Compact Riemann surfaces with large automorphism groups

By Takanori Matsuno

(Received June 13, 1996) (Revised May 21, 1997)

Abstract. In this paper we study the relation between automorphism groups of branched coverings over the complex projective line and automorphism groups of compact Riemann surfaces. We give a criterion for the coincidence of them. We also give examples when the criterion does not hold.

1. Introduction.

Let X be a compact Riemann surface of genus $g \ge 2$. Let $\pi: X \to \mathbf{P}^1$ be a finite Galois branched covering of the complex projective line P^1 . A covering transformation of π is by definition an automorphism φ of X such that $\pi \circ \varphi = \pi$. We denote by Aut(X) the automorpism group of X and by $Aut(\pi)$ the covering transformation group of π . Aut (π) is a subgroup of Aut(X). We say X has a large automorpism group $\operatorname{Aut}(X)$ if its order $\#\operatorname{Aut}(X)$ is strictly greater than 4(g-1). Let G be a subgroup of $\operatorname{Aut}(X)$ with its order #G > 4(g-1). It is a well-known fact that the quotient space X/G is biholomorphic to \mathbf{P}^1 and that the canonical quotient map $\pi: X \to X/G \cong \mathbf{P}^1$ can be considered as a finite Galois covering of P^1 . We can naturally identify the covering transformation group $\operatorname{Aut}(\pi)$ of π with G (See, e.g., [3] [6]). Let $B_{\pi} = m_1 Q_1 +$ $\cdots + m_d Q_d \ (2 \le m_1 \le m_2 \le \cdots \le m_d)$ be the branch locus of π . Here m_i is called the ramification index of π at Q_i . That is, if R is a point of $\pi^{-1}(Q_i)$, then there are local coordinate systems t and x around R and Q_j respectively with t(R) = 0 and $x(Q_j) = 0$ such that π is locally given as: $t \mapsto x = t^{m_j}$. We say π has a branching type (m_1, m_2, \dots, m_d) if $B_{\pi} = m_1 Q_1 + \dots + m_d Q_d$. If the covering degree of π is strictly greater than 4(g-1), then only the following possibilities for branching indices can occur:

(A) 4 branch points (infinite family): (2,2,2,n) for $3 \le n$. (B) 4 branch points (other cases): (2,2,3,n) for $3 \le n \le 5$. (C) 3 branch points (infinite family): (2,3,n) for $7 \le n$, (2,4,n) for $5 \le n$, (2,m,n) for $5 \le m \le n$, (3,3,n) for $4 \le n$, (3,4,n) for $4 \le n$, (3,5,n) for $5 \le n$, (3,6,n) for $6 \le n$, (4,4,n) for $4 \le n$. (D) 3 branch points (other cases): (3,7,n) for $7 \le n \le 41$, (3,8,n) for $8 \le n \le 23$, (3,9,n) for $9 \le n \le 17$, (3,10,n) for $10 \le n \le 14$, (3,11,n) for $11 \le n \le 13$, (4,5,n) for $5 \le n \le 19$, (4,6,n) for $6 \le n \le 11$, (4,7,n) for $7 \le n \le 9$, (5,5,n) for $5 \le n \le 9$, (5,6,n) for $6 \le n \le 7$.

These are easy consequences of the Riemann-Hurwitz formula (For the proof refer, for example [1]). In this paper we investigate the relation between Aut(X) and $Aut(\pi)$. To mention our results, we divide the above list of branching types of Galois coverings of P^1 into the following two lists (List 1 and List 2):

¹⁹⁹¹ Mathematics Subject Classification. Primary 30F10.

Key Words and Phrases. Branched coverings, automorphism groups, compact Riemann surfaces.

LIST 1 (a) 3 branch points infinite family: (2,3,n) for $7 \le n$, (2,4,n) for $5 \le n$, $n \ne 8$, (2,m,n) for $5 \le m \le n$, $n \ne m$, 2m, (3,4,n) for $4 \le n$, $n \ne 4$, 12, (3,5,n) for $5 \le n$, $n \ne 5$, 15, (3,6,n) for $6 \le n$, $n \ne 6$, 18. (b) 3 branch points (other cases): (3,7,n) for $7 \le n \le 41$, $n \ne 7$, 21, (3,8,n) for $8 \le n \le 23$, $n \ne 8$, (3,9,n) for $9 \le n \le 17$, $n \ne 9$, (3,10,n) for $10 \le n \le 14$, $n \ne 10$, (3,11,n) for $11 \le n \le 13$, $n \ne 11$, (4,5,n) for $6 \le n \le 19$, (4,6,n) for $7 \le n \le 11$, (4,7,n) for $8 \le n \le 9$, (5,6,n) for $6 \le n \le 7$, $n \ne 6$.

LIST 2 (c) 4 branch points (infinite family): (2,2,2,n) for $3 \le n$. (d) 4 branch points (other cases): (2,2,3,n) for $3 \le n \le 5$. (e) 3 branch points infinite family: (3,3,n) for $4 \le n$, (4,4,n) for $4 \le n$. (f) 3 branch points (other cases): (2,4,n) for n=8, (2,m,n) for $5 \le m \le n$, n=m,2m, (3,4,n) for n=4,12, (3,5,n) for n=5,15, (3,6,n) for n=6,18, (3,7,n) for n=7,21, (3,8,n) for n=8, (3,9,n) for n=9, (3,10,n) for n=10, (3,11,n) for n=11, (4,5,n) for n=5, (4,6,n) for n=6, (4,7,n) for n=7, (5,5,n) for $5 \le n \le 9$, (5,6,n) for n=6.

We have the following theorem:

Theorem 1. Let $\pi: X \to \mathbf{P}^1$ be a finite Galois covering of \mathbf{P}^1 with $\deg(\pi) > 4(g-1)$. (i) If the branching type of π is one of the List 1, then $\operatorname{Aut}(X) = \operatorname{Aut}(\pi)$. (ii) For the branching types of List 2, there are compact Riemann surfaces X and Galois coverings $\pi: X \to \mathbf{P}^1$ such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$.

In §2 we will give the outline of the proof of the part (i) of Theorem 1 and in §3 we will give the concrete examples of Galois coverings such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$ for all branching types in List 2. We note that if there is a Galois covering $\pi: X \to P^1$ with branch divisor B such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$, then, by the consideration of characteristic normal subgroup of the fundamental group $\pi_1(X)$ (See [5]), there are infinitely many Galois coverings $\pi': X' \to P^1$ with branch divisor B such that $\operatorname{Aut}(X') \neq \operatorname{Aut}(\pi')$.

Next, let $f: \mathbf{P}^1 \to \mathbf{P}^1$ be a finite surjective holomorphic mapping, i.e., a rational function. The Galois closure $\pi: X \to \mathbf{P}^1$ of f is the minimal finite Galois covering which makes the following diagram commutative.

That is, the extention $\pi^* : C(\mathbf{P}^1) \hookrightarrow C(X)$ is the Galois closure of $f^* : C(\mathbf{P}^1) \hookrightarrow C(\mathbf{P}^1)$, where $C(\mathbf{P}^1)$ and C(X) are the fields of rational (i.e., meromorphic) functions of \mathbf{P}^1 and X, respectively.

THEOREM 2. Let p,q,r (p>q>r) be three prime numbers. Let $\pi:X\to \mathbf{P}^1$ be a finite Galois covering of \mathbf{P}^1 branched at $0,1,\infty$ with the ramification indices p,q,r, respectively. If there is a rational function $f:\mathbf{P}^1\to\mathbf{P}^1$ of degree p whose Galois closure is π , then $\operatorname{Aut}(\pi)$ is a simple group.

We will give the proof of Theorem 2 and a few examples of Theorem 2 in §4.

ACKNOWLEDGEMENT. The auther would like to express his thanks to Professor M. Namba for his useful advice and encouragement.

