂ;l (2)]-

Applying Hadamard’s factorization theorem for entire holomorphic functions (see e.g.,
[4]), we see that 6(z) is a polynomial of degree <2/(1 —f). From

0()_eh<€’7>zulm’<lm)ézrl ZKIm ®l®é®m)

[,m=0 [, m=0

we see that =y, (x; ) =0 whenever / >2/(1 —f). Similarly, =/ ,,(x; ) =0 whenever
m>2/(1—p), and hence d =degZ < oo. We shall show that d <2/(1 —f). By
definition x; ,, # 0 for some /,m with / +m =d. Hence there exist &,7 € Ec such that

w= Y knn® @O #£0.
[+m=d

We may assume without loss of generality that w > 0. Replacing & and # in (2.13) with
z¢& and zy, respectively, we obtain

I+m <d

< Coxp K/ (/7 + 1807, zec

consequently,
lexp{wz? + Py_1(2)}| < Cexp(e'|z]"7P), zecC, (2.17)

where o' = K(\;ﬂ;/(l_ﬁ) + |é|§/(l_ﬁ)) >0 and P, i(z) is a polynomial in z of degree at
most d — 1. Then (2.17) holds for any ze C only when d <2/(1 — f).

The convergent series introduced in [Theorem 2. is called the Wick exponential
function of E and is denoted by

Note that = — wexp Z is not continuous. In fact, the Wick exponential is defined only
for = with finite degree and such operators do not constitute an open set in

P((E)® #,(E)" ® #).
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The symbol of wexpZ was already obtained during the proof of [Theorem 2.3:
(wexp Z) (&,1) = exp({&,ny + e P E(E 7). (2.18)

Using this one can deduce immediately the following
LEMMA 2.6. For i=1,2 let ;€ Y((E)® #,(E)" ® A#) with finite degrees. If
(2.19)

Ey O E, =5, O &y, it holds that
(wexp &1) O (wexp 5y) = wexp (Z] + Z7).

In particular, for any Ze ((E)® #,(E)" ® A) with finite degree we have

wexp = O wexp (—5) = 1.

Moreover, with the help of (iv) we can prove the following lemma
degree

Y A, (E)"® A) is of finite

without difficulty.
LEmmA 2.7. Assume that =Ze ¥ ((E
<2/(1 = B). Then z+ wexp (z5) € Z((E)y ® #,(E); @ ) is entire holomorphic and
4 wexp (z5) = 5 O wexp (z5)
dz plz=) == plz=

holds in L((E)y ® #,(E)y ® H).
REMARK. In their recent paper Cochran-Kuo-Sengupta introduced a further
It is plausible that the Wick exponential

generalization of white noise functions.
wexp = converges for any £ e #((E),(E)") in a suitably extended space of operators.
A further detailed study in this connection has been initiated in [34].

2.3. Time-ordered Wick exponential function.
We shall discuss a generalization of Wick exponential function introduced in the
previous section.

process, where T < R is an interval containing 0. Assume that degL, <2/(1 — f) for

Then the infinite series
-1
dt,L, O L, & - O Ly, (2.20)

0 pt f
=1+ Jdtlj dlz---J
t ; o Jo 0

TueoreM 2.8. Let {L;},.; <« Y(E)® #,(E)"® #) be a quantum stochastic

some 0 < f < 1.

converges in L ((E); @ A, (E); ® #).
ProOOF. We may assume that 7 is a compact interval. We put
t 151 I
YnzYn(t)=Jd11J dtz---J dty L, O L, O - O Ly,
0 0 0

Then by the definition of Wick product we obtain
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. t N
7 ) = e<fv">J dn j it
0

0

-1 N . ~
o J dln €_<§”7>L;1 (f) 77)6_<§7’7>le (é: 77)
0

e O L (& 7).

