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Abstract. In this paper we study the relation between automorphism groups of
branched coverings over the complex projective line and automorphism groups of compact
Riemann surfaces. We give a criterion for the coincidence of them. We also give
examples when the criterion does not hold.

1. Introduction.

Let X be a compact Riemann surface of genus g >2. Let n: X — P! be a finite
Galois branched covering of the complex projective line P!. A covering transformation
of n is by definition an automorphism ¢ of X such that top =7n. We denote by
Aut(X) the automorpism group of X and by Aut(n) the covering transformation group
of m. Aut(n) is a subgroup of Aut(X). We say X has a large automorpism group
Aut(X) if its order # Aut(X) is strictly greater than 4(g — 1). Let G be a subgroup of
Aut(X') with its order #G >4(g —1). It is a well-known fact that the quotient space
X /G is biholomorphic to P! and that the canonical quotient map 7: X — X/G = P!
can be considered as a finite Galois covering of P!. We can naturally identify the
covering transformation group Aut(z) of = with G (See, e.g., [3][6]). Let B, =mQ; +
s+ mgQq (2<my <my < --- <my) be the branch locus of 7. Here m; is called the
ramification index of = at ;. That is, if R is a point of n‘l(Qj), then there are local
coordinate systems ¢ and x around R and Q; respectively with #(R) =0 and x(Q;) =0
such that = is locally given as: t+— x=1¢"". We say = has a branching type
(my,my,...,myg) if By =mQy+---+myQy. If the covering degree of = is strictly
greater than 4(g — 1), then only the following possibilities for branching indices can occur:

(A) 4 branch points (infinite family): (2,2,2,n) for 3 <n. (B) 4 branch points
(other cases): (2,2,3,n) for 3<n <5. (C) 3 branch points (infinite family): (2,3.n)
for 7<n, (2,4,n) for 5<n, (2,m,n) for S<m<n, (3,3,n) for 4 <n, (3,4,n) for
4<n, (3,5n) for 5<n, (3,6,n) for 6 <n, (4,4,n) for 4 <n. (D) 3 branch points
(other cases): (3,7,n) for 7<n <41, (3,8,n) for 8 <n <23, (3,9,n) for 9 <n <17,
(3,10,n) for 10 <n < 14, (3,11,n) for 11 <n <13, (4,5,n) for 5 <n <19, (4,6,n) for
6<n<ll, 4,7,n) for 7<n<9, (55n) for 5<n<9, (56,n) for 6<n<7.

These are easy consequences of the Riemann-Hurwitz formula (For the proof refer,
for example [1]). In this paper we investigate the relation between Aut(X) and Aut(x).
To mention our results, we divide the above list of branching types of Galois coverings
of P! into the following two lists (List 1 and List 2):
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List 1 (a) 3 branch points infinite family: (2,3,n) for 7 <n, (2,4,n) for 5 <n,
n#38, (2,mn) for 5S<m<n, n#m,2m, (3,4,n) for 4 <n, n#4,12, (3,5,n) for 5 < n,
n#5,15, (3,6,n) for 6 <n, n#6,18. (b) 3 branch points (other cases): (3,7,n) for
T<n<4l, n#7,21, (3,8,n) for 8<n<23, n#8, (3,9,n) for 9<n<17, n#9,
(3,10,n) for 10 <n <14, n#10, (3,11,n) for 11 <n <13, n# 11, (4,5,n) for 6 <
n<19, (4,6,n) for 7<n<11, (4,7,n) for 8<n <9, (5,6,n) for 6 <n<7, n#6.

List 2 (c) 4 branch points (infinite family): (2,2,2,n) for 3 <n. (d) 4 branch
points (other cases): (2,2,3,n) for 3<n<5. (e) 3 branch points infinite family:
(3,3,n) for 4 <n, (4,4,n) for 4 <n. (f) 3 branch points (other cases): (2,4,n) for
n=2_8, (2,m,n) for 5<m<n, n=m,2m, (3,4,n) for n=4,12, (3,5,n) for n=5,15,
(3,6,n) for n=26,18, (3,7,n) for n="717,21, (3,8,n) for n=28, (3,9,n) for n=9,
(3,10,n) for n =10, (3,11,n) for n =11, (4,5,n) for n =35, (4,6,n) for n==6, (4,7,n)
for n=17, (5,5,n) for 5<n<9, (56,n) for n="=6.

We have the following theorem:

TueoreM 1. Let n: X — P' be a finite Galois covering of P' with deg(m) >
4(g —1). (i) If the branching type of = is one of the List 1, then Aut(X) = Aut(rn). (ii)
For the branching types of List 2, there are compact Riemann surfaces X and Galois
coverings mw: X — P! such that Aut(X) # Aut(n).

In §2 we will give the outline of the proof of the part (i) of and in §3 we
will give the concrete examples of Galois coverings such that Aut(X) # Aut(n) for all
branching types in List 2. We note that if there is a Galois covering z : X — P! with
branch divisor B such that Aut(X) # Aut(n), then, by the consideration of characteristic
normal subgroup of the fundamental group 7;(X) (See [5]), there are infinitely many
Galois coverings 7’ : X' — P! with branch divisor B such that Aut(X’) # Aut(z’).

Next, let f: P! — P! be a finite surjective holomorphic mapping, i.e., a rational
function. The Galois closure 7: X — P! of f is the minimal finite Galois covering
which makes the following diagram commutative.

|/ y
}I Pl
That is, the extention n*: C(P')— C(X) is the Galois closure of f*: C(P')—
C(P'), where C(P') and C(X) are the fields of rational (i.e., meromorphic) functions of
P! and X, respectively.