2. The proof of the part (i) of Theorem 1.

The idea is similar to that of classifying commensurability classes of Fuchsian groups (See [8], [9]). There is the following commutative diagram:

$$X/\operatorname{Aut}(\pi)$$
 \downarrow^{μ}
 $X/\operatorname{Aut}(X)$

Here μ and f are natural projections. It is clear that $\mu: X \to X/\operatorname{Aut}(X) \cong P^1$ is a Galois covering of P^1 and that f is a rational function. Assume $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$. Let $B_{\mu} = l_1 P_1 + \cdots + l_s P_s$ be the branch divisor of μ . Then the branch divisor of π must be written as;

$$B_{\pi} = m_{11}Q_{11} + \cdots + m_{1t_1}Q_{1t_1} + \cdots + m_{s1}Q_{s1} + \cdots + m_{st_s}Q_{st_s},$$

where Q_{ij} are points of $f^{-1}(P_i)$. m_{ij} must be integers such that $m_{ij}|l_i$, since the following lemma holds.

LEMMA 1. Let $f: X \to Y$ and $g: Y \to Z$ be surjective holomorphic mapping between compact Riemann surfaces X, Y and Z. Let P be a point of X. Let e, e' and e'' be the ramification indices of f at P, of g at f(P) and of $g \circ f$ at P, respectively. Then e'' = ee'. (For an unramified point, the ramification index is defined to be 1.)

The proof of Lemma 1 is easy and is ommited.

From the Riemann-Hurwitz formula,

$$2g - 2 = -2\deg(\mu) + \sum \frac{\deg(\mu)}{l_j}(l_j - 1),$$

$$2g-2=-2\deg(\pi)+\sum \frac{\deg(\pi)}{m_{jk}}(m_{jk}-1).$$

Taking ratios of the two equations, m_{jk} must satisfy the following condition. Condition 1.

$$\deg(f) = \frac{t - 2 - \sum (1/m_{jk})}{s - 2 - \sum (1/l_i)}$$
 is an integer strictly greater than 1,

where $m_{jk}|l_j$ and $t=t_1+\cdots t_s$.

Furthermore, let $\pi_1(\mathbf{P}^1 - \{P_1, \dots, P_s\}) = \langle x_1, \dots, x_s | x_1 \dots x_s = 1 \rangle$ be the fundamental group of $\mathbf{P}^1 - \{P_1, \dots, P_s\}$. Here x_j is a loop rounding once counterclockwise around P_j . Since f is a rational function which satisfies the above commutative diagram, the following condition also holds, which is obtained by the local behavior of f around the ramification points.

CONDITION 2. There exist a finite permutation group G transitive on $\deg(f)$ points and a surjective group homomorphism $\theta: \pi_1(\mathbf{P}^1 - \{P_1, \dots, P_s\}) \to G$ satisfying the following condition: The permutation $\theta(x_j)$ has precisely t_j cycles of lengths, $l_j/m_{j1}, \dots, l_j/m_{jt_j}$. (θ is in fact the monodromy representation of the mapping f.)

Thus, for $B_{\pi} = m_1 Q_1 + \cdots + m_d Q_d$, if there is no $B_{\mu} = l_1 P_1 + \cdots + l_s P_s$ satisfying above two conditions, then $\operatorname{Aut}(X) = \operatorname{Aut}(\pi)$. Using this assertion and by direct case by case calculations, we have (i) of Theorem 1 as follows:

The case $nQ_1 + 3Q_2 + 2Q_3$ $(7 \le n)$: By the Riemann-Hurwitz formula, the covering degree $\deg(\pi)$ of π is equal to (12n/(n-6))(g-1).

Suppose that $\operatorname{Aut}(\pi) \neq \operatorname{Aut}(X)$. Then $\deg(f) > 2$. Hence

$$\deg(\mu) > 2\frac{12n}{n-6}(g-1) = \frac{24n}{n-6}(g-1)$$
$$> 24(g-1).$$

So the Galois covering μ must have just three branch points (P_1, P_2, P_3) . Let l_1, l_2 and l_3 be the ramification indices of μ at P_1, P_2, P_3 , respectively. Moreover the condition $\deg(\mu) > 24(g-1)$ implies that the triple (l_1, l_2, l_3) is very restricted by the Riemann-Hurwitz formula. That is, (l_1, l_2, l_3) must be equal to either

$$(n', 3, 2)$$
 $(7 \le n' \le 11)$ or $(5, 4, 2)$.

But these cases cannot occur. In fact, if $(l_1, l_2, l_3) = (n', 3, 2)$ $(7 \le n' \le 11)$, then n' must be a multiple of $n \ge 7$. Hence n' = n and so $\deg(\mu) = \deg(\pi)$, a contradiction. In a similar way, we can show that the case $(l_1, l_2, l_3) = (5, 4, 2)$ cannot occur. Hence $\deg(\mu) = \deg(\pi)$ and so $\operatorname{Aut}(\pi) = \operatorname{Aut}(X)$ in this case.

The case $nQ_1 + 4Q_2 + 2Q_3$ $(n \ge 5)$: A similar argument to the above case shows that $\operatorname{Aut}(\pi) = \operatorname{Aut}(X)$, except the case $8Q_1 + 4Q_2 + 2Q_3$. This exceptional case cannot be eliminated. For there is a divisor $B_{\mu} = 2P_1 + 3P_2 + 8P_3$ which satisfies the condition 1 for this branch divisor B_{π} of π (renumbering indicies of points $\{Q_1, Q_2, Q_3\}$ as $\{Q_{11}, Q_{31}, Q_{32}\}$), and also there is a monodromy representation which satisfies the condition 2 for this B_{μ} , defined by:

$$\theta(x_1) = (1 \ 2), \quad \theta(x_2) = (1 \ 2 \ 3), \quad \theta(x_3) = (1 \ 3).$$

For the rest cases of (i) of Theorem 1, the argument is similar. But here we remark that there are a few cases that satisfy the condition 1 but do not satisfy the condition 2. For example, take $3Q_{21} + 7Q_{31} + 7Q_{32}$ as B_{π} and $2P_1 + 3P_2 + 14P_3$ as B_{μ} . In this case $\deg(f)$ is 4 and the condition 1 holds. But there are no monodromy representation of a rational function of degree 4 such that $\theta(x_1) = (length \, 2)(length \, 2)$, $\theta(x_2) = (length \, 3) \cdot (length \, 1)$, $\theta(x_3) = (length \, 2)(length \, 2)$.

3. Examples of Galois coverings with branching types in List 2.

 $(\mathbf{2},\mathbf{2},\mathbf{2},\mathbf{n})$ for $3 \le n$; $\deg(f) = 2$: Let $\pi_1(\mathbf{P}^1 - \{P_1,P_2,P_3\}) = \langle x_1,x_2,x_3 \mid x_1x_2x_3 = 1 \rangle$ be the fundamental group of $\mathbf{P}^1 - \{P_1,P_2,P_3\}$. Let $G = \langle A,B \rangle \subset S_{2n}$ be the group generated by A,B in the symmetric group S_{2n} of 2n letters. Suppose n = 4k $(k \in \mathbb{Z}_{>0})$. Put

$$A = (1 \ 2 \cdots 2n)$$

$$B = (1 \ 5)(8 \ 2n)(11 \ 2n - 1) \cdots (8 + 3t \ 2n - t) \cdots (6k - 1 \ 6k + 3)(6k \ 6k + 2).$$
Then $AB = (1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 2n) \cdots (6k - 4 \ 6k - 3 \ 6k - 2 \ 6k + 3)$

$$(6k - 1 \ 6k + 2)(6k \ 6k + 1).$$

Suppose
$$n = 4k + 1 \ (k \in \mathbb{Z}_{>0})$$
. Put

$$A = (1 \ 2 \cdots 2n)$$

$$B = (1\ 5)(8\ 2n)(11\ 2n-1)\cdots(8+3t\ 2n-t)\cdots(6k-1\ 6k+5)(6k+1\ 6k+3).$$

Then
$$AB = (1\ 2\ 3\ 4)(5\ 6\ 7\ 2n)\cdots(6k-4\ 6k-3\ 6k-2\ 6k+5)$$

$$(6k-1 \ 6k \ 6k+3 \ 6k+4)(6k+1 \ 6k+2).$$

Suppose $n = 4k + 2 \ (k \in \mathbb{Z}_{>0})$. Put

$$A = (1 \ 2 \cdots 2n)$$

$$B = (1\ 5)(8\ 2n)(11\ 2n-1)\cdots(8+3t\ 2n-t)\cdots(6k+2\ 6k+6).$$

Then
$$AB = (1\ 2\ 3\ 4)(5\ 6\ 7\ 2n)\cdots(6k-1\ 6k\ 6k+1\ 6k+6)$$

$$(6k + 2 6k + 3 6k + 4 6k + 5).$$

Suppose n = 4k + 3 $(k \in \mathbb{Z}_{\geq 0})$. Put

$$A = (1 \ 2 \cdots 2n)$$

$$B = (1 \ 5)(8 \ 2n)(11 \ 2n - 1) \cdots (8 + 3t \ 2n - t) \cdots (6k + 2 \ 6k + 8)$$
$$(6k + 3 \ 6k + 7)(6k + 4 \ 6k + 6).$$

