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Introduction

The notion of deformation quantization, which is a deformation of Poisson algebras,
has been formulated beautifully by Bayen et al [B] to describe quantum mechanics from
the algebraic point of view. The fundamental idea of deforming Poisson algebras is
roughly to quantize commutative algebras in the spirit of microlocal analysis (cf. [BG]).
According to the remarkable description by Guillemin Stemberg [GS], a crucial point in
microlocal analysis is a selection of the asymptotics usually expressed in terms of a
parameter.

Let us recall that there are different frameworks for microlocal analysis which are
almost, but not entirely equivalent (cf. [GS]). The first framework is the “asymptotic
theory”, in which the parameter $h$ plays an essential role, and all results are phrased in
terms of the asymptotics as $h$ tends to zero. The symbol calculus for this theory lives
in the algebra $C^{\infty}(T^{*}M)[[h]]$ of the cotangent bundle $T^{*}M$ of the underlying manifold
$M$ . In the algebraic counter part, this algebra corresponds to the deformation
quantization of symplectic manifolds. In contrast to the above, another framework is
the “homogeneous” theory of pseudodifferential operators, in which the asymptotics in $h$

is replaced by asymptotics on the symplectic manifold $\mathring{T}^{*}M$ , where $\mathring{T}^{*}M$ is now the
cotangent bundle minus the zero section, provided with a conformally symplectic action
of $R$ defining the asymptotics.

The aim of this paper is to provide an algebraic theory which does for homogeneous
symplectic manifolds, without referring to $h$ , what deformation quantization does for
general symplectic manifold. It is well known that such homogeneous symplectic
manifolds, i.e., symplectic manifolds with a free conformally symplectic action of $R$ ,
are in a natural 1-1 correspondence with contact manifolds. From this point of view,
using the example of noncommutative 3-sphere we present a notion of noncommutative
algebras corresponding to deformations of contact algebras.

The construction of noncommutative algebras provides another motivation for the
notion of noncommutative manifold. A commutative algebra is realized as an algebra
of (polynomial) functions on a certain space. Even a noncommutative algebra may be
considered perhaps as an algebra of “functions” on a “noncommutative space”, which is
the object of study in noncommutative geometry. In particular, in order to obtain the
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deformation quantization of Poisson algebras on symplectic manifolds, we introduced
the notion of Weyl manifold, which can be viewed as a “space” for noncommutative
algebras (cf. [OMYI], [OMY2]).

We will show that the noncommutative algebra derived from the contact algebra
of the 3-sphere still has the notion of an associated “space”. Deformation quantization
suggests a mode of deforming various geometric structures. From this point of view,
we will discuss the deformations of (contact) algebras arisen from contact structures as a
typical example of geometric structures similar to symplectic structures. In particular, it
is shown that the deformation parameter of a contact algebra is not in the center; in
contrast, deformation quantization of Poisson algebras is given by algebras of formal
power series of functions on manifolds with the deformation parameter a central
element. We will call this deformation algebra a noncommutative contact algebra. This
notion is closely related to the early work of Boutet de Monvel and Guillemin [BG],
who used microlocal analysis to define the notion of quantized contact structures on any
compact oriented contact manifold, and who constructed the operator algebra which
quantizes the classical observables.

Since our aim is to exhibit a concrete noncommutative 3-sphere as an example
of noncommutative contact algebras, this paper is not intended to go into the
details of noncommutative contact algebras, which are treated in papers [OMMYI],
[OMMY2].

The noncommutative 3-sphere we present here has a hierarchy structure correspond-
ing to the Hopf fibration of the 3-sphere over the 2-sphere. By “noncommutizing” of
the Hopf fibration, we derive a deformation quantization of the Riemann sphere (cf.
[CGR], [B] $)$ . We also arrive at a notion of noncommutative K\"ahler manifolds, which is
a Weyl manifold with a complex structure. Although it is essentially the same notion
as in Karabegov [K], we work only in the noncommutative algebra setting.

This paper is organized as follows. We start with a noncommutative algebra of
matrices of infinite rank given by the Fock space representation of the Wick algebra.
By choosing a transcendental element, called the radial element, of the Wick algebra, we
obtain an algebra $\mathscr{A}$ as a reduction of the Wick algebra $W$ (see Definition 1.4 in \S 1).
In \S 2, we give another approach to the deformation quantization of $C^{2}-\{0\}$ . The
radial element also gives a reduction of the deformation quantization of the Poisson
algebra $C^{\infty}(C^{2}-\{0\})$ , and the algebra $\mathscr{A}^{\infty}$ obtained by the reduction contains the
algebra $\mathscr{A}$ densely, where $\mathscr{A}^{\infty}$ is endowed canonically with the $C^{\infty}$ -topology. We will
show that the algebra $\mathscr{A}$ gives a noncommutative algebra corresponding to the standard
3-sphere, which we call the noncommutative 3-sphere. Introducing the notion of local-
ization in \S 4, we give the geometric picture of the noncommutative 3-sphere. The
localization process is crucial for the algebra $\mathscr{A}^{\infty}$ .

For a geometric description of the noncommutative algebras we treat, we set up
a class of noncommutative algebras, called regulated smooth algebras, which include
deformation quantizations and noncommutative contact algebras. In \S 3, we give a
rigorous meaning to certain delicate computations in noncommutative algebras. In
particular, we establish a useful formula, called the bumping lemma (cf. Lemma 3.7) that
simplifies our computations. Although these are abstract versions of symbol calculus of
pseudodifferential operators, we have to establish this calculus without using any operator
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representations in order to treat localized algebras. Through these computations, we
find several interesting transcendental formulas coming from the non-commutativity.

\S 5 is devoted to the explicit description of the noncommutative Riemann sphere
whose generators can be expressed as matrices of infinite rank. In \S 6, we study the
representations of noncommutative Riemann sphere. This agrees with the well known
work on geometric quantization for K\"ahler manifolds by Berezin [Be] and Cahen-Gutt-
Rawnsley [CGR]. It should be remarked that our approach gives the representation not
only for functions but for automorphisms of the noncommutative Riemann sphere. In
particular, we show that a class of infinitesimal automorphisms of the noncommutative
Riemann sphere is obtained by the projective limit of finite dimensional Lie groups
(cf. Theorem 6.2).

