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Abstract. A W-transform of an operator on white noise functionals is introduced

and then characterizations for operators on white noise functionals are given in terms of

their W-transforms. A simple proof of the analytic characterization theorem for operator

symbol and convergence of operators are also discussed.

1. Introduction.

The concept of the symbol of an operator is of fundamental importance in the

theory of operators on white noise functionals. N. Obata [7] proved an analytic

characterization theorem for symbols of operators on white noise functionals, which is

an operator version of the characterization theorem for white noise functionals [4],

[8]. This characterization theorem provides a very useful criterion for checking whether

or not an operator on Fock space defined only on the exponential vectors becomes

a continuous linear operator on the space of white noise functionals.

The purpose of this paper is threefold: we first define a W-transform of an operator

on white noise functionals and then obtain a characterization theorem for operators on

white noise functionals in terms of their W-transforms. We next apply our charac-

terization theorem to give a simple proof of the analytic characterization theorem for

operator symbols due to Obata [7]. We finally give a criterion for the convergence

of operators on white noise functionals in terms of their W-transforms.

2. Preliminaries.

Let H be a real separable Hilbert space. Let A be an operator on H such that

there exists an orthonormal basis fejgjV0 for H satisfying the conditions:

(1) Aej ¼ ljej, j ¼ 0; 1; 2; . . . ;

(2) 1 < l0U l1U l2U � � � ! y;

(3) kAÿ1kHS ¼ ð
Py

j¼0 l
ÿ2
j Þ1=2 < y:

For each pV 0, define

jxjp ¼ jApxj0 ¼
X

y

j¼0

l
2p
j hx; eji

2

 !1=2

; x A H;
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where j � j0 is the norm on H. Then Ep 1 fx A H; jxj p < yg is a real separable Hilbert

space with norm j � jp. Let E be the projective limit of fEp; pV 0g and E � the

topological dual of E. Then E becomes a nuclear space and we have a Gel’fand triple

EHHHE �; and a continuous inclusion: for each pV 0,

EHEp HHHE �
p HE �:

We note that the norm of a Hilbert space E �
p is given by

jxjÿp ¼ jAÿpxj0 ¼
X

y

j¼0

l
ÿ2p
j hx; eji

2

 !1=2

:

Let m be the standard Gaussian measure on E �, i.e., its characteristic function is

given by

Z

E �

e ihx;ximðdxÞ ¼ eÿ1=2jxj20 ; x A E;

where h�; �i is the canonical bilinear form on E � � E. Then ðE �; mÞ is called the white

noise space. We denote by ðL2Þ the complex Hilbert space of m-square integrable

functions on E �. By the Wiener-Ito decomposition theorem, each f A ðL2Þ admits

an expansion:

fðxÞ ¼
X

y

n¼0

h:xn n :; fni; fn A H
n̂n n
C

; ð2:1Þ

where H
n̂n n
C

is the n-fold symmetric tensor product of the complexification of H.

Moreover, the ðL2Þ-norm kfk0 of f is given by

kfk0 ¼
X

y

n¼0

n!j fnj
2
0

 !1=2

;

where the norm on H
n̂n n
C

is denoted by the same symbol j � j0.

Let GðAÞ be the second quantization operator of A defined by

GðAÞfðxÞ ¼
X

y

n¼0

h:xn n :;An n fni;

where f A ðL2Þ is given by the expansion (2.1). Then we note that GðAÞ is a positive

self-adjoint operator with Hilbert-Schmidt inverse. For each pV 0, define

kfkp ¼ kGðAÞpfk0; f A ðL2Þ: ð2:2Þ

Then ðEpÞ1 ff A ðL2Þ; kfkp < yg is a complex Hilbert space with norm k � kp. Let

ðEÞ be the projective limit of fðEpÞ; pV 0g and ðEÞ� the topological dual of ðEÞ. Then

ðEÞ is a nuclear space and we have a Gel’fand triple ðEÞH ðL2ÞH ðEÞ�; and a

continuous inclusion: for each pV 0,

ðEÞH ðEpÞH ðL2ÞH ðEpÞ
�
H ðEÞ�:
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Elements f A ðEÞ and F A ðEÞ� are called a test white noise functional and a

generalized white noise functional (or Hida distribution), respectively.