Then
$$AB = (1\ 2\ 3\ 4)(5\ 6\ 7\ 2n)\cdots(6k-1\ 6k\ 6k+1\ 6k+8)$$

$$(6k + 2 6k + 7)(6k + 3 6k + 6)(6k + 4 6k + 5).$$

Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be the surjective homomorphism defined by:

$$\Phi(x_1) = B^{-1}, \quad \Phi(x_2) = A^{-1}, \quad \Phi(x_3) = AB.$$

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + 4P_2 + 2nP_3$. By the Riemann-Hurwitz formula $\deg(\mu) = (8n/(n-2))(g(X)-1)$. Put $H = G \cap A_{2n}$. Here A_{2n} is the alternating group of 2n letters. Then the index [G:H] is 2. Since #H = (4n/(n-2))(g(X)-1), the quotient space X/H is biholomorphic to \mathbf{P}^1 . Let $\pi: X \to \mathbf{P}^1$ be the Galois covering corresponding to H. Since $A \notin H$, $A^2 \in H$, $B \in H$, $AB \notin H$ and $(AB)^2 \in H$, the branch divisor of π must be

$$B_{\pi} = 2Q_{11} + 2Q_{12} + 2Q_{21} + nQ_{31}.$$

Thus π is a Galois covering of P^1 with the branching type (2,2,2,n) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$ and $\deg(f) = 2$.

$$(2, 2, 2, 4)$$
; $deg(f) = 5$: Put

$$A = (4 \ 5)$$

$$B = (5 \ 3 \ 2 \ 1).$$

Then
$$AB = (5 \ 4 \ 3 \ 2 \ 1)$$
.

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_5 . Let $\theta : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be a group homomorphism defined by: $\theta(x_1) = A$, $\theta(x_2) = B$ and $\theta(x_3) = (AB)^{-1}$. Since G is transitive in S_5 , there is a covering $f: Y \to \mathbf{P}^1$ of degree 5 with monodromy representation θ . By the Riemann-Hurwitz formula Y is biholomorphic to \mathbf{P}^1 . So f is a rational function. Let $\mu: X \to \mathbf{P}^1$ be the Galois closure of f. μ is a Galois covering of \mathbf{P}^1 with branch divisor $B_{\mu} = 2P_1 + 4P_2 + 5P_3$. Let $\pi: X \to Y \cong \mathbf{P}^1$ be the morphism such that $f \circ \pi = \mu$. π is a Galois covering of \mathbf{P}^1 . The branching divisor of π must be

$$B_{\pi} = 2Q_{11} + 2Q_{12} + 2Q_{13} + 4Q_{21}.$$

Thus π is a Galois covering of P^1 with the branching type (2,2,2,4) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$ and $\deg(f) = 5$.

$$(2, 2, 2, 5); \deg(f) = 6$$
: Put

$$A = (1 \ 6)(3 \ 5)$$
 $B = (6 \ 5 \ 2 \ 1)(3 \ 4).$
Then $AB = (5 \ 4 \ 3 \ 2 \ 1).$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_6 . G is transitive in S_6 . A similar argument to the above case shows that there is a Galois covering $\pi : X \to \mathbf{P}^1$ with the branching type (2, 2, 2, 5) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$, $\operatorname{deg}(f) = 6$ and the branch divisor of μ is $B_{\mu} = 2P_1 + 4P_2 + 5P_3$.

$$(\mathbf{2},\mathbf{2},\mathbf{3}); \ \deg(f) = 7: \ \ \mathrm{Put}$$

$$A = (1\ 4)(5\ 6)$$

$$B = (3\ 2\ 1)(7\ 6\ 4).$$
 Then $AB = (7\ 6\ 5\ 4\ 3\ 2\ 1).$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_7 . G is transitive in S_7 . A similar argument to the above case shows that there is a Galois covering $\pi : X \to \mathbf{P}^1$ with the branching type (2, 2, 2, 3) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$, $\deg(f) = 7$ and the branch divisor of μ is $B_{\mu} = 2P_1 + 3P_2 + 7P_3$.

(2, 2, 2, 8);
$$\deg(f) = 9$$
: Put
$$A = (1 \ 9)(2 \ 8)(4 \ 7)$$

$$B = (9 \ 8 \ 1)(7 \ 3 \ 2)(6 \ 5 \ 4).$$
 Then $AB = (8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1).$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_9 . G is transitive in S_9 . A similar argument to the above case shows that there is a Galois covering $\pi: X \to \mathbf{P}^1$ with the branching type (2,2,2,8) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$, $\deg(f) = 9$ and the branch divisor of μ is $B_{\mu} = 2P_1 + 3P_2 + 8P_3$.

(2, 2, 2, 7);
$$deg(f) = 15$$
: Put
$$A = (1\ 8)(2\ 4)(3\ 15)(5\ 14)(6\ 12)(7\ 10)$$

$$B = (14\ 4\ 1)(3\ 15\ 2)(13\ 12\ 5)(11\ 10\ 6)(9\ 8\ 7).$$
 Then $AB = (7\ 6\ 5\ 4\ 3\ 2\ 1)(14\ 13\ 12\ 11\ 10\ 9\ 8).$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_{15} . G is transitive in S_{15} . A similar argument to the above case shows that there is a Galois covering $\pi : X \to \mathbf{P}^1$ with the branching type (2, 2, 2, 7) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$, $\operatorname{deg}(f) = 15$ and the branch divisor of μ is $B_{\mu} = 2P_1 + 3P_2 + 7P_3$.

$$(2,2,3,n)$$
 for $3 \le n \le 5$; $\deg(f) = 2$
If $n = 3$, put
$$A = (1 \ 7)(5 \ 6)$$
$$B = (7 \ 6 \ 4 \ 3 \ 2 \ 1)$$

$$AB = (6\ 5\ 4\ 3\ 2\ 1).$$

If n = 4, put

$$A = (1 \ 2)(3 \ 4)$$

$$B = (8 \ 7 \ 6 \ 5 \ 4 \ 2)$$

$$AB = (8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1).$$

If n = 5, put

$$A = (1 \ 3)(4 \ 6)$$

$$B = (10 \ 9 \ 8 \ 7 \ 6 \ 3)(1 \ 2)(4 \ 5)$$

$$AB = (10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1).$$

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + 6P_2 + 2nP_3$. By the Riemann-Hurwitz formula $\deg(\mu) = (12n/(2n-3))(g(X)-1)$. Put $H = G \cap A_{2n}$. Since $\#H = (6n/(2n-3)) \cdot (g(X)-1) > 4(g(X)-1)$ for n=3,4,5, the quotient space X/H is biholomorphic to \mathbf{P}^1 . Let $\pi: X \to \mathbf{P}^1$ be the Galois covering corresponding to H. Since $A \in H$, $B \notin H$, $B^2 \in H$, $AB \notin H$ and $(AB)^2 \in H$, the branch divisor of π must be

$$B_{\pi} = 2Q_{11} + 2Q_{12} + 3Q_{21} + nQ_{31}.$$

Thus π is a Galois covering of P^1 with the branching type (2,2,3,n) (n=3,4,5) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$ and $\deg(f) = 2$.

$$(\mathbf{2}, \mathbf{2}, \mathbf{3}, \mathbf{3}); \ \deg(f) = 8:$$
 Put
$$A = (1\ 4)(5\ 6)(7\ 8)$$

$$B = (3\ 2\ 1)(8\ 6\ 4)$$

$$AB = (8\ 7\ 6\ 5\ 4\ 3\ 2\ 1).$$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_8 . G is transitive in S_8 . A similar argument shows that there is a Galois covering $\pi : X \to \mathbf{P}^1$ with the branching type (2, 2, 3, 3) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$, $\deg(f) = 8$ and the branch divisor of μ is $B_{\mu} = 2P_1 + 3P_2 + 8P_3$.