We should note that there are interesting works by \v{S}tovi\v{c}ek [St] and in particular
Chu, Ho and Zumino [CHZ], who obtain a non-commutative Riemann sphere as a
factor space of quantum group $SU_{q}(2)$ , whose results are close to ours. However, the
noncommutative sphere given by [CHZ] has a different Poisson structure in the classical
level from that obtained above. The Poisson structure of quantum homogeneous space
seems to have always some singular points (cf. [MO]).

This work was partly done during the visit of Y. Maeda to the Erwin Schr\"odinger
Intemational Institute, July-December, 1996. He is grateful to Professor P. Michor
and the members of ESI for their hospitality. The fourth author, A. Yoshioka would
like to thank the Newton Institute for its hospitality during his stay, December, 1995.
Thanks are also due to the referee for fruitful suggestions for clearifying this paper.

1. Wick Algebra, matrix representation and reduction

Consider an associative algebra $W$ over $C$ generated by $\{h, \zeta_{1},\overline{\zeta}_{1}, \zeta_{2},\overline{\zeta}_{2}\}$ with the
relations:

(1.1) $[\zeta_{i},\overline{\zeta}_{j}]=-2h\delta_{ij}$ , $[\zeta_{i}, \zeta_{j}]=[\overline{\zeta}_{i},\overline{\zeta}_{j}]=0$ $\hslash\in center$ .

The algebra $W$ is called the Wick algebra (cf. [M] and [D]). $W$ has a canonical
involutive anti-automorphism $aarrow\overline{a}$ . We denote its product by $*$ .

Let us note the following elementary relation used below:

(1.2) $\overline{\zeta}_{1}*\zeta_{1}+\zeta_{2}*\overline{\zeta}_{2}=\zeta_{1}*\overline{\zeta}_{1}+\overline{\zeta}_{2}*\zeta_{2}$ .

It is known that $W/hW$ is isomorphic to the polynomial algebra of 4-variables and that
any maximal 2-sided ideal of $W$ corresponds to a point of $C^{4}$ .

We recall the Fock space representation of $W$ (cf. Messiah [M], Dirac [D]): first of
all, we extend the algebra $W$ by adjoining $\sqrt{2h},$

$\sqrt{2h}^{-l}$ . These adjoined elements
remain in the center. Define a left ideal $\mathscr{L}$ generated by $\overline{\zeta}_{i}$ for $i=1,2$ , i.e. $\overline{\zeta}_{i}|0\rangle$ $=0$ ,
and consider the factor space $V^{(\infty)}=W/\mathscr{L}$ . We see that $V^{(\infty)}= \sum\oplus V^{(m)}$ , where

(1.3) $V^{(m)}=span \frac{1}{\sqrt{2h}^{m}}\{\frac{1}{\sqrt{m!}}\zeta_{1}^{m},$ $\cdots,\frac{1}{\sqrt{k!l!}}\zeta_{1}^{k}*\zeta_{2}^{l},$ $\cdots,\frac{1}{\sqrt{m!}}\zeta_{2}^{m}\}$ $(m=k+l)$

in the extended algebra.
The left action of $w\in W$ on $V^{(\infty)}$ gives a representation of $W$ . This action can be

expressed as a matrix of infinite rank and it gives the representation of the Wick algebra.
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For $w\in W,\hat{w}$ denotes the matrix representation of $w$ on $V^{(\infty)}$ . Namely, $\hat{w}$ has the
following blockwise form:

(1.4) $\hat{w}=[^{B_{1,.1}}B_{2,.1}$

$B_{3}B_{2}|_{2}^{2}B_{1}2$

$B_{4}B_{3}|_{3}^{3}B_{2}3$

$B_{5,4}B_{4,4}B_{3,4}$

$B_{5}|_{5}B_{45}$

$B_{5,6}$

$]$ ,

where $B_{i_{J}}$, is an $i\cross j$-matrix satisfying $B_{i,j}=0$ for $|i-j|>>1$ . A matrix is said to be
blockwise diagonal, if it has the blockwise form of (1.4) such that $B_{i,j}=0$ for $i\neq j$ . In
fact, the generators of $W$ satisfies $B_{i,j}=0$ for $|i-j|\geq 2$ and have the following form:

$For\hat{\zeta}_{1}$ , $B_{s+1,s}=\sqrt{2\hslash}\{\begin{array}{llll}\sqrt{s} \vdots \vdots \vdots \sqrt{2} \vdots \vdots 0 \sqrt{1}0 \cdots \cdots 0\end{array}\}$ other blocks are $0$ .

(1.5)

$For\hat{\zeta}_{2}$ , $B_{s+1,s}=\sqrt{2h}[^{\sqrt{1}}0$
$\sqrt{2}$

$\sqrt{s}0]$ other blocks are $0$ .

We also have $\overline{\zeta}_{i}\wedge={}^{t}\hat{\zeta}_{i}$ . Notice that almost all elements in $W$ are represented as
unbounded operators in general.

In what follows, $w$ will be substituted for the matrix representation $\hat{w}$ , whenever it
creates no confusion. We will still denote by $a*b$ the product of the matrix $a$ and $b$ .
Note that there are elements which are not well defined as elements of $W$ but have
rigorous meamngs as matrices of infinite rank. Such an element will be called a
transcendental element. As a typical example, we consider a matrix given by

(1.6) $r=*\sqrt{\overline{\zeta}_{1}*\zeta_{1}+\zeta_{2}*\overline{\zeta}_{2}}$

where $\sqrt[*]{}^{denotes}$ the square root of the matrix. It is easily seen that $r$ is given as a
diagonal matrix:

$r=diag\{B_{1,1}, B_{2,2}, \cdots B_{k,k}, \cdots\}$ ,

where

(1.7) $B_{k,k}=\sqrt{2h}[^{\sqrt{k}}$

$\sqrt{k}$

$\sqrt{k}]$
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We easily see that $\overline{r}=r$ and $r$ is invertible. By (1.2), we note that

$r*r-\overline{\zeta}_{1}*\zeta_{1}+\zeta_{2}*\overline{\zeta}_{2}=\zeta_{1}*\overline{\zeta}_{1}+\overline{\zeta}_{2}*\zeta_{2}$ ,
(1.8)

$r^{-1}*r=1$ .