It is known (see [2], [7]) that for each F A ðEÞ�, there exists a unique sequence

fFngnV 0, Fn A ðEn n
C

Þ�sym such that

dF; fe ¼
Xy

n¼0

n!hFn; fni; f A ðEÞ; ð2:3Þ

where f is given by the expansion (2.1) and d�; �e is the canonical bilinear form on

ðEÞ� � ðEÞ. In view of (2.3) we use a formal expression for F A ðEÞ�:

FðxÞ ¼
Xy

n¼0

h:xn n :;Fni:

For each x A EC , an exponential vector jx is defined by

jxðxÞ ¼
Xy

n¼0

1

n!
h:xn n :; xn ni:

Then it is well-known that fjx; x A ECg spans a dense subspace of ðEÞ.

The S-transform SF of F A ðEÞ� is a function on EC defined by

SFðxÞ ¼ dF; jxe; x A EC :

We need the characterization theorem for white noise functionals due to Pottho¤–

Streit [8] and Kuo–Pottho¤–Streit [4] with norm estimate due to Kubo–Kuo [3].

Theorem 2.1. The S-transform F ¼ SF of F A ðEÞ� satisfies the following con-

ditions:

(F1) For each x; h A EC , the function z N F ðzxþ hÞ is an entire function on C .

(F2) There exist K > 0, a > 0 and pV 0 such that

jFðxÞjUKeajxj
2
p ; x A EC :

Conversely, assume that a C-valued function F defined on EC satisfies the above two

conditions. Then there exists a unique F A ðEÞ� such that F ¼ SF. Moreover, for any

q > p with 2ae2kAÿðqÿpÞk2HS < 1, we have the following norm estimate:

kFkÿqUKð1ÿ 2ae2kAÿðqÿpÞk2HSÞ
ÿ1=2:

Theorem 2.2. The S-transform F ¼ Sf of f A ðEÞ satisfies the following conditions:

(F1 0) For each x; h A EC , the function z N Fðzxþ hÞ is an entire function on C .

(F2 0) For any pV 0 and a > 0, there exists a constant K > 0 such that

jF ðxÞjUKeajxj
2
ÿp ; x A EC :

Conversely, assume that a C-valued function F defined on EC satisfies the above two

conditions. Then there exists a unique f A ðEÞ such that F ¼ Sf. Moreover, for any

qV 0 and for a > 0 and p > q with 2ae2kAÿðpÿqÞk2HS < 1, we have the following norm
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estimate:

kfkqUKð1ÿ 2ae2kAÿðpÿqÞk2HSÞ
ÿ1=2:

3. Characterization theorems of operators.

Let LððEÞ; ðEÞ�Þ (resp. LððEÞ; ðEÞÞ) denote the space of all continuous linear op-

erators from ðEÞ into ðEÞ� (resp. ðEÞ). In this section we shall prove a characterization

theorem for an operator X A LððEÞ; ðEÞ�Þ and for an operator X A LððEÞ; ðEÞÞ.

The W-transform of an operator X A LððEÞ; ðEÞ�Þ is defined to be an ðEÞ�-valued

function on EC defined by

WXðxÞ ¼ Xjx; x A EC :

We first note that the W-transform is injective and that for any f A ðEÞ and x; h A EC ,

we have dWXðzxþ hÞ; fe ¼ SðX �fÞðzxþ hÞ, z A C , where X � is the adjoint operator

of X, i.e., X � is the continuous linear operator from ðEÞ into ðEÞ� such that

dXf;ce ¼ dX �c; fe; f;c A ðEÞ:

It then follows from Theorem 2.1 that the function z N dWXðzxþ hÞ; fe is an entire

function on C .

We note that there exist pV 0 and K > 0 such that

kXfkÿpUKkfkp; f A ðEÞ:

Hence we have the following growth condition:

kWXðxÞkÿpUKe1=2jxj
2
p ; x A EC :

Theorem 3.1. Let X A LððEÞ; ðEÞ�Þ and G ¼ WX. Then the function G satisfies

the following conditions:

(G1) For each x; h A EC , the function z N Gðzxþ hÞ is weakly holomorphic, i.e., for

any f A ðEÞ the function z N dGðzxþ hÞ; fe is an entire function on C .

