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The reducibility of linear almost periodic systems with

su‰ciently small coe‰cient matrices
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(Received Aug. 25, 1997)

Abstract. In this paper, we shall obtain a reducible theorem for a linear almost

periodic system with an almost zero coe‰cient matrix. This reducible theorem states that

the system can be transforms into two systems with size smaller than the original

system. Of course, the transformation is linear and almost periodic.

§ 1. Introduction.

Let us consider a linear almost periodic system

_xx ¼ eNAðt; eÞx; . ¼ d=dt; x A C
n; t A R:ð1Þ

Here N is a positive integer, e is a complex parameter su‰ciently close to 0 and Aðt; eÞ is

a matrix function continuous in

ÿy < t < y; jejY r;

almost periodic in t uniformly for jejY r and holomorphic in jej < r. From the

holomorphic property of Aðt; eÞ we get the analytical expression

Aðt; eÞ ¼
Xy

k¼0

AkðtÞe
k:

Now we denote by L the mean of A0ðtÞ. If ~AA0ðtÞ ¼ A0ðtÞ ÿ L, then ~AA0ðtÞ is an almost

periodic matrix function whose mean is zero. Suppose that L has a Jordan’s normal

form diag(L1, L2) where

(i) L1 is a z� z matrix whose diagonal entries are arranged as l1; . . . ; lz and whose

ði; i þ 1Þth entries are denoted by li ði ¼ 1; . . . ; zÿ 1Þ,

(ii) L2 is a ðnÿ zÞ � ðnÿ zÞ matrix whose diagonal entries are arranged as lzþ1; . . . ; ln
and whose ði; i þ 1Þth entries are denoted by lzþi ði ¼ 1; . . . ; nÿ zÿ 1Þ,

(iii) if i ¼ 1; . . . ; z, j ¼ zþ 1; . . . ; nÿ 1, then

li 0 lj:

Needless to say,

li ¼ 0 or 1 ði ¼ 1; . . . ; zÿ 1; zþ 1; . . . ; nÿ 1Þ:

Moreover we adopt a convention

lz ¼ 0:
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Recall that a system

_xx ¼ AðtÞxð2Þ

is called reducible with a projection P, if (2) is kinematically similar to a system

_xx ¼ BðtÞxð3Þ

where BðtÞP ¼ PBðtÞ. Here (2) is said to be kinematically similar to (3), if there exists a

continuously di¤erentiable invertible matrix function SðtÞ bounded as well as its inverse

Sÿ1ðtÞ such that the transformation x ¼ SðtÞy transforms (2) to (3).

Let PðzÞ be a diagonal matrix. The first z diagonal entries of this are 1 and the

others are 0. The purpose of this paper is to show that (1) is reducible with PðzÞ under

suitable suppositions. For this goal we shall use the idea stated in the proof of

Proposition 1 of [1, p. 42]. As in there we define

fMg1 ¼ PðzÞMPðzÞ þ ðI ÿ PðzÞÞMðI ÿ PðzÞÞ

fMg2 ¼ PðzÞMðI ÿ PðzÞÞ þ ðI ÿ PðzÞÞMPðzÞ

for any matrix M. Moreover we put

Bðt; eÞ ¼
Xy

k¼0

BkðtÞe
k ¼ Aðt; eÞ ÿ L:

Therefore we get

B0ðtÞ ¼ ~AA0ðtÞ; BkðtÞ ¼ AkðtÞ:

From the part of [1] mentioned above, it follows that if we get a solution H ¼ Hðt; eÞ of

_HH ¼ eNðLH ÿHLþ fðI ÿHÞBðt; eÞðI þHÞg2Þð4Þ

fHg1 ¼ 0;ð5Þ

then the transformation x ¼ ðI þHðt; eÞÞy transforms (1) to

_yy ¼ eNðLþ fBðt; eÞðI þHðt; eÞÞg1Þy:ð6Þ

Therefore if Hðt; eÞ is bounded, then (1) is reducible with PðzÞ.