Consider the Fock expansion:

Li= Y Zmkm(), degL <d< o,

I+m < d

where d = max{degL,;te€ T} < oo by assumption. Then we have

(f n)_e<in> Z Kim ®l®é®m)

I+m <d
Since ¢ +— L, is continuous, so is ¢+ k7 ,(f), see [Theorem 1.7. Therefore there exist
K' >0 and p >0 such that
lkim@)l_, <K', teT, Lm=0,1,2... (2.21)
Then in a similar manner as in the proof of [Theorem 2.3, we may find C; >0 and

K> > 0 such that

le P L& mlop < Co+ K (/P + 0" ), teT, ének,

where C; =2K'(d+1)(2d +1) and K, = K'(d + 1)d. Thus

A tn B B .
[¥a(mllop < |7 {Cy + K ([0 g 0Py,

and
ZH Ellop < €€ lexp t{C1 + Ka(|E2/07 + g0}
< Cexp K (e[ + Jf} ") (2.22)
for some C >0 and K > 0. It follows from that =, = Y., ¥, converges
in Z((E), @ #,(E); @ #). “

The infinite series (2.20) is called the time-ordered Wick exponential function.
Similarly we may define the reversed time-ordered Wick exponential function:

0 th—1
I+ZJ“’“J dty - J dty Ly, O Ly, O - O Ly,

n=

which is the adjoint of (2.20).
If {L,} is a commuting (with respect to the Wick product) family of operators, we
have
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t on
J Lsds> )
0

Namely, the time-ordered Wick exponential (2.20) is reduced to the usual Wick
exponential function; this case is discussed in [33].

t n th1
Jdtlj dzz---J dtnL,1<>L,2<>-.-<>L,n:l|<
0 0 0 n:

3. Application to differential equations.

3.1. Ordinary differential equations.

THeOREM 3.1. Let {L,;} be a quantum stochastic process, where t runs over an
interval T < R. Assume that there exists some 0 < f <1 such that degL, <2/(1 — f)
for all t. Then the initial value problem

d=z

E-Los s,

has a unique solution in ¥ ((E); ® #,(E); ® #) which is given by

= Eye L((E)® #,(E)" @ #), (3.1)

0 t 151 -1
E,Z(HZJ dzIJ dtz---J dt,,Lt1<>L[2<>--~<>LG><>50- (3.2)
=1 J0 0 0

Proor. During the proof of we have established a local uniform
estimate (with respect to ) of the symbol of (3.2), see (2.22). Then for the assertion we
need only to prove that the symbol of (3.2) is a unique solution to

d - —EDT s s s
E:’t(éﬂﬂ =e€ <é7ﬂ>Lt(é:’7)‘:’t(é7ﬂ)7 al(é;’?)ltzo :‘20(57’7>7
of which the verification is straightforward. ]

REMARK. If we take the initial data = from Z((E), ® #,(E), ® ), the solution
lies in Z((E), ® #,(E), ® #) with « = max{f,y}. We do not go into this kind of
trivial remarks below.

COROLLARY 3.2. Let {L,} and {M,} be quantum stochastic processes in L ((E) ® A,
(E)" ® #) and consider
d=z _ - -
E:L,Qa—{—M,, Z|,_o = . (3.3)
Assume that {L,} is a family of operators commuting with respect to the Wick product
and that there exists some 0 < f <1 such that degL, <2/(1 —p) for all t. Then the
solution to (3.3) lies in Z((E); ® A, (E); ® H') and given by

t
2,=0,0 (J Q2D & Mods + Eo),
0

where

t t
Lyds, Q,O =D~ wexp (—J Lsds>.