Pl

THEOREM 2. Let p,q,r (p > q >r) be three prime numbers. Let n:X — P! be a
finite Galois covering of P' branched at 0,1,00 with the ramification indices p,q,r,
respectively. If there is a rational function f : P' — P! of degree p whose Galois closure
is 7, then Aut(n) is a simple group.

We will give the proof of and a few examples of in §4.

ACKNOWLEDGEMENT. The auther would like to express his thanks to Professor M.
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2. The proof of the part (i) of Theorem 1.

The idea is similar to that of classifying commensurability classes of Fuchsian
groups (See [8], [9]). There is the following commutative diagram:
X

2
X /Aut(n) < J

X /Aut(X)

i

Here u and f are natural projections. It is clear that x: X — X/Aut(X) =~ P'isa
Galois covering of P! and that f is a rational function. Assume Aut(X)#Aut(z). Let
B, =1liPy +---+ [P, be the branch divisor of u. Then the branch divisor of 7 must be
written as;

By =muQu+-+m, Qi+ +maOs + -+ + my O,
where Qj; are points of f (). mj; must be integers such that m;;|/;, since the following

lemma holds.

LemMA 1. Let f: X — Y and g: Y — Z be surjective holomorphic mapping between
compact Riemann surfaces X,Y and Z. Let P be a point of X. Let e e’ and " be the
ramification indices of f at P, of g at f(P) and of g o f at P, respectively. Then e" = ee’.
(For an unramified point, the ramification index is defined to be 1.)

The proof of is easy and is ommited.
From the Riemann-Hurwitz formula,

29 —2 = —2deg(u

deg(n)

29 —2=—2deg(m) + > (mj — 1).

Taking ratios of the two equations, mj must satisfy the following condition.
ConDITION 1.

(=2 (1 /my)
s—=2-=>(1/1)

where my|l; and t =1t + -

deg(f) =

is an integer strictly greater than 1,

Furthermore, let 7 (P'—{Py,..., P;}) = {x1,...,Xs| X1 ... x,=1) be the fundamental
group of P' — {Py,...,P;}. Here x; 1s a loop rounding once counterclockwise around
P;. Since f is a rational function which satisfies the above commutative diagram, the
following condition also holds, which is obtained by the local behavior of f around the
ramification points.

ConpITION 2. There exist a finite permutation group G transitive on deg(f) points
and a surjective group homomorphism 6 : (P! —{Py,...,P,}) — G satisfying the
following condition: The permutation 0(x;) has precisely ¢ cycles of lengths, /;/mji,...,
li/mj,. (0 is in fact the monodromy representation of the mapping f.)
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Thus, for B; =mi Q1+ --- +myQy, if there i1s no B, =1 Py +--- + [Py satisfying
above two conditions, then Aut(X) = Aut(n). Using this assertion and by direct case

by case calculations, we have (i) of as follows:

The case nQ; + 30> + 203 (7 < n): By the Riemann-Hurwitz formula, the covering
degree deg(n) of = is equal to (12n/(n—6))(g —1).
Suppose that Aut(z) # Aut(X'). Then deg(f) > 2. Hence

nlin6 (g-1= nzin6 (g—1)
> 24(g—1).

So the Galois covering x must have just three branch points (Py, P», P3). Let /;,/, and

/3 be the ramification indices of u at Pj, P,, P3, respectively. Moreover the condition

deg(u) > 24(g — 1) implies that the triple (/;,/,/) is very restricted by the Riemann-

Hurwitz formula. That is, (/;,/,/3) must be equal to either

(n',3,2) (7<n’'<11) or (54,72).
But these cases cannot occur. In fact, if (/;,h,5) = (n',3,2) (7 <n’ <11), then n’
must be a multiple of n (>7). Hence n’ =n and so deg(u) = deg(xn), a contradiction.

In a similar way, we can show that the case (/1,k,/3) = (5,4,2) cannot occur. Hence
deg(u) = deg(n) and so Aut(z) = Aut(X) in this case.

deg(u) > 2

The case nQ; +40, + 205 (n>5): A similar argument to the above case shows
that Aut(n) = Aut(X), except the case 8Q; + 40, +20Q;. This exceptional case cannot
be eliminated. For there is a divisor B, = 2P + 3P, 4+ 8P3 which satisfies the condition
1 for this branch divisor B, of n (renumbering indicies of points {Q;, 0>, O3} as
{011, 031,03}), and also there is a monodromy representation which satisfies the
condition 2 for this B,, defined by:

0(xi) = (12), 0(x2)=(123), 0(x)=(13).

For the rest cases of (i) of Theorem 1|, the argument is similar. But here we remark
that there are a few cases that satisfy the condition 1 but do not satisfy the condition 2.
For example, take 30s; + 7Q31 + 703 as B, and 2P; + 3P, + 14P; as B,. In this case
deg(f) is 4 and the condition 1 holds. But there are no monodromy representation of
a rational function of degree 4 such that 0(x;) = (length?2)(length?2), 0(x;) = (length3) -
(length 1), 0(x3) = (length?2)(length?2).