(2,2,3,3);
$$deg(f) = 14$$
: Put
$$A = (1\ 8)(2\ 13)(4\ 12)(5\ 6)(7\ 11)(9\ 10)$$

$$B = (14\ 13\ 1)(12\ 3\ 2)(13\ 12\ 5)(11\ 6\ 4)(10\ 8\ 7)$$

$$AB = (7\ 6\ 5\ 4\ 3\ 2\ 1)(14\ 13\ 12\ 11\ 10\ 9\ 8).$$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_{14} . G is transitive in S_{14} . A similar argument shows that there is a Galois covering $\pi : X \to \mathbf{P}^1$ with the branching type (2, 2, 3, 3) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$, $\operatorname{deg}(f) = 14$ and the branch divisor of μ is $B_{\mu} = 2P_1 + 3P_2 + 7P_3$.

(3,3,n) for
$$4 \le n \deg(f) = 2$$
:

If $n = 3k$, put

$$A = (1 \ 4)(6 \ 2n) \cdots (6 + 2t \ 2n - t) \cdots (4k \ 4k + 3)$$

$$B = (3 \ 2 \ 1)(2n \ 5 \ 4) \cdots (2n - t \ 2t + 5 \ 2t + 4) \cdots (4k + 3 \ 4k - 1 \ 4k - 2)$$

$$(4k + 2 \ 4k + 1 \ 4k)$$

$$AB = (2n \ 2n - 1 \cdots 2 \ 1).$$

If $n = 3k + 1$, put
$$A = (1 \ 4)(6 \ 2n) \cdots (6 + 2t \ 2n - t) \cdots (4k \ 4k + 5)(4k + 3 \ 4k + 4)$$

$$B = (3 \ 2 \ 1)(2n \ 5 \ 4) \cdots (2n - t \ 2t + 5 \ 2t + 4) \cdots (4k + 5 \ 4k - 1 \ 4k - 2)$$

$$(4k + 4 \ 4k + 2 \ 4k)$$

$$AB = (2n \ 2n - 1 \cdots 2 \ 1).$$

If $n = 3k + 2$, put
$$A = (1 \ 4)(6 \ 2n) \cdots (6 + 2t \ 2n - t) \cdots (4k + 2 \ 4k + 6)$$

$$(4k + 1 \ 4k + 2)(4k + 3 \ 4k + 4)$$

$$B = (3 \ 2 \ 1)(2n \ 5 \ 4) \cdots (2n - t \ 2t + 5 \ 2t + 4) \cdots (4k + 6 \ 4k + 1 \ 4k)$$

$$(4k + 5 \ 4k + 4 \ 4k + 2)$$

$$AB = (2n \ 2n - 1 \cdots 2 \ 1).$$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_{2n} . Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be the surjective homomorphism defined by:

$$\Phi(x_1) = A$$
, $\Phi(x_2) = B$, $\Phi(x_3) = (AB)^{-1}$.

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + 3P_2 + 2nP_3$. By the Riemann-Hurwitz formula $\deg(\mu) = (12n/(n-3))(g(X)-1)$. Put $H = G \cap A_{2n}$. Since #H = (6n/(n-3))(g(X)-1) > 4(g(X)-1), the quotient space X/H is biholomorphic to \mathbf{P}^1 . Let $\pi: X \to \mathbf{P}^1$ be the Galois covering corresponding to H. Since $B \in H$, $AB \notin H$ and $(AB)^2 \in H$, the branch divisor of π must be

$$B_{\pi} = 3Q_{21} + 3Q_{22} + nQ_{31}.$$

Thus π is a Galois covering of P^1 with the branching type (3,3,n) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$ and $\deg(f) = 2$.

(4,4,n) for
$$4 \le n \deg(f) = 2$$
: If $n = 4k$, put
$$A = (1 \ 5)(8 \ 2n) \cdots (8 + 3t \ 2n - t) \cdots (6k - 1 \ 6k + 3)$$

$$B = (4 \ 3 \ 2 \ 1)(2n \ 7 \ 6 \ 5) \cdots (6k + 2 \ 6k + 1 \ 6k \ 6k - 1)$$

$$AB = (2n \ 2n - 1 \cdots 2 \ 1).$$

If n = 4k + 1, put

$$A = (1 \ 5)(8 \ 2n) \cdots (8 + 3t \ 2n - t) \cdots (6k - 1 \ 6k + 5)$$

$$(6k \ 6k + 4)(6k + 1 \ 6k + 3)$$

$$B = (4 \ 3 \ 2 \ 1)(2n \ 7 \ 6 \ 5) \cdots (6k + 5 \ 6k - 2 \ 6k - 3 \ 6k - 4)$$

$$(6k - 1 \ 6k + 4)(6k \ 6k + 3)(6k + 1 \ 6k + 2)$$

$$AB = (2n \ 2n - 1 \cdots 2 \ 1).$$

If n = 4k + 2, put

$$A = (1 \ 5)(8 \ 2n) \cdots (8 + 3t \ 2n - t) \cdots (6k + 2 \ 6k + 6)(6k + 3 \ 6k + 5)$$

$$B = (4 \ 3 \ 2 \ 1)(2n \ 7 \ 6 \ 5) \cdots (6k + 6 \ 6k + 1 \ 6k \ 6k - 1)$$

$$(6k + 2 \ 6k + 5)(6k + 3 \ 6k + 4)$$

$$AB = (2n \ 2n - 1 \cdots 2 \ 1).$$

If n = 4k + 3, put

$$A = (1 \ 5)(8 \ 2n) \cdots (8 + 3t \ 2n - t) \cdots (6k + 2 \ 6k + 8)(6k + 5 \ 6k + 7)$$

$$B = (4 \ 3 \ 2 \ 1)(2n \ 7 \ 6 \ 5) \cdots (6k + 7 \ 6k + 4 \ 6k + 3 \ 6k + 2)(6k + 5 \ 6k + 6)$$

$$AB = (2n \ 2n - 1 \cdots 2 \ 1).$$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_{2n} . Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be the surjective homomorphism defined by:

$$\Phi(x_1) = A$$
, $\Phi(x_2) = B$, $\Phi(x_3) = (AB)^{-1}$.

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + 4P_2 + 2nP_3$. By the Riemann-Hurwitz formula $\deg(\mu) = (8n/(n-2))(g(X)-1)$. Put $H = G \cap A_{2n}$. Since #H = (4n/(n-2))(g(X)-1) > 4(g(X)-1), the quotient space X/H is biholomorphic to \mathbf{P}^1 . Let $\pi: X \to \mathbf{P}^1$ be the Galois covering corresponding to H. Since $B \in H$, $AB \notin H$ and $(AB)^2 \in H$, the branch divisor of π must be

$$B_{\pi} = 4Q_{21} + 4Q_{22} + nQ_{31}.$$

Thus π is a Galois covering of P^1 with the branching type (4,4,n) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$ and $\deg(f) = 2$.