We call $r$ the radial element. Using the matrix representation, we define invertible
matrices $r_{i}$ by

(1.9) $r_{i}=*\sqrt{\overline{\zeta}_{i}*\zeta_{i}}$ for $i=1,2$ .

These are also transcendental elements, although $*\sqrt{\zeta_{i}*\overline{\zeta}_{i}}$ has no inverse in the matrix
representation.

The matrix representation gives a transcendental method for extending algebras.
Namely, postulating $r^{-1}$ , we obtain a new algebra in the space of matrices whose
relations represent a noncommutative 3-sphere given in \S 2. We set

$\mu=-2hr^{-2}$ , $--1=r^{-1}*\zeta_{1}$ , $\Xi_{2}=r^{-1}*\zeta_{2}$ ,
(1.10)

$-1=\overline{\zeta}_{1}*r^{-1}$ , $-2=\overline{\zeta}_{2}*r^{-1}$ ,

where $u^{*}$ stands for the complex conjugate of $u$ .
$\sqrt[*]{1+\mu}$ and $\sqrt[*]{1-\mu}$ are given as diagonal matrices:

$*\sqrt{1-\mu}=diag\{\sqrt{2}I_{1}, \ldots, \sqrt{1+k^{-1}}I_{k}, \ldots\}$ ,
(1.11)

$*\sqrt{1+\mu}=diag\{0I_{1}, \ldots, \sqrt{1-k^{-1}}I_{k}, \ldots\}$

where $k$ is the $k\cross k$ identity matrix.
Although we have not mentioned the topology of matrices of infinite rank, we have

to make it explicit in order to treat transcendental elements. Recall again that any
matrix in $W$ can be considered as a densely defined unbounded operator acting on $l_{2}$ .
We say that a series $\{u_{n}\}$ of elements of $W$ converges to a matrix $u$ if it converges to $u$

in the weak topology (cf. [Y]). We denote this by $u=w- \lim_{narrow\infty}u_{n}$ . This is equivalent
to convergence with respect to any $(i,j)$ -component of matrices.

Let $\{p_{k}(t)\}$ be a sequence of polynomials which converges to a function $\emptyset$ on a
certain domain $I$ . For $u\in W$ , we consider the matrix $p_{k}(u)_{*}$ by replacing $t$ with $u$ in
$p_{k}$ , where the lower index $*denotes$ the product of matrices. Assuming moreover that
$\{p_{k}(u)_{*}\}$ converges to a matrix $v$ , we denote it by $v=\phi(u)_{*}$ , i.e.

$\phi(u)_{*}=w-\lim_{karrow\infty}p_{k}(u)_{*}$ .

In computations it is very useful to remark that $v*(u*v)^{m}=(v*u)^{m}*v$ holds for
any $m$ . Hence $v*p_{k}(u*v)_{*}=p_{k}(v*u)_{*}*v$ for any polynomial $p_{k}$ . Therefore, we can
expect that the following formula holds for various cases (cf. Lemma 3.7):

(1.12) $v*\phi_{*}(u*v)=\phi_{*}(v*u)*v$ .
Suggested by (1.12), we have

$\zeta_{i}*r=*\sqrt{1-2\hslash r^{-2}}*r*\zeta_{i}$ , $(i=1,2)$
(1.13)

$r*\zeta_{i}=\zeta_{i}*r**\sqrt{1+2\hslash r^{-2}}$ , $(i=1,2)$ .
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Note that (1.13) can be derived directly by composing the matrices for $\zeta_{i}$ and $r$ . Since
$[\mu, r]=0$ , we have

(1.14) $\zeta_{i}*r=*\sqrt{1+\mu}*r*\zeta_{i}$ , $r*\zeta_{i}=\zeta_{i}**\sqrt{1-\mu}*r$ .

Thus, we get

(1.15) $\Xi_{i}*r=*\sqrt{1+\mu}*r*--i$ , $r*\Xi_{i}=--i*r**\sqrt{1-\mu}$ .

By (1.11), for any integer $k,$ $*\sqrt{1-k\mu}$ is defined and

(1.16) $\Xi_{i}*r**\sqrt{1-k\mu}=r**\sqrt{1-(k-1)\mu}*\Xi_{i}$ .

LEMMA 1.1. The elements in (1.10) have the following relations:

(1.17) $[\mu^{-1}, \Xi_{i}]=-\Xi_{i}$ , $[\mu^{-1}, \Xi_{i}^{*}]=\Xi_{i}^{*}$ .

(1.18) $[\Xi_{1-2}-]=0$ .

(1.19) $\Xi_{i}*-j^{-}(1-\mu)_{-j}^{-*}*--i=\mu\delta_{ij}$ for $i,j=1,2$ .

(1.20) $\Xi_{1}^{*}*\Xi_{1}+-2*--2=1$ .

PROOF. By (1.15), we get

$\Xi_{i}*r^{2}=(1+\mu)*r^{2_{*}-}-\cdot$

Since $2h=-\mu*r^{2}$ , we have

$[r^{2},:_{i}]=2\hslash_{-i}^{-}$ $(i=0,1)$ ,

which implies (1.17). (1.18) is obvious by a direct computation. By (1.8) and the
relation $[r, \zeta_{i}*\overline{\zeta}_{i}]=0,$ $(1.19)$ is obtained by (1.1). (1.20) follows directly from (1.10) and
(1.13). $\square$

REMARK 1.2. Since the use of $\mu^{-l}$ is an inconvenient form of an algebraic relation,
the relation (1.17) should read as the following equivalent relation:

(1.21) $[\mu, \Xi_{i}]=\mu*--i*\mu$ , $[\mu, -i]=-\mu*\Xi_{i}^{*}*\mu$ .

