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Abstract. The classical Fatou limit theorem was extended to the case of positive har-

monic functions on a hyperbolic Riemann surface R by Constantinescu-Cornea. They

used extensively the notions of Martin’s boundary and fine limit following the filter

generated by the base of the subsets of R whose complements are closed and thin at a

minimal boundary point of R. We shall consider such a problem for positive solutions of

the Schrödinger equation on a hyperbolic Riemann surface.

1. Introduction.

J. L. Doob [4] and Constantinescu-Cornea [3] independently investigated boundary

behavior of positive harmonic functions at minimal boundary points of the Martin

boundary and established Fatou-type theorems on general domains. In this paper we

shall concern ourselves with the same problem for positive solutions of Schrödinger’s

equation on a hyperbolic Riemann surface following Constantinescu-Cornea’s set-up.

Throughout this paper let R be a hyperbolic Riemann surface. The Martin

boundary and the set of minimal boundary points of R are denoted by D and D1,

respectively. Let Kb be the Martin kernel of a point b A D1. For a closed subset E of

R and a positive superharmonic function s on R the balayage of s over E is the infimum

of the class of positive superharmonic functions on R majorizing s on E except for a

polar subset of E and is denoted by ðsÞE . The closed set E in R is said to be thin at a

point b A D1 provided that ðKbÞE is a potential on R; that is, ðKbÞE < Kb on some

connected component of Rÿ E. For a point b A D1 the class of open subsets G of R

whose complements are thin at the point b is denoted by GðbÞ, which is a filter on

R. The canonical measure of the constant harmonic function 1 on R is denoted by w

and called the harmonic measure of R. The following result is one of Fatou-type

theorems due to Constantinescu-Cornea. The details of its proof can be found in their

book [3]. A positive harmonic function v on R has a limit following the filter GðbÞ at w-

almost every point b of D1.

We now consider Schrödinger’s equation Du ¼ Pu on a hyperbolic Riemann surface

R, where PðzÞ dx dy is a non-negative Hölder continuous 2-form on R and z ¼ xþ i y is

a local parameter of R. Let U be an open subset of R. A real-valued function u A

C 2ðUÞ is said to be a P-solution on the open set U if u satisfies the above equa-

tion. Most of the definitions concerning to harmonic functions are carried over to the
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present situation. The Martin boundary of R for this equation is denoted by DP and

the set of minimal boundary points of DP by DP1. Let K P
a be the Martin kernel of a

point a in DP1. The terminology of ‘‘P-supersolution’’, ‘‘balayage’’, ‘‘P-thin’’, and

‘‘filter GPðaÞ for a A DP1’’ can be carried over to the context of P-solutions and play the

roles of ‘‘superharmonic function’’, ‘‘balayage’’, ‘‘thin’’, and ‘‘filter GðbÞ for b A D1’’ in

the harmonic case, respectively. The greatest P-solution in the class of positive P-

solutions on R bounded above by 1 is denoted by eP. Its canonical measure on DP1 is

denoted by wP and is called the P-elliptic measure of R. The P-solution eP is either

identically zero or positive on R. Throughout this paper we assume that eP is positive

on R. Thus we can show the following result in a manner quite similar to the proof of

the preceding result: If u is a positive P-solution on R, then u has a limit following the

filter G
PðaÞ at wP-almost every point a of DP1.

However, this result can not be regarded as a desired Fatou-type theorem for

positive P-solutions, since it contains concepts depending upon the density P: that is,

the boundary DP1, the filter G
PðaÞ, and the measure wP on DP1. By replacing these

concepts by those independent from the density P, for example, the Martin boundary D,

the filter GðbÞ, b A D1, and the measure w on D1, we shall obtain just a desired Fatou-

type theorem for positive P-solutions on R.

We denote by D0
HP the set of points b A D1 such thatð

R

PðwÞGPðz1;wÞKbðwÞ du dv < þy

and

Kbðz1Þ >
1

2p

ð
R

PðwÞGPðz1;wÞKbðwÞ du dv

for some point z1 A R, where w ¼ uþ iv and GPðz;wÞ, ðz;wÞ A R� R, is Green’s function

of R relative to the equation. It will be shown in Collorary 3.5 that this subset D0
HP of

D1 has positive harmonic measure. Our main result is the following (Theorem 4.2): A

positive P-solution u on R has a limit following the filter GðbÞ at w-almost every point b of

D0
HP. If the density P on R satisfies the conditionð

R

PðwÞGðz1;wÞ du dv < þy

for some point z1 A R, then the set D1 of minimal boundary points will be contained in

the subset D0
HP except for a set with w-measure zero (Corollary 3.9).