 $(\mathbf{2}, \mathbf{m}, \mathbf{2m})$ for $4 \le m \deg(f) = 3$: Let $X = \{[Z_0; Z_1; Z_2] \in \mathbf{P}^2 \mid Z_0^m + Z_1^m + Z_2^m = 0\}$ be the Fermat curve of degree m in the complex projective plane \mathbf{P}^2 . It is known that the automorphism group of X is generated by 4 projective transformations

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \zeta \end{pmatrix},$$

in PGL(3, C), where $\zeta = \exp(2\pi i/m)$. The order $\# \operatorname{Aut}(X)$ of $\operatorname{Aut}(X)$ is $6m^2$ (For the proof see, for example, [7]). The genus of X is g(X) = (1/2)(m-1)(m-2) by genus formula. Thus

$$\#\text{Aut}(X) = \frac{12m}{m-3}(g(X)-1).$$

 $X/\mathrm{Aut}(X)$ is biholomorphic to P^1 . Let $P=[1; \exp(2\pi i/m); 0]$ be a point in X. Then the isotropy group I_P of P is generated by the following two projective transformations:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & \exp\left(\frac{2(m-1)}{m}\pi i\right) \\ 0 & \exp(2\pi i/m) & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & \exp(2\pi i/m) & 0 \\ 0 & 0 & \exp(2\pi i/m) \end{pmatrix}.$$

A direct calculation shows that the order $\#I_P$ of I_p is 2m. Let $\mu: X \to X/\operatorname{Aut}(X)$ be the natural projection. The Riemann-Hurwitz formula implies that μ is a branched covering of P^1 with the branching type (2,3,2m). Let H be the subgroup of $\operatorname{Aut}(X)$ which is generated by 3 projective transformations:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & \zeta & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \zeta \end{pmatrix}.$$

Note that I_P is contained in H. A direct calculation shows that the order #H of H is $2m^2$. $[\operatorname{Aut}(X):H]=3$. It is easy to see that X/H is biholomorphic to P^1 . Let $\pi:X\to X/G$ be the natural projection. Then the Riemann-Hurwitz formula implies that π is a branched covering of P^1 with branching type (2,m,2m). Thus π is a Galois covering of P^1 with the branching type (2,m,2m) such that $\operatorname{Aut}(X)\neq\operatorname{Aut}(\pi)$ and $\operatorname{deg}(f)=3$.

$$(\mathbf{2}, \mathbf{m}, \mathbf{m})$$
 for $5 \le m \deg(f) = 2$: Suppose that $m = 4k + 1$. If k is even, put $A = (1 \ m + 1)(3 \ m)(6 \ m - 1) \cdots (3t \ m - t + 1) \cdots (3k - 3 \ 3k + 3)(3k - 2 \ 3k)$ $B = (m + 1 \ m \ 2 \ 1)(m - 1 \ 5 \ 4 \ 3) \cdots (3k - 6 \ 3k - 5 \ 3k - 4 \ 3k + 3)$ $AB = (m \ m - 1 \cdots 2 \ 1)$.

If k is odd, put

$$A = (4 m)(7 m - 1)(6 m - 1) \cdots (3t + 1 m - t + 1) \cdots (3k - 2 3k + 3)(3k - 1 3k)$$

$$B = (m 3 2 1)(m - 1 6 5 4) \cdots (3k - 5 3k - 4 3k - 3 3k + 3)(3k - 2 3k 3k + 1 3k + 2)$$

$$AB = (m m - 1 \cdots 2 1).$$

Suppose that m = 4k + 3. If k is even, put

$$A = (4 m)(7 m - 1)(6 m - 1) \cdots (3t + 1 m - t + 1) \cdots (3k + 1 3k + 4)$$

$$(3k + 2 3k + 3)$$

$$B = (m 3 2 1)(m - 1 6 5 4) \cdots (3k - 2 3k - 1 3k 3k + 1)(3k + 1 3k + 3)$$

$$AB = (m m - 1 \cdots 2 1).$$

If k is odd, put

$$A = (1 m + 1)(3 m)(6 m - 1) \cdots (3t m - t + 1) \cdots (3k 3k + 4)(3k + 1 3k + 3)$$

$$B = (m + 1 m 2 1)(m - 1 5 4 3) \cdots (3k - 3 3k - 2 3k - 1 3k + 4)$$

$$(3k 3k + 3)(3k + 1 3k + 2)$$

$$AB = (m \ m - 1 \cdots 2 \ 1).$$

 $AB = (2m \ 2m - 1 \cdots 1)(m \ m - 1 \cdots 1).$

Suppose that m is even. If m = 3k - 1 and k = 4k' + 1, put

$$A = (1 \ m+1)(m \ m+4)(m-1 \ m+7) \cdots (m-t \ m+3t+4) \cdots (2k+1 \ 6k-3)$$

$$(2k \ 6k-2)(3 \ 2k-1) \cdots (3s \ 2k-s) \cdots (3(2k'-1) \ 6k'+3)$$

$$(6k'-2 \ 6k'+2)(6k'-1 \ 6k'+1)$$

$$B = (m+3 \ m+2 \ m+1 \ m)(m+6 \ m+5 \ m+4 \ m-1) \cdots$$

$$(2m-2 \ 2m-3 \ 2m-4 \ 2k+1)(2m-1 \ 2k)(2m \ 2k-1 \ 2 \ 1)$$

$$(2k-2 \ 5 \ 4 \ 3) \cdots (6k'+3 \ 6k'-4 \ 6k'-5 \ 6k'-6)(6k'-3 \ 6k'+2)$$

$$(6k'-2 \ 6k'+1)(6k'-1 \ 6k')$$

 $AB = (2m \ 2m - 1 \cdots 1)(m \ m - 1 \cdots 1).$

If
$$m = 3k - 1$$
 and $k = 4k' + 3$, put $A = (1 m + 1)(m m + 4)(m - 1 m + 7) \cdots (m - t m + 3t + 4) \cdots (2k + 1 6k - 3)$ $(2k 6k - 2)(3 2k - 1) \cdots (3s 2k - s) \cdots (6k' 6k' + 6)(6k' + 2 6k' + 4)$ $B = (m + 3 m + 2 m + 1 m)(m + 6 m + 5 m + 4 m - 1) \cdots$ $(2m - 2 2m - 3 2m - 4 2k + 1)(2m - 1 2k)$ $(2m 2k - 1 2 1)(2k - 2 5 4 3) \cdots (6k' + 5 6k' + 2 6k' + 1 6k')(6k' + 3 6k' + 5)$ $AB = (2m 2m - 1 \cdots 1)(m m - 1 \cdots 1).$ Suppose that m is even. If $m = 3k$ and $k = 4k'$, put $A = (1 m + 1)(m m + 4)(m - 1 m + 7) \cdots (m - t m + 3t + 4) \cdots (2k + 2 6k - 2)$ $(2k 6k)(3 2k - 1) \cdots (3s 2k - s) \cdots (6k' - 3 6k' + 1)(6k' - 2 6k')$ $B = (m + 3 m + 2 m + 1 m)(m + 6 m + 5 m + 4 m - 1) \cdots (2m - 2 2m - 3 2m - 4 2k + 1)$ $(2m - 1 2k)(2m 2k - 1 2 1)(2k - 2 5 4 3) \cdots (6k' + 1 6k' - 6 6k' - 5 6k' - 4)$ $(6k' - 3 6k')(6k' - 2 6k' - 1)$ $AB = (2m 2m - 1 \cdots 1)(m m - 1 \cdots 1).$ If $m = 3k$ and $k = 4k' + 2$, put $A = (1 m + 1)(m m + 4)(m - 1 m + 7) \cdots (m - t m + 3t + 4) \cdots (2k + 2 6k - 2)$ $(2k 6k)(3 2k - 1) \cdots (3s 2k - s) \cdots (6k' 6k' + 4)$ $B = (m + 3 m + 2 m + 1 m)(m + 6 m + 5 m + 4 m - 1) \cdots (2m - 2 2m - 3 2m - 4 2k + 1)$ $(2m - 1 2k)(2m 2k - 1 2 1)(2k - 2 5 4 3) \cdots (6k' + 4 6k' - 3 6k' - 2 6k' - 1)$ $(6k' + 3 6k' + 2 6k' + 1 6k')$ $AB = (2m 2m - 1 \cdots 1)(m m - 1 \cdots 1).$ Suppose that m is even. If $m = 3k + 1$ and $k = 4k' + 1$, put $A = (1 m + 1)(m m + 4)(m - 1 m + 7) \cdots (m - t m + 3t + 4) \cdots (2k + 1 6k + 2)$ $(3 2k + 1) \cdots (3s 2k - s + 1) \cdots (6k' - 3 6k' + 2)(6k' - 2 6k' + 1)$ $(6k' - 1 6k')(6k' - 2 6k')$ $B = (m + 3 m + 2 m + 1 m)(m + 6 m + 5 m + 4 m - 1) \cdots (2m - 2 2m - 3 2m - 4 2k + 1)$ $(6k' - 1 6k')(6k' - 2 6k')$ $A = (m + 3 m + 2 m + 1 m)(m + 6 m + 5 m + 4 m - 1) \cdots (2m - 2 2m - 3 2m - 4 2k + 1)$ $(6k' - 1 6k')(6k' - 2 6k')$ $A = (m + 3 m + 2 m + 1 m)(m + 6 m + 5 m + 4 m - 1) \cdots (2m - 2 2m - 3 2m - 4 2k + 1)$ $(6k' - 1 6k')(6k' - 2 6k')$ $A = (m + 3 m + 2 m + 1 m)(m + 6 m + 5 m + 4 m - 1) \cdots (2m - 2 2m - 3 2m - 4 2k + 1)$ $(6k' - 3 6k' + 1)(6k' - 2 6k')$ $A = (m + 3 m + 2 m + 1 m)(m + 6 m + 5 m + 4 m - 1) \cdots (2m - 2 2m - 3 2m - 4 2k + 1)$ $(6k' - 3 6k' + 1)(6k' - 2 6$