We show later that (1.17) is preferable to (1.21).
By (1.19-20), we also see that

(1.22) $\Xi_{1}*-1+--2*-2=1+\mu$ .

DEFINITION 1.3. We denote by $\mathscr{A}$ the algebra generated by {$\mu,$ $-1-2,-$ with
relations (1.17-1.20).

2. Smooth algebras

Using deformation quantization, we give another approach to extending the algebra
$\mathscr{A}$ . Let $\zeta_{1},\overline{\zeta}_{1},$ $\zeta_{2},\overline{\zeta}_{2}$ be complex coordinates on $C^{2}$ and $C[\zeta,\overline{\zeta}, \hslash]$ the space of all
polynomials on $C^{2}$ with coefficients in the polynomials of $h$ . The Wick algebra $W$ is
linearly isomorphic to $C[\zeta,\overline{\zeta}, h]$ and its associative product $*is$ given by the Moyal
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product formula:

(2.1) $a*b=a\exp\hslash\{\partial_{\zeta}\partial_{\overline{\zeta}}-\partial_{\overline{\zeta}}\partial_{\zeta}\}barrow\cdotarrowarrow\cdotarrow$ ,

where

$a( \partial_{\zeta}\partial_{\overline{\zeta}}-\partial_{\overline{\zeta}}\partial_{\zeta})b=\sum_{i}(\partial_{\zeta_{i}}a\partial_{\overline{\zeta}_{i}}b-\partial_{\overline{\zeta}_{i}}a\partial_{\zeta_{i}}b)arrow\cdotarrowarrow\cdotarrow$ .

The formula (2.1) extends naturally to the associative product on $C^{\infty}(C^{2})[[\hslash]]$ . The
associative algebra $(C^{\infty}(C^{2})[[\hslash]], *)$ is called the deformation quantization of $C^{\infty}(C^{2})$ .
AS a general reference for deformation quantizations, we refer to e.g. [B], [OMY2], [A].
Here, $C^{\infty}(C^{2})[[\hslash]]$ is the set of formal power series with values in $C^{\infty}(C^{2})$ with the
formal parameter $\hslash$ . We endow $C^{\infty}(C^{2})$ and $C^{\infty}(C^{2})[[\hslash]]$ the $C^{\infty}$ topology and the
direct product topology, respectively. Then the Wick algebra $W$ is a dense subalgebra
of $(C^{\infty}(C^{2})[[h]], *)$ .

It is easy to see that

(2.2) $r^{2}=\overline{\zeta}_{1}*\zeta_{1}+\zeta_{2}*\overline{\zeta}_{2}=\overline{\zeta}_{1}\cdot\zeta_{1}+\zeta_{2}\cdot\overline{\zeta}_{2}$ .

AS each $\hslash^{k}$ -term in the Moyal product formula (2.1) is expressed as a bidifferential
operator, the $star- product*has$ locality. Hence, for any open subset $U$ of $C^{2}$ , we can
define the star-product $*$ of the deformation quantization $C^{\infty}(U)[[h]]$ by the same
formula (2.1). Note that any maximal 2-sided ideals (classical points) of $C^{\infty}(U)[[h]]$

correspond to points of $U$ . In the following, we will work mainly on $C_{*}^{2}=C^{2}-\{0\}$ .
We consider a function $r$ . as the square root of $r^{2}$ with respect to the ordinary

commutative product on the space $C_{*}^{2}$ . The function $r$ . is an element of $C^{\infty}(C_{*}^{2})$

satisfying

(2.3) $r$ . $*r$ . $=r$ . $\cdot r$ . $=r^{2}$ .

We regard $r$ . as the radial element defined in \S 1, (1.5) and we will denote $r$ . by $r$ alone.
We define a one parameter group of automorphisms

(2.4) $R(e^{t})$ : $C^{\infty}(C_{*}^{2})[[\hslash]]arrow C^{\infty}(C_{*}^{2})[[h]]$

as follows:

(2.5) $R(e^{t})\zeta_{i}=e^{t}\zeta_{i},$ $R(e^{t})\overline{\zeta}_{i}=e^{t}\overline{\zeta}_{i},$ $R(e^{t})\hslash=e^{2t}\hslash$ .

Define a closed subalgebra $\mathscr{A}^{\infty}$ of $C^{\infty}(C_{*}^{2})[[\hslash]]$ by

(2.6) $\mathscr{A}^{\infty}=\{f\in C^{\infty}(C_{*}^{2})[[\hslash]];R(e^{t})f=f\}$ .

Under the relative topology from $C^{\infty}(C_{*}^{2})[[h]],$ $\mathscr{A}^{\infty}$ is a complete topological associative
algebra. As in (1.10), we set

$\mu=-2\hslash r^{-2}$ , $--1=r^{-1}*\zeta_{1}$ , $--2=r^{-1}*\zeta_{2}$ ,

$\Xi_{1}^{*}=\overline{\zeta}_{1}*r^{-1}$ , $-2=\overline{\zeta}_{2}*r^{-1}$ .

Since the above elements have the same relations as in Lemma 1.1, the algebra $\mathscr{A}$ is
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densely embedded in $\mathscr{A}^{\infty}$ . Note that $\mu+1$ is not invertible in $\mathscr{A}$ but it is in $\mathscr{A}^{\infty}$ . The
following is easy to see:

LEMMA 2.1. For any nonnegative integer 1, we have

$\mathscr{A}^{\infty}\cap\hslash^{l}*C^{\infty}(C_{*}^{2})[[\hslash]]=\mu^{l}*\mathscr{A}^{\infty}$ .

