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Abstract. Based on the free product construction we show that a certain full factor
of type IIl,» admits a minimal coaction of the compact quantum group SU,(n). Minimal
coactions of compact Kac algebras are also investigated by the same technique.

1. Introduction.

The importance of study on quantum groups has been emphasized recently, and Kac
algebras ([ES2]) and the compact quantum group (or quantum matrix pseudo-group)
SU,(n) (Wrl], [Wr2]) are typical examples. In the operator algebra setting, their
coactions (i.e., “quantized symmetries”’) on ambient algebras (i.e., “quantized spaces”)
are of central importance. Among them minimal coactions (if they exist) are desirable,
fixed-point subalgebras and/or crossed products naturally giving rise to infinite-index
([J], [Xs], [L1]) irreducible inclusions of factors of depth 2 (in the sense of A. Ocneanu).
In fact, such inclusions have been recently discussed by several authors ((EN], [ILP],
and so on).

However, to the best of author’s knowledge no example of a minimal coaction of a
compact quantum group on a factor is known so far. In fact, some attempt was made
by S. Yamagami to prove its non-existence. The main purpose of the paper is to show
that a certain full factor (in the sense of [C2]) of type III» indeed admits a minimal
coaction of the compact quantum group SU,(n) (0 < ¢ <1). Minimal coactions of
compact Kac algebras are also investigated, and our technical tool here is the free
product construction. When dealing with minimal coactions, the main difficulties are
the computation of the fixed-point subalgebra and to see its irreducibility. The ad-
vantage of the free product construction is its high non-commutativity. We choose a
much smaller subalgebra than the fixed-point subalgebra, and we can sometimes easily
observe its irreducibility against the original factor. In this way, the current approach
enables us to obtain the minimality without determining the fixed-point subalgebra.
Note that a similar idea was used in [P] for different purposes.

To explain the idea in our construction, we here deal with the compact group
case. Let # be the AFD II; factor with the unique normalized trace 7z, and G be a
compact group with the (probability) Haar measure x. Note that the tensor product
# ® L”(G) is equipped with the natural tensor product trace t ® (|, - du), and we then
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perform the free product

(2@ L*(G)) xR (relative to 7 ® (J -d,u) and r).
G

Using [D2, Theorem 4.6.], we can see that this algebra is the free group factor
L(F,). Note that the translation 4, on the group induces the natural free product
action

o, = (id ® Ad(4,)) *id

on the free product. The computation of the fixed-point algebra might be difficult, but
the obvious subalgebra(# ® C1) x £ sits in the fixed-point subalgebra, and it is quite
standard to see (Z® L*(G))*Z)N((#®Cl)*R) =Cl based on free product
machine, i.e., due to its high non-commutativity. Thus, we have obtained a minimal
action of a compact group (on the free group factor L(F;)). In general an action of
course has to be replaced by a coaction so that the notion of free products of coactions
1s required.

In §2 we will summarize basic definitions and properties on free products of von
Neumann algebras. The result (which appeared in L. Barnett’s article [B]) guaranteeing
the high non-commutativity of the free product construction is important to us.
Standard facts on compact Kac algebras, the compact quantum group SU,(n), and
Woronowicz algebras as well as their coactions will be also collected here. From the
discussions in the preceding paragraph, it is clear that what is relevant for our purpose is
how to justify the notion of free products of two coactions. This will be done in §3
under a natural invariance condition, and in the next §4 we will prove the above-
mentioned main result by our free product machine. Minimal coactions of arbitrary
compact Kac algebras will also be investigated by the same idea, and we see that the
free group factor with n generators admits a minimal coaction of any hyperfinite
compact Kac algebra. In §5, based on the justification in §3, we will investigate the free
product of two compact Kac algebras, and we would like to point out that the dis-
cussions here are closely related to the recent article [Wn)|.
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Kosaki for constant mathematical support and encouragement and to Professor Y.
Watatani for constant encouragement and pointing out an error in the early stage. And
he also wishes to express his gratitude to Dr. T. Teruya for many useful communications
and to Professor Y. Sekine for suggesting the use of a Hamel basis and communicating
of his recent results after the completion of the original version.

Finally, the author wishes to express his gratitude to the referee for critical reading
of this paper, pointing out an error in the original version and useful suggestions.

2. Preliminaries.

In this section, we will summarize basic definitions and properties needed in this
paper.
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2.1. Free product.