(G2) There exist qV 0, pV 0, a > 0 and K > 0 such that

kGðxÞkÿqUKeajxj
2
p ; x A EC :

Conversely, assume that an ðEÞ�-valued function G on EC satisfies the above conditions.

Then there exists a unique X A LððEÞ; ðEÞ�Þ such that G is the W-transform of X.

Moreover, for any r > p with 2ae2kAÿðrÿpÞk2HS < 1, we have

kXfkÿqUKð1ÿ 2ae2kAÿðrÿpÞk2HSÞ
ÿ1=2kfkr; f A ðEÞ:

Proof. The first assertion was shown above. Now, let G be an ðEÞ�-valued

function on EC satisfying (G1) and (G2). The uniqueness part of the second assertion

is obvious since the W-transform is injective. To prove the existence of X, fix an

arbitrary f A ðEÞ. Define a C-valued function Ff on EC by

FfðxÞ ¼ dGðxÞ; fe; x A EC :
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Then Ff satisfies (F1) and (F2) in Theorem 2.1: In fact, for any x; h A EC , the function

Ffðzxþ hÞ ¼ dGðzxþ hÞ; fe of z A C is holomorphic on C and we have, for x A EC

jFfðxÞjU kGðxÞkÿqkfkqU ðKkfkqÞe
ajxj2p :

Hence, by Theorem 2.1, there exists a unique Ff A ðEÞ� such that

SFfðxÞ ¼ FfðxÞ ¼ dGðxÞ; fe; x A EC :

Moreover, by Theorem 2.1 we have, for any r > p with 2ae2kAÿðrÿpÞk2HS < 1

kFfkÿrUKkfkqð1ÿ 2ae2kAÿðrÿpÞk2HSÞ
ÿ1=2:

This inequality implies that the operator f N Ff is a continuous linear operator

from ðEqÞ into ðErÞ
�. Let X be the adjoint operator of this operator. Then X is

a continuous linear operator from ðErÞ into ðEqÞ
�, and hence X A LððEÞ; ðEÞ�Þ and

Xjx ¼ GðxÞ. Furthermore, we have the following norm estimate:

kXfkÿqUKð1ÿ 2ae2kAÿðrÿpÞk2HSÞ
ÿ1=2kfkr

as desired. r

For any X A LððEÞ; ðEÞ�Þ, the symbol X̂X of X is defined by

X̂Xðx; hÞ ¼ dXjx; jhe; x; h A EC :

The next result has been proved in [7, p. 91]. We here give a simple proof.

Corollary 3.2. Suppose that a C-valued function F on EC � EC satisfies the

following conditions:

(S1) For each x; x 0; h and h 0 in EC , the function ðz;wÞ N Fðzxþ x 0;whþ h 0Þ is

an entire function on C � C .

(S2) There exist pV 0, a > 0 and K > 0 such that

jF ðx; hÞjUKeaðjxj
2
pþjhj2p Þ; x; h A EC :

Then there exists a unique X A LððEÞ; ðEÞ�Þ such that F is the symbol of X.

Proof. For a fixed x A EC , define a C-valued function Fx on EC by FxðhÞ ¼

F ðx; hÞ, h A EC . Then the function Fx satisfies (F1) and (F2) in Theorem 2.1: In fact,

clearly the function z N Fxðzhþ h 0Þ ¼ Fðx; zhþ h 0Þ is holomorphic on C , and

jFxðhÞj ¼ jFðx; hÞjU ðKeajxj
2
p Þeajhj

2
p :

Hence there exists a Fx A ðEÞ� such that SFx ¼ Fx. Now, define an ðEÞ�-valued

function G on EC by GðxÞ ¼ Fx, x A EC . Then we have

SGðxÞðhÞ ¼ SFxðhÞ ¼ FxðhÞ ¼ Fðx; hÞ; x; h A EC :

Moreover, for any q > p such that 2ae2kAÿðqÿpÞk2HS < 1, we have

kGðxÞkÿqU ðKeajxj
2
p Þð1ÿ 2ae2kAÿðqÿpÞk2HSÞ

ÿ1=2: ð3:1Þ
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Now we shall verify that the function G satisfies (G1) and (G2) in Theorem 3.1.