Using Lemma 2.1, we see the following:

THEOREM 2.2. Set $B=\mathscr{A}^{\infty}\cap C^{\infty}(C_{*}^{2})$ .
(A. 1) $[\mu, \mathscr{A}^{\infty}]\subset\mu*\mathscr{A}^{\infty}*\mu$ .
(A.2) $[\mathscr{A}^{\infty}, \mathscr{A}^{\infty}]\subset\mu*\mathscr{A}^{\infty}$ , where $[a, b]=a*b-b*a\dot{i}$ the commutator bracket.
(A.3) $\mathscr{A}^{\infty}=B\oplus\mu*\mathscr{A}^{\infty}$ (topological direct sum).
(A.4) (Self-similarity.) The mappings $\mu*$ : $\mathscr{A}^{\infty}arrow\mu*\mathscr{A}^{\infty}$ , $*\mu$ : $\mathscr{A}^{\infty}arrow \mathscr{A}^{\infty}*\mu$

defined by $aarrow\mu*a,$ $aarrow a*\mu$ respectively are linear isomorphisms.
(A.5) $aarrow a$ is an involutive anti-automorphism such that $\overline{\mu}=\mu$ .

By property (A.3), we see for any positive integer $N,$ $\mathscr{A}^{\infty}$ decomposes as follows:

(2.7) $\mathscr{A}^{\infty}=B\oplus\mu*B\oplus\cdots\oplus\mu^{N-1}*B\oplus\mu^{N}*\mathscr{A}^{\infty}$ .
$\mathscr{A}^{\infty}$ satisfies

(A.6) $\bigcap_{k}\mu^{k}*\mathscr{A}^{\infty}=\{0\}$ .

The algebra $\mathscr{A}^{\infty}$ is called the non-commutative contact algebra on $S^{3}$ . The reason
for the terminology is as follows. Let us first introduce some general notation for
complete topological algebras.

We call a complete topological associative algebra $\tilde{\mathscr{A}}$ a regulated algebra, (or more
explicitly $\mu$-regulated algebra) if there exists an element $\mu$ and a closed subspace $\tilde{B}$

satisfying (A. $1$ ) $-(A.5)$ . $\mu$ is called the regulator of $\tilde{\mathscr{A}}$ . Note that (2.7) holds for any
$\mu$-regulated algebra. A $\mu$-regulated algebra $\tilde{\mathscr{A}}$ is called formal if it satisfies (A.6). By
(2.7), a formal $\mu$-regulated algebra $\tilde{\mathscr{A}}$ may be denoted by $\tilde{\mathscr{A}}=\tilde{B}[[\mu]]$ .

On any formal $\mu$-regulated algebra $\tilde{\mathscr{A}}$, the axioms (A.1) and (A.4) permit us to
introduce the formal symbol $\mu^{-1}$ such that $\mu^{-1}*\mu=\mu*\mu^{-1}=1$ . It gives a derivation
$[\mu^{-1}, a]$ of $\tilde{\mathscr{A}}$ defined by

(2.8) $[\mu^{-1}, a]=-\mu^{-1}*[\mu, a]*\mu^{-1}$ .

It is easy to see that

(2.9) $[\mu^{-1}*\tilde{\mathscr{A}},\tilde{\mathscr{A}}]\subset\tilde{\mathscr{A}}$ , $[\mu^{-1}*\tilde{\mathscr{A}},\mu^{-1}*\tilde{\mathscr{A}}]\subset\mu^{-1}*\tilde{\mathscr{A}}$ .

Let $(m_{0}, m_{1})$ be the maximal integers such that

$[\mu^{-1},\tilde{\mathscr{A}}]\subset\mu^{m_{0}}*\tilde{\mathscr{A}}$ , $[\tilde{\mathscr{A}},\tilde{\mathscr{A}}]\subset\mu^{m_{1}}*\tilde{\mathscr{A}}$ .

If $[\mu^{-l},\tilde{\mathscr{A}}]=\{0\}$ , we put $m_{0}=\infty$ . We call $(m_{0}, m_{1})$ the weight of $\tilde{\mathscr{A}}$ . A formal $\mu-$

regulated algebra $(\tilde{\mathscr{A}}, *)$ of weight (oo, 1) will be called a quantum Poisson algebra. In
particular, the deformation quantization $C^{\infty}(C^{2})[[h]]$ of $C^{\infty}(C^{2})$ is a formal $\hslash$-regulated
algebra of weight $(\infty, 1)$ , and $\mathscr{A}^{\infty}$ in Theorem 2.2 is a formal $\mu$-regulated algebra of
weight $(0,1)$ respectively.



Noncommutative 3-sphere 923

For any formal $\mu$-regulated algebra $\tilde{\mathscr{A}}=\tilde{B}[[\mu]]$ , its associative product $*$ is
determined by giving $a*b$ for $a,$

$b\in\tilde{B}$ : Set

(2.10) $a*b= \sum_{k\geq 0}\mu^{k}*\pi_{k}(a, b)$ , $\pi_{k}(a, b)\in\tilde{B}$ .

We put

(2.11) $[\mu^{-1}, a]=\xi_{0}(a)+\cdots+\mu^{k}*\xi_{k}(a)+\cdots$ .

(2.11) is used for computing the following:

(2.12) $a*\mu=\mu*a+\mu^{2}*\xi_{0}(a)+\mu^{3}*(\xi_{1}(a)-\xi_{0}^{2}(a))+\cdots$ .

A commutative associative product on $\tilde{\mathscr{A}}/\mu\tilde{\mathscr{A}}$ induces one on $\tilde{B}$ by the identi-
fication $\tilde{B}$ with $\tilde{\mathscr{A}}/\mu\tilde{\mathscr{A}}$ .

It is easy to see that $\pi_{1}$ in (2.10) is a biderivation of $(\tilde{B}, \cdot)$ and $\xi_{0}$ in (2.11) is a
derivation of $(\tilde{B}, \cdot)$ . We remark here that one can change the filtration by a linear
isomorphism $aarrow a+\mu*L(a)$ of $B[[\mu]]$ defined by any continuous linear operator
$L:\tilde{B}arrow\tilde{B}$ .