The present author would like to thank the referee for useful remarks.

2. Notations and preliminaries.

In this section we shall recall preliminary definitions and notations on the trans-

formations tPH and tHP between the Martin boundaries DP and D of the Riemann

surface R. We refer to [8] for details of their definitions and related properties. And,

the measurabilities of the transformations are given in this section.

Let DPH be the set of minimal boundary points a A DP1 such thatð
R

PðwÞGðz1;wÞK
P
a ðwÞ du dv < þy
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for some point z1 in R, where Gðz;wÞ, ðz;wÞ A R� R, is the harmonic Green function of

R. The set DPH is a Borel measurable subset of DP. Similarly, we denote by DHP the

set of minimal boundary points b A D1 such that
ð
R

PðwÞGPðz1;wÞKbðwÞ du dv < þy

for some point z1 A R. This set is also Borel measurable in D.

In this paragraph we shall recall the definition of the measurable transformation

tPH on DPH into DHP. To do this we need the notion of pole of a minimal positive

harmonic function, which was introduced by Brelot [1] on any general metrizable

compactification of a Green space. The reduced function of a positive P-solution u on

R over a compact subset C of D, which is denoted by ðuÞC , is the infimum of the class of

positive P-supersolutions s majorizing u on an intersection U VR, where U is some

neighborhood of C relative to the topology of R� ¼ RUD. Let a be any boundary

point in DP1 and b a boundary point in D. The reduced function of the minimal

function K P
a over the set fbg ðK P

a Þfbg is either constantly zero or K P
a . If ðK P

a Þfbg ¼ K P
a ,

then the point b is called a pole of K P
a on D. Generally speaking, the minimal function

K P
a with a A DP1 has at least one pole on D and may have many poles on the boundary

D. However, if the point a belongs to the set DPH , then K P
a has a unique pole on the set

D1, which will be contained in DHP. Then, we can define the mapping tPH : DPH ! DHP

by assigning the unique pole b A DHP of K P
a for a A DPH ; that is, tPHðaÞ ¼ b.

Now, we shall prove that the transformation tPH : DPH ! DHP is measurable. To

do this we need the following notation and lemma. For an open subset G of R, let

DPðGÞ ¼ fa A DP1 : G A G
PðaÞg;

The set DPðGÞ is measurable in DP1 (see Constantinescu-Cornea [3]).

Lemma 2.1. Let C be a compact subset of the Martin boundary D of R. The image

tPHðaÞ of a A DPH by tPH belongs to the set C if and only if the Martin kernel K P
a satisfies

K P
a ¼ ðK P

a ÞC on R.

Proof. Letting b ¼ tPHðaÞ for a A DPH , we assume that b is contained in the

compact set C. Since the point b is the pole of K P
a on D, we have

K P
a ¼ ðK P

a Þfbg U ðK P
a ÞC UK P

a on R;

which shows that K P
a ¼ ðK P

a ÞC on R.

Suppose that the point b ¼ tPHðaÞ, a A DPH , is not contained in the set C. Then,

for each point y A C there is a closed neighborhood Vy relative to the Martin com-

pactification R� such that ðK P
a ÞVyVR

is a potential. By the compactness of C there exists

a finite number of points y1; y2; . . . ; yn in C such that CH6n

i¼1
Vyi and ðK P

a ÞVyi
VR is a

potential. Therefore we have

ðK P
a ÞC U ðK P

a ÞUn
i¼1ðVyi

VRÞ U
Xn

i¼1

ðK P
a ÞVyi

VR;

from which it follows ðK P
a ÞC ¼ 0. That is, if ðK P

a ÞC ¼ K P
a on R, then b is contained

in C. r
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Theorem 2.2. The transformation tPH : DPH ! D1 is measurable.

