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Abstract. We use N. Tanaka’s theory of normal Cartan connections associated with
simple graded Lie algebras to study Cartan’s equivalence problem of single third order
ordinary differential equations under contact transformations. As a result we obtain the
complete structure equation with two differential invariants, which is applied on general
Legendre Grassmann bundles of three-dimensional contact manifolds.

1. Introduction

The general equivalence problem is to recognize when two geometrical objects are
mapped on each other by a certain class of difffomorphisms. E. Cartan developed the
general equivalence problem and provided a systematic procedure for determining the
necessary and sufficient condition. In recent explorations on the equivalence problem of
second order ordinary differential equations, N. Kamran, R. B. Gardner, P. J. Oliver,
W. Shadwick, C. Grissom, G. Thompson, G. Wilkins have taken important steps in
this direction ([4], [S]). In regard to the equivalence problem of third order ordinary
differential equations, E. Cartan studied under point transformations ([2]), and in 1940
S. S. Chern turned his attention to the problem under contact transformations ([3]). We
shall make several statements of S. S. Chern’s important results, which are explained by
R. B. Gardner in [4].

We let y = y(x) be a function from R to R, and give a third order ordinary
differential equation

d’y dy d’y
(1.1) ECT_FGC’J)’E’EZ-)

of normal type. We consider the equivalence problem for (1.1) under contact trans-
formations on the second jet space J? = J?(R,R) which are natural liftings of contact
transformations on the first jet space J! = J'(R,R). We give the following R*-valued
one-form r = *(61,6,,0s,60,) on J? with standard jet coordinates x,y,p,q:

(1.2) 01 =dy — pdx,
0> = dp — qdx,
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0; = dq — F dx,
04=dx.

For coframes 0, 05 corresponding to two third order ordinary differential equations, the
equivalence problem resolves itself into the existence problem of a diffeomorphism
¢ :J* — J? satisfying ¢*0r = g6, where

a 0 0 O
A b ¢ 0 0

(1.3) 966=11¢ & 4 o|GLER
h i 0 j

To begin with, we change horizontal directions of the connection of G-structure, and
reduce the group G to the isotropy subgroup G¢ of simplified structure func-
tions. Then we continue procedures of reduction. The last step of reductions, S. S.
Chern obtained a structure function 4 for a five-dimensional structure group G:

c3{ oF 10F oF 2<6F)3 1d oF 10F d oF 1d2aF}

Y p T30qdxdq 642 0q

oq

(14) A= e
When A = 0, we can not reduce the group G any longer. Then we follow procedures
for prolongation. Finally S. S. Chern obtained five structure functions. If all structure
functions are equal to zero, then the third order ordinary differential equation is
equivalent to d*y/dx® = 0. The condition 4 = 0 is a necessary and sufficient condition
that solution curves of the differential equation (1.1) on J? is equal to null-curves of
(2, 1)-conformal structure on the space of solution curves, which are given by a second
order Monge equation. When A # 0, we reduce the structure group again. Then we
follow procedures for prolongation. Finally S. S. Chern constructs a Cartan connection
with values on a Lie algebra of a six-dimensional non-semisimple Lie group. This
process of constructing structure equation with reductions and prolongations is very
skillful, however, some problems still remain. For one thing, too many structure
invariants remains. Structure functions can be simplified as Spencer cohomology
elements. For example, when 4 = 0 we see that there is only one essential function
from the calculation of cohomology ([10]), and we expect that the one can be expressed
in terms of the function F and its derivatives. What is more, they change the structure
groups according to cases.

To settle these problems, we shall discuss Cartan connections on J? through N.
Tanaka’s elaborate studies on connections associated with simple graded Lie algebras
([9]). Now we give some main points of his theory. Let & be a simple graded Lie
algebra g = Zp g,, that is, g is finite dimensional and simple, g_; # 0 and m = Ep <09
is generated by g_;. Let G/H be a n-dimensional homogeneous space, where the Lie
algebra of G is equal to g and the Lie algebra of Htoh=3_ .40, We represent the
linear isotropy group G of G/H on the vector space m, and extend the group G to
a linear Lie group GJ < GL(4,R). Assume that G is the prolongation of (m,g,). N.
Tanaka constructs a unique normal Cartan connection (P,w) of type ® on a n-
dimensional manifold M from a G§ -structure of type m on M. Conversely every
normal connections of type & on M induce a Gf -structures of type m on M. Let
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(P,w) and (P',’) be normal connections of type ® on M and M’ respectively. Let
(P*,¢) and (P'*,¢') be GY -structures of type m on M and M’ corresponding to (P, w)
and (P,') respectively. If ¢* : (P* &) — (P'*,¢) is an isomorphism, then there
exists a unique isomorphism ¢: (P,w) — (P,@’). Conversely each isomorphism
¢:(P,w) — (P,') induces an isomorphism ¢* : (P* &) — (P'* &) (9, Theorem
2.7]). The equivalence problem for third order ordinary differential equations under
contact transformations resolves itself into the equivalence problem for GJ -structures
and G is equal to Sp(2,R). Thus this problem is solved by getting invariant functions
of structure equation of normal Cartan connections associated with sp(2, R).