If
$$m = 3k + 1$$
 and $k = 4k' + 3$, put

$$A = (1 \ m+1)(m \ m+4)(m-1 \ m+7) \cdots (m-t \ m+3t+4) \cdots (2k+1 \ 6k+2)$$

$$(3 \ 2k+1) \cdots (3s \ 2k-s+1) \cdots (6k' \ 6k'+5)(6k'+3 \ 6k'+4)$$

$$B = (m+3 \ m+2 \ m+1 \ m)(m+6 \ m+5 \ m+4 \ m-1) \cdots (2m-2 \ 2m-3 \ 2m-4 \ 2k+1)$$

$$(2m-1 \ 2k)(2m \ 2k-1 \ 2 \ 1)(2k-2 \ 5 \ 4 \ 3) \cdots (6k'+5 \ 6k'-3 \ 6k'-2 \ 6k'-1)$$

$$(6k'+4 \ 6k'+2 \ 6k'+1 \ 6k')$$

$$AB = (2m \ 2m - 1 \cdots 1)(m \ m - 1 \cdots 1).$$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_{2m} . Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be the surjective homomorphism defined by:

$$\Phi(x_1) = A$$
, $\Phi(x_2) = B$, $\Phi(x_3) = (AB)^{-1}$.

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + 4P_2 + mP_3$. By the Riemann-Hurwitz formula $\deg(\mu) = (8m/(m-4))(g(X)-1)$. Put $H = G \cap A_{2n}$. Since #H = (4m/(m-4))(g(X)-1) > 4(g(X)-1), the quotient space X/H is biholomorphic to \mathbf{P}^1 . Let $\pi: X \to \mathbf{P}^1$ be the Galois covering corresponding to H. Since $A \in H$, $B \notin H$, $B^2 \in H$, the branch divisor of π must be

$$B_{\pi} = 2Q_{21} + mQ_{31} + mQ_{32}.$$

Thus π is a Galois covering of P^1 with the branching type (2, m, m) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$ and $\operatorname{deg}(f) = 2$.

$$(3, m, m)$$
 for $4 \le m \le 11 \deg(f) = 2$:
If $m = 4$, put

$$A = (1 \ 5)$$
 $B = (4 \ 3 \ 2 \ 1)(5 \ 6)$
 $AB = (6 \ 5 \ 4 \ 3 \ 2 \ 1).$

If m = 5, put

$$A = (1 \ 6)$$
 $B = (5 \ 4 \ 3 \ 2 \ 1)$
 $AB = (6 \ 5 \ 4 \ 3 \ 2 \ 1).$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_m . Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be the surjective homomorphism defined by:

$$\Phi(x_1) = A$$
, $\Phi(x_2) = B$, $\Phi(x_3) = (AB)^{-1}$.

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + mP_2 + 6P_3$. Put $H = G \cap A_{2n}$. Let $\pi: X \to \mathbf{P}^1$ be the

Galois covering corresponding to H. Since $B \in H$, $AB \notin H$ and $(AB)^2 \in H$, the branch divisor of π must be

$$B_{\pi} = mQ_{21} + mQ_{22} + 3Q_{31}.$$

Thus π is a Galois covering of P^1 with the branching type (3, m, m) (for m = 4, 5) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$ and $\operatorname{deg}(f) = 2$.

If m = 6, put

$$A = (1\ 2)(3\ 4)(5\ 7)$$

$$B = (1\ 2\ 3)(4\ 5\ 6\ 7\ 8\ 9)$$

$$AB = (1\ 3\ 5\ 8\ 9\ 4)(6\ 7).$$

If m = 7, put

$$A = (1 \ 7)$$
 $B = (6 \ 5 \ 4 \ 3 \ 2 \ 1)$
 $AB = (7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1).$

If m = 8, put

$$A = (1 \ 9)(5 \ 6)(7 \ 16)(8 \ 11)(12 \ 15)$$

$$B = (16 \ 6 \ 4 \ 3 \ 2 \ 1)(15 \ 11 \ 7)(10 \ 9 \ 8)(14 \ 13 \ 12)$$

$$AB = (8 \ 7 \cdots 2 \ 1)(16 \ 15 \cdots 9).$$

If m = 9, put

$$A = (1 \ 6)$$

 $B = (6 \ 5 \ 4 \ 3 \ 2 \ 1)(9 \ 8 \ 7)$
 $AB = (9 \ 8 \cdots 2 \ 1).$

If m = 10, put

$$A = (1 \ 11)(3 \ 8)(4 \ 6)(5 \ 21)(10 \ 16)(12 \ 15)(17 \ 20)$$

$$B = (20 \ 16 \ 9 \ 8 \ 2 \ 1)(15 \ 11 \ 10)(19 \ 18 \ 17)(7 \ 6 \ 3)(5 \ 21 \ 4)$$

$$AB = (10 \ 9 \cdots 2 \ 1)(20 \ 19 \cdots 11).$$

If m = 11, put

$$A = (1 \ 7)(9 \ 11)(10 \ 12)$$

$$B = (6 \ 5 \ 4 \ 3 \ 2 \ 1)(11 \ 8 \ 7)(10 \ 12 \ 9)$$

$$AB = (11 \ 10 \ 9 \cdots 2 \ 1).$$

Let $G = \langle A, B \rangle$ be a group generated by A and B in S_m . Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\})$

 \rightarrow G be the surjective homomorphism defined by:

$$\Phi(x_1) = A$$
, $\Phi(x_2) = B$, $\Phi(x_3) = (AB)^{-1}$.

Let $G = \langle A, B \rangle$ be a group generated by A and B. Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + 6P_2 + mP_3$. Put $H = G \cap A_{2n}$. Let $\pi: X \to \mathbf{P}^1$ be the Galois covering corresponding to H. Since $B \notin H$, $B^2 \in H$ and $AB \in H$, the branch divisor of π must be

$$B_{\pi} = 3Q_{21} + mQ_{31} + mQ_{32}.$$

Thus π is a Galois covering of P^1 with the branching type (3, m, m) (for $6 \le m \le 11$) such that $\operatorname{Aut}(X) \ne \operatorname{Aut}(\pi)$ and $\deg(f) = 2$.