Take any x; x 0 A EC . Then clearly the function F ðzxþ x 0; hÞ ¼ dGðzxþ x 0Þ; jhe of z

is holomorphic on C for each h A EC . Hence (G1) is satisfied for all f A V , where V

is the linear span of fjh; h A ECg. Since V is dense in ðEÞ, for any f A ðEÞ, we can

choose a sequence ffkg in V such that fk ! f in ðEÞ. Note that

jdGðzxþ x 0Þ; fk ÿ fejUKeajzxþx 0j2p ð1ÿ 2ae2kAÿðqÿpÞk2HSÞ
ÿ1=2kfk ÿ fkq:

So, the function dGðzxþ x 0Þ; fke of z A C converges to dGðzxþ x 0Þ; fe uniformly on

every compact subset of C , and hence the function z N dGðzxþ x 0Þ; fe is holomor-

phic on C . Moreover by (3.1), (G2) is satisfied. Hence by Theorem 3.1, we obtain a

continuous linear operator X from ðEÞ into ðEÞ� such that

Xjx ¼ GðxÞ; x A EC : ð3:2Þ

But by (3.2), we have, for each x; h A EC

Fðx; hÞ ¼ SGðxÞðhÞ ¼ dGðxÞ; jhe ¼ dXjx; jhe ¼ X̂Xðx; hÞ:

This completes the proof. r

Remark. It can be shown that Corollary 3.2 implies the second assertion of

Theorem 3.1.

The W-transform of an operator X A LððEÞ; ðEÞÞ is defined to be an ðEÞ-valued

function on EC defined by

WXðxÞ ¼ Xjx; x A EC :

Then for any F A ðEÞ� and x; h A EC , we see that dF;WXðzxþ hÞe ¼ SðX �FÞðzxþ hÞ,

z A C . Hence z N dF;WXðzxþ hÞe is holomorphic on C . Moreover, we note that

for each qV 0, there exist pV 0 and K > 0 such that

kXfkqUKkfkp; f A ðEÞ:

In particular, for all x A EC ,

kWXðxÞkqUKe1=2jxj
2
p :

Theorem 3.3. Let X A LððEÞ; ðEÞÞ and G ¼ WX. Then the function G satisfies the

following conditions:

(G1 0) For each x; h A EC , the function z N Gðzxþ hÞ is weakly holomorphic, i.e., for

any F A ðEÞ�, the function z N dF;Gðzxþ hÞe is an entire function on C .

(G2 0) For any qV 0, there exist pV 0, a > 0 and K > 0 such that

kGðxÞkqUKeajxj
2
p ; x A EC :

Conversely, assume that an ðEÞ-valued function G on EC satisfies the above conditions.

Then there exists a unique X A LððEÞ; ðEÞÞ such that G is the W-transform of X. More-

over, for any r > p with 2ae2kAÿðrÿpÞk2HS < 1,

kXfkqUKð1ÿ 2ae2kAÿðrÿpÞk2HSÞ
ÿ1=2kfkr; f A ðEÞ:
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Proof. The proof is similar to the proof of Theorem 3.1. So we shall only prove

the existence of X. To show this, fix arbitrary F A ðEÞ�. Define a C-valued function

FF on EC by

FFðxÞ ¼ dF;GðxÞe; x A EC :

Then clearly FF satisfies (F1) and (F2) in Theorem 2.1. Hence, by Theorem 2.1, there

exists a unique CF A ðEÞ� such that

SCFðxÞ ¼ dF;GðxÞe; x A EC :

Moreover, for any r > p with 2ae2kAÿðrÿpÞk2HS < 1,

kCFkÿrUKkFkÿqð1ÿ 2ae2kAÿðrÿpÞk2HSÞ
ÿ1=2: ð3:3Þ

Hence the operator F N CF is a continuous linear operator from ðEÞ� into ðEÞ�. Now,

let X be the adjoint of this operator. Then X is the desired operator in LððEÞ;

ðEÞÞ. r

The following corollary can be proved by similar arguments of the proof of

Corollary 3.2.