In this paper we construct concretely the structure equation with respect to third
order ordinary differential equations. In Section 1, we outline the definition of normal
Cartan connection in [9]. In Section 2, we summarize the result of S. S. Chern. In
Section 3, we give a grading of Lie algebra ® = sp(2,R), and our main theorem
(Theorem 4.1). Our main results are the following: For given third order ordinary
differential equation (1.1), there exists a unique normal Cartan connection of type ® on
J?. There exists two essential invariant functions 4 and b, and (1.1) is equivalent to
F =0 under contact transformations if and only if 4 =b=0. When 4 =0, the
structure equation (4.6) coincide Chern’s equation (3.12). In this section we show the
existence of normal Cartan connection, and give expressions (4.7) and (4.8) to 4 and b
using the function F. In Section 4 we construct the structure equation (4.6) in Theorem
4.1, and give some remarks on the Spencer cohomology of sp(2, R). This results delete
on Legendre Grassmann bundles L(M) on three-dimensional contact manifold M. In
Section 5, we define Legendre connections on L(M). Then giving a third order
ordinary differential equation on L(M) is equal to giving a Legendre connection on
L(M). Thus we regard Theorem 3.1 as a theorem on L(M) with given Legendre
connection. For going over our calculations and checking our results, we carried out
on computers using the symbolic manipulation program MAPLE.

In a forthcoming paper [6], we proceed to study a relation of structures in a twistor
diagram through the result of this paper and give a foundation of projective contact
geometry.

2. Normal Cartan connection

Let G/H be a homogeneous space of a Lie group G and a closed subgroup H
with dimension n, and g and ) the Lie algebras of G and H respectively. Assume that g
is a graded Lie algebra with grading g = ﬁ.‘z_ﬂ g, and that h=>%,g, By 6=
(g, {8;}_ ) we denote this graded Lie algebra g. Let M be an n-dimensional manifold,
and (P,w) a Cartan connection of type ® on M, where P is a principal H-bundle over
M and w is a g-valued one-form on P. The curvature form Q of (P,w) is a g-valued
two-form on P defined by

(2.1) .Q:dco—i-%[w,w].

Then there is a unique function K : P — g® /\z(m*) such that

(2.2) Q:%K(w_/\w_),
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where w_ is the m-component of @ with respect to the decomposition g = m+ 5. (See
[9].) The space /\'(m*) is decomposed to 2o r<09n A AGr. We define a
subspace /\' (m*) of A’(m*) by

(2.3) N )= D g A Ag,

ri++reg=p,
r ,...,rq<0

and define subspaces C?4(6) of g ® A!(m*) by

(2.4) CPG) = 5 ® Ny_pya (7).

k
Let e1,...,e be a basis of g. The space ), ,g; is regarded as the dual space m* of
m =3, ,9; and hence there is a basis ], ..., e, of m* such that B(e;, e;) = J;;, where B

is the Killing form of g. Then there are operators 0: C?4(6) — CI’ La+1(®) and
o : CPA(G) — CP19-1(®) which are defined by

(2.5) oc(Xi A - AXgpr)
_Z DX e(Xi A AXA - A Xgy1)]
+Z(~1)'+Jc([X,-,X}]/\X1A o AXGA A KGA - A X ),
i<y
(2.6) e(XiA - AXyo)
= Z[e}*,c(e,-/\Xl A A X))

1 ) 5
+§Z(_1)]+lc([e;,j’j]_ AEGAXIA -~ /\A,j/\ /\Xq—l),

where c e CP4(®), X1,..., X441 € m and [ef, Xj]_ denotes the m-component of [e}, X]]
with respect to the decomposition g =m+). We call a form ce CP4(®) harmonic
if (0"0+ 00%)(c) =0. We denote by HPY(®) the space of all harmonic forms in
CP4(®). Then the space C”4(®) is orthogonally decomposed as follows:

(2.7) CPA(®) = HP9(®) + (3°8 + 00") CP4(G).

Let K? be the CP?(6)-component of the curvature function K. We say that a
Cartan connection (P,w) of type ® on M is normal if K satisfies the following
conditions:

(2.8) KPP =0 forp<O0,
(2.9) 0*'K? =0 forp>0.

These simple conditions which are applicable to many problems are finally found by
N. Tanaka in [9] after much work ([7, 8]).



Third order ordinary differential equations 997

3. The equivalence problem of third order ordinary differential equations under
contact transformations

Let J! = J'(R,R) be the first jet space with standard jet coordinates x,y,p, where
p =dy/dx, with contact form 6, =dy—pdx. Let ¢(x,y,p) = (X(x,y,p), Y(x,y,p),
P(x,y,p)) be a diffecomorphism from J! to J!. We call ¢ be a contact transformation if
it preserves the contact form up to multiple

(3.1) ¢*(61) = pb,

since p is defined by a diffeomorphism it is always non-zero function of x,y,p. To put
it another way,

oY _ 0X _ 0¥ 0X_ oY oX _
ox Tox PP T T T T
Let J2 = J*(R,R) be the second jet space with standard jet coordinates x,y,p,q,

where p = dy/dx, q =d?y/dx*. We let ¢)(x,y,p,q) = (X(x,7,p), Y (x,,p), P(x,7,p),
QO(x,y,p,q)) be the first prolongation of a contact transformation ¢ of J!, that is

oP 0P 0P
_ &Py
X X X

ERRCEA)
We also call ¢ a contact transformation of J2. Let F(x,y,p,q) be a real-valued
function on an open set of J2. We introduce an R*-valued one-form 6 associated with
F given by

(3.2)

(3.3) Q

0, dy —pdx

o, | 6| | dp—qdx

(34) 9=0r=16,| = | dg- Fax
04 dx

The solutions of (1.1) are curves y in J? which satisfy
(35) y*01 = y*ﬁz = V*03 = 0, y*94 # 0.

We call two differential equations associated with F and F equivalent if there exists a
contact transformation ¢{!) which transforms 6 to . This is the equivalence problem
of third order differential equations under contact transformations treated in [3]. We
recall S. S. Chern’s procedure and interpret its main points.