Q, = wexp J
0

0
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Proor. We first note that Q, is defined due to the fact:

! 2
dng Lyds < —,
0 1-p

which follows from commutativity of the Fock expansion and the integral. Then
translating the initial value problem (3.3) into a differential equation of symbols, we
obtain the assertion by the standard argument known as the method of variation of
constants. ]

CorOLLARY 3.3. Let {L;} =« P(E)® #,(E)" ® #) be a quantum stochastic
process. Assume that {L,} is a family of operators commuting with respect to the Wick
product and that there exists some 0 < f§ < 1 such that deg L, <2/(1 — p) for all t. Then
the initial value problem:

dz
=
has a unique solution in L((E); ® A, (E); ® H') which is given by

t
;= (WeXpJ Lsds> O 5.
0

Here are a few examples, some of which have appeared in Huang-Luo taking
no notice of convergence of Wick products or existence of solutions.

LOE F|_, =5, (3.4)

ExampLE 1. Let {L,} e X((E)® #,(E)" ® #) be a quantum stochastic pro-
cess. Assume that degl, <2/(1 —f) and that the Fock expansion of L, contains
only annihilation operators. Then L, e Z((E) ® #,(E) ® #) follows automatically.
Consider the initial value problem:

Az _ _

e =L, E|_y = Zo, (3.9)
where the right hand side is a usual product. Since ZL, = 5 { L, by |Proposition 2.2 it
follows from that there exists a unique solution in Z((E),®#, (E);®@H).

If in addition {L,} is a commuting family with respect to the Wick product, the solution
1s given by
t

;= &y O wexp J L, ds.
0

(9]

A similar argument is applied to

which is dual to (3.5).
In the following examples we assume that # = C.

ExampLE 2. As a particular case of Example 1 we take L, = a,. Then one may
consider
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and their linear combination:

d=z
%:lea,—l—a)za;‘E, w1, € C. (3.6)
Equation appears in a problem of stochastic limit of an interacting quantum system
[T]. Since
w1 Za; + waE = E O (oa; + ma)) = (w1a + wra)) O 5
and deg (wja, + wya)’) < 1, it follows from [Theorem 3.1 that equation has a unique
solution in Z((E),(E)").

ExampLE 3. Since a;Za,

5 O (aja;) and dega)a, =2,

d= _ _
o= =a;5a;, ZE|_,= 5, (3.7)
admits a unique solution in Z((E),(E)") which is expressed as

t
E = Ey O wexp A, A,:J a;ayds,
0

where A, is the number process, see also [1.20].

ExampLE 4. There is no difficulty of discussing equations involving higher powers
of quantum white noises such as

o Za’ +a’z. (3.8)
In fact, since Za? +a’E, = 5 & (a? + a?) and deg (a? + a?) = 2, equation has a
unique solution in 5,”(( ),(E)") and is given by

[I]

t
= 5y O wexp J (a2 + a?) ds.
0

3.2. Quantum stochastic differential equations.

Following [18] We recall quantum stochastic differential equations of Ito type. For
i=1,2,3,4 let {L }c S(E)® #,(E)"® #) be an adapted quantum stochastic
process and consider

dz = (LVdd, + 1Pa4, + LPdar + LY anz, E|,_, = 5, (3.9)
where {4,}, {4,}, {4} are defined in [1.20). In fact, equation (3.9) is understood as a
formal representation of the integral equation
t

=50+ J (LWEdA,+ LY EdA, + L ZdAr + LW Eds), (3.10)
0

[

where the integrals are Itd type quantum stochastic integrals of adapted processes. As a
result, the solution should be an adapted process. (In short, the role of an infinitesimal
increment of the Brownian motion dB; in the classical Ito theory is played by dA,, dA;
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and dA,. For a comprehensive account see [25], [35].) Equation (3.9) is brought into
a usual differential equation by means of symbols:

L E e = com) Lz Em) + )L En)

)LV ) &) + (LY E)(E ). (3.11)
In fact, taking the symbols of the both sides of (3.10) we obtain an integral equation
for Z,(¢,n), where & 5 € Ec are fixed. Then (3.11) follows immediately. On the other
hand, we can consider the initial value problem:
dz
dt
Contrary to (3.9), equation (3.12) is a readily well-posed differential equation for
operators. Obviously, in terms of operator symbols (3.12) becomes