DEFINITION 2.3. A formal $(\mu-)regulated$ algebra $\tilde{\mathscr{A}}$ will be called a $(\mu-)regulated$

smooth algebra if there exists a filtration $\tilde{\mathscr{A}}=\tilde{B}[[\mu]]$ satisfying the following:
(1) $\tilde{B}$ in (A.3) is isomorphic to a subalgebra of the commutative algebra $C^{\infty}(M)$

of all $C^{\infty}$ functions on a finite dimensional manifold $M$ , and $\tilde{B}\supset C_{0}^{\infty}(M)$ the space of
all support compact functions.

(2) With $\tilde{B}$ considered as a subalgebra of $C^{\infty}(M),$ $\xi_{k}$ in (2.11) is a linear operator
of $\tilde{B}$ into $\tilde{B}$ expressed as a differential operator on $M$ for any $k\geq 0$ .

(3) For any $k\geq 0,$ $\pi_{k}$ in (2.10) is a bilinear operator of $\tilde{B}x\tilde{B}$ into $\tilde{B}$ expressed as
a bidifferential operator on $M$ .

In any smooth algebra, $\xi_{0}$ in (2.11) is a $C^{\infty}$ vector field on $M$ , called the
characteristic vector field, and $\pi_{1}$ in (2.10) is a $C^{\infty}$ biderivation on $M$ .

REMARK 2.4. If $B=C^{\infty}(M)$ , the localization theorem in [OMY2] shows that the
properties (2) and (3) are automatically satisfied.

DEFINITION 2.5. Let $\pi_{1}^{-}$ be the skew symmetric part of $\pi_{1}$ . A smooth algebra of
weight $(0,1)$ is called a noncommutative contact algebra if the rank of $\pi_{1}^{-}$ in (2.10) is
maximal at each point of $M$ .

REMARK 2.6. Here we give a little general set up and remarks. Suppose there
are a derivation $\xi_{0}$ and a skew biderivation $\pi^{-}$ We set $\{f, g\}=2\pi^{-}(f, g)$ .
$(C^{\infty}(M), \xi_{0}, \{, \})$ is called a Jacobi algebra (cf. [L]), if the following are satisfied:

(1) $\xi_{0}(\{f, g\})=\{\xi_{0}(f), g\}+\{f, \xi_{0}(g)\}$ ,
(2) $\{f, g\}_{L}=f\xi_{0}(g)-\xi_{0}(f)g+\{f,g\}$ defines a Lie algebra structure on $C^{\infty}(M)$ .

The notion of Jacobi algebras can be obtained by considering the first term ( $\mu^{0}$ -term)
and the second term ( $\mu^{1}$ -term) of the product (2.10) and (2.11) in $\mu$-regulated algebras
together with the fact that $\mu^{-1}\tilde{\mathscr{A}}$ forms a Lie algebra under the commutator
bracket.
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A Jacobi algebra with $\xi_{0}=0$ is called a Poisson algebra. A Poisson algebra is
called a symplectic algebra, if the rank of $\{$ , $\}$ is $\dim M$ at every point.

$(C^{\infty}(M), \xi_{0}, \{, \})$ is a contact algebra, if $\xi_{0}$ vanishes nowhere and $rank\{, \}=$

$\dim M-1$ everywhere.
The space of $C^{\infty}$ functions on a contact manifold naturally forms a contact algebra.

Moreover, any contact algebra extends to a noncommutative contact algebra, that is
any contact algebra is quantizable.

Although this fact seems to be a restatement of the result seen in Appendix of
Boutet de Monvel and Guillemin [BG], this can be proved within the deformation theory
without using operator representations. Namely, this is proved by remarking first that
any contact algebra is obtained from a symplectic algebra as the subalgebra of invariant
functions of free conformally symplectic action of $R$ , and next that the symplectic
algebra can be deformation quantizable so that the free conformally symplectic action is
lifted to a one parameter automorphism group. We gave the short proof in [OMMYI].

AS for noncommutative contact algebras, let us only note their local property. By
properties (2) and (3), the product $*and$ the action of $ad(\mu^{-1})$ of a regulated smooth
algebra $\tilde{\mathscr{A}}$ extend to $C^{\infty}(M)[[ \mu]]=\prod\mu^{k}*C^{\infty}(M)$ by the same product formulas.
Moreover, they have locality: that is, for any open subset $U$ of $M$ one can make
$C^{\infty}(U)[[\mu]]$ a smooth algebra by the same formulae, where we give the $C^{\infty}$ topology on
$C^{\infty}(U)$ and the direct product topology on $C^{\infty}(U)[[\mu]]$ . We will refer to this topology
as the direct $C^{\infty}$ topology. Moreover, the associative product $*of$ a regulated smooth
algebra can be defined on $C^{\infty}(\tilde{M})[[\mu]]$ for the universal covering space $\tilde{M}$ of $M$ .

Recall the algebra $\mathscr{A}^{\infty}$ in Theorem 2.2 is a closed subalgebra of $C^{\infty}(C_{*}^{2})[[\hslash]]$ . By
(1.20), the following is easy to see:

PROPOSITION 2.7. The noncommutative contact algebra $\mathscr{A}^{\infty}=B[[\mu]]$ given in
Theorem 2.2 is a $\mu$-regulated smooth algebra with $B=C^{\infty}(S^{3})$ .

Although, as seen in \S 1, $\mu,$ $\Xi_{1,-2}-,$ $\Xi_{1’ 2}^{*-*}-$ are represented as matrices, we regard
them as elements of $C^{\infty}(S^{3})[[\mu]]$ without matrix representations.

LEMMA 2.8. For any formal power series $f(t)$ of $t$ , we have

$--i^{*f(\mu)=f(\frac{\mu}{1+\mu})}*_{-i}-$

PROOF. By

$f( \mu)*\cdot=\cdot*f(\frac{\mu}{1-\mu})$ .