Let G be a nine-dimensional closed subgroup of G = Sp(2,R) given by

0

QY
I

0
(3.6) g

> 0o O Q
o O© O

C
k
[ J

according to the notation of [4]. We begin constructing the structure equation of
G-structure on J2. Then we absorb some terms of curvature part and reduce the
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structure group G to a seven-dimensional subgroup G given by

a 0 0 0
b ¢ 0 0
#
(37) G = e k c*fa 0
h i 0 a/c

We continue procedures of absorptlon and reduction. The last step, we obtain the
followmg reduced structure group G and G-structure P with an R*-valued one-form &
on P:

a 0 0 0
b c 0 0
b*/2a bc/a c*/a O
h i 0 a/c

(o)
Il

(3.8)

(3-9) = t(a)l,COZ,CD3,CO4)

a 0 0 0
b ¢ 0o o ("
_ |82 2oF 2 (0FN* ¢* d 0F bc c?oF c* 0 02 ,
5‘555‘%(5;)'*5;2;@ 7 30 a 03
h i 0o 2/ \ba
[

where d/dx = 6/ 0x + pd/dy + q6/ op+F 6/ 6q is the total derivative. The structure
equation of the G-structure (P,@®) on J? i

w1 a 0 0 0 w1
0 0

(3.10) al =P P Al 2
w3 0 B 26,—a 0 w3
4 m M 0 a—p w4

—) A Wy

—3 AWy

+
Awl/\au
0

Chern’s invariant function A4 is

(311) 4= 3y 30q 0p 27

p %) i op T30gdx og 6ax: oq

c3{ oF 18FoF 2 (aF)3 1d oF 10F d oF 1 d° 6F}

When A4 =0, the isotropy subgroup remains unchanged, and we can not reduce the
group G any more. Then we follow procedures for prolongation of a G-structure and
construct a Cartan connection (P,w), w =(wi,...,wy), and obtain the following
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structure equation:

(3.12) dw; = —w1 Aws — Wy A wy,
dwy; = —w) A Wg — Wy A W7 — W3 Ay,
dws = —wy A wg + W3 A Ws — 203 A 7,
dws = —w1 Awg — Wy A W9 — Wg A Ws + Wg A @7,
dws = —2w; Awig — W3 A wg + W4 A W,
dwg = —wy AWy — W3 AWg — W5 A Wg — W A W7,
dw7 = —W1 A1) — W2 ANy — W3 N\ W9,
dwg = —w4 AW1g — We A W9 — W7 A W3 + €W AWy + 2801 A W3 — €y A @3,
dwg = —w4 Awg + W5 AWy — 207 Ay + AW A Wy — Cwy A w3 + bwy A w3,
dwig = —ws AWy — e A wg + fw; A Wy + ew; A w3 + aws A w3,

where a,b,c,e, f coincide the functions a,b,c,e,f in [3] respectively.

When A #0, we can reduce G-structure again. If we continue constructing a
connection from (3.8), then we obtain curvature forms which are not only on the base
forms w;,w,, w3, w4 but also on wy,...,w;p. Thus S. S. Chern treated this problem
separately in the case when 4 =0 from in the case when 4 # 0, and he reduced the
structure group when 4 # 0. However, we can absorb the torsion part of dws of the
structure equation (3.10) in a different way as follows:

w1 a 0 0 0 ]
0 0

(3.13) al| 2| = | P P NS
w3 0 ﬁl 2ﬂ2—‘a 0 w3
w4 m M 0 a—p n

—n N\ W4

—3 N\ W4

+

Bwi Awy + Awq A wy
0

and induces the function B giving rise to a function depending on 4. In the sections
that follow, we show that the structure equation satisfying Tanaka’s normal condition
for a Cartan connection (P,w) associated with a simple graded Lie algebra sp(2,R)
induces this structure equation (3.13) adding the function B in surplus for a G-structure.
The structure equation for (P,w) covers both cases that 4 =0 and 4 # 0.

4. Normal Cartan connection associated with sp(2, R)

From (3.12) we see that w has its value on the Lie algebra sp(2, R) of Sp(2,R).
We begin considering gradings of the Lie algebra g = sp(2,R) of G = Sp(2,R). In this
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section we define sp(2, R) by

(4.1) g =3sp(2,R) = {X egl(4,R); ‘XJ +JX = 0},
where
0 0 0 1
0 0 1 0
(4.2) J = 0 -1 0 0
-1 0 0 0
We take a basis ej,...,e;0 of g as follows:
1
43 e1 =E4y, e =—(F3 + Egp),
(4.3) 1 41 2 \/5( 31 42)
1
es =F3, e4=-—(Fyn — Es),
3=Ezxp, e4 \/5( 21 — Ea43)
e—l(E Ey) e—L(E—E)e——I‘(E E;y)
5 72 11 44), 6“\/2 2 33), €7 7 12 34),

1
eg = Ey, ey = \/_—2-(E13 + Ey), e = Eu,

where Ej; € gl(4, R) are matrices such that their (i,j)-component is equal to 1 and other
components are 0. Lie brackets [e;, e;] are presented in Table 1.
Table 1 tells us that g has the following grading:
0=83+8,1t8 1 1t8 +9 +8 +3s,
(44) g3 = {el}7 g, = {eZ}a g1 = {83,64}, 0 = {85,66},
9, ={er,es}, 9, ={es}, g3 ={ew}

We treat the grading Lie algebra ® = (g, {gi}f:_3) in (4.4), and decompose g to m + b,
where

(4.5) m=g3+9g,+8;, b=gy+g +8,+a;

By H we denote an isotropy subgroup of G of which Lie algebra is ). Our main
theorem is the following:

THEOREM 4.1. Let J? be the second jet space with standard jet coordinates x,y,p, q,
and ® be a graded Lie algebra (sp(2,R), {g,-}?__3) given in (4.4). For given third order

ordinary differential equation d*y/dx® = F(x,y,p,q), there exists a unique normal Cartan

connection (P,w), o ="'(wy,...,w1) of type & on J>. The structure equation is
(4.6) dwy = —w1 Aws — Wy Ay,

dwy = —w1 Awg — W3 AWy — W3 A Wy,

dw; = —wy Awg + W3 AWs — 23 A w7 + Bwy Awy + Awy A wy,

dws = —w1] AWy — Wy AWy — W4 A Ws + W4 A W7,
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TABLE 1
er [ e | e3 | eq es €6 e7 es €y €10
(4] * 0 0 0 \/fel 0 e 0 —ey —\/585
V2
e 0 ﬁe \/ie e e _785
-_— - - —e
2 * * e 7 @ 7 e 3 4 V3 7
T %
e3 * * x | e 0 V2e; 0 —v2e6 —e7 0
V2
e. ‘/Qe ﬁe _Tes 0 e, e
* * —__ —_——
4 * * 5 e > ¢ N 8 9
+7€6
2 2
és * * * * * 0 —\/—_87 0 £89 \/5810
2 2
2 2
€6 * * * * * * —£e7 \/568 ——€9 0
2 2
e7 * * * * * * * ey el 0
eg | x * | = * * * * * 0 0
e9 * * * x * * * * * 0
€10 * * * * * * * * * *
dws = —2mw) A w19 — Wy A Wg + W4 A W,
dwe = —wy AW1) — W3 AWg — Ws AWe — W AW7 + W AWy + hw A ws,
dw7 = —w) AW — W2 AWg — W3 AWy +iw) Awy — Bwy A wy,
dwg = —w4 A W1) — W6 A W9 — @7 AWg + €W AWy + 2a) W1 A W3
+ 8w Aw4 — Cwy A W3,
dwg = —w4g A wg + Ws Awg — 207 AWy + A W] AWy — CWO A W3
—iw Aws +bwy A w3,
dwig = —ws Ay — W Awg +Fwy Awy + ewy Aws + Jw Aws + a1 w2 A @3,

Furthermore, the invariant functions A and b induce the other invariant functions. The
following are expressions for A and b using the function F on J?, base coordinates x,y,p,q
of J? and coordinates a,c of H > G.

oq

@D A=V > 3w T dxp "33qdxdq 6dx? oq |’

S| oF 10FoF 2 O0FN) 1d 0F 10F d 0F 1 d* oF
a oy 30q dp 27
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a® 0*F

(4.8) b= 5

When A4 =0, the structure equation (4.6) coincide with the equation (3.12).
Furthermore we obtain the following corollary:

COROLLARY 4.2. The third order ordinary differential equation (1.1) is equivalent to
F =0 under contact transformations if and only if A=b=0.

Now we prove Theorem 4.1. To begin with, we show that there exists a unique
normal Cartan connection (P,w) of type & on J? inducing the G§ -structure associated
with the given third order ordinary differential equation. We consider the linear
representation p: H — GL(4) and dp : H — gl(4). For

apy  an a3 a4
a a ay a
as asp —axp —apn

aa1 asz —ay —an

the assignment X+ ad(X) gives an isomorphism of g onto ad(g). For bje; + bres +
bse; + bseq € m, we have

by —2an —V2ay 0 V2a3 by
by ~V2ap —ay —an —V2ay as by
4.10 d(X = )
( ) a ( ) b; 0 *\/2012 —2ay 0 bs
bs V2ay3 a 0 ayp — ay by
thus
—2an —V2ay 0 V2a;
—\/56112 —daip —ax —\/56121 asy
4.11 dp(X) = 1(4).
(4.11) p(X) 0 ay —2ay 0 € gl(4)
V2ay3 ax 0 an — agy

The Lie algebra of Aut(®) = Gy is g, We will identify two groups Gy and p(Gp)
through the isomorphism p: Gy — p(Gy). From (4.11), we see that

—2a11 0 0 0
_ 0 —di] —an 0 0
0 0 0 a) —ap
and
a 0 0 0
0 ¢c O 0
(4.13) pG) =30 o o a0 < GL(4).
0 0 0 afc

Let N° be a subgroup of GL(4) consisting of all ae GL(4) such that a¥, =Y,
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(mod Zj_:lpH g;) for all Y, eg, and p <0, then

(4.14) N° =

* K = O
O = O O
_— o O O

L R

We denote by G the closed subgroup Go - N° of GL(4), and we see that this group GF
is equal to the group GJ given in (3.7). Let G be the image p(H) of H expressed as
G = Gy - plexpg,) - p(expg,), which is coincide with the group G given in (3.8). The
graded Lie algebra ® is (Cy, {a1,22})-type and ® is the prolongation of (m,gq,) (10,
Theorem 5.3]). Thus, from [9, Theorem 2.7], we prove that there exists a unique
normal Cartan connection (P,w) in Theorem 4.1.

The invariant function 4 is equal to Chern’s function (3.11). Now we calculate
b. From (3.4), (3.9) and (4.6), we give expressions to 4 and b using the function F on
J?, base coordinates x,y,p,q of J> and coordinates a,c of H o G.