3. Examples of Galois coverings with branching types in List 2.

(2,2,2,“) for 3 < ns deg(f) =2: Let 7'C](P1 — {P],PQ,Pg}) = <X1,X2,X3 |X1X2X3

— 1) be the fundamental group of P'— {P,P,,P3}. Let G=<{A4,B) c S,, be the

group generated by A,B in the symmetric group S,, of 2n letters. Suppose
n=4k (ke Z.y). Put

A=(12---2n)
B=(1582n)(112n—1)---(84+3t2n—1)---(6k — 1 6k + 3)(6k 6k + 2).
Then AB=(1234)(5672n)---(6k —4 6k —3 6k —2 6k—+3)
(

6k — 1 6k + 2)(6k 6k +1).
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Suppose n =4k +1 (ke Z-y). Put

2n)

=(12
B=(1582n)(112n—1)---(8+3t2n—1)-(6k — 1 6k + 5)(6k + 1 6k + 3).
(

Then AB=(1234)(5672n)---(6k —4 6k —3 6k —2 6k +5)

(6k — 1 6k 6k + 3 6k 4+ 4)(6k + 1 6k + 2).

Suppose n =4k +2 (ke Z-y). Put

12.2n)

15@®2n)(11 2n—1)---(8+3t2n—1t)--- (6k+2 6k +6).

A

B

Then AB

(
(
(
(1234)(5672n)-(6k— 1 6k 6k + 1 6k +6)
(6k +2 6k + 3 6k +4 6k +5).

(

Suppose n =4k +3 (ke Z~y). Put
A=(12---2n)
B=(1582n)(112n—-1)---(8+3t2n—1t)---(6k+2 6k +38)
(6k + 3 6k + 7)(6k + 4 6k + 6).
Then AB=(1234)(5672n)---(6k —1 6k 6k + 1 6k + 8)

(6k +2 6k +7)(6k + 3 6k +6)(6k + 4 6k +5).
Let @ : (P — {P;,P5,P;}) — G be the surjective homomorphism defined by:

O(x)) =B, d(x)) =47 @(x3)=A4B.

Let 4 : X — P' be the Galois covering of P! associated with Ker(®). Then the branch
divisor of u is B, =2P;+4P,+2nP;. By the Riemann-Hurwitz formula deg(u) =
(8n/(n—2))(g(X)—1). Put H=GNAy, Here A,, is the alternating group of 2n
letters. Then the index [G: H]is 2. Since #H = (4n/(n —2))(g(X') — 1), the quotient
space X/H is biholomorphic to P!. Let n: X — P! be the Galois covering corre-
sponding to H. Since A¢ H, A>c H, Be H, AB¢ H and (AB)zeH, the branch
divisor of © must be

B, =2011 + 2012 + 2021 + 1031

Thus 7 is a Galois covering of P! with the branching type (2,2,2,n) such that
Aut(X) # Aut(n) and deg(f) = 2.

(2,2,2,4); deg(f) =5: Put
A=(45)
=(5321).
Then AB=(54321).
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Let G={A4, B) be a group generated by 4 and Bin S5. Let 0:m(P'—{Py, Py, P3}) —
G be a group homomorphism defined by: 0(x;) = 4, 0(x;) = B and 0(x3) = (4B)™".
Since G is transitive in Ss, there is a covering f : ¥ — P! of degree 5 with monodromy
representation 0. By the Riemann-Hurwitz formula Y is biholomorphic to P!. So fis
a rational function. Let u: X — P! be the Galois closure of /. u is a Galois covering
of P! with branch divisor B,=2P +4P, +5P;. Letn: X - Y P! be the mor-
phism such that fon =pu. = is a Galois covering of P'. The branching divisor of 7
must be

B, =2011 + 2012 + 2013 + 407

Thus # is a Galois covering of P' with the branching type (2,2,2,4) such that
Aut(X) # Aut(n) and deg(f) = 5.

(2,2,2,5); deg(f) = 6: Put
A=(16)(35)
B=(6521)(34).
Then AB=(54321).

Let G =<{A4,B) be a group generated by 4 and B in S;. G is transitive in Sg. A
similar argument to the above case shows that there is a Galois covering 7 : X — P!

with the branching type (2,2,2,5) such that Aut(X) # Aut(n), deg(f) =6 and the
branch divisor of u is B, = 2P + 4P, + 5P;.

(2,2,2,3); deg(f) =7: Put
A=(14)(56)
B=(321)(764).
Then AB=(7654321).

Let G =<A4,B) be a group generated by 4 and B in §7. G is transitive in S;. A
similar argument to the above case shows that there is a Galois covering 7 : X — P!
with the branching type (2,2,2,3) such that Aut(X) # Aut(n), deg(f) =7 and the
branch divisor of u is B, = 2P + 3P, + 7P;.

(2,2,2,8); deg(f) =9: Put
A=(19)28)47)
B=(981)(732)(654).
Then AB=(87654321).

Let G =<{A4,B) be a group generated by 4 and B in Sy. G is transitive in Sy. A
similar argument to the above case shows that there is a Galois covering 7 : X — P!
with the branching type (2,2,2,8) such that Aut(X) # Aut(n), deg(f) =9 and the
branch divisor of u is B, = 2P + 3P, + 8Ps.
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(2,2,2,7); deg(f) =15: Put
A=(18)(24)(3 15)(514)(6 12)(7 10)
B=(1441)(3152)(13 12 5)(11 10 6)(9 8 7).

Then AB= (765432 1)(1413 1211109 8).

Let G ={A4,B) be a group generated by 4 and B in Sj5. G is transitive in Sj5. A
similar argument to the above case shows that there is a Galois covering 7 : X — P!
with the branching type (2,2,2,7) such that Aut(X) # Aut(n), deg(f) =15 and the
branch divisor of u i1s B, =2P, + 3P, + 7P;.

(2,2,3,n) for 3 <n<5; deg(f)=2

If n=23, put
A=(17)(56)
B=(764321)
AB=(654321).
If n=4, put
A=(12)34)
B=(876542)
AB=(87654321).
If n=23, put

A=(13)(46)
B=(1098763)(12)4S5)
AB=(10987654321).