Proof. Let C be any compact subset of the Martin boundary D of R and fVng be

a decreasing sequence of closed neighborhoods of C converging to C with respect to the

Martin topology of R�. We denote by Un the intersection Vn VR and by Gn the

complement RÿUn. Then, we have

ðK P
a ÞC ¼ lim

n!þy
ðK P

a ÞUn
ð1Þ

for a A DP1.

If the image tPHðaÞ of a point a A DPH belongs to the compact subset C, then for

every integer n we have, by the preceding lemma, ðK P
a ÞUn

¼ K P
a : that is, each closed

subset Un of R is not P-thin at the point a A DPH .

Therefore we have

tÿ1
PHðC VD1Þ ¼ 7

þy

n¼1

ðDPH ÿ DPðGnÞÞ;

from which it follows that tÿ1
PHðC VD1Þ is a Borel measurable subset of DP1, for DPðGnÞ

is measurable in DP1 as noted before Lemma 2.1.

Since the class of sets C VD1 with compact subsets CHD generates the Borel

measurable s-ring on D1. For a Borel measurable subset E of D1 we have tÿ1
PHðEÞ is

Borel measurable in the measurable space DPH ; that is, tPH is measurable. r

We denote by D
0
HP the set of points b A DHP such that

Kbðz1Þ >
1

2p

ð
R

PðwÞGPðz1;wÞKbðwÞ du dv

for some point z1 A R. This set is a measurable subset of D. We can define the notion

of pole on the boundary DP1 for each point b A D1 and we can prove that for each point

b A D
0
HP there exists a unique pole a on DP of b, which is contained in the set DP1.

Then, the transformation

tHP : D
0
HP ! DP1

is defined by the same way as the definition of tPH . In [8] we have proved that the

composition tHP � tPH is the identity on DPH . The following theorem may be proved by

the same way as the preceding theorem.

Theorem 2.3. The transformation tHP : D
0
HP ! DP1 is measurable.

In the following sections we shall need the next two theorems whose proofs can be

found in [8].

Theorem 2.4. Let a boundary point a be in DPH . Then, a closed subset E of R is

P-thin at a if and only if E is thin at the point tPHðaÞ.

Theorem 2.5. Let a boundary point b be in D
0
PH . If a closed subset E of R is P-thin

at the point tHPðbÞ, then E is thin at b.
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3. Harmonic and P-elliptic measures.

In this section we shall investigate relationship between the P-elliptic measure wP
and the harmonic measure w by using the transformation

tPH : DPH ! D1;

where we recall that wP (resp. w) is the canonical measure of eP on DP1 (resp. 1 on

D1). We denote by DðPÞ the image tPHðDPHÞ of tPH . The set D1 of minimal boundary

points of the Martin boundary D is decomposed into its four disjoint subsets:

D1 ÿ DHP; DHP ÿ D0
HP; D0

HP ÿ DðPÞ; DðPÞ:

At first we shall show that the harmonic measure w is supported only by two sets of

them:

ðDHP ÿ D0
HPÞUDðPÞ:

For a minimal point b A D1, let V be the intersection of a neighborhood of b in the

Martin compactification R� with the Riemann surface R. Then the balayage ðKbÞRÿV

of the kernel Kb over the closed set Rÿ V is potential, so that the closed set Rÿ V is

thin at the point b (Hilfssatz 13.2 in Constantinescu-Cornea [3]). From this property of

neighborhoods of a minimal boundary point we have the following lemma.

Lemma 3.1. The subsets tHPðD
0
HP ÿ DðPÞÞ and DPH are disjoint from each other in

DP1.

Proof. We assume that the image tHP(b) of some point b A D0
HP ÿ DðPÞ by the

mapping tHP belongs to the set DPH . Then, letting b 0 ¼ tPH � tHPðbÞ A DðPÞ, we have

tHPðbÞ ¼ tHPðb
0Þ. Let U and U 0 be neighborhoods of b and b 0 relative to the Martin

topology, respectively. These neighborhoods may be assumed to be disjoint from each

other. We denote by V and V 0 the intersections U VR and U 0 VR, respectively. Then,

the closed subsets Rÿ V and Rÿ V 0 of R are thin at the points b and b 0, respec-

tively. By Theorem 2.4 and 2.5 in the preceding section the set Rÿ V 0 is P-thin at

tHPðb
0Þ, and hence thin at b. Therefore, we have that ðRÿ VÞU ðRÿ V 0Þ ¼ R is thin at

the minimal boundary point b, which is a contradiction. r

For each harmonic function v on R such that

ð
R

PðwÞGPðz1;wÞvðwÞ du dv < þy ð2Þ

for some point z1 A R, let THPv be the P-solution on R:

vðzÞ ÿ
1

2p

ð
R

PðwÞGPðz;wÞvðwÞ du dv:

And, for each P-solution u on R such that

ð
R

PðwÞGðz1;wÞuðwÞ du dv < þy ð3Þ
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for some point z1 A R, the harmonic function on R:

uðzÞ þ
1

2p

ð
R

PðwÞGðz;wÞuðwÞ du dv

is denoted by TPHu. Then, for each boundary point b A DHP THPKb is defined and

satisfies

THPKb ¼ THPKbðz0ÞK
P
a ; a ¼ tHPðbÞ ð4Þ

provided that b A D0
HP, where z0 is the origin of two Martin compactifications of

R. For each a A DPH we can also define THPK
P
a and we have

TPHK
P
a ¼ TPHK

P
a ðz0ÞKb; b ¼ tPHðaÞ: ð5Þ

For these relations (4) and (5) we refer to [8].

The following lemmas are easy consequences of Fubini’s theorem.

Lemma 3.2. Let v be a harmonic function which satisfies the condition (2) for some

z1 A R, and n be its canonical measure on D1. Then, we have

THPv ¼

ð
D0
HP

THPKb dnðbÞ on R:

Lemma 3.3. Let u be a P-solution satisfying the condition (3) and m be its canonical

measure on DP1. Then, we have

TPHu ¼

ð
DPH

TPHK
P
a dmðaÞ on R:

The next theorem gives a relation between the measures wP and w.

Theorem 3.4. The subset D0
HP ÿ DðPÞ of D1 has harmonic measure zero:

wðD0
HP ÿ DðPÞÞ ¼ 0: ð6Þ

And, we have the equality, for every measurable subset E of DPH ,

wPðEÞ ¼

ð
E

THPKtPH ðaÞðz0Þdw � tPHðaÞ ð7Þ

¼

ð
tPH ðEÞ

THPKbðz0ÞdwðbÞ: ð8Þ

Proof. The constant function 1 on R is represented as the integral by w over the

subset DHP of D1, because of the inequality

ð
R

PðwÞGPðz;wÞ du dv < 2p; z A R:

Since

DHP ¼ ðDHP ÿ D0
HPÞU ðD0

HP ÿ DðPÞÞUDðPÞ;

we have, by Lemma 3.2 and the equality (4) in this section,

THP1 ¼

ð
D0
HPÿDðPÞ

THPKb dwðbÞ þ

ð
DðPÞ

THPKb dwðbÞ ð9Þ
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¼

ð
D0
HPÿDðPÞ

K P
tHPðbÞ

THPKbðz0Þ dwðbÞ ð10Þ

þ

ð
DðPÞ

K P
tHPðbÞ

THPKbðz0Þ dwðbÞ; ð11Þ

because of THPKb ¼ 0 for b A DHP ÿ D0
HP. Since the mapping tHP : D0

HP ! DP;1 is

measurable (Theorem 2.3), we can define the three set functions n, n1 and n2 as follows;

for every measurable subset E of DP1 we define

nðEÞ ¼

ð
tÿ1
HP

ðEÞ

THPKbðz0Þ dwðbÞ;

n1ðEÞ ¼

ð
tÿ1
HP

ðE V ðDP1ÿDPH ÞÞ

THPKbðz0Þ dwðbÞ;

n2ðEÞ ¼

ð
tÿ1
HP

ðE VDPH Þ

THPKbðz0Þ dwðbÞ:

These set functions are measures on the Borel field of DP1 supported by the sets

tHPðD
0
HPÞ; tHPðD

0
HPÞ ÿ DPH : DPH

respectively, and n ¼ n1 þ n2. The terms (10) and (11) are written with n, n1 and n2 as

follows:

THP1 ¼

ð
DP1

K P
a dnðaÞ

¼

ð
DP1ÿDPH

K P
a dn1ðaÞ þ

ð
DPH

K P
a dn2ðaÞ:

On the other hand the P-solution eP is represented as the integral over the set

DPH by its canonical measure wP and we have THP1 ¼ eP on R. The uniqueness of

canonical measure in the Martin integral representation theorem implies that n1 ¼ 0 and

n2 ¼ wP. Then it follows that

wðD0
HP ÿ DðPÞÞ ¼ 0;

since THPKbðz0Þ > 0 for b A D0
HP and, by Lemma 3.1,

tÿ1
HPðDP1 ÿ DPHÞ ¼ D0

HP ÿ DðPÞ:

For a measurable subset E of DPH we have wPðEÞ ¼ n2ðEÞ; that is, the second part

of the theorem was proved. r

Corollary 3.5. For a measurable subset E of DPH , wPðEÞ ¼ 0 if and only if

wðtPHðEÞÞ ¼ 0.

Let v be a positive harmonic function on R and n its canonical measure of the

Martin representation:

v ¼

ð
D1

Kb dnðbÞ:

For a measurable subset B of D1 the reduced function of v relative to B is denoted by
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ðvÞB. Then, we have

ðvÞB ¼

ð
B

Kb dnðbÞ

by R. S. Martin [5]. Since the eP satisfies the conditionð
R

PðwÞGðz1;wÞe
PðwÞ du dv < þy

for each z1 A R (T. Satō [8]), we can define TPHe
P. In the following part of this section

we shall show that TPHe
P is the reduced function of the constant function 1 relative to

the set D0
HP. To do this we need the next lemma.

Lemma 3.6. For a point b in DðPÞ we have

THPKbðz0Þ � TPHK
P
a ðz0Þ ¼ 1; a ¼ tHPðbÞ; ð12Þ

where z0 is the pole of the Martin compactifications R� and R�
P.

Proof. By the definitions of transformations tHP, tPH we have equalities (4) and (5)

for b A DðPÞ and a ¼ tHPðbÞ A DPH . Since the transformation tHP � tPH is identity on

DPH and THPðTPHuÞ ¼ u for every P-solution u on R satisfying the condition (3) for

some z1 A R (T. Satō [8]),

we have

K P
a ¼ THPðTPHK

P
a Þ

¼ TPHK
P
a ðz0Þ � THPKb

¼ TPHK
P
a ðz0Þ � THPKbðz0Þ � K

P
a :

Since K P
a > 0, the lemma follows. r

From these results the next theorem follows.

Theorem 3.7. The harmonic function TPHe
P is the reduced function of the constant

function 1 relative to the subset D0
HP of D1; that is,

TPHe
P ¼ ð1ÞD0

HP:

Proof. Since by Theorem 3.4 we have

1 ¼

ð
ðDHPÿD0

HPÞUDðPÞ

Kb dwðbÞ; ð13Þ

Lemma 3.2 shows that

eP ¼ THP1

¼

ð
DðPÞ

THPKb dwðbÞ

¼

ð
DðPÞ

K P
tHPðbÞ

� THPKbðz0Þ dwðbÞ;
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because of THPKb ¼ 0 for b A DHP ÿ D0
HP. From Lemmas 3.3, 3.6 and Theorem 3.4 it

follows that

TPHe
P ¼

ð
DðPÞ

TPHK
P
tHPðbÞ

� THPKbðz0Þ dwðbÞ

¼

ð
DðPÞ

Kb � TPHK
P
tHPðbÞ

ðz0Þ � THPKbðz0Þ dwðbÞ

¼

ð
DðPÞ

Kb dwðbÞ ð14Þ

¼

ð
D0
HP

Kb dwðbÞ ¼ ð1ÞD0
HP
: ð15Þ

Hence the proof was completed. r

Corollary 3.8. TPHe
P ¼ 1 if and only if wðD1 ÿ D0

HPÞ ¼ 0.