From (3.4) we see that

d01 = —02 /\04, d02 = —03 /\04,

(4.15) F
d03 —a—F01A04—a—F02/\04—-a—03/\04, d04:0.
dy op 0q

From (4.15) and (3.9), we have
(4.16) d(a)l) Zda/\91 —092/\04.
From (4.16), (3.9) and (4.6), we have
(4.17) 0 =dw; + w1 Aws + wy Aws
ab
=0; A {aws da + (bl - Ch)oz + — 04}

thus

(4.18) w5=@+x101 +—————bl+eh92——04.
a a C

Similarly from (3.4), (3.9) and (4.6), we obtain wg and w7 by calculating dw; + w; A we +
Wy A7 + W3 A 4.

db b
(4.19) wg = —+— dc+x301+ ( bxy + ay1)0; + 2( bi + ch)0,

1
+ ) (abk — ace — b*c)bs,

d 1 OF
(4.20) w7 =?c+(ei kh + ay))0; + x20, + = 03 +35,%



1004 H. SAT0o and A. Y. YOSHIKAWA

where
bc c? oF
(4.21) 71——5 %
p_ger g ary @ dor
2a 2a dp 9Y9al\dq 6a dx 0q

By calculating the term of 6; A 04 of dw; + wy Awe — w3 Aws + 2w3 Aw7 — Awy A wa,
we obtain the expression (4.7) of 4. So far, our calculations agree with S. S. Chern.

Next, from (3.4), (3.9) and (4.6), we similarly obtain wg and wg by calculating
dws + 01 A g + W2 AWy + g AWs — Wa A 7.

(422) ws= -‘i—h—fgdt+——(bz—ch)da+ 5 (=bi + ch) dc + x56,

i
+ EE (—bexy + aiy; + 02y2)02 + 2 (—bi + ch)6s
1
+ -3 (—acei + abki — b2ci + ac’x; + abex, — ac2y1)04,

(4.23) w9=flc—’—-’-d +Lde

+ — (aei® — akhi — bchi + ¢*h?* — acix, — achx, + 2a2iy1 + ac2y2 6,
ac2

.2 1
+ x40, + %03 + 3 (——aki + bci + 2¢%h — acx;)0s.

From (4.6), we see that
(4.24) dwr+wy Awg+ w3 Awg =0 mod w.

We calculate the term of 63 A 64 of this expression (4.24) using (3.9), (4.6), (4.22) and
(4.23):

1 oF *F
(4.25) P <6ch 2ci— %2 +a r = 6ax2> 03A04=0
thus we see that
ch c¢i F 1&F
(4.26) xz—;—ga 6q+6 el

Using (4.26), we calculate (4.24) again and see the term of 6, A 0s;

1 ) 20F 62F ,0°F
. — | — 2¢2 —_
(4.27) % <6c hi (7q + 2ac 5 — —4a aq — 6ac’xs |6, A 6; =0,

thus we see that
hi 2 0F i ¢*F a O&°F

42 B roe, e eos
(4.28) S 6q+3c 0>  6¢2 dg3
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From (4.6), we see that
(4.29) dwg + w4 Awg — W5 Awg +2w7 Awg —bwy Aws; =0 mod w;.

We calculate the term of 8, A 83 of this expression (4.29) using (3.9), (4.6), (4.18), (4.20),
(4.22), (4.23), (4.26) and (4.28):

4
(4.30) é (a2%f - 6c5b) 6, AO; =0,
thus we see that
@ O*F
431 =
(431) b 6¢> oq*

It remains to construct the structure equation (4.6) of Theorem 4.1 and to prove
Corollary 4.2. We prove the rest in Section 5.

It is known that if a second order ordinary differential equation d?y/dx? =
F(x,y,dy/dx) can be transformed to d2y/dx? = 0 under diffeomorphisms of (x, y)-plane,
then F is a polynomial of p with at most degree three. (See [1].) In the case of third
order ordinary differential equations, from (3.3) we calculate the function F satisfying

(4.32) dQ = g(dq — F dx) (moddy — pdx, dp — qdx).

Then we also see that F is a polynomial of ¢ with at most degree three, that is b = 0.

5. Construction of the structure equation

We will construct the structure equation for the normal Cartan connection (P, w) of
type ® on J? which induces the GJ -structure on J2. Let ¢ be an involutive auto-
morphism of g given by
5.1) o(er) = —ew, o(e2) =—ey, ofe3)=—es, o(es) = —e,

o(es) = —es, o(es) = —es,

which has the following properties: (1) ag, =g_,, (2) B(X,0X) <0 for X #0. We
define an inner product <{,) in g by (X,Y)=-B(X,0Y), for X,Yeg. Then
el,...,ey is an orthonormal basis of g with respect to {,). The basis e}, €3, €3,e; of
m* such that B(e;,ef) =3y is

(5.2) ej=ep, € =ey, €3 =eg, € =e.
In the case of this graded Lie algebra ®, from (2.6) and (4.4) we have
Nos(m) =g, AL(m) =gy, A (m) =g,
(53) INos(m®) = gly gty N y(m') = g%y gy,
Noa(m?) =gy ngty, Np(m?) =gty agly.

We recall that K? is the CP2(®) =3, 6; ® /\zk_p_l(m*)-component of the curvature
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form K. Let K,i’j (1 <i,j<4,1 <k <10) be functions such that

10
(5.4) K(eing) =Y Kle.
k=1

We will express concretely K?(e; Ae;) for -2 <p<T7and 1<i, j<4. Whenp=0we
have

2 *
(55 K'eC®(B) =) 6 ® N\ i(m")
k
2 * 2 * 2 *
=93 A_(mM)+9, @A\ (M) +9.,® N (m*)
=g3® (873708 +a,®(8,A085) +9_; ® (g5 Agly).
Then,
K%eine)) =0, K*(eines) = K11’3e1,
(5.6) K%ei ney) = Kiter, K%exnes) =Ky e,
K%eyneq) = K22’4e2, K%e3neq) = K;”4e3 + K3’4e4.

Similarly we obtain Table 2 which shows K?(e; A ¢;)).