$$(3, m, 3m)$$
 for $4 \le m \le 7 \deg(f) = 4$:
If $m = 4$, put

$$A = (1 \ 13)(3 \ 15)(5 \ 14)(6 \ 12)(8 \ 11)$$

$$B = (15 \ 2 \ 1)(14 \ 4 \ 3)(13 \ 12 \ 5)(11 \ 7 \ 6)(10 \ 9 \ 8)$$

$$AB = (12 \ 11 \cdots 2 \ 1)(15 \ 14 \ 13).$$

If m = 5, put

$$A = (1 \ 4)(6 \ 15)(8 \ 14)(10 \ 13)$$

$$B = (3 \ 2 \ 1)(15 \ 5 \ 4)(14 \ 7 \ 6)(13 \ 9 \ 8)(12 \ 11 \ 10)$$

$$AB = (15 \ 14 \cdots 2 \ 1).$$

If m = 6, put

$$A = (1 \ 19)(3 \ 21)(5 \ 20)(6 \ 18)(8 \ 17)(10 \ 16)(12 \ 15)$$

$$B = (21 \ 2 \ 1)(20 \ 4 \ 3)(19 \ 18 \ 5)(17 \ 7 \ 6)(16 \ 9 \ 8)(15 \ 11 \ 10)(14 \ 13 \ 12)$$

$$AB = (18 \ 17 \cdots 2 \ 1)(21 \ 20 \ 19).$$

If m = 7, put

$$A = (1 \ 22)(3 \ 24)(5 \ 23)(6 \ 21)(8 \ 20)(10 \ 19)(12 \ 18)(14 \ 17)$$

$$B = (24 \ 2 \ 1)(23 \ 4 \ 3)(22 \ 21 \ 5)(20 \ 7 \ 6)(19 \ 9 \ 8)(18 \ 11 \ 10)(17 \ 13 \ 12)(16 \ 15 \ 14)$$

$$AB = (21 \ 20 \cdots 2 \ 1)(24 \ 23 \ 22).$$

Let $G = \langle A, B \rangle$ be a group generated by A and B. Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be the surjective homomorphism defined by:

$$\Phi(x_1) = A$$
, $\Phi(x_2) = B$, $\Phi(x_3) = (AB)^{-1}$.

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + 3P_2 + 3mP_3$. Put $H = \langle A^3, AB \rangle$. By the calculations using computer soft 'GAP', we have #G = 5184000 # H = 1296000 if m = 4, #G = 2592000

#H = 648000 if m = 5, #G = 384072192000 #H = 96018048000 if m = 6, #G = 98322481152000 #H = 24580620288000 if m = 7. Thus [G:H] is equal to 4. Let $\pi: X \to P^1$ be the Galois covering corresponding to H. Since $A, A^2 \notin H, A^3 \in H$ and $AB \in H$, the branch divisor of π must be

$$B_{\pi} = 3Q_{21} + mQ_{31} + mQ_{32}$$
.

Thus π is a Galois covering of P^1 with the branching type (3, m, 3m) (for m = 4, 5, 6, 7) such that $Aut(X) \neq Aut(\pi)$ and deg(f) = 4.

(4, m, m) for
$$5 \le m \le 7 \deg(f) = 2$$
:
If $m = 5$, put

$$A = (1 \ 9)(4 \ 8)(6 \ 10)$$

$$B = (9 \ 8 \ 3 \ 2 \ 1)(7 \ 6 \ 10 \ 5 \ 4)$$

$$AB = (8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1).$$

If m = 6, put

$$A = (6\ 8)$$
 $B = (8\ 5\ 4\ 3\ 2\ 1)(6\ 7)$
 $AB = (8\ 7\ 6\ 5\ 4\ 3\ 2\ 1).$

If m = 7, put

$$A = (7 \ 8)$$
 $B = (8 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1)$
 $AB = (8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1).$

Let $G = \langle A, B \rangle$ be a group generated by A and B. Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be the surjective homomorphism defined by:

$$\Phi(x_1) = A$$
, $\Phi(x_2) = B$, $\Phi(x_3) = (AB)^{-1}$.

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + mP_2 + 8P_3$. Put $H = G \cap A_{2n}$. Let $\pi: X \to \mathbf{P}^1$ be the Galois covering corresponding to H. Since $A \in H$, $B \in H$, $AB \notin H$ and $(AB)^2 \in H$, the branch divisor of π must be

$$B_{\pi} = mQ_{21} + mQ_{22} + 4Q_{31}$$
.

Thus π is a Galois covering of P^1 with the branching type (4, m, m) (for $5 \le m \le 7$) such that $\operatorname{Aut}(X) \ne \operatorname{Aut}(\pi)$ and $\operatorname{deg}(f) = 2$.

If
$$n = 5$$
, put
$$A = (1 6)$$
$$B = (5 4 3 2 1)(10 9 8 7 6)$$

(5,5,n) for $5 \le n \le 9$ deg(f) = 2:

$$AB = (10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1).$$

If n = 6, put

$$A = (1 \ 6)(7 \ 8)(9 \ 10)$$

$$B = (5 \ 4 \ 3 \ 2 \ 1)(12 \ 11 \ 10 \ 8 \ 6)$$

$$AB = (12 \ 11 \cdots 2 \ 1).$$

If n = 7, put

$$A = (1 \ 7)(2 \ 3)(8 \ 9)$$

$$B = (6 \ 5 \ 4 \ 3 \ 1)(14 \ 13 \ 11 \ 9 \ 7)$$

$$AB = (14 \ 13 \cdots 2 \ 1).$$

If n = 8, put

$$A = (1 \ 6)(10 \ 16)(11 \ 12)$$

$$B = (5 \ 4 \ 3 \ 2 \ 1)(16 \ 9 \ 8 \ 7 \ 6)(15 \ 14 \ 13 \ 12 \ 10)$$

$$AB = (18 \ 17 \cdots 2 \ 1).$$

If n = 9, put

$$A = (1 \ 6)(10 \ 18)(11 \ 12)(13 \ 14)(15 \ 16)$$

$$B = (5 \ 4 \ 3 \ 2 \ 1)(18 \ 9 \ 8 \ 7 \ 6)(17 \ 16 \ 14 \ 12 \ 10)$$

$$AB = (18 \ 17 \cdots 2 \ 1).$$

Let $G = \langle A, B \rangle$ be a group generated by A and B. Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be the surjective homomorphism defined by:

$$\Phi(x_1) = A$$
, $\Phi(x_2) = B$, $\Phi(x_3) = (AB)^{-1}$.

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + 5P_2 + 2nP_3$. Put $H = G \cap A_{2n}$. Let $\pi: X \to \mathbf{P}^1$ be the Galois covering corresponding to H. Since $A \in H$, $B \in H$, $AB \notin H$ and $(AB)^2 \in H$, the branch divisor of π must be

$$B_{\pi} = 5Q_{21} + 5Q_{22} + nQ_{31}.$$

Thus π is a Galois covering of P^1 with the branching type (5,5,n) (for $5 \le n \le 9$) such that $\operatorname{Aut}(X) \ne \operatorname{Aut}(\pi)$ and $\operatorname{deg}(f) = 2$.

$$(5, m, m)$$
 for $m = 6 \deg(f) = 2$: Put

$$A = (2 \ 4)(5 \ 6)(7 \ 8)$$

$$B = (10 \ 9 \ 8 \ 6 \ 4 \ 1)(2 \ 3)$$

$$AB = (10 \ 9 \cdots 2 \ 1).$$

Let $G = \langle A, B \rangle$ be a group generated by A and B. Let $\Phi : \pi_1(\mathbf{P}^1 - \{P_1, P_2, P_3\}) \to G$ be the surjective homomorphism defined by:

$$\Phi(x_1) = A$$
, $\Phi(x_2) = B$, $\Phi(x_3) = (AB)^{-1}$.

Let $\mu: X \to \mathbf{P}^1$ be the Galois covering of \mathbf{P}^1 associated with $\operatorname{Ker}(\Phi)$. Then the branch divisor of μ is $B_{\mu} = 2P_1 + 6P_2 + 10P_3$. Put $H = G \cap A_{2n}$. Let $\pi: X \to \mathbf{P}^1$ be the Galois covering corresponding to H. Since $B \in H$, $AB \notin H$ and $(AB)^2 \in H$, the branch divisor of π must be

$$B_{\pi} = 6Q_{21} + 6Q_{22} + 5Q_{31}$$
.

Thus π is a Galois covering of P^1 with the branching type (5,6,6) such that $\operatorname{Aut}(X) \neq \operatorname{Aut}(\pi)$ and $\operatorname{deg}(f) = 2$.