Throughout this subsection, we assume that ./; is a o-finite von Neumann algebra
with a faithful normal state ¢; (i = 1,2), and denote by .#;° the kernel of ¢; (i =1,2).
We first describe the notion of (reduced) free products of von Neumann algebras with
respect to faithful normal states introduced by D. V. Voiculescu [V1].

DerFINITION 2.1.1. ([V1], [VDN]) Let (.#,p) be a von Neumann algebra equipped
with a faithful normal state. (.#,p) = (N1,9,) * (N2,9,) is called the free product of
(AN1,0;) and (A2,¢,) if it satisfies the following three conditions:

(1) There exist two injective normal unital *homomorphisms 4 ; and 4,; into .#
from /7 and ./, respectively whose ranges generate /.

(2) polsy =9 and goly; = p,.

(3) ¢ satisfies the freeness in the sense of D. V. Voiculescu ([V1]), i.e. for x; € A7
with ij#--- #1i, and i; € {1,2}, then

Pry (1) A, () = 0.

The free product was constructed in and [VDN], and known to be characterized
by the above three conditions. Therefore, we will employ the above as our working
definition. We will often identify 4 ;(x) with x itself. When no confusion is possible,
we will denote by .47 x A5 the free product von Neumann algebra .# and ¢, * ¢, will be
referred to as a free state.

The following theorem was proved by L. Barnett in based on well-known L.
Pukanszky’s 14¢-argument.

THEOREM 2.1.2. ([B, Theorem 11.]) Let (M,p) = (N1,0,) % (N5, 0,). Suppose that
(i), contains a discrete group 9; of orthogonal unitaries with respect to ¢; (i = 1,2) with
|g1| > 2, |g2| > 3.

Fix a in 9.\{1} and b,c in 9,\{1}, and we have

(1) lx = p(x)1], < 14 max{|[[x, all|,, |[x, b1, [T, ]l . }-

for every x in M, where | ||, is the norm induced by ¢.
Hence, 4 is a full factor. Furthermore, by (1) the following holds:

(2) {a,b,c}' N4 = C1.

The equation (2) indicating the high non-commutativity of free products is our
essential tool.

2.2. Compact Kac algebras, the compact quantum group SU,(n) and their coactions
on von Neumann algebras.
We first describe the notion of Woronowicz algebras defined by T. Masuda and Y.
Nakagami ((MN]). This notion is fitting to our purpose.

DerNITION 2.2.1. ([MN]) Let o/ be a von Neumann algebra, J: .o/ — o/ ® .o/ be
an injective normal unital *homomorphism (comultiplication), x : .o/ — .o/ be an anti-
«automorphism (unitary antipode), {7;},.gx be a l-parameter s.o.-continuous auto-
morphism group on ./ (deformation automorphism), and % : .o/, — R, be a faithful



452 Y. Uepa

normal semifinite weight (Haar weight). W = (</,9,k,{7,},h) is called a Woronowicz
algebra if it satisfies the following four conditions:

(1) o satisfies the co-associative law.

2) x?=id and (Kk®xK)od =X odoxk, where X is the flip.

3) (7®71)00=0dot, and Ko7, =7, 0K.

(4) h has the left invariance: (id ® h)(d(a)) =h(a)l for a in /., strong left
Invariance:

(i[d ®0)((1® y")o(x)) = (t-ipp ok @ M)(B(y) (1 ® x))

for entire analytic elements x, y in {a € o/ : h(a*a) < oo} with respect to {7,}, and the
commutativity of ¢" and ¢"*.

When 7, = id, we call K = («/,0,x,h) a Kac algebra. Also we call (.«7,0) with the
condition (1) a Hopf-von Neumann algebra.

In this paper, we will only deal with compact Woronowicz algebras (i.e. the Haar
weight is bounded: A(1) < +o0). For simplicity, we assume /(1) =1 and call & the
Haar state. In this case, we can prove the uniqueness of the Haar state, the right
invariance of the Haar state ((MIN, Remark 1.3]), and the Haar state of a compact Kac
algebra is tracial ((ES2, 6.2.1. Theorem)).