Corollary 3.4. Suppose that a C-valued function F on EC � EC satisfies the

following conditions:

(S1 0) For each x; x 0; h and h 0 in EC , the function ðz;wÞ N Fðzxþ x 0;whþ h 0Þ is an

entire function on C � C .

(S2 0) For any rV 0; a > 0, there exist pV r and K > 0 such that

jF ðx; hÞjUKeaðjxj
2
pþjhj2ÿrÞ; x; h A EC :

Then there exists a unique X A LððEÞ; ðEÞÞ such that F is the symbol of X.

Remark. It can be shown that Corollary 3.4 implies the second assertion of

Theorem 3.3.

Example. (1) For a; b A C , we define an ðEÞ-valued function Ca;b on EC by

Ca;bðxÞ ¼ eahx;xijbx; x A EC :

Then it is easy to show that this Ca;b satisfies (G1 0) and (G2 0). Hence there exists a

unique operator Ga;b A LððEÞ; ðEÞÞ such that

Ga;bjx ¼ Ca;bðxÞ ¼ eahx;xijbx; x A EC :

This operator Ga;b has the following integral representation (see [1]):

Ga;bfðxÞ ¼

Z

E �

fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2aÿ b2 þ 1

q

yþ bxÞ dmðyÞ; x A E �
C
:

(2) Let X1 and X2 A LððEÞ; ðEÞ�Þ. Let G1 and G2 be the W-transform of X1 and X2,

respectively. Define an ðEÞ�-valued function G on EC by

GðxÞ ¼ G1ðxÞ � G2ðxÞ; x A EC ;
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where F �C is the Wick product of F and C A ðEÞ�. It is well-known [3] that for any

pV 0, there exists qV p such that

kF �Ckÿq U kFkÿpkCkÿp; F;C A ðEÞ�: ð3:4Þ

Since G1 and G2 satisfy (G2), it follows from (3.4) that there exist pV 0, qV p, K > 0

and a > 0 such that

kGðxÞkÿq U kG1ðxÞkÿpkG2ðxÞkÿp UKeajxj
2
p

Hence G again satisfies (G2). Now for x, x 0, h A EC ,

hhGðzxþ x 0Þ; jhii ¼ SGðzxþ x 0ÞðhÞ

¼ SðG1ðzxþ x 0Þ � G2ðzxþ x 0ÞÞðhÞ

¼ SG1ðzxþ x 0ÞðhÞ � SG2ðzxþ x 0ÞðhÞ:

Hence the function z N dGðzxþ x 0Þ; jhe is entire on C for each h A EC . Further we

can show that the function z N dGðzxþ x 0Þ; fe is entire on C for each f A ðEÞ. By

Theorem 3.1, there is a unique X A LððEÞ; ðEÞ�Þ such that G ¼ WX. We denote X

by X1 � X2 and is called the Wick product of X1 and X2. Similarly using Theorem 3.3,

we can define the Wick product X1 � X2 of X1;X2 A LððEÞ; ðEÞÞ:

4. Convergence of operators.

In this section we will find a criterion for the convergence of operators on white

noise functionals in terms of their W-transform and symbol.

Theorem 4.1. Let fXng
y
n¼1 and X be in LððEÞ; ðEÞ�Þ. Let Gn ¼ WXn, n A N and

G ¼ WX. Then Xn converges to X strongly in LððEÞ; ðEÞ�Þ if and only if the following

conditions hold:

(O1) GnðxÞ converges to GðxÞ in ðEÞ� for each x A EC .