Let 4: X — P! be the Galois covering of P' associated with Ker(®). Then the
branch divisor of u is B, =2P;+ 6P, +2nP;. By the Riemann-Hurwitz formula
deg(u) = (12n/(2n—3))(g(X) —1). Put H = GNAy,. Since #H = (6n/(2n—23))-
(g(X)—1) >4(g(X) —1) for n=3,4,5, the quotient space X/H is biholomorphic to
P'. Let n: X — P! be the Galois covering corresponding to H. Since A€ H, B¢ H,
B>c H, AB¢ H and (AB)2 € H, the branch divisor of #= must be

B, =2011 + 2012 + 3021 +1n03.

Thus 7 is a Galois covering of P! with the branching type (2,2,3,n) (n = 3,4,5) such
that Aut(X) # Aut(z) and deg(f) = 2.

(2,2,3,3); deg(f) =8: Put
A= (14)(56)(738)
B=(321)(864)
AB=(87654321).
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Let G =<A4,B) be a group generated by 4 and B in Sg. G is transitive in Sg. A
similar argument shows that there is a Galois covering 7 : X — P' with the branching
type (2,2,3,3) such that Aut(X) # Aut(rn), deg(f) =8 and the branch divisor of u is
B, =2P, + 3P, + 8P;.

(2,2,3,3); deg(f) = 14: Put
A=(18)(213)(4 12)(5 6)(7 11)(9 10)
B= (1413 1)(12 3 2)(13 12 5)(11 6 4)(10 8 7)
AB=(7654321)(1413 1211109 8).

Let G ={A4,B) be a group generated by 4 and B in Sj4. G is transitive in Sy4. A
similar argument shows that there is a Galois covering 7 : X — P! with the branching
type (2,2,3,3) such that Aut(X) # Aut(n), deg(f) = 14 and the branch divisor of x is
B, =2Py +3P, +7P;.

(3,3,n) for 4 <n deg(f) =2:
If n=3k, put

A= (14)(62n)-(6+22n—1)--- (4 4k +3)

B=(321)2n54)---2n—t2t+52t+4)---(4k+3 4k — 14k -2)
(4k + 2 4k + 1 4k)
AB=(2n2n—-1---21).

If n=3k+1, put
A=(14)62n)---(6+2t2n—1t)---(4k 4k + 5)(4k + 3 4k + 4)

B=(321)2n54)---2n—t2t+52t+4)---(4k+ 54k - 14k -2)
(4k + 4 4k + 2 4k)
AB=(2n2n—-1---21).

If n=3k+2, put

A=(14)(62n)-(6+2t2n—1)- - (4k + 2 4k + 6)
(4k + 1 4k + 2)(4k + 3 4k + 4)
B=(321)2n54)--(2n—12t+52t+4)--- (4k + 6 4k + 1 4k)
(

4k + 5 4k 4 4 4k + 2)
AB=(2n2n—-1---21).

Let G={A, B) be a group generated by 4 and Bin S,,. Let @ : 7z1(P1 —{Py, P, P3})
— G be the surjective homomorphism defined by:

O(x))=A, D(x2)=B, &(x3)=(4B)".
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Let 4 : X — P! be the Galois covering of P! associated with Ker(®). Then the branch
divisor of u is B, =2P; + 3P, +2nP;. By the Riemann-Hurwitz formula deg(u) =
(12n/(n—3))(g(X)—1). Put H=GNAy. Since #H=(6n/(n—3))(g(X)-1)>
4(g(X) — 1), the quotient space X/H is biholomorphic to P!. Let 7: X — P' be the
Galois covering corresponding to H. Since Be H, AB ¢ H and (AB)2 € H, the branch
divisor of 7 must be

B, =305 + 302 +nQ0s.

Thus 7 is a Galois covering of P! with the branching type (3,3,7) such that Aut(X) #
Aut(n) and deg(f) = 2.

(4,4,n) for 4 <n deg(f)=2: If n=4k, put

A=(15)(82n)---(8+3t2n—1t)---(6k — 1 6k + 3)
=4321)2n765)------ (6k +2 6k +1 6k 6k — 1)
AB=(2n2n—-1---21).
If n=4k+1, put
5)(82n)---(84+3t2n—1t)---(6k —1 6k +9)
6k 6k 4+ 4)(6k + 1 6k + 3)

= (1

(
B=(4321)2n765) - (6k +5 6k — 2 6k — 3 6k — 4)
(
(

6k — 1 6k +4)(6k 6k + 3)(6k + 1 6k +2)
AB=(2n2n—1---21).
If n=4k+2, put

5)(8 21) -+ (8 + 3¢ 2n — 1) --- (6k + 2 6k + 6)(6k + 3 6k + 5)

= (1
B=(4321)2n765) (6k + 6 6k + 1 6k 6k — 1)
(6k + 2 6k + 5)(6k + 3 6k + 4)
AB=(2n2n—1---21).

If n=4k+ 3, put
A=(15)(82n)---(8+3t2n—1)---(6k+2 6k +8)(6k + 5 6k + 7)
=@4321)2n765)------ (6k +7 6k +4 6k + 3 6k + 2)(6k + 5 6k + 6)
AB=(2n2n—-1---21).