Let (A4,u) (4 is a unital C*-algebra and u is a unitary in 4 ® M,(C)) be the
compact quantum group SU,(n) (Wrl], [Wr2]). S. L. Woronowicz proved the exis-
tence of the unique Haar state ¢, and the Peter-Weyl type theory. If we denote by
(A 4,7m4,E4) the GN.S. triple associated with (4, 4), we can equip o/ = m4(4)” with a
Woronowicz algebra structure ([MN, Theorem 5.6.]) and this compact Woronowicz
algebra will be denoted by L*(SU,(n)). In fact, the Haar state is given by the vector
state we, and the comultiplication is induced by the fundamental unitary or Kac-
Takesaki operator (the unitarity can be proved):

W(ry(a)y ® m4(b)Sy) = (75 ® 1p)(P(D)) (m4(a)Sy ® &y)
for every a,b in A, where @ is the canonical comultiplication of SU,(n). The adjoint
V= W* is a multiplicative unitary in the sense of [BS].

ReEMARK 2.2.2. In [EV], M. Enock and L. Vainerman claimed that from every
compact quantum group in the sense of S. L. Woronowicz one can construct a
Woronowicz algebra as above.

Here, with the above notation, we describe the notion of a coaction of a Hopf-von
Neumann algebra on a von Neumann algebra.

DEerINITION 2.2.3.  Let (o/,0) be a Hopf-von Neumann algebra and .# be a von
Neumann algebra. An injective normal unital xhomomorphism o: .o/ — # ® </ 1is
called a coaction if it satisfies

(0®id)oa= (id ®J) o .

To deal with the crossed product of a von Neumann algebra by a compact
Woronowicz algebra, we consider the dual Woronowicz algebra ([MN]) of a given
Woronowicz algebra. Let W = (</,0,x,{r,},h) be a compact Woronowicz algebra.
We assume that ./ acts on the standard Hilbert space L?*(.«#). Let W be the fun-
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damental unitary on L?(.«/) ® L*(.«#) defined by

W(x&, ® ySn) = 0(y)(x&) @ &p)

for every x,y in .o/, where &, is the implementing vector of 4 in the natural cone.
We define 7(¢) in B(L?*(.«/)) for every ¢ in .o/, by

a(f) = (@ id)(W")
and the dual Woronowicz algebra W = (7,6, %, {%,},h) by
o ={a(p): g},

dx)= W1 Qx)W
for every x in o/ with W = X(W*), and

k(#(¢) =a(por),  w(a(g) =a(por-)
for every ¢ in .</,.

REMARK 2.2.4. Construction of the dual Haar weight requires the left Hilbert
algebra technique (see [MN]).

Here we recall the notion of crossed products ([N]) and minimal coactions.

DEerINITION 2.2.5. Assume that W = (</,0,x,{7,},h) is a compact Woronowicz
algebra with the corresponding dual Woronowicz algebra W = (o 0K, {1/}, fz). Let ./
be a von Neumann algebra and o : .# — /4 ® o/ be a coaction.

(1) The crossed product .# <,W of .#4 by W with respect to « is the von
Neumann algebra generated by o(.#) and Cl ® /', where /' =J.o/J and J is the
modular conjugation of ..

(2) The coaction « is called a minimal coaction if the relative commutant of the
fixed-point algebra .#* = {x e ./ : a(x) = x® 1} in . is trivial and the crossed product
algebra .# < ,W 1is a factor.

3. Free product of coactions.

Throughout this section, we assume that (.«/,0) is a o-finite Hopf—von Neumann
algebra (i.e. .o/ is a o-finite von Neumann algebra with a comultiplication ¢ : .o/ —
o ® o), N;is a o-finite von Neumann algebra with a faithful normal state ¢; (i = 1,2)
and o; : N} — N;® o/ is a coaction (i =1,2).

Assume the following conditions:

(1) There exists a subset {u,} of linearly independent elements in ./ whose finite
linear combinations form a unital dense xsubalgebra in .o7.

(2) ¢; is an invariant state of o; (i = 1,2),
ie.

(9; ®1d) 0 2i(x) = p;(x)1
for every x in A} (i=1,2).
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When o is an ordinary action of a compact group G on a von Neumann algebra .#
acting on a Hilbert space /', we have an invariant state ¢ on .# (¢ oa, = ¢), and the
corresponding coaction 7, : M — M ® L*(G) is

(m(¥)E)(9) = o4y(x)E(g), g€ G xe M, Ee L (G H).

It is straight-forward to check (¢ ® id)(7m,(x)) = ¢(x)1 so that the invariance condition
(2) is quite natural in this case.
Let

(%7 (0) = ('/Vla(pl) * ('/V27(p2)'

LEMMA 3.1. A (M) ® o and ). 45(N2) @ o are free in M &® < relative to <o/ with
respect to the conditional expectation ¢ ® id onto Cl1 ® o/ = .o/ in the sense of D. V.
Voiculescu (see [VDN, §3.8]).