(O2) There exist qV 0, pV 0, K > 0 and a > 0 such that

kGnðxÞkÿq UKeajxj
2
p ; x A EC ; n A N :

Proof. Suppose that Xn converges to X strongly in LððEÞ; ðEÞ�Þ. Then for each

f A ðEÞ, Xnf converges to Xf in ðEÞ�. Hence (O1) is satisfied. To prove (O2), we put

Xq;k 1 ff A ðEÞ; sup
n AN

kXnfkÿq U kg:

Then we have ðEÞ ¼ 6
q;k A N

Xq;k. Since ðEÞ is a Fréchet space, by the Baire’s category

theorem there exist q and k in N such that Xq;k contains an open set of ðEÞ. So we can

see that there exist p A N and e > 0 such that ff A ðEÞ; kfkp < egHXq;k. Then for any

f A ðEÞ, we have kXnfkÿq U k=e 0kfkp for all n A N , where 0 < e 0 < e. In particular, we

have

kGnðxÞkÿq ¼ kXnjxkÿq U
k

e 0
kjxkp U

k

e 0
e1=2jxj

2
p :

This completes the proof of the ‘‘only if ’’ part.
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Conversely, assume that fGng satisfies the given conditions. Then by (O1), for each

x A EC and c A ðEÞ,

dXnjx;ce ! dXjx;ce:

Since the linear span of fjx; x A ECg is dense in ðEÞ, it follows by using (O2) and

Theorem 3.1 that for any f;c A ðEÞ, dXnf;ce converges to dXf;ce. This means that

for any f A ðEÞ, Xnf converges to Xf weakly in ðEÞ�. But the weak convergence of

a sequence in ðEÞ� is equivalent to strong convergence. Therefore for any f A ðEÞ, Xnf

converges to Xf strongly in ðEÞ�. This completes the proof. r

Corollary 4.2. Let fXng
y
n¼1 and X be in LððEÞ; ðEÞ�Þ. Let Fn ¼ X̂nXn, n A N and

F ¼ X̂X. Then Xn converges to X strongly in LððEÞ; ðEÞ�Þ if and only if the following

conditions hold:

(U1) For each x, h A EC , Fnðx; hÞ converges to Fðx; hÞ.

(U2) There exist pV 0, K > 0 and a > 0 such that

jFnðx; hÞjUKeaðjxj
2
pþjhj2p Þ; x; h A EC ; n A N :

Proof. To prove the corollary, it su‰ces to prove that (O1) and (O2) are

equivalent to (U1) and (U2). Clearly (O1) and (O2) imply (U1) and (U2). Now

assume that (U1) and (U2) are satisfied. Using (U2), we see that for x; h A EC and for

n A N ,

jSGnðxÞðhÞj ¼ jFnðx; hÞjUKeajxj
2
p eajhj

2
p :

Hence by Theorem 2.1, we have for q > p with 2ae2kAÿðqÿpÞk2HS < 1

kGnðxÞkÿqUKeajxj
2
p ð1ÿ 2ae2kAÿðqÿpÞk2HSÞ

ÿ1=2; x A EC ; n A N :

On the other hand, using (U1) we can show that for x A EC ,

dGnðxÞ; fe ! dGðxÞ; fe

for all f A ðEÞ. Hence (O1) and (O2) are satisfied. r

Theorem 4.3. Let fXng
y
n¼1 and X be in LððEÞ; ðEÞÞ. Let Gn ¼ WXn, n A N and

G ¼ WX. Then Xn converges to X strongly in LððEÞ; ðEÞÞ if and only if the following

conditions hold:

(O1 0) For each x A EC , GnðxÞ converges to GðxÞ in ðEÞ.

(O2 0) For each qV 0, there exist pV 0, K > 0, a > 0 such that

kGnðxÞkqUKeajxj
2
p ; x A EC ; n A N :

Proof. Suppose that Xn converges to X A LððEÞ; ðEÞÞ strongly in LððEÞ; ðEÞÞ. Then

for any f A ðEÞ, Xnf converges to Xf strongly in ðEÞ. Hence (O1 0) is obvious. To

prove (O2 0), for qV 0 being given, we put

Yk 1 ff A ðEÞ; sup
n AN

kXnfkqU kg:
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Then Yk is closed and ðEÞ ¼6
k AN

Yk. Hence by using the similar arguments of the

proof of Theorem 4.1, we can prove that (O2 0) holds.

Conversely, assume that fGng satisfies the given conditions. Let qV 0 be given.