TABLE 2
ey Ne el Nes3 €1 Nésg €y Ne3 ey Ney ez N éy
K2 0 0 0 0 0 K e
K1 0 0 0 K12 381 K12 461 K23 482
34
13 14 23 24 K" e3
K° 0 K,"e K e Ke K e
1 € 1 €l 2 €2 2 €2 +K2’4€4
2,3 24 34
K, e K;"e K %e
K! K} e Ky e Ky'e 323 2y 534
+K;"eq | +Ki"es | +Kges
4
K31’3e3 K§’4e3 K§’385 K52’465 K73’ e

1,2

K2 K, ey
2 1 14 2,3 24 4

+K ey | +KMes | +K2es | +Kites | +Kg'es

12 1,3 14 23 24
k| &b Kslfs K5]f$ K K s K3tes
+K4’ e4 +K6’ €6 +K6’ es +K8’ eg +K8’ eg
12 1,3 14
K. “es K 7er K "er 23 24 34
K* 312 713 714 Ky ey Ky eg Ky e
+Kges | +Kg'es | +Kg'eg 9 9 10
1.2
K; e 1,3 14 23 24
K3 712 Ky ey Ky eq K ey K e 0
+K e 9 9 10 10
K* | Kies | Kigew | Kifew 0 0 0

K" | Kjjen 0 0 0 0 0
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From Table 1, (2.6), (4.3) and (5.2), we have
(5.7) 'K(e)) =[e5,K(e2 ner)] + [e3,K(ez ner)] + [eg, K(es A er)]
1
+ 5 {K([e;a el] A 62) + K([ez’ 6’1] A 64)}
= leg, K(e2 Ae1)] + [es, K(e3 ner)] + [e7, K(ea ner)] — K(ez A es).
By similar calculation we have
(5.8) 5*K(82) = [ew,K(el A ez)] + [eg,K(e3 /\ez)] + [67, K(e4 A ez)] — K(e3 A e4),
0*K(e3) = [e10, K(e1 A e3)] + [es, K(e2 A e3)] + [e7, K(es A e3)],
5*K(64) = [em,K(el A 64)] + [eg,K(e2 A 84)] + [eg, K(es A e4)].
The normal condition (2.9) are
p=-2:K"=0
(5.9)
pP= -1 ZK12’3 =K12’4:K23’4=O.

When p = 0, the normal conditions (2.9) is equal to the following:

1007

(5.10) 3*K°(er) = [eo, K%(e2 ne1)] + [es, KO(e3 A er)] + [e7, K%(es A €1)] — KO(ex Aes),

= [eg, 0] + [es, —K11’3€1] + [e7, —K11’4€1] - K22’4€2,

= (Kt - K;Yer =0,

6*K0(62) = [em,KO(el /\ez)] + [eg, Ko(e3 /\82)} + [67,K0(64 A ez)] — Ko(e3 /\e4)

= [e10,0] + [es, —K ea] + [e7, —KXe)] — K}es — K}'eq
= (K22*4 _ K33’4)e3 . (K22’3 . K43’4)e4 —0,

0*K°(e3) = [e10, K%(e1 A e3)] + [e9, KO(e2 A e3)] + [e7, K (es A €3))]
= [e10, K Per] + [eg, K3 ea] + [er, — K3 es — K{ed]

1 1
=7 QK + K} — K} Mes + 7
6*K0(e4) = [elo,KO(el neg)l + [eg,Ko(ez neg)| + [eg,KO(e3 A es)]

K7 + K *)es =0

= [e10, K; 1] + [eo, K7 ea] + [es, K Yes + K7 ed]

1
QKM + K2 Yes + % (K}* +2K}*)es = 0,

Sl-

That is to say,

(5.11) p=0: K*=-kP=K}* K"*=K'=K"=0.
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By a similar calculation we have normal conditions for p=1,...,5.
(5.12) p=1: KM=k =k}=0,

23 24 1,2 1,3
K3 —K4 —_Kl _K2 3

34 _ 12 1,3
K; K 2 K2 ,
3,4 \/i 1,2 \/2 1,3
23 _ \/2 13 1 23
p=2: K¢ > —K; _§K5 ,
24 V212 V2 14
Ki=-ghkr ok
24 V2 1,2 1,3 V2 1,4
K6 =—'2—K —\/§K3 +7K4 y
k' =K+ K - K
1 V2
34 1,3 23
p=3: KM*=—-V2K*+3K}",
23 w12 V2 13 V2 13
K7214 - _ 2K51,4’ K82,4 =K41’2+\/§K613
34 1,2 \/i 1,3 \/5 1,3
K9 :—K4 —TKS —7K6 y
2 2
p=4: KM= {K12+%—_K12+K13 K
3v2 V2
34 _ 1,2 1,2 1,3 1,4

p=5: KY =K"*-K"*

When p = 6 or 7, the spaces C”! (%) and C®!(®) are equal to 0, and hence there are no
normal conditions.