Proof. By the first part of Theorem 3.4 the equalities (13) and (15) in the proof of

the preceding theorem show this corollary. r

Corollary 3.9. If the density P on R satisfies the conditionð
R

PðwÞGðz1;wÞ du dv < þy ð16Þ

for some point z1 in R, then

wðD1 ÿ D0
HPÞ ¼ 0:

Proof. By the condition (16) we have TPHe
P ¼ 1 and hence complete the proof by

Corollary 3.8. r

4. Boundary behavior of positive solutions.

In the first place a few definitions of the boundary limit in Constantinescu-Cornea’s

sense are in order from their book. Let f be an extended real-valued continuous

function defined on a hyperbolic Riemann surface R. The cluster set f5ðbÞ of f at each

minimal boundary point b A D1 is defined as the set

f5ðbÞ ¼ 7
G AGðbÞ

f ðGÞ;

where f ðGÞ is the closure of the set f ðGÞ in the extended real line ½ÿy;þy� and the

class GðbÞ is the filter appeared in Section 1. This cluster set is a non-empty closed

connected subset of ½ÿy;þy�. If f5ðbÞ reduces to a set fag which contains only one

extended real number a, then we say that the function f has a boundary limit a at b A D1

and represent this fact by f̂f ðbÞ ¼ a. The set of all those minimal boundary points

b A D1 at which the function f takes a boundary limit in the above sense is denoted

by Fð f Þ. For details on the boundary limits f̂f and the set Fð f Þ we refer to

Constantinescu-Cornea [3].
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Now, we consider the Martin compactification R�
P of R relative to Schrödinger’s

equation Du ¼ Pu. For a extended real-valued continuous function f on R we can also

define the cluster set f5ðaÞ of f at each minimal boundary point a A DP1 by taking the

filter G
PðaÞ in place of GðbÞ, b A D1. F

Pð f Þ is the set of points a A DP1 at which the

cluster set f5ðaÞ reduces to a one-point set. For each point a A F
Pð f Þ we can define

the boundary limit f̂f ðaÞ.

The next lemma gives a relationship between the above two cluster sets of the

function f at points a A DPH and b ¼ tPHðaÞ A DðPÞ respectively, and hence, if a point

a A DPH belongs to F
Pð f Þ, then we shall obtain a relationship between two boundary

limits f̂f ðaÞ and f̂f ðbÞ. Its proof is based on Theorem 2.4 and 2.5.

Lemma 4.1. Let f be an extended real-valued continuous function on R. We have

f5ðaÞ ¼ f5ðtPHðaÞÞ for each point a A DPH , and f5ðtHPðbÞÞI f5ðbÞ for each point

b A D0
HP.

Constantinescu and Cornea have proved the following result on existence of

boundary limits of positive harmonic functions of R (Hilfssatz 14.3 in [3]): that is, let s

be a positive superharmonic function on R and m be a measure on D1 such that

ð
D1

Kb dmðbÞU s on R:

Let f be an extended real-valued continuous function on R such that f s is a positive

superharmonic function on R. Then, we have

mðD1 ÿFð f ÞÞ ¼ 0:

(In [3] f s was assumed to be a Wiener function on R, however we assume f s to be a

positive superharmonic function on R for the sake of simplicity.) Therefore, in the

particular case that s ¼ 1 and m is the harmonic measure w the boundary limit v̂v of

a positive continuous superharmonic function v is defined a.e. on D1 with respect to w.

And the quasi-bounded component of the greatest harmonic minorant of v is represented

by the integral ð
D1

Kbv̂vðbÞ dwðbÞ:

Accordingly, the boundary limit of a continuous potential p on R is zero a.e. on D1 with

respect to harmonic measure w.

By the similar way as the case of harmonic functions Constantinescu-Cornea’s result

may be also proved for any continuous positive P-supersolutions on R using the Martin

compactification R�
P of R and the filter G

PðaÞ, a A DP1. Let s be a positive P-

supersolution on R and m be a measure on DP1 such thatð
DP1

K P
a dmðaÞU s on R:

For an extended real-valued continuous function f on R such that f s is a positive P-

supersolution on R, then we have

mðDP1 ÿF
Pð f ÞÞ ¼ 0:
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In the particular case that s ¼ 1 and m is the P-elliptic measure wP, a positive continuous

P-supersolution u has a boundary limit ûu a.e. on DP1 with respect to wP.

If a positive P-solution u on R is bounded above by a harmonic function h on R,

then the boundary limit ûu is defined a.e. on the set D1 with respect to harmonic measure

w, for hÿ u is a positive continuous superharmonic function on R. For any positive

continuous P-supersolution u on R we can say as follows.

Theorem 4.2. Let u be a positive continuous P-supersolution on R. The boundary

limit ûu of u exists a.e. on D0
HP with respect to harmonic measure w. And we have the

relation

ûuðbÞ ¼ ûuðtHPðbÞÞ

for almost every point b A D0
HP with respect to w.