Let G = {4, B) be a group generated by 4 and Bin S,,. Let @ : 7;(P'—{Py, Py, P3})
— G be the surjective homomorphism defined by:

D(x)) =4, ®(x2)=B, ®(x3)=(A4B)"
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Let 4 : X — P' be the Galois covering of P! associated with Ker(®). Then the branch
divisor of u is B, =2P; + 4P, +2nP;. By the Riemann-Hurwitz formula deg(u) =
(8n/(n—2))(g(X)—1). Put H=GNAy,. Since #H=4n/(n—2))(g(X)-1)>
4(g(X) — 1), the quotient space X/H is biholomorphic to P!. Let 7: X — P' be the
Galois covering corresponding to H. Since Be H, AB ¢ H and (AB)2 € H, the branch
divisor of 7 must be

B, =405 +402» +nQ0s.

Thus 7 is a Galois covering of P! with the branching type (4,4,n) such that Aut(X) #
Aut(n) and deg(f) = 2.

(2,m,2m) for 4 <m deg(f) =3: Let X = {[Zy;Z1;2Z5) e P*| Z}' + Z" + Z}' = 0}
be the Fermat curve of degree m in the complex projective plane P>. It is known that
the automorphism group of X is generated by 4 projective transformations

010 1 00 1 00 1 00
(1 0 0), (0 0 1), (0 ¢ 0), (0 1 O),
0 0 1 0 1 0 0 0 1 0 0 ¢

in PGL(3, C), where { = exp(2ri/m). The order # Aut(X) of Aut(X) is 6m? (For the
proof see, for example, [7]). The genus of X is g(X) = (1/2)(m — 1)(m — 2) by genus
formula. Thus

12m
Aut(X)=——(g(X) —1).
#Aut(X) == (g(X) - 1)
X /Aut(X) is biholomorphic to P'. Let P = [I;exp(2ni/m);0] be a point in X. Then
the isotropy group Ip of P is generated by the following two projective transformations:

1 0 0 1 0 0
0 0 exp (% m’) , 0 exp(2rmi/m) 0
0 exp(2zi/m) 0 0 0 exp(2ni/m)

A direct calculation shows that the order #Ip of I, is 2m. Let u: X — X /Aut(X)
be the natural projection. The Riemann-Hurwitz formula implies that x is a branched
covering of P! with the branching type (2,3,2m). Let H be the subgroup of Aut(X)
which is generated by 3 projective transformations:

1 00 1 00 1 0 0
(0 0 1), (0 ¢ O), (0 1 0).
010 0 0 1 0 0 ¢

Note that Ip is contained in H. A direct calculation shows that the order # H of H is
2m?. [Aut(X):H]=3. It is easy to see that X/H is biholomorphic to P'. Let
n:X — X/G be the natural projection. Then the Riemann-Hurwitz formula implies
that 7 is a branched covering of P' with branching type (2,m,2m). Thus = is a Galois
covering of P! with the branching type (2,m,2m) such that Aut(X) # Aut(z) and

deg(f) = 3.
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(2,m,m) for 5 <m deg(f)=2: Suppose that m =4k +1. If k is even, put
A=(1m+1)3m)(6m—-1)---Btm—1t+1)---(3k—3 3k +3)(3k — 2 3k)
B=m+1m21)(m—-1543)---(3k—63k—53k—43k+3)
AB=(mm—1---21).
If k is odd, put
A=A m)(Tm-1)6m—1)---Bt+1m—t+1)---(3k—23k+3)(3k — 1 3k)
B=m321)(m—-1654)---(3k—53k—43k—33k+3)(3k—23k3k+13k+2)
AB=mm—1---21).
Suppose that m =4k + 3. 1If k is even, put

A=E@m(Tm—-1)6m—1)---Bt+1m—t+1)---3k+13k+4)

(3k +2 3k +3)

B=m321)(m—-1654)---(3k—23k—13k3k+1)3k+ 13k +3)
(

AB=mm—1---21).

If k£ is odd, put

=Am+1)Bm)6m—1)---Btm—t+1)---(3k 3k+4)(3k+ 1 3k +3)
=m+1m21)(m—-1543)---(3k—33k—23k—13k+4)

(3k 3k +3)(3k + 1 3k +2)
(

AB=(mm—1---21).

Suppose that m is even. If m =3k —1 and k =4k’ + 1, put

Ilm+ 1) (mm+4)(m—-1m+7)---(m—tm+3t+4)---(2k+1 6k —3)
2% 6k —2)(3 2%k —1)--- (35 2k — ) --- (32K — 1) 6k" +3)
6k’ —2 6k’ +2)(6k" — 1 6k' + 1)

= (
(
(
B=m+3m+2m+1mm+6m+Sm+4m—1)---
2m—22m—32m—42k+1)2m—12k)2m2k—-121)
(2k —2543)---(6k' +3 6k' —4 6k’ —5 6k' — 6)(6k' —3 6k’ +2)
(6k' —2 6k’ +1)(6k" — 1 6k")
(

AB=(2m2m—1---1)imm—1---1).



320 T. MATSUNO

If m=3k—1 and k =4k’ + 3, put
Ilm+ 1) mm+4)(m—-1m+7)---m—tm+3t+4)---(2k+1 6k —3)
2k 6k —2)(3 2k —1)---(3s 2k — s) - - - (6k" 6k’ 4 6)(6k’ + 2 6k’ + 4)

2m—22m—32m—4 2k +1)(2m — 1 2k)
2m2k —121)(2k—2543)---(6k' +56k"+2 6k" + 1 6k")(6k" + 3 6k’ +5)
AB

= (

(
B=m+3m+2m+1m(m+6m+5m+4m—1)--.

(

(

(

2m2m—1---1)imm—1---1).