From Table 1, (5.4) and normal conditions (5.9), (5.11), (5.12), we construct the
structure equation of normal Cartan connection of type & with respect to the basis

(el,...,em):
(5.13) de1 = —-\/iel Aes — ey ANey,

V2 V2
de; = —e1Ae7—7e2/\e5——2—e2/\e5—e3/\e4,
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dey = —ey Aer — V2e3 A eg + K31’2e1 Aer + K31’4e1 Aey,

2
de4=e1/\e9+e2/\eg—7e4/\e5 +—2—e4/\e6,

2 2
des = \/iel A ey +£2:82 A €9 +7€4/\e7,

2 2
deg = gez Aeg + \/563 Aeg — %&1 Aney+ K61’2e1 Aey — \/§K31’2e1 A ey,

2 2 1,4
dey :ez/\e1o+eg/\e9—-2—e5/\e7 +—2—e6/\e7+K71’2e1/\e2+K7’ el A ey,

1 V2
deg = —eq A eg — \/566 Neg + Ksl’zel ANer + K8’3e1 A e3 +-7K61’26’1 Aes + K82’362 Aes,

V2 V2
deg = —eq4 Aejg — 7e5 Aeg — 7% Aeg — e Aeg +K;’2e1 Aer +K91’3e1 Aes

12 13
+K7 61/\e4+K8 ex Nes,

1
deyg = —\/§e5 A€o —e7Aeg + Kll(’,zel Aey + K1163e1 Anes + Kll(’,4e1 Aeg + §K91’3e2 A es.
Now we change the basis (ej,...,e1) for (w,...,w1) by the following relations:
2 1

e1 =0, e= \/T_wz, e3=sw3, = V2ws,
5.14 2 2 2
( ) e5=£a)5, €6 = —£w5+\/5w7, 6’7=£€06,

2 2 2
es = —2w9, ey =—V2ws, eip=—wo.

Thus we obtain the structure equation (4.6) in Theorem 4.1. The invariant functions 4
and b in Theorem 4.1 are

(5.15) A=2V2K}* b= —%Kgﬂ.

There are many invariant functions K,’;’i; nevertheless, we will show that the essential
23 From the structure equation (5.13), we have

ones are only K31’4 and Kg
(5.16) 0=d’e;
= —dey Ae7 + ey Ade; — V2dey A eg + V2es A deg
+ dK.j’2 AepAey + K;’zdel Aey —~ K31’2e1 A de;

1
+dKM* neyneq + Kt dey neq — Kl ey Adey.
3 3 3

By substituting (5.13) for (5.16), we obtain the following equation:
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(5.17) 0 =d%e;

3 2
= (dK31’2 + \/EK 3+ —%—_K3 es — -—2\/:K31’2e6 — K31’4e8) A€l Aer
3 3
+(a'K31’4—3K312 —i——2——\/_K3 5—L_K3 es) AepAes

— K71’4e1 A ey Aey.
Thus we obtain conditions for K31’2 and K31’4 by looking at coefficients of e; A ey and

ey N\ey.

3v2 V2

(5.18) dKy? = —V2K es — == K37es + =~ Kyes + Ky e
(mod ey, ez, e1),
dKy* = 3K} %e; — 3‘[1(” +%_K‘4

(mod 81,82,84).

Using the structure equation (5.13) and (5.18) similarly, we calculate d’es, then we
obtain the following condition for dKj>.

(mod e, e, e4).

We continue calculating d%e; for k = 7,...10, then we obtain the following conditions:

2
(520)  dK;? = (Ky? — Kjg)es — 2V2K; Pes — %Ké’zw +K;'eg — K3 e
(mod 61,62,84),
dK71 4 = 2K71’2e3 — 2\/§K71’465 + \/EK;AEG + K31’267 - K31’4e9

(mOd €1, €2, 64),

3v2 3v2 3v2
szl’z = —TKI 2 é5 — TKgl’zeG — K81'3€7 +—2—K81’2
(mOd €1, e, €3, 84),
dKé’3 = - %Kgl’3e4 - \/§K81’3e5 - 2\/§Ké’3e6 - K82’3e7
(mod e}, e, e3),
2 5
dK}? = 2K} eq — —‘ZCK§'3 es — —2‘/—:1(823

(mod ey, e, e3),
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2
AKL? = ~2V3K)Pes — VKL eq — (KU + Ky )er + 2K 1 en + 2Kl e

(mod 61,62,83,6’4),

2
3\/_K1 3 32

dK,? = —2K 5 eq — > es— =

(mod 61,82,83),

12 5v2 12, V2
dKig E——_KIO 5T

1,2 1,2 1,3 1,4 1,2
) — Ky es — (Ky” + K5 )er + Kjj'es + Ky e
(mod e, e, es, e4),

dK| = —2V2K jes — V2K, es — %Kg‘%

(mod ey, ez, e3,e4),

5v2 V2
> Klo4 es +— K1164e6 - K71’2e7 + K71’4e9

dKL4 = —
10 2

(mod ey, e, e3,e4).
From conditions (5.18), (5.19) and (5.20), we see that K;* and K~ derive the other
functions K,’;J. If K;’4 =0, then
(5.21) K?=0, K*=0, K;7=0, Ki*=0, K37 =-2V2a,
Kg® =4c, KP=-4V2b, K;7=-2e, K;°=-4V2a,
=—V2A, Ki=-2, Ky =0,

and hence the structure equation (4.6) in Theorem 4.1 coincide (3.10). Furthermore if
K§’3 =0, then all of K,’;J are equal to 0. Thus we have proven Corollary 4.2.

Now we recall that the orthogonal decomposition (2.7) of the space C??(®). The
harmonic part H(K) of the curvature K with respect to the decomposition (2.7) gives a
fundamental system of invariants of connection (P, w), that is to say, K vanishes if and
only if H(K) vanishes ([9, Theorem 2.9]). From [10, Proposition 5.5 (III) (5)] we see
that there are two non-vanishing parts of H??(6), and we compare with the essential
invariants 4 and b.