PrOOF. Let #; be the set of finite linear combinations of 7 4;(x) ® u, for x in ]
and y (i=1,2). Then it is clear that .%; is a unital dense *subalgebra in 4 ;(N;) ® o/
by the assumption (i =1,2). Note that (¢p; ®id)(¥;) = &; (i=1,2). Hence, by the
same argument as in [VDN, Proposition 2.5.7.], it is sufficient to show that .¥; and ¥,
are free over .o/ with respect to ¢ ® id.

For each X =) /4 (x,) ®u, in &; (i=1,2), we have

(¢ ®id)(X) = Z(”O/U Xy )y = Z(/’z X )u
Since {u,} is linearly independent, we get

(%) (p®id)(X)=0 = ¢ix,)=0  foreveryy.

Take an arbitrary X in &; (j=1,...,n) with (p®id)(XV)=0 for all j,
i1# -+ # i, and ije{1,2}. By (), each XU/ is of the form

=Y o, () ®@u,y gy (X)) =0.

Hence we have

(p ®id) (X' Z Zfﬂ oy S A, )y

and each coefficient is zero since ¢ is a free state. Therefore ¥ and ¥, are
free. ]

LemMA 3.2. There exists a unique xisomorphism

Il — {(Ay; @1d) 0 oy (N1), (Ass @1d) 0 an(N3)}Y in M &

satisfying I'o Ay, = (A ®1d) ooy (i = 1,2).

Proor. We consider the subalgebras

(Ay; ®id) ooy (A7) and (A ®1id) o o (AN2)

isomorphic to A7, A5 respectively. For a faithful normal state }y on .o/, by the
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invariance condition we compute

(0 @ ¥) o (Ay; ®1d) o wi(x) = 9, (x)Y(1) = ;(x) (i =1,2).

Thus, guarantees the freeness of the two subalgebras relative to ¢ ® ¥, and
we can construct the desired isomorphism. O

LEmMMA 3.3, The above I' is a coaction on M by (<Z,0).

ProoOF. Since I" and J are (injective) normal unital *homomorphisms, it is sufficient
to check (I"®id)o "= (id®J) o I' against generators.
For each x in ./}, we have
(I'®id)o I'(Ay(x)) = (I ®id) o (A4 ®1d) o o;(x)

I'ol,; ®id) o oy(x)

L ®id®id) o (o ® id) o o)
4 ®id®id) o (id ® J) o 0;(x)
id®0J) o (s ®id) o o(x)

— (d®3) o Iy (x)).

Here, the first, third and seventh equalities come from the definition of I” while the fifth
comes from the fact that «; is a coaction. Hence we are done. O

(
= (
= ((24; ®id) 0 o ® id) 0 2;(x)
= (4
= (4
= (

DeriNiTION 3.4, The above coaction is called the free product of coactions «; and
oy and denoted by o * op.

REMARK 3.5. L*(SU,(n)) and every compact Kac algebra satisfy the condition (1)
thanks to the Peter-Weyl type theorem (for example see [Wr2]). Indeed every Hopf-
von Neumann algebra satisfies the condition (1) by the use of a Hamel basis. This was
pointed out by Y. Sekine. Hence the condition (1) is not essential. Also the condition
(2) is necessary even in the case of group actions.

REMARK 3.6. [Lemma 3.1 shows

where the right-hand side means the “amalgamated free product” of von Neumann
algebras. Indeed, many fundamental operations such as tensor product are compatible
with the free products (or amalgamated free products) in a certain sense.

4. Main results.

Let L*(SU,(n)) = (+,0,x,{t,},h) be the compact Woronowicz algebra associated
with the compact quantum group SU,(n) (0 < ¢ < 1) as in the previous section.

Let # be the AFD type II; factor with the unique normalized trace 7 and
p:R— AR o/ be the “trivial” coaction defined by f(x) =x® 1 for every x in .
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We set
(M,p) = (AR A, TQh)*(R,7)
and define the free product coaction I': #/ — M ® <o/ by
I'=(1d®0J)«f
in the sense of §3.
LemMMA 4.1.  The relative commutant (M1 N is trivial.