Then by (O1 0), we have

lim
n!y

kXnjx ÿ Xjxkq ¼ 0; x A EC : ð4:1Þ

Hence by using (O2 0) and Theorem 3.3, we can prove that for any f A ðEÞ

lim
n!y

kXnfÿ Xfkq ¼ 0:

Hence we complete the proof. r

Corollary 4.4. Let fXng
y
n¼1 and X be in LððEÞ; ðEÞÞ. Let Fn ¼ X̂nXn, n A N and

F ¼ X̂X. Then Xn converges to X strongly in LððEÞ; ðEÞÞ if and only if the following

conditions hold:

(U1 0) For each x, h A EC , Fnðx; hÞ converges to F ðx; hÞ.

(U2 0) For each qV 0 and a > 0, there exist pV q, K > 0 such that

jFnðx; hÞjUKeaðjxj
2
pþjhj2ÿqÞ; x; h A EC ; n A N :

Proof. By similar arguments of the proof of Corollary 4.2, we can prove that

(O1 0) and (O2 0) are equivalent to (U1 0) and (U2 0). r

Example. (1) Let Ty A LððEÞ; ðEÞÞ be such that Tyjx ¼ ehy;xijx. We will prove

that ðTyy ÿ IÞ=y converges to Dy strongly in LððEÞ; ðEÞÞ as y ! 0 using Theorem 4.3.

Put GyðxÞ ¼ ðTyyjx ÿ jxÞ=y ¼ jxðe
hy;xiy ÿ 1Þ=y, and GðxÞ ¼ Dyjx ¼ hy; xijx. Then

clearly for each x A EC , GyðxÞ converges to GðxÞ in ðEÞ. By mean value theorem,

�

�

�

�

ehy;xiy ÿ 1

y

�

�

�

�

U jhy; xiehy;xiy0 jU ðejyj
2
ÿpÞejxj

2
p ;

for jyjÿp < y and jy0jU jyjU 1. Hence for each qV 0, choose pV q with jyjÿp < y.

Then we have, for jyjU 1

kGyðxÞkqU ðejyj
2
ÿpÞejxj

2
p kjxkqU ðejyj

2
ÿpÞeð1þl

ÿ2ðpÿqÞ

0
Þjxj2p :

Thus by Theorem 4.3, ðTyy ÿ IÞ=y converges to Dy strongly in LððEÞ; ðEÞÞ as y ! 0.

(2) Let aðyÞ and bðyÞ be di¤erentiable C-valued functions defined on R with

bðyÞ 6¼ 0 for all y A R. Then it is known [1] that fGaðyÞ;bðyÞgy AR is a one-parameter

subgroup of SGLððEÞÞ ¼ fGa;b; a; b A C ; b 6¼ 0g if and only if a and b are given by either

aðyÞ ¼
a

2b
ðe2by ÿ 1Þ and bðyÞ ¼ eby for some a; b A C with b 6¼ 0;

or

aðyÞ ¼ ay and bðyÞ ¼ 1 for some a A C :
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For any a; b A C , consider a one-parameter subgroup fIa;b;ygy AR of SGLððEÞÞ

defined by

Ia;b;y ¼
Gða=2bÞðe2byÿ1Þ; e by ; b 6¼ 0

Gay;1; b ¼ 0.

(

Now we will show that Ia;b;y converges to Ia;0;y strongly in LððEÞ; ðEÞÞ as b ! 0. To

see this, fix a A C , y A R, and for any b, put Gb ¼ WIa;b;y. Then for each qV 0,

kGbðxÞ ÿ G0ðxÞkq � jeða=2bÞðe
2byÿ1Þhx;xij kje byx ÿ jxkq

þ jeða=2bÞðe
2byÿ1Þhx;xi ÿ eayhx;xij kjxkq:

We note that the map x N jx from EC into ðEÞ is continuous. Hence

limb!0kGbðxÞ ÿ G0ðxÞkq ¼ 0 for all qV 0. By mean value theorem on complex variable

b, we obtain that for each qV 0 and for each b with 0 < jbjU 1,

kGbðxÞkq ¼ jeða=2bÞðe
2byÿ1Þhx;xij kje byxkqU ee

2jyjðjayjlÿ2q
0

þ1=2Þjxj2q :

Therefore, by Theorem 4.3, Ia;b;y converges to Ia;0;y strongly in LððEÞ; ðEÞÞ as b ! 0.
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