$\zeta_{i}*r^{2}=(r^{2}-2\hslash)*\zeta_{i}$ , $r^{2}*\zeta_{i}=\zeta_{i}*(r^{2}+2\hslash)$ ,

we see that $\mu*--i=(1+\mu)*\Xi_{i}*\mu$ and $\mu*--i=--i*\mu/(1-\mu)$ . The desired equalities
follow easily by polynomial approximation of $f(\mu)$ . $\square$

REMARK 2.9. Note that $r^{-1}$ is not equal to $1/r$ . defined by $(1/r.)r=1$ . We shall
distinguish these inverses by the notation $r^{-1}$ and $1/r.$ . Similar remarks will occur for a
general $f\in C^{\infty}(C_{*}^{2})[[h]]$ in \S 3.

REMARK 2.10. One might try to construct the noncommutative 3-sphere by
“restricting” the algebras $C^{\infty}(C_{*}^{2})[[\hslash]]$ to the energy surface $r^{2}=1$ . However, this is
problematic, because $r^{2}-1=0$ implies $[\zeta_{i}, r^{2}]=0$ and hence $h\zeta_{i}=0$ for $i=1,2$ .
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TO consider the energy surface $f=1$ for given function $f$ , we have to localize the
algebra to an open neighborhood $U$ of the subset $f=1$ , on which the element $f^{-1}$ can
be formally defined. Then, we consider the algebra generated by $f^{-1}*\{generators\}$ .

3. Calculus on smooth algebras

In a matrix algebra or an operator algebra it is possible to define $f(u)$ for a matrix
or an operator $u$ for a suitable class of smooth function $f(t)$ , which we will call a
transcendental computation. Since operator calculus is sometimes too heavy to manage,
we will extend transcendental computations to the algebra $\mathscr{A}^{\infty}$ without operator
representations. Through such abstract treatment, we can consider localized algebras.

Let $\tilde{\mathscr{A}}$ be a regulated smooth algebra with regulator $\mu$ . Note that, by (3) in
Definition 2.3, the product $*on\tilde{\mathscr{A}}$ extends naturally to $C^{\infty}(M)[[\mu]]$ . Thus, in this
section, we may assume the following:

Of $=C^{\infty}(M)[[\mu]]$ and $\tilde{B}=C^{\infty}(M)$ .

AS we do not have operator representations in a smooth algebra, it is not trivial that
$*\sqrt{a*a^{*}}$ is an element of $\tilde{\mathscr{A}}$ .

TO manage this safely, we remark that the Cauchy’s integral theorem holds for any
$C^{\infty}(M)[[\mu]]$ -valued holomorphic functions. To apply the Cauchy’s integral theorem, we
first remark the following:

LEMMA 3.1. Let $\tilde{f}=\sum_{k\geq 0}\mu^{k}*f_{k}\in C^{\infty}(M)[[\mu]]$ . If the O-th term ( $\mu^{0}$ -component)
$f_{0}\in C^{\infty}(M)$ of $\tilde{f}$ is non-zero on $M$ , then $\tilde{f}$ is invertible, $i.e.$ , there exists $\tilde{f}^{-1}\in$

$C^{\infty}(M)[[\mu]]$ such that $\tilde{f}*\tilde{f}^{-1}=\tilde{f}^{-1}*\tilde{f}=1$ .

PROOF. Set $\tilde{f}^{-1}=1/f_{0}+\mu*g_{1}/f_{0}+\mu^{2}*g_{2}/f_{0}+\cdots$ and consider the equation

(3.1) $\{\frac{1}{f_{0}}+\mu*\frac{g_{1}}{f_{0}}+\mu^{2}*\frac{g_{2}}{f_{0}}+\cdots\}*\tilde{f}=1$

at each k-th term in $\mu^{k}$ . Using (2.10), and (2.11), we compute the k-th term in $\mu$ , which
produces $g_{k}$ inductively. $\square$

LEMMA 3.2. Let $\tilde{f}=\sum_{k\geq 0}\mu^{k}*f_{k}$ $\in C^{\infty}(M)[[\mu]]$ . Assume that the closure $\overline{R}(f_{0})$

of the range of $f_{0}$ is bounded in C. Then, for any holomorphic function $\phi(z)$ on an open
subset $U$ containing $\overline{R}(f_{0})$ , an element $\phi_{*}(\tilde{f})$ is defined as an element of $C^{\infty}(M)[[\mu]]$ by
the following formula:
(3.2) $\phi_{*}(\tilde{f})=\frac{1}{2\pi i}\int_{C}\phi(z)(z-\tilde{f})_{*}^{-1}dz$

where $C$ is a simple closed curve in $U$ containing $\overline{R}(f_{0})$ in the interior.
In particular, if $\phi(z)$ is approximated by a series ofpolynomials $\{p_{n}(z)\}$ , then $\phi_{*}(\tilde{f})$ is

approximated by a series $\{p_{n}(\tilde{f})\}$ in $C^{\infty}(M)[[\mu]]$ .

PROOF. $z-\tilde{f}$ is invertible in this algebra whenever $z$ moves on the contour $C$ .
AS in the above lemma, we see that $(z-\tilde{f})_{*}^{-1}$ is written in the form

(3.3) $(z- \tilde{f})_{*}^{-1}=\frac{1}{z-f_{0}}+\mu*\frac{g_{1}}{z-f_{0}}+\mu^{2}*\frac{g_{2}}{z-fo}+\cdots$
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where $g_{i}$ depends on $z$ continuously. It follows that the right hand side of (3.2) is well
defined.

Expanding $(z-\tilde{f})_{*}^{-1}$ in a Neumann series, we see easily that

$\frac{1}{2\pi i}\int_{C}z^{m}(z-\tilde{f})_{*}^{-1}dz=\tilde{f_{*}}^{m}$ $(m\geq 0)$ .

Thus the second assertion follows directly. $\square$

For the computation of the value of (3.2) at each point $p\in M$, it is enough to know
the value $(z-\tilde{f})_{*}^{-1}(p)$ by choosing $C$ to be a small circle with center at $f_{0}(p)$ , or only to
know the jet $j^{\infty}\tilde{f}(p)$ .