Proof. There exists a subset E of DP1 with P-elliptic measure zero such that the

boundary limit ûuðaÞ is defined for each point a A DP1 ÿ E. From Lemma 4.1 it follows

that the boundary limit ûuðbÞ exists and ûuðbÞ ¼ ûuðtHPðbÞÞ for b A DðPÞ except for the set

tPHðE VDPHÞ, where Corollary 3.5 shows wðtPHðE VDPHÞÞ ¼ 0. Since the set D0
HP ÿ

DðPÞ has harmonic measure zero by Theorem 3.4, we complete the proof. r

Corollary 4.3. Let u be a positive continuous P-supersolution on R. If a density P

on R satisfies the condition

ð

R

PðwÞGðz1;wÞ du dv < þy ð17Þ

for some point z1 A R, then the boundary limit ûu exists a.e. on D1 with respect to

harmonic measure w. And we have ûuðbÞ ¼ ûuðtHPðbÞÞ for almost every point b A D1 with

respect to w.

Proof. The preceding theorem gives this corollary by Corollary 3.9. r

In the remaining part of this section we shall consider boundary behavior of the P-

elliptic measure eP at minimal points b A D1. Since eP is bounded above by 1 on R, it

is evident that the boundary limit of eP is defined a.e. on the boundary D1 with respect

to w. Furthermore, we can find exact values of boundary limits of eP at minimal

boundary points b A D1.

Lemma 4.4. Let f and g be real-valued continuous functions on R. For each point b

in Fð f ÞVFðgÞ we have

ð f cGG gÞðbÞ ¼ f̂f ðbÞG ĝgðbÞ: ð18Þ

Proof. Let f̂f ðbÞ ¼ a and ĝgðbÞ ¼ b. We assume that a and b are finite real

numbers. For any positive number e, we take open neighborhoods UeðaÞ and UeðbÞ of

a and b respectively:

UeðaÞ ¼ fx A R : jxÿ aj < eg;

UeðbÞ ¼ fx A R : jxÿ bj < eg:
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For z A f ÿ1ðUeðaÞÞV gÿ1ðUeðbÞÞ, we have

jf f ðzÞG gðzÞg ÿ ðaG bÞjU 2e:

From that the open subset f ÿ1ðUeðaÞÞV gÿ1ðUeðbÞÞ of R belongs to the class GðbÞ

(Hilfssatz 14.1 in Constantinescu-Cornea [3]) it follows that ð f G gÞ5ðbÞ ¼ faG bg.

r

Theorem 4.5. The boundary limit of eP takes on the values 1 a.e. on D0
HP and 0 a.e.

on D1 ÿ D0
HP with respect to w, respectively.

Proof. Let h be the positive harmonic function TPHe
P. Then, wðD1 ÿFðhÞÞ ¼ 0

and its boundary limit ĥh takes on the value 1 or 0 according to b A D0
HP or b A D1 ÿ D0

HP

a.e. with respect to w, because to Theorem 3.7, the integral representation

hðzÞ ¼

ð

D1

KbðzÞĥhðbÞ dwðbÞ

and the uniqueness of the canonical measure of h. And, let p be the continuous

potential

z !
1

2p

ð

R

PðwÞGðz;wÞePðwÞ du dv; z A R:

Then, wðD1 ÿFðpÞÞ ¼ 0 and the boundary limit p̂p takes on the value 0 a.e. on D1 with

respect to w.

By the preceding lemma and the equality h ¼ eP þ p, we have

cePeP ¼ ĥhÿ p̂p; for b A FðhÞVFðpÞ:

These complete the proof. r

Corollary 4.6. Under the condition (17) in Corollary 4.3 the boundary limit of eP

takes on the value 1 a.e. on D1 with respect to w.

Proof. This follows from Corollary 3.9. r
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Göttingen-Heidelberg, 1963.

[4] J. L. Doob, A non-probabilistic proof of the relative Fatou theorem, Ann. Inst. Fourier, 9 (1959), 293–

300.

[5] R. S. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137–172.

[6] M. Nakai, The space of non-negative solutions of the equation Du ¼ pu on a Riemann surface, Kôdai
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