4. Proof of Theorem 2.

We first consider the case p = 7. Let

$$\Phi: \pi_1(\mathbf{P}^1 - \{0, 1, \infty\}, *) \to S_p$$

be the monodromy representation of the covering

$$f: \mathbf{P}^1 = S \rightarrow \mathbf{P}^1 = M,$$

where S_p is the p-th symmetric group. Let G be the image of Φ . Then G is a transitive subgroup of S_p generated by two permutations

$$A = \Phi(\gamma_0)$$
 and $B = \Phi(\gamma_1)$ $((AB)^{-1} = \Phi(\gamma_\infty)),$

where γ_0 , γ_1 and γ_{∞} are lassos in $\pi_1(\mathbf{P}^1 - \{0, 1, \infty\}, *)$. Let H be the isotropy subgroup of G fixing a letter. Then

$$[G:H] = p. (1)$$

Moreover, we have

$$\bigcap_{a \in G} aHa^{-1} = \{1\}.$$

Since π is the Galois closure of f, there is the following Galois correspondence:

$$\mathbf{P}^{1} = S \bigvee_{f}^{\alpha} \bigvee_{\mathbf{M}}^{\mathbf{K}} \longleftrightarrow \Phi^{-1}(\mathbf{H}) \bigvee_{\mathbf{\pi}_{1}(\mathbf{P}^{1} - \{0, 1, \infty\}, *)}^{\mathbf{K}er(\Phi)}$$

Note that

$$\operatorname{Aut}(\pi) \cong \pi_1(\mathbf{P}^1 - \{0, 1, \infty\}, *)/\operatorname{Ker}(\mathbf{\Phi}) \cong G.$$

Hence we also have the following Galois correspondence:

Now, we show that $G(\cong \operatorname{Aut}(\pi))$ is a simple group. Assume the converse. Let N be a normal subgroup of G such that $N \neq \{1\}$ and $N \neq G$. By (2), N is not contained in H. Consider the Galois correspondence:

Lemma 2. (1) β is unbranched. (2) v is a Galois covering branched at $0, 1, \infty$ with ramification indices p, q, r, respectively.

PROOF. v is a Galois covering, since N is normal. The relation $\pi = v \circ \beta$ implies that v branches at most at $0, 1, \infty$. There exists no Galois covering of $M = P^1$ which branches (i) at one point nor (ii) at two points with different ramification indices. Hence, by Lemma 1 and by the assumption that p, q, r are different prime numbers, (iii) v is unbranched or (iv) v is branched at $0, 1, \infty$ with the ramification indices p, q, r, respectively. But (iii) does not occur. For, if v is unbranched, then v must be homeomorphism since $M = P^1$ is simply connected. Hence N = G, a contradiction. Hence (iv) occurs. Finally, the relation $\pi = v \circ \beta$ implies that β is unbranched.

Lemma 3. H is not contained in N.

PROOF. In fact, if H is contained in N, then there is a covering $S = \mathbf{P}^1 \to Y$. Hence Y is biholomorphic to \mathbf{P}^1 . But the genus of Y is greater than 1 by Lemma 2, a contradiction.

LEMMA 4. HN = G.

PROOF. Consider the following Galois correspondence:

By the relation $f = h \circ \gamma$, we have

$$p = \deg(f) = \deg(h) \deg(\gamma).$$

Hence either $\deg(\gamma) = p$ or $\deg(\gamma) = 1$. If $\deg(\gamma) = 1$, then $H = HN \supset N$, a contradiction. Hence $\deg(\gamma) = p$ and so $\deg(h) = 1$. Hence HN = G.

Now, let P be a point in $v^{-1}(0)$. Since the ramification index of v at P is p, there are local coordinate systems t and x around P and 0 with t(P) = 0, x(0) = 0 such that v is locally given by

$$v: t \mapsto x = t^p$$
.

Put $\zeta = \exp(2\pi i/p)$. Then the holomorphic mapping

$$\varphi: t \mapsto \zeta t$$

defined around P satisfies $v \circ \varphi = v$. Since v is a Galois covering, φ can be uniquely extended to an automorphism φ of v. Note that

$$\varphi^p = 1$$
.

Note also that

$$\operatorname{Aut}(v) \cong G/N = HN/N \cong H/H \cap N.$$

Hence the order of H can be divided by p. On the other hand, since H is the isotropy subgroup of $G \subset S_p$ fixing a letter, say 1, H is regarded as a subgroup of S_{p-1} , a contradiction.

In the above proof of Theorem 2, we assumed p = 7. In the case p = 5, we necessary have q = 3 and r = 2. In this case, the Galois closure $\pi : X \to \mathbf{P}^1$ of f satisfies that X is biholomorphic to P^1 and $\operatorname{Aut}(\pi)$ is isomorphic to the alternating group A_5 of 5 letters. (See Hochstadt [2].) Hence Theorem 2 holds in this case.

This completes the proof of Theorem 2.

EXAMPLE 1. Consider the permutations

$$A = (7 6 5 4 3 2 1),$$

$$B = (1 2 3)(4 6 7),$$

$$(AB)^{-1} = (1 4)(5 6).$$

They generate the simple group G of order 168. (For the computation, we used the computer soft 'GAP'.) G is a transitive subgroup of S_7 . Hence there is a covering $f: S \to \mathbf{P}^1$ branched at $0, 1, \infty$ whose monodromy representation Φ satisfies

$$\Phi(\gamma_0) = A$$
, $\Phi(\gamma_1) = B$ and $\Phi(\gamma_\infty) = (AB)^{-1}$.

By the Riemann-Hurwitz formula, S is biholomorphic to P^1 . The Galois closure $\pi: X \to P^1$ of f branches at $0, 1, \infty$, with the ramification indices

$$ord(A) = 7$$
, $ord(B) = 3$, $ord((AB)^{-1}) = 2$,

respectively. As was noted above, $\operatorname{Aut}(\pi)$ ($\cong \operatorname{Aut}(X)$ by Theorem 1) is isomorphic to G. In this case the genus of X is 3. (See Klein [4].)

Example 2. Consider the permutations

$$A = (11 \ 10 \ 9 \ 8 \ 7 \ 6 \ 5 \ 4 \ 3 \ 2 \ 1),$$

$$B = (1 \ 2 \ 3 \ 4 \ 5)(6 \ 8 \ 9 \ 10 \ 11),$$

$$(AB)^{-1} = (1 \ 6)(7 \ 8).$$

They generate the alternating group A_{11} of 11 letters. (For the computation, we again used the computer soft 'GAP'.) Let $f: \mathbf{P}^1 \to \mathbf{P}^1$ be a rational function defined as in Example 1. Let $\pi: X \to \mathbf{P}^1$ be the Galois closure of f. Then π branches at $0, 1, \infty$ with the ramification indices

$$ord(A) = 11, \quad ord(B) = 5, \quad ord((AB)^{-1}) = 2,$$

respectively. Aut (π) (\cong Aut(X)) by Theorem 1) is isomorphic to A_{11} . In this case the genus of X is 1512001.

References

- [1] M. D. E. Conder & R. S. Kullkarni, Infinite families of automorphism groups of Riemann surfaces, Discrete Groups and Geometry 173 (1992), London Math. Soc. Lecture Note Series, 48–50.
- [2] H. Hochstadt, The functions of mathematical physics (1971), John Wiley & Sons.
- [3] A. Hurwitz, Über algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1893), 403–442.
- [4] F. Klein, Ueber die Transformationen siebenter Ordnung der elliptischen Functionen, ibid. **14** (1879), 428–431.
- [5] A. Macbeath, On a theorem of Hurwitz, Proc. Glassgow Math. Assoc. 5 (1961), 90–96.
- [6] M. Namba, Branched coverings and algebraic functions, Research Notes in Math. 161 (1987), Pitman-Longman.
- [7] ——, Equivalence problem and automorphism groups of certain compact Riemann surfaces, Tsukuba J. Math. 5 (1981), 319–338.
- [8] D. Singerman, Subgroups of Fuchsian groups and finite permutation groups, Bull. London Math. Soc. **2** (1970), 313–329.
- [9] —, Finitely maximal Fuchsian groups, J. London Math. Soc. (2) 6 (1972), 29–38.

Takanori Matsuno

Department of Mathematics Graduate School of Science Osaka University Toyonaka, Osaka 560, Japan

Current address
Department of Liberal Arts
Osaka Prefectural College of Technology
Neyagawa, Osaka, Japan