Suppose that m is even. If m =3k and k =4k’', put
A=1Am+1)mm+4)(m—-1m+7)---(m—tm+3t+4)---(2k+2 6k —2)
2k 6k)(3 2k —1)---(3s 2k —s)--- (6k" — 3 6k + 1)(6k" — 2 6k")

(
B=(m+3 m+2 m+1 m)(m+6 m+5m-+4m—1)---(2m—22m — 3 2m—4 2k+1)
(2m—12k)2m2k —121)2k—2543)---(6k' +16k" —6 6k' —5 6k' —4)
(6k" — 3 6k")(6k" —2 6k' — 1)
AB=2m2m—1---1)(mm—1---1).

If m =3k and k =4k’ + 2, put
Ilm+1)(mm+4)(m—1m+7)---(m—tm+3t+4)---2k+2 6k —2)
2% 6k)(3 2k — 1)+ (35 2k — 5) - (6k' 6k’ +4)

(
(

B=(m+3 m+2 m+1 m)(m+6 m+5m+4m—1)---(2m—2 2m—3 2m—4 2k+1)
(2m—12k)2m2k —12 1)(2k—2543)---(6k' +4 6k’ —3 6k’ —2 6k’ — 1)
(6k" +3 6k’ +2 6k' + 1 6k')

AB=02m2m—1---1)(mm—1---1).

Suppose that m is even. If m =3k +1 and k =4k'+ 1, put

A=1Am+1)mm+4)(m—-1m+7)---(m—tm+3t+4)---(2k+1 6k +2)
32k+1)---(3s2k—s+1)---(6k" —3 6k' +2)(6k" —2 6k’ + 1)

6k’ — 1 6k')(6k' — 2 6k')

(
(
(
B = (m+3 m+2 m+1 m)(m+6 m+5 m+4 m—1)---(2m—2 2m—3 2m—4 2k+1)
(2m—12k)2m 2k —121)2k—-2543)---(6k' +2 6k' —6 6k' —5 6k’ —4)
(6k" —3 6k" +1)(6k" —2 6k")

(

AB=2m2m—1---1)(mm—1---1).
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If m=3k+1 and k =4k’ + 3, put

A=(Im+1)mm+4)(m—-1m+7)---(m—tm+3t+4)---2k+1 6k +2)

32k+1)---(3s 2k —s+1)---(6k' 6k" +5)(6k' + 3 6k’ +4)

2m—12k)2m 2k — 12 1)(2k —2543) - (6k' +5 6k’ —3 6k’ —2 6k’ — 1)

(
(
B=m+3m+2m+1m(m+6m+5Sm+4m—1)---2m—-22m—-32m—42k+1)
(
(6k" +4 6k'+2 6k' + 1 6k")
(

AB=2m2m—1---1)(mm—1---1).

Let G={4,B) be a group generated by 4 and B in S, Let
@ :m(P' — {Py, Py, P3}) — G be the surjective homomorphism defined by:

D(x)) =4, ®(x2)=B, ®(x3)=(A4B)"

Let 4 : X — P' be the Galois covering of P! associated with Ker(®). Then the branch
divisor of u is B, =2P, +4P,+ mP;. By the Riemann-Hurwitz formula deg(u) =
(8m/(m—4))(g(X)—1). Put H = GNAy,. Since #H = (4dm/(m—4))(9g(X)—-1) >
4(g(X) — 1), the quotient space X /H is biholomorphic to P'. Let 7: X — P! be the
Galois covering corresponding to H. Since A€ H, B¢ H, B> € H, the branch divisor
of = must be

By =201 + mQ31 + mQs;.

Thus 7 is a Galois covering of P! with the branching type (2,1, m) such that Aut(X) #
Aut(n) and deg(f) = 2.

(3,m,m) for 4 <m < 11 deg(f) =2:

If m=4, put
A=(15)
=(4321)(56)
AB=(654321).
If m=235, put

= (16)
B=(54321)
AB=(654321).

Let G={A, B) be a group generated by 4 and Bin S,,. Let & : 7;(P'—{Py, P, P3})
— G be the surjective homomorphism defined by:

O(x)) = A, D(x2) =B, @(x3)=(4B)"

Let 4 : X — P' be the Galois covering of P' associated with Ker(®). Then the branch
divisor of u is B, =2Py +mP,+6P;. Put H=GNAy, Let n:X — P! be the
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Galois covering corresponding to H. Since Be H, AB ¢ H and (AB)2 € H, the branch
divisor of m must be

B, = mQy +mQ» + 303.

Thus 7 is a Galois covering of P! with the branching type (3,m,m) (for m = 4,5) such
that Aut(X) # Aut(n) and deg(f) = 2.
If m=6, put

A=(12)(34)(57)
B=(123)(456789)
AB=(135894)(67).
If m=7, put
A=(17)
B=(654321)
AB=(7654321).
If m =8, put
A= (19)(56)(716)(8 11)(12 15)
B=(1664321)(1511 7)(10 9 8)(14 13 12)
AB=(87---21)(16 15---9).
If m =9, put
A=(16)
B=(654321)(987)
AB=(98---21).
If m = 10, put

A= (111)(3 8)(4 6)(5 21)(10 16)(12 15)(17 20)
B=(20169821)(15 11 10)(19 18 17)(7 6 3)(5 21 4)
AB=(109---21)(20 19---11).

If m=11, put
A=(17)9 11)(10 12)
B=(654321)(1187)(10 129)
AB=(11109---21).
Let G=<A, B) be a group generated by 4 and Bin S,,. Let & : 7z1(P1 —{Py, P, P3})
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— G be the surjective homomorphism defined by:

D(x)) =A, ®(x2)=B, D(x3)=(4B)".