The above remark is useful on a noncompact manifold $M$ , since there are
unbounded elements in $C^{\infty}(M)$ . Even if the $co$ntour $C$ is so small that $C$ is covered
by $\overline{R}(f_{0}),$ $(3.2)$ still defines a smooth function $\phi_{*}(f)$ on the open subset $f_{0}^{-1}(D)$ by
locality, where $D$ is the interior of $C$ .

Taking a small circle $C_{p}$ around $f_{0}(p)$ gives the following:

THEOREM 3.3. For any holomorphic function $\phi(z)$ on an open subset $U$ containing
$R(f_{0})$ , an element $\phi_{*}(\tilde{f})$ is defined by

$\phi_{*}(\tilde{f})(p)=\frac{1}{2\pi i}\int_{C_{p}}\phi(z)(z-\tilde{f})_{*}^{-1}(p)dz$ .

By Theorem 3.3, we have

COROLLARY 3.4. Let $\emptyset$ be an entire function on C. Then for any $\tilde{f}\in C^{\infty}(M)[[\mu]]$

$\phi_{*}(\tilde{f})$ is defined as an element of $C^{\infty}(M)[[\mu]]$ .

By a direct computation we have also the following formula:
Let $\tilde{f}=\sum_{k\geq 0}\mu^{k}*f_{k}\in C^{\infty}(M)[[\mu]]$ . For a point $p\in M$ , take a contour $C_{p}$ around
$f_{0}(p)$ . If $z,$ $w\in C$ are outside $C_{p}$ , then multiplying $(z-\tilde{f})*(w-\tilde{f})(p)$ to both sides we
have

(3.4) $(z- \tilde{f})_{*}^{-1}*(w-\tilde{f})_{*}^{-1}(p)=\frac{1}{2\pi i}\int_{C_{p}}\frac{1}{(z-\eta)(w-\eta)}(\eta-\tilde{f})_{*}^{-1}(p)d\eta$ .

Using (3.4), we get the following formulas:

LEMMA 3.5. (i) Let $\emptyset$ , ut be holomorphic functions on a domain containing the range
$R(f_{0})$ . It holds $\phi_{*}(\tilde{f})*\psi_{*}(\tilde{f})=(\phi\psi)_{*}(\tilde{f})$ .

(ii) Let $\Phi$ be a holomorphic function on a domain containing the range $R(\emptyset)$ . For
the compositions, it holds $\Phi_{*}(\phi_{*}(\tilde{f}))=(\Phi\circ\phi)_{*}(\tilde{f})$ where $\circ$ indicates the composition of
functions.

Corollary 3.4 shows in particular that $e_{*}^{t\tilde{f}}=\exp_{*}(t\tilde{f})$ is defined for any element
$\tilde{f}\in C^{\infty}(M)[[\mu]]$ . Recall that $\tilde{g}(t)=e_{*}^{t\tilde{f}}$ satisfies the differential equation

(3.5) $\frac{d}{dt}\tilde{g}(t)=\tilde{f}*\tilde{g}(t)$ , $g(O)=1$ .
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LEMMA 3.6. The solution has the form

(3.6) $e_{*}^{t\overline{f}}=e^{f_{0}}+\mu*e^{tfo}g_{1}(t)+\cdots+\mu^{k}*e^{tf_{0}}g_{k}(t)+\cdots$

with $g_{k}(t)=g_{k}(t,f_{0},f_{1}, \cdots,f_{k})$ a polynomial in $t$ whose coefficients involve derivatives of
$f_{0},f_{1},$ $\cdots,f_{k}$ .

PROOF. Assume that $\tilde{g}(t)=\sum_{k}\mu^{k}*h_{k}(t)$ . Substituting this into (3.5) and using
the formulae (2.10) and (2.11), we have the following infinite system of differential
equations:

$\frac{d}{dt}h_{0}=f_{0}\cdot h_{0}$ ,

$\frac{d}{dt}h_{1}=f_{0}\cdot h_{1}+f_{1}\cdot h_{0}+\pi_{1}(f_{0}, h_{0})$ ,

$\frac{d}{dt}h_{2}=f_{0}\cdot h_{2}+f_{1}\cdot h_{1}+f_{2}\cdot h_{0}+\pi_{1}(f_{0}, h_{1})+\pi_{1}(f_{1}, h_{0})+\pi_{2}(f_{0}, h_{0})+\xi_{0}(f_{0})h_{1}$ ,

where $h_{0}(0)=1$ and $h_{k}(0)=0$ for $k=1,2,$ $\cdots$ .
We remark that the solution of the differential equation

$\frac{d}{dt}h(t)=f_{0}\cdot h(t)+H(t)$ , $h(O)=0$

is given by

(3.7) $h(t)= \int_{0}^{t}e^{(t-\tau)fo}\cdot H(\tau)d\tau$ .

If $H(t)=H(t,p)$ is given as $e^{tf0(p)}P_{l}(t,p)$ for a polynomial $P_{l}$ of order $l$ in $t$ , then (3.7)
becomes

$h(t)=e^{tf_{0}} \int_{0}^{t}P_{l}(\tau,p)d\tau=e^{tfo}P_{l+1}$ .

The lemma follows. $\square$

The above idea is applicable to various $C^{\infty}$ functions. Let us give some examples
of $C^{\infty}$ functions $\emptyset$ on the real line $R$ such that $\phi_{*}(\tilde{f})$ is defined. Although we do not
use these properties in this paper, these materials will be useful in elsewhere.

Case 1. Let $\phi(t)$ be a rapidly decreasing function on the real line $R$ and $\hat{\phi}(\xi)$ the
Fourier transform of $\phi(t)$ . Let $\tilde{f}=\sum_{k\geq 0\mu^{k}f_{k}}$ be an element of $C^{\infty}(M)[[\mu]]$ such that
$f_{0}$ is real valued. Using the Fourier inversion formula, we define

(3.8) $\phi_{*}(\tilde{f})=\