Proor. The AFD type Il factor has a sufficiently large group of orthogonal
unitaries with respect to the unique normalized trace. Hence we can easily find
unitaries ¢ in ZQ Cl (S Z® /) and b, ¢ in Z satisfying the conditions in
2.1.2. Since .#" contains # ® C1 and A, we have

(M"Y Nt = (RRCL xR Nl < {a,b,c} N =Cl
by (2) in [Theorem 2.1.2. O

LeMMA 4.2. The crossed product algebra M X rL*(SU,(n)) is a factor.

ProOF. Let W be the fundamental unitary associated with L*(SU,(n)). We
define the unitary u in .# @ B(L*(/)) by u=1,@ W* (in (2Q® 4)® A < M Q
B(L?*(<7))). By the pentagon equation WpWy = WyuWiWyn, I'=(1d®2X)o
(I"®1id) satisfies

T(w) = (4 ® £) o (I ®id)(u)
= ([d®2)o([d®J®id) (1, @ W)
—1,®(d® )0 (0®id)(W™)
=12 ® (i[d® X) (W Wi W)
= 1, ® (id® Z) (W W3y)
=12 ® (i[d® 2)(W13)"(id ® 2) (W)
=12 ® (W ® Lpr2()))(ls @ 2(WT))
= (U® Lpr2(y) (L ® Z(W™)).
Hence we get
M XL (SU,(n)) = (M @ BLA ()T = (M @ B(L* () = 4" @ B(LX(2))

by the Takesaki duality theorem for SU,(n) ([N]), where I' = Ad(1® Z(W*))oT.
Therefore, .4 < L™ (SU,(n)) is a factor. ]

From now on, we investigate the type of the above .#. Note that (2 ® Cl) x %
sits in the centralizer .#, (see [VDN, Theorem 1.6.5.] also [B] and [V1]). Hence, by the
same reason as in [Lemma 4.1, we get
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(M) Nl =C1

by (2) in [Theorem 2.1.2 and hence the centralizer .#,, is a factor. Therefore, .4 is not
of type IIly as is well-known. Hence, we can see the type by Connes’ T-set

T(M)={teR:af =id}.
Since
o =(6f ®a!)xo] = (ild®al) xid
(see [VDN, Theorem 1.6.5.] also and [VI]), we have
T(M)={teR:q"=id}.

Such a type classification result was obtained by L. Barnett in [B]. (K. Dykema
obtained another type classification results in [D4].) Also, by Mheorem 2.1.2 .# is full.

Here, using the explicit computation of the modular automorphism of the Haar
state we determine the above T-set T'(.#). For simplicity, we further assume n = 2.
In this case, .o/ is generated by two elements «, y such that

_ <<x —W‘)
u—=
yoo
is the fundamental representation of SU,(2) ((Wrl], [Wr2]). By [Wr2: equations
(5.20), (A1.3)] we can see that

h

Jz (OC) :ﬁt * Ok Jip = q—2itoc’ Gth(y> :fit * 7V *ﬁt =7

where f. (z € C) is the Woronowicz character. Hence,

gi=id & g¢¥=1

because ¢’ is an automorphism and o, y generate ./. Therefore, we get
2
T( M) =
log ¢>

so that .# is of type Ill,,. For an arbitrary n, combining [MN: Proposition 5.3.
equation (5.8), Proposition 5.5.] and the above argument, we can see that ./ is of type
.

Consequently, we get the following theorem:

THeOREM 4.3. We can construct a full factor of type Il admitting a minimal
coaction of the compact quantum group SUq(n).

As was explained in §1, our method to construct a minimal coaction is to take a
suitable “model” coaction and construct a von Neumann algebra admitting a minimal
coaction by using free product construction. (In the above, the model coaction is the
“regular” representation.) In the original version of this paper, a different coaction
was used, but the referee pointed out the resulting crossed product is not a fac-
tor. Furthermore, the referee kindly suggested us the use of the coaction on the Cuntz
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algebra @/, constructed in [KNW] with a certain invariant state on the UHF-part (see
for n =2, [N] for an arbitrary n).

REmMARK 4.4. By the standard technique, we can easily see that there exists a
minimal coaction of the compact quantum group SU,(n) on a type III; factor.

The above method to construct a minimal coaction of the compact quantum group
SU,(n) remains valid for arbitrary compact Woronowicz algebras. Constructing a
minimal coaction of an arbitrary compact Kac algebra is of independent interest.