(5.22) (Co, {1, 00})-type : Aeg ; ® N_,(m*) = K,
beg ® N (m") c K>

6. Legendre connections on Legendre Grassmann bundles

In this section we define Legendre connections on Legendre Grassmann bundles on
three-dimensional contact manifolds, and describe a relation between Legendre con-
nections and third order ordinary differential equations.
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Let M be a three-dimensional contact manifold with contact form w] given by

(6.1) o) =dy —pdx

where (x,y,p) is a local coordinate of M. For me M, let u, be a one-dimensional
subspace of T,,M generated by a vector X € T,, M such that («),,(X) =0. We call u,
a Legendre subspace at m. By L, (M) we denote the space of all Legendre subspaces
on m, and let L(M) =) _, Lm(M). The vector X generating u, is expressed by
a(0/0x + pd/dy) + pd/dp for some a« and f. Thus u, is a one-dimensional subspace of
two-dimensional space, and hence L,,(M)=~Gr(2,1). Consequently L(M) is a
principal S!-bundle on M, and called the Legendre Grassmann bundle of M. By
n:L(M)— M we denote the bundle projection.

We take a local coordinate (x,y,p,q) of L(M) such that n(x,y,p,q) = (x,y,p), and
let w; and w, be one-forms on L(M) given by

(6.2) wy =dy—pdx, wy;=dp-—qdx.

Let D=D(L(M): w;,w;)= Uue L(M)D“ be a global two-dimensional tautological
contact distribution on L(M) defined by

(6.3) D, = {X € T(L(M)) | (X) e u}
= {X € T(L(M)) | (@),(X) = (@),(X) = 0}.

Then we see that D, is a two-dimensional vector subspace of T,(L(M)) generated by
(6/0x),+p(0/0y), + q(d/dp), and (0/0q),. We define the derived system 0D of D by

(6.4) oD = D + [D, D).

Since [qd/dp, d/0q] = 0/0p, the vector subspace 0D, of T,(L(M)) is a three-dimensional
space generated by (d/0x), + p(0/0y),, (d/0p), and (0/0q),. Thus,

(6.5) 0D, = {X € T,(L(M))|(w1),(X) = 0}.
Let Ch(0D) be the Cauchy characteristics of (0D,w;), that is
(6.6) Ch(dD) = {X € 0D| X | dow; = 0 mod w, }.

Then we see that Ch(éD,) is a one-dimensional vector subspace of 0D, generated by
(0/dq),.- As a result, Ch(dD,) is a vertical subspace of D, with respect to the bundle
projection 7. Now we define Legendre connections of L(M) as follows:

DerFINITION 6.1. Suppose that we give a decomposition
(6.7) D, = Ch(oD,) + E,,

where E, is a one-dimensional subspace of D, smoothly depending on u € L(M). Then
we say that we give a Legendre connection E on L(M).

Assume that a third order ordinary differential equation d*y/dx3 = F(x,y,p,q) is
given on L(M). We let w3 be a one-form on L(M) such that

(6.8) w3 = dq — F dx,
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and give a global one-dimensional distribution £ on L(M) by
(6.9) E, = {X e T,(L(M))|(@1),(X) = (02),(X) = (w3),(X) = 0}.

Then we see that E, is a one-dimensional vector space generated by (d/0x), +
p(0/dy), +q(0/0p),+ F(0/0q),, and that Ch(éD)NE = {0}. Thus we obtain a
Legendre connection E. Conversely assume that a Legendre connection E is given on
L(M). If a vector a,((0/0x), + p(d/0y), + q(d/dp),) + B.(8/0q), € D, is an element of
E,, then there exists an F, such that 8, = F,a,. Thus we obtain a function F on
L(M). Consequently giving a third order ordinary differential equation on L(M) is
equivalent to giving a Legendre connection on L(M). As a result we obtain the
following Corollary from Theorem 4.1:

COROLLARY 6.1. Let M be a three-dimensional contact manifold. By & we denote
the graded Lie algebra (sp(2,R), {gi}?=_3) given in (4.4). Suppose that a Legendre
connection is given on the Legendre Grassmann bundle L(M) of M. Then there exists a
unique normal Cartan connection of type & on L(M). The structure equation is given in
(4.6).

References

[1] V. Arnold, Geometrical method in the theory of ordinary differential equations, Grundlehren der
mathematischen Wissenschaften 250, Springer-Verlag, Berlin (1983).

[2] E. Cartan, La geometria de las ecuaciones diferencials de tercer orden, (Euvres complétes, Partie III,
Vol. 2, 174, Gauthier-Villars, Paris (1955).

[3] S.S.Chern, The geometry of the differential equation y" = F(x,y,y’,»"), Sci. Rep. Tsing Hua Univ.
(1940) 97-111.

[4] R. B. Gardner, The method of equivalence and its applications, the Society for Industrial and Applied
Math. Philadelphia Pennsylvania (1989).

[5] C. Grissom, G. Thompson, G. Wilkens, Linearization of second order, ordinary differential equations
via Cartan’s equivalence method, J. of Diff. Equations, 77, (1989) 1-15.

[6] H. Sato and A. Y. Yoshikawa, Projective contact structures on three-dimensional manifolds, preprint.

[71 N. Tanaka, On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ. 10,

(1970) 1-82.

(8] , On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J.
Math. 2, (1976) 131-190.

9] ,  On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J.

8, (1979) 23-84.
[10] K. Yamaguchi, Differential systems associated with simple graded Lie algebras, Advanced Studies in
Pure Math. Progress in Differential Geometry, 22, (1993) 413-494.

H. Sato A. Y. YOSHIKAWA
Graduate school of Mathematics Graduate school of Mathematics,
Nagoya University, Nagoya University,

Chikusa-ku, Nagoya 464-8602, Chikusa-ku, Nagoya 464-8602,
Japan Japan

E-mail address: hsato@math.nagoya-u.ac.jp E-mail address: ayamada@math.nagoya-u.ac.jp



	1. Introduction
	2. Normal Cartan connection
	3. The equivalence problem ...
	4. Normal Cartan connection ...
	THEOREM 4.1. ...

	5. Construction of the ...
	6. Legendre connections ...
	References