Let G={A4,B) be a group generated by 4 and B. Let u: X — P! be the Galois
covering of P' associated with Ker(®). Then the branch divisor of u is B, = 2P; +
6P, +mP;. Put H= GNAy,. Letn:X — P! be the Galois covering corresponding
to H. Since B¢ H, B> H and ABe H, the branch divisor of 7 must be

B, =305 + mQs + mQs,.

Thus 7 is a Galois covering of P' with the branching type (3,m,m) (for 6 <m < 11)
such that Aut(X) # Aut(n) and deg(f) = 2.

(3,m,3m) for 4 <m <7 deg(f) =4

If m = 4, put
A= (113)(3 15)(5 14)(6 12)(8 11)
B=(1521)(14 4 3)(13 12 5)(11 7 6)(10 9 8)
AB = (1211---2 1)(15 14 13).
If m=S5, put
A= (14)(6 15)(8 14)(10 13)
B=(321)(1554)(14 7 6)(13 9 8)(12 11 10)
AB=(1514---2 1).
If m =6, put

A= (119)(3 21)(5 20)(6 18)(8 17)(10 16)(12 15)
B=(2121)(2043)(19 18 5)(17 7 6)(16 9 8)(15 11 10)(14 13 12)
AB = (18 17---2 1)(21 20 19).
If m=7, put
A = (122)(3 24)(5 23)(6 21)(8 20)(10 19)(12 18)(14 17)
B=(2421)(2343)(22215)(20 7 6)(19 9 8)(18 11 10)(17 13 12)(16 15 14)
AB = (21 20---2 1)(24 23 22).
Let G={A4, B) be a group generated by 4 and B. Let @ : m;(P'—{P,,P,,P3}) — G

be the surjective homomorphism defined by:
D(x) =4, D(x2)=B, ®(x;)=(4B)".

Let 4 : X — P! be the Galois covering of P! associated with Ker(®). Then the branch
divisor of u is B, = 2Py + 3P, + 3mP;. Put H = (4% AB). By the calculations using
computer soft ‘GAP’, we have # G=5184000 # H =1296000 if m=4, # G = 2592000
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#H = 648000 if m=15, #G = 384072192000 # H = 96018048000 if m =6, #G =
98322481152000 # H = 24580620288000 if m =7. Thus [G: H] is equal to 4. Let
n: X — P! be the Galois covering corresponding to H. Since A, A2 ¢ H, A> € H and
AB e H, the branch divisor of 7 must be

B, = 3051 +mQ31 +mQs;.

Thus 7 is a Galois covering of P! with the branching type (3,m,3m) (for m = 4,5,6,7)
such that Aut(X) # Aut(n) and deg(f) = 4.

(4,m,m) for 5 <m <7 deg(f)=2:

If m=235, put
A=(19)(48)(6 10)
B=(98321)(761054)
AB=(87654321).
If m=6, put
A=(68)
B=(854321)(67)
AB=(87654321).
If m=7, put

A=(78)
B=(8654321)

AB=(87654321).
Let G = {4, B) be a group generated by 4 and B. Let @ : n;(P' — {Py, P,,P3}) —
G be the surjective homomorphism defined by:
¢(Xl> = A7 QS(XZ) = B7 ¢<X3) = (AB)_I

Let 4 : X — P' be the Galois covering of P' associated with Ker(®). Then the branch
divisor of u is B, =2Py +mP,+8P;. Put H=GNAy,. Let n:X — P! be the
Galois covering corresponding to H. Since A€ H, Be H, AB¢ H and (AB)2 € H, the
branch divisor of 7 must be

By, = mQs +mQan + 4051.

Thus 7 is a Galois covering of P! with the branching type (4, m, m) (for 5 <m < 7) such
that Aut(X) # Aut(z) and deg(f) = 2.

(5,5,n) for 5<n <9 deg(f)=2:
If n=75, put

A=(16)
B=(54321)(109876)
AB=(10987654321).
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If n=26, put
A=(16)(78)(9 10)
B=(54321)(121110 8 6)
AB=(1211---21).
If n="17, put
A=(17)(23)89)
B=(65431)(14131197)
AB=(1413---21).
If n=38, put
A=(16)(1016)(11 12)
B=(54321)(169876)(1514 13 12 10)
AB= (18 17---21).
If n=9, put

A= (16)(10 18)(11 12)(13 14)(15 16)
B=(54321)(189876)(17 16 14 12 10)
AB=(1817---2 1).

Let G = {4, B) be a group generated by 4 and B. Let @ : x;(P' — {Py, P,,P3}) —
G be the surjective homomorphism defined by:

D(x)) =4, ®(x2)=B, ®(x3)=(AB)".

Let 4 : X — P' be the Galois covering of P! associated with Ker(®). Then the branch
divisor of u is B, =2P; + 5P, +2nP;. Put H=GNAy,. Let n:X — P! be the
Galois covering corresponding to H. Since A€ H, Be H, AB¢ H and (AB)2 € H, the
branch divisor of 7 must be

B, = 5051 + 502 +nQs.

Thus 7 is a Galois covering of P! with the branching type (5,5,n) (for 5 <n < 9) such
that Aut(X) # Aut(z) and deg(f) = 2.