In the previous paper [2] we obtained a formal solution

Hðt; eÞ ¼
Xy

k¼0

HkðtÞe
k

of (4), (5) in case of N ¼ 1 under some suppositions. To tell the truth, the consid-

eration of the reducibility of (1) here arises from the expectation that such a formal

solution converges. Actually under the suppositions given in [2] we shall show the

existence of a solution Hðt; eÞ of (4), (5) continuous in ÿy < t < y, jejY m, almost

periodic in t uniformly for jejY m and holomorphic in jej < m for some positive constant

m. Therefore we shall find that the formal solution converges, since this was uniquely

determined.
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§ 2. Preliminaries.

Concerning Aðt; eÞ we assume the same properties as in [2]. First we define the

following two function spaces:

Definition 1. Let M1 be a set consisting of 0 and real numbers whose absolute

values are greater than some positive constant. Suppose M1 is closed under the

addition. Then we put

F1 ¼ f f : f A APðCÞ;Expð f ÞHM1g

where APðEÞ denotes the totality of E-valued almost periodic functions and Exp( f )

denotes the exponents of the almost periodic function f.

Recall that F1 is a set of periodic functions or of almost periodic functions whose

exponents consist of 0 and numbers with the definite sign.

Definition 2. Let o A R
K have components linearly independent with respect to

integers. Suppose the nonresonance condition

jðm;oÞjZ c0jmjÿs ðc0; s : positive constantsÞ

where m ¼ ðm1; . . . ;mKÞ A Z
K , ð ; Þ denotes the inner product of vectors and

jmj ¼ jm1j þ � � � þ jmK j:

Then we define

M2 ¼ fðm;oÞ : m A Z
Kg;

F2 ¼ f f : f A APðCÞVOðRÞ;Modð f ÞHM2g

where OðRÞ denotes the totality of real analytic functions and Mod( f ) denotes the

smallest module of real numbers containing Exp( f ).

If f A F2, then f is quasiperiodic. Hence there exists a function ~ff ðyÞ of y ¼

ðy1; . . . ; yKÞ with the period 2p in every yiði ¼ 1; . . . ;KÞ such that

f ðtÞ ¼ ~ff ðotÞ:

Definition 3. Let us call ~ff the extension of f.

Consider the case when all entries of Aðt; eÞ belong to F1 or F2. Moreover we

must define operators M and L.

Definition 4. For any almost periodic function hðtÞ, we denote by Mh the mean

value of hðtÞ. Furthermore Lh denotes the almost periodic solution of

_xx ¼ hðtÞ ÿMh

whose mean value is zero, if this exists. Furthermore if HðtÞ ¼ ½hijðtÞ� is an almost

periodic matrix function, then we define

LHðtÞ ¼ ½LhijðtÞ�; MH ¼ ½Mhij �:
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Definition 5. Let ~FF2ðnÞ be a set of functions such that if ~ff A ~FF2ðnÞ, then ~ff ¼
~ff ðyÞðy ¼ ðy1; . . . ; yKÞÞ is continuous in jIm yijY n, holomorphic in its interior and is the

extension of some function f A F2.

The following is obtained by Lemma 2.3 of [2].

Lemma 1. (a) L is a bounded linear operator of F1 into F1.

(b) L is a bounded linear operator of ~FF2ðnÞ into ~FF2ðn=2Þ where L~ff ð ~ff A ~FF2ðnÞÞ is

defined to be equal to the extension of Lf .

Furthermore, from Lemma 2.4 (c) of [2], we get

Lemma 2. Let f ðt; eÞ ¼
P

y

k¼0 fkðtÞe
k be a function continuous in ÿy < t < y,

jejY r, almost periodic in t uniformly for jejY r, holomorphic in jej < r and fkðtÞ belong

to F1 or F2. Then

L

X

y

k¼0

fkðtÞe
k

 !

¼
X

y

k¼0

L fkðtÞe
k

which converges uniformly for all t A R.