% (&) = eSO LV (E ) + EOLP (E,n)

=(a’LVa,+ LPa,+a’LP + LYY o 5, 5|, = 5. (3.12)

FnLEn) + LI Em)Een). (3.13)
Then equations (3.11) and (3.13) coincide if

(LZ) () = e SPLPEMEE ). i=1.234

or equivalently if

Lz, =1 o5, i=1,23,4 (3.14)
Then, in view of the results in the previous section (in particular, Example 1) we obtain

THEOREM 3.4. For i=1,2,3,4 let {L"} <« L((E)® #,(E)* ® #) be an adapted
quantum Stochastzc process.  Assume

(i) {L} = 2((E)® #,(E)® #);

(i) LYE=LY S F for any Ee L((E) ® #,(E)" @ #);

(iii) there exists some 0 < <1 such that dengi) <2/(1=p) for all t.
Then (3.9) has a unique solution in L ((E), ® H,(E); ® H).

The quantum stochastic differential equation with coefficients being adapted

(constant) processes defined by L 5 =I®L; Lie L), is a typical one first discussed

by Hudson-Parthasarathy [18]. That L satisfies the conditions in Mheorem 3.4 il-
lustrates that our approach bears some possibility of generalizing the theory of quantum
stochastic differential equations of Ito type.

Appendix.
Throughout this appendix let X be a countable Hilbert nuclear space over C or R.
Then there exists a sequence of Hilbert spaces {Hp}p, ., such that

'CHP‘FICH[JC'-'CHOC."CprCH—(p—FI)C"'?
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where the natural injection H,,; — H), is of Hilbert-Schmidt type for any p >0, and

X~ projlimH,, X"~ indlimH_,.

p—0 P

We denote by | - |, the norm of H,. Let 9 be a Banach space with norm | - [y. The
topology of X ® ) is given by the seminorms:

1<, ZinZIfilpImL (A1)

where the infimum is taken over the possible expression of { =>".& ®n;, € X, ;€ Y.
By the kernel theorem there is a canonical isomorphisms:

Y 2(X®99)" =22(X9. (A.2)
The topology of X* ® 9* is given by the seminorms

115 = ?uI;Kf,OI, feX"®Y,

where B <= X ® 9 runs over all bounded subsets. For /e X*® 9" we put

1111, = sup{[<f, O I, < 1) (A.3)

Note that (A.1) and are compatible. By definition for each f e X* ® 9" there
exists p >0 such that [|f]_, < co.

PROPOSITION A.l1. We keep the notations and assumptions as above and let T be a
locally compact space. Then for a map f: T — X" ® D" the following two conditions
are equivalent:

(1) f is continuous;

(ii) for any ty e Q there exists p >0 such that ||f(t)||_, < o and

lim || /(1) = f(20)]| -, = 0.

—1y

In that case for any compact subset Ty < T there exists p > 0 (different from above) such
that f: Ty — H_, ®,9" is continuous.

Proor. (i) = (ii) Given 7y we take an open neighborhood V < T of f# with
compact closure. Since f is cotinuous, f(V) < X* ® 9" is compact and hence equi-
continuous. Therefore there exist M >0 and p > 0 such that

IKF@0, Ol < ML), (eX®D, teV.

In particular,
SO, <M, teV. (A.4)

With each 7€ we associate a function g, : 7' — X" by the formula:

<gi7(t)7é>:<f(t)7é:®7/>7 ée%
Then for te V,

9,0, 1 < IF DI IE@nll, = (£ (DN, [El,lnly
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and, in view of we come to

90D, < 1S DI plnly < Mlnly, eV, (A.5)

Note also that g,(t1)e H_, for te V, ne9.
Let {ej}]ﬁ , be a complete orthonormal basis of H,,;. Then by definition,

|9(1) — g4 (20 | (p+1) Z <y (1) = gy(20), ej>| (A.6)

We shall estimate the above sum by dividing into two parts. First in view of we
obtain