(5,m,m) for m =6 deg(f) = 2:
Put

A=(24)(56)(78)
B=(1098641)(23)
AB=(109---21).
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Let G = (4, B) be a group generated by 4 and B. Let & : n;(P'! — {P|, P5, P3}) —
G be the surjective homomorphism defined by:
D(x1) =4, D(x2)=B, ®(x;)=(4B)"

Let 4 : X — P' be the Galois covering of P' associated with Ker(®). Then the branch
divisor of p is B, =2P; +6P,+10P;. Put H=GNAy,. Let n:X — P' be the
Galois covering corresponding to H. Since Be H, AB ¢ H and (AB)2 € H, the branch
divisor of © must be

B, =605 + 602 + 503;.

Thus 7 is a Galois covering of P! with the branching type (5,6, 6) such that Aut(X) #
Aut(n) and deg(f) = 2.

4. Proof of Theorem 2.
We first consider the case p=7. Let
@ :m(P'—{0,1,0},%) — S,
be the monodromy representation of the covering
f:P'=S—P =M,

where S, is the p-th symmetric group. Let G be the image of @. Then G is a transitive
subgroup of S, generated by two permutations

A=®(y,) and B=P(y,) ((AB)il =D(y,))

where y,, y; and y_ are lassos in 7; (P! — {0,1,0},%). Let H be the isotropy subgroup
of G fixing a letter. Then

(G: H] = p. (1)

Moreover, we have

() aHa ' = {1}.

aeG

Since 7 is the Galois closure of f, there is the following Galois correspondence:

%E /Ker
\

f M 7'[1 Pl {O }7 *)

Note that
Aut(n) = (P —{0,1, 0}, %) /Ker(®) = G.

Hence we also have the following Galois correspondence:
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N

Now, we show that G(=~Aut(n)) is a simple group. Assume the converse. Let N
be a normal subgroup of G such that N # {1} and N # G. By (2), N is not contained
in H. Consider the Galois correspondence:

g 2N
~ .

Lemma 2. (1) B is unbranched. (2) v is a Galois covering branched at 0,1, co with
ramification indices p,q,r, respectively.

S

<
N

Proor. v is a Galois covering, since N is normal. The relation 7 = vo f implies
that v branches at most at 0,1, c0. There exists no Galois covering of M = P! which
branches (i) at one point nor (ii) at two points with different ramification indices.
Hence, by and by the assumption that p, ¢, r are different prime numbers, (iii)
v is unbranched or (iv) v is branched at 0,1,c0 with the ramification indices p,q,r,
respectively. But (iii) does not occur. For, if v is unbranched, then v must be
homeomorphism since M = P' is simply connected. Hence N = G, a contradiction.
Hence (iv) occurs. Finally, the relation 7 = vo f implies that f is unbranched. []

LemMA 3. H is not contained in N.

Proor. In fact, if H is contained in N, then there is a covering S = P! — Y.
Hence Y is biholomorphic to P'. But the genus of Y is greater than 1 by Lemma 2] a
contradiction. [

Lemma 4. HN = G.

Proor. Consider the following Galois correspondence:

/1\

Y «— H N

By the relation f =/hoy, we have
p = deg(f) = deg(h) deg(y).

Hence either deg(y) = p or deg(y)=1. If deg(y)=1, then H=HN > N, a contradiction.
Hence deg(y) = p and so deg(h) =1. Hence HN = G. O
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Now, let P be a point in v=!(0). Since the ramification index of v at P is p, there
are local coordinate systems 7 and x around P and 0 with #(P) = 0, x(0) = 0 such that v
is locally given by

vit— x =1,
Put { =exp(2ni/p). Then the holomorphic mapping

p:t—(t

defined around P satisfies vogp =v. Since v is a Galois covering, ¢ can be uniquely
extended to an automorphism ¢ of v. Note that

o = 1.
Note also that

Aut(v) = G/N = HN/N ~ H/HNN.

Hence the order of H can be divided by p. On the other hand, since H is the isotropy
subgroup of G = S, fixing a letter, say 1, H is regarded as a subgroup of S,_i, a
contradiction.

In the above proof of we assumed p=7. In the case p=35, we
necessary have ¢ =3 and r=2. In this case, the Galois closure 7: X — P! of f
satisfies that X is biholomorphic to P! and Aut(z) is isomorphic to the alternating group
As of 5 letters. (See Hochstadt [2].) Hence holds in this case.

This completes the proof of Theorem 2!

ExampLE 1. Consider the permutations

A=(71654321),
B=(123)(467),
(AB)"' = (14)(5 6).

They generate the simple group G of order 168. (For the computation, we used the
computer soft ‘GAP’.) G is a transitive subgroup of S;. Hence there is a covering
f:S — P! branched at 0,1,c0 whose monodromy representation @ satisfies

D(y) =4, D(y)=B and @(y,)=(4B)".

By the Riemann-Hurwitz formula, S is biholomorphic to P!. The Galois closure
n:X — P! of f branches at 0,1, o0, with the ramification indices

ord(4) =7, ord(B)=3, ord((4B)") =2,

respectively.  As was noted above, Aut(n) (=~ Aut(X ) by [Theorem 1)) is isomorphic to G.
In this case the genus of X is 3. (See Klein [4])
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ExampLE 2. Consider the permutations

A=(1110987654321),
B=(12345)(6891011),

(AB)"' = (1 6)(7 8).

They generate the alternating group A4;; of 11 letters. (For the computation, we again
used the computer soft ‘GAP’.) Let f: P! — P! be a rational function defined as in
Example 1. Let n: X — P! be the Galois closure of . Then 7 branches at 0,1, o0
with the ramification indices

ord(4) =11, ord(B) =5, ord((4B)") =2,

respectively. Aut(n) (= Aut(X) by [Theorem 1) is isomorphic to 4;;. In this case the
genus of X is 1512001.
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