The assumption that entries of Aðt; eÞ belong to F1 or F2 is given for ensuring the

boundedness of L. The discussions can be carried out more easily in the case when

entries of Aðt; eÞ belong to F1 than in the case when these belong to F2. So the

discussions of the former case will be omitted.

Supposition A. All the entries of Aðt; eÞ belong to F2.

Under this supposition we must assume the more.

Supposition B. There exists the extension ~AAðy; eÞ of Aðt; eÞ which is continuous in

the set

jIm yijY n; jejY r

and is holomorphic in jIm yij < n where n is a constant independent of e.

Since ~AAðy; eÞ has the period 2p in yi and hence is bounded, this is also holomorphic

in jej < r.

§ 3. The main discussions.

If (4) has an almost periodic solution, then we get

H ¼ eNLðLH ÿHLþ fðI ÿHÞBðt; eÞðI þHÞg2Þ þ Cð7Þ

MðLH ÿHLþ fðI ÿHÞBðt; eÞðI þHÞg2Þ ¼ 0;ð8Þ

where C is a constant matrix. Here if

H ¼ G þ C

where G is an almost periodic matrix function with the mean zero and C ¼ MH, then
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from (8) we obtain

LC ÿ CLþMðfðI ÿHÞBðt; eÞðI þHÞg2Þ ¼ 0:ð9Þ

Conversely if (7), (9) have an almost periodic solution, then we have (4). Namely (4) is

equivalent to (7), (9).

To solve (9), we require

Lemma 3. If M is a matrix with fMg1 ¼ 0, then there exists uniquely a solution X of

LX ÿ XL ¼ Mð10Þ

such that

fXg1 ¼ 0:

Proof. Suppose that X, M are partitioned as

X ¼ ½Xi j�i; j¼1;2; M ¼ ½Mi j�i; j¼1;2

where if n1 ¼ z, n2 ¼ nÿ z, then Xij , Mij are ni � nj matrices and from fMg1 ¼ 0 we get

M11 ¼ M22 ¼ 0:

In this case, from (10) we obtain

L1X11 ÿ X11L1 ¼ 0ð11Þ

L1X12 ÿ X12L2 ¼ M12ð12Þ

L2X21 ÿ X21L1 ¼ M21ð13Þ

L2X22 ÿ X22L2 ¼ 0:ð14Þ

X11 ¼ X22 ¼ 0 satisfies (11) and (14). If we put

X12 ¼ ½xi zþj�; M12 ¼ ½mi zþj�

ði ¼ 1; . . . ; z; j ¼ 1; . . . ; nÿ zÞ;

then we get from (12)

ðli ÿ lzþjÞxi zþj þ lixiþ1 zþj ÿ xi zþjÿ1lzþjÿ1 ¼ mi zþj:

Thus xi zþj are determined uniquely in the order

ði; jÞ ¼ ðz; 1Þ; ðz; 2Þ; . . . ; ðz; nÿ zÞ;

ðzÿ 1; 1Þ; ðzÿ 1; 2Þ; . . . ; ðzÿ 1; nÿ zÞ;

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

ð1; 1Þ; ð1; 2Þ; . . . ; ð1; nÿ zÞ:

Similarly X21 is determined uniquely by (13). Hence the proof is completed.
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Definition 6. Let us denote by SM the unique solution of (10).

Notice that S is a bounded linear operator.

Returning to (9), we get

C ¼ ÿSMðfðI ÿHÞBðt; eÞðI þHÞg2Þ:ð15Þ

From (7) and (15), we obtain

H ¼ eNLðLH ÿHLþ fðI ÿHÞBðt; eÞðI þHÞg2Þ

ÿSMðfðI ÿHÞBðt; eÞðI þHÞg2Þ:

Here we denote by TH the right side of this. Furthermore we put

H0 ¼ 0; Hk ¼ THkÿ1 ðk ¼ 1; 2; . . .Þ:ð16Þ

The norm k kn we shall use is defined as

kHðy; eÞkn ¼ sup
jIm yi jY n

jHðy; eÞj;

where j j denotes a matrix norm with jGHjY jGjjHj for matrices G, H and Hðy; eÞ is a

matrix function defined in a region of C
2. Moreover we define

~BBðy; eÞ ¼ ~AAðy; eÞ ÿ L:

Since ~BBðy; eÞ has the period 2p in yi and is continuous in jIm yijY n ði ¼ 1; . . . ;KÞ,

jejY r, there exists a constant W such that

k ~BBðy; eÞkn YW

over jejY r.

Applying Lemma 1 (b) to (16), it follows from the inductional argument that Hk

has the extension holomorphic in jIm yijY n=2k which is equal to the extension of

THkÿ1. The extension of Hk will be also denoted by Hk. Moreover from the in-

ductional argument,

Hk ¼ OðeÞ;

because if Hkÿ1 ¼ OðeÞ, then

SMðfðI ÿHkÿ1ÞBðt; eÞðI þHkÿ1Þg2Þð17Þ

¼ SMðfB0ðtÞ þOðeÞg2Þ ¼ SMðOðeÞÞ ¼ OðeÞ:

Now suppose that

kHkÿ1kn=2kÿ1 Y 1:

Then for jej < 1 we get

kHkkn=2k ¼ kTHkÿ1kn=2k

Y jejjLjð2jLj þ 4cWÞ þ 4jSjjMjcW;
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where j j denotes a norm of operators together with a matrix norm and c is a constant

satisfying

jfMg2jY cjMj:

However, from (17) we obtain

kSMðfðI ÿHkÿ1ÞBðt; eÞðI þHkÿ1Þg2kn=2kÿ1

Y 4jSjjMjcW
jej

rÿ jej
:

Here if we suppose

jejjLjð2jLj þ 4cWÞY
1

2
; 4jSjjMjcW

jej

rÿ jej
Y

1

2
;

then

jejYmin
1

4jLjðjLj þ 2cWÞ
;

r

8jSjjMjcWþ 1
; 1

� �

ð18Þ

since jej < 1. If e satisfies this, then

kHkkn=2k Y 1:ð19Þ

Namely, from the induction, (19) is valid for k ¼ 1; 2; . . . :

Furthermore we get

kHk ÿHkÿ1kn=2k Y jejN jLjkLHkÿ1 ÿHkÿ1L

þ fðI ÿHkÿ1ÞBðt; eÞðI þHkÿ1Þg2

ÿ LHkÿ2 þHkÿ2Lÿ fðI ÿHkÿ2ÞBðt; eÞðI þHkÿ2Þg2kn=2kÿ1

þ jSjjMjkfðI ÿHkÿ1ÞBðt; eÞðI þHkÿ1Þg2

ÿ fðI ÿHkÿ2ÞBðt; eÞðI þHkÿ2Þg2kn=2kÿ1 :

On the other hand

kfðI ÿHkÿ1ÞBðt; eÞðI þHkÿ1Þg2ð20Þ

ÿ fðI ÿHkÿ2ÞBðt; eÞðI þHkÿ2Þg2kn=2kÿ1

is not greater than

4cWkHkÿ1 ÿHkÿ2kn=2kÿ1 :

Therefore (20) is not greater than

4cWkHkÿ1 ÿHkÿ2kn=2kÿ1

jej

rÿ jej
;
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since (20) is equal to OðeÞ. Consequently we have

kHk ÿHkÿ1kn=2k Y jejjLjð2jLj þ 4cWÞ þ 4jSjjMjcW
jej

rÿ jej

� �

kHkÿ1 ÿHkÿ2kn=2kÿ1 :

If we suppose

jejjLjð2jLj þ 4cWÞY
1

4
; 4jSjjMjcW

jej

rÿ jej
Y

1

4
;

then

jejYmin
1

8jLjðjLj þ 2cWÞ
;

r

16jSjjMjcWþ 1

� �

:ð21Þ

Therefore if jejY m where

m ¼ min
1

8jLjðjLj þ 2cWÞ
;

r

16jSjjMjcWþ 1
; 1

� �

;

then (18) and (21) are satisfied. In this case,

kHk ÿHkÿ1kn=2k Y
1

2
kHkÿ1 ÿHkÿ2kn=2kÿ1 :

Hence we have

kHk ÿHkÿ1kn=2k Y
1

2

� �kÿ1

kH1 ÿH0kn=2ð22Þ

Y
1

2

� �kÿ1

:

Take t A R. Then from (22) we get

lim
k!y

Hkðt; eÞ ¼ lim
k!y

H0ðt; eÞ þ
X

k

r¼1

ðHrðt; eÞ ÿHrÿ1ðt; eÞÞ

 !

¼ Hðt; eÞ;

where the convergence of the limit is uniform. Therefore Hðt; eÞ is a function con-

tinuous in ÿy < t < y, jejY m, almost periodic in t uniformly for jejY m

and holomorphic in jej < m such that

H ¼ TH:

Consequently Hðt; eÞ is a solution of (7), (9) and hence of (4). Moreover since

Hk ¼ OðeÞ, we obtain

Hðt; eÞ ¼ OðeÞ:

From (16) we get

fHkg1 ¼ feNLðLHkÿ1 ÿHkÿ1LÞg1

¼ eNLðfLHkÿ1 ÿHkÿ1Lg1Þ:

Consequently if fHkÿ1g1 ¼ 0, then

fHkg1 ¼ 0:
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Namely we get

fHg1 ¼ 0:

Since we have just shown that Hðt; eÞ is a solution of (4), (5), we now conclude that

x ¼ ðI þHðt; eÞÞy transforms (1) to (6).

Theorem. (1) is reducible with PðzÞ.

Since Hðt; eÞð¼ OðeÞÞ is holomorphic in jej < m, we write

Hðt; eÞ ¼
Xy

k¼0

HkðtÞe
k ðH0ðtÞ ¼ 0Þ:ð23Þ

In the same manner as in [2], we shall obtain recurrence formulas for determining

HkðtÞ. Substituting (23) into (4), we get

_HHkðtÞ ¼ 0 ðk ¼ 1; 2; . . . ;N ÿ 1Þð24Þ

_HHkðtÞ ¼ LHkÿNðtÞ ÿHkÿNðtÞLþ fBkÿNðtÞð25Þ

ÿ
XkÿNÿ1

q¼0

HkÿNÿqðtÞBqðtÞ þ
XkÿNÿ1

q¼0

BqðtÞHkÿNÿqðtÞ

ÿ
X

p1þp2þp3¼kÿN

Hp1ðtÞBp2ðtÞHp3ðtÞg2 ðk ¼ N;N þ 1; . . .Þ;

where the sum
Pÿ1

q¼0 is supposed to be equal to zero.

It follows from (24) and (25) that HkðtÞ are determined to have the form

HkðtÞ ¼ GkðtÞ þ Ck; fHkðtÞg1 ¼ 0

where GkðtÞ are almost periodic matrix functions whose means are zero and Ck are

constant matrices such that the mean of the right side of (25) vanishes if the index k is

changed for k þN. Consequently we get

GkðtÞ ¼ 0 ðk ¼ 0; 1; . . . ;N ÿ 1Þ;

GkðtÞ ¼ LðLGkÿNðtÞ ÿ GkÿNðtÞLþ FkÿNðtÞÞ ðk ¼ N;N þ 1; . . .Þ

Ck ¼ ÿSMFkðtÞ ðk ¼ 0; 1; . . .Þ:

Here

FkðtÞ ¼ fBkðtÞ ÿ GkðtÞB0ðtÞ ÿ
Xkÿ1

q¼1

ðGkÿqðtÞ þ CkÿqÞBqðtÞ

þ B0ðtÞGkðtÞ þ
Xkÿ1

q¼1

BqðtÞðGkÿqðtÞ þ CkÿqÞ

ÿ
X

p1þp2þp3¼k

ðGp1ðtÞ þ Cp1ÞBp2ðtÞðGp3ðtÞ þ Cp3Þg2
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where p1 0 0, p3 0 0. It is noteworthy that these can be obtained directly from

H ¼TH.
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