1Kgn (1) — gy(10), €| < lgy(1) — gy(t0)|_,leil, < 2Mnlyle;l,,, 1€ V.
Given ¢ > 0 we choose N such that
aM? Z |e]|
Jj>N

which is possible since H,.; — H, is of Hilbert-Schmidt type and Zf;l |e_,'|f, < o0. Then,
(A.6) becomes

N 2
|94(1) — gy (20 | 1) = Z gy (t) — gy (o), e,>| + |77|2)

N
Z flt0), e @) += ”7|9) (A7)

Put
B={e®@n;j=12,...,N,[nly <1}.

Obviously, B< X ® 9 is a bounded subset. Since fis continuous by assumption, there
exists an open neighborhood U < 2 of #, such that

IF (1) = f(0)llp < =+ 1€ U,

Then, for re U and 1 < j < N we have

Kﬂﬂ—f%%q®nﬂ£b%ﬂﬂ0—f%mgé;%ﬁwg

Thus (A.7) becomes

22
2 € &2 20,012
000 = 90y < N x (i ) +5 i =l reUny.
that is,

1g5(2) — gy (ps1) < elnly, teUNV. (A.8)



Wick product and quantum stochastic differential equations 639

Finally we shall prove

1£(6) = F(t)ll sy <& teUNV. (A.9)
For { =), ®n,€ X® a9 it follows from that

[<f(0) = £(10), Ol < YIS (0) = (1), & @)l

i

< D Kan(0) = g, (10). &)

< 32 (ilp1 il
i
Taking the infimum over the possible expressions of {, we see that

L) = f(10). O < elltll, 0. 1eUNV.

From this we obtain (A.9).
(i) = (i) Let Bc X® 9 be an arbitrary bounded subset. Then we have

1F(6) = f(20)llp < sup [l () = f(20)ll, €I,

leB

= 1Bl I/ (2) = f()ll, = O

as t — ty by assumption. This shows that f is continuous at f.
The rest of the statement is already clear. ]

We now prove the equivalence (i) < (ii) in Theorem LS.

PrROPOSITION A.2. Let T be a locally compact space. Then for the map t— =, €
L=Z(E)Q®@A, (E)ék ®H), teT, the following two conditions are equivalent:

(i) t— Z,e & is continuous;

(i) for each tye T there exist p >0 and an open neighborhood U of ty such that

{Z;teU} c %, and }1_%10 12— Eqllg, = 0.
PrOOF. Let I(A#) be the space of trace class operators on #’; then I(#)" =
L(A). Setting X = (E); ® (E); and Y = T(A'), we apply Proposition A.1. For the

assertion it is sufficient to show that the norm || - ||_, used in [Proposition All coincides
with || - || . Note first that

|12(w) || op = sup{|<Z (@), T)];7 € T(H),||t||rx < 1}
=sup{|[<Z, 0 @ t)l; 1€ T(H), ||7||;x < 1}
<sup{||Z]_,ll0 ®7] ;r e T(A),|t]l 7 < 1}

==l ol

Hence

121l g, = sup{l|Z(@)l[gp; @ € (E)g ® (E)p, ool , < 1} < =],
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We shall prove the converse. Consider € X ® 9 of the form:
(=) o;®7 (finite sum).

Then,
(B, =) (Goi®@uy=) (&) u),

and

KEOI< Y IZ@)loplltilzr < DI g, lloil, N1zl 7
i i

Using (A.1) we obtain
KE, Ol < (1=l g, 1<l
ie.,

151, < =l g, - O

PROPOSITION A.3. Let {x,} be a sequence in X* and let x e X*. Then x, converges
to x in X" if and only if there exists p >0 such that lim, . |x, —x|_, = 0.

Proor. Consider 7 = {0,1,1/2,1/3,...} equipped with the relative topology
induced from [0, 1]. Set f(1/n) =x,, f(0)=x and apply Proposition A.l. O
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