Let K = (</,0,k,h) be a given compact Kac algebra and # be the AFD type II;
factor with the unique normalized trace .

We set

(N9) = (2R A, T®h) x (R,7)

and define the free product coaction ¥ : N/ — N ® .o/ by
VY =(d®J)«p

in the sense of §3, where f is the trivial coaction.
By the same reason as in [Lemma 4.1, we have

(VYN =Cl

because ¥ contains #Z ® Cl (€S 2® /) and A.

Also, since 7® h and 7 are traces, the free state ¢ is a faithful normal normalized
trace on ./ (see [VDN, Proposition 2.5.3.]). Hence ./ is of type II;. And fur-
thermore, if .o/ has separable predual, ./" is full by the same reason as in the previous
discussion. Also, we can show the factoriality of the crossed product algebra A" Xy K
by repeating the proceeding discussion based on the Takesaki duality theorem for Kac

algebras ((ES1]).

Consequently, we get the following theorem:

THEOREM 4.5. For each compact Kac algebra K = (</,0,1,h), we can construct a
type Il factor admitting a minimal coaction of K. Furthermore, if </ has separable
predual, this type Il factor is full.

If a given compact Kac algebra K is hyperfinite, we can easily see the above algebra
A" 1s the free group factor L(F;) by the result [D2, Theorem 4.6.], and we can construct
a minimal coaction of K on all interpolated free group factors (in the sense of K.
Dykema and F. Radulescu [R]) of free dimension (in the sense of K. Dykema [D2])
more than 2.

Consequently, we get

COROLLARY 4.6. The free group factor L(F,) with n generators (n > 2) admits a
minimal coaction of an arbitrary hyperfinite compact Kac algebra.

REMARK 4.7. In the recent article [ILP], M. Izumi, R. Longo and S. Popa gave
another definition of the minimality of compact Kac algebra coactions. Their definition
consists of irreducibility and faithfulness. They proved that their minimality implies
ours. We can easily check the faithfulness of the minimal coactions in this paper.
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5. A remark on free products of compact Kac algebras.

In this section, based on the technique in §3 we show that the (reduced!) free
product of given compact Kac algebras with respect to their Haar states has a compact
Kac algebra structure.

Let K; = (.</;,0;,5:,h;) be given compact Kac algebras (i =1,2). Here we recall
the following facts (see [ES2]):

(1) The Haar state A; is a faithful normal trace (i =1,2).

(2) The Haar state A; is left and right invariant (i = 1,2).

(3) The Haar state A; is invariant under the unitary antipode x; (i = 1,2).

Let

(A, h) = (A1,l) * (A2, hy).

By (3), we can show the existence of an anti-xrautomorophism x on .o/ satisfying
K|, =K (i=1,2). Also h is a faithful normal tracial state on ./ by (1) ([VDN,
Proposition 2.5.3.]). Hence the main difficulty here is how to define the comultipli-
cation on .. However, using the same argument as in [Lemma 3.1, 3.2 and 3.3, we can
prove the following lemma:

LEMMA 5.1. There exists an injective normal unital xhomomorphism 0 : .o/ —
o @ of satisfying 6|, =6; (i=1,2). In particular, 5 is a comultiplication on /.

ProoF. To show this lemma, Lemma 3.1 has to be replaced by the following
argument: Let {u;} be the set of linearly independent elements in .o/; whose finite
linear combinations form a dense *subalgebra (i = 1,2), (see Remark 3.5), and %; be
the set in .o/; ® .o/; of finite linear combination of x®u;1 for x in .o/, and
» (i=1,2). Note that #; is a unital dense *subalgebra of .«/; ® .«7; (i = 1,2).

We can easily prove

(h@id)(X - X,) = 0

for X; in &; with (h®id)(X;) =0 for all j, iy#--- #i,, and i; € {1,2} by similar

argument as in [Lemma 3.1. Hence, by the same reason as in [Lemma 3.1, we get
(h@id)(Y)--- Y,) =0

for Y; in o/; @ 4, (€ @) with (h®id)(Y;) =0 for all j, iy#--- #i,, and
l.j € {1,2}
The rest of the proof is analogous, and details are left to the reader. O

Consequently we get the following theorem:

THEOREM 5.2. The free product of two compact Kac algebras with respect to their
Haar states has a natural compact Kac algebra structure.

REmMARK 5.3. In this section, we only considered compact Kac algebras for
simplicity. However the same argument works for compact Woronowicz algebras
without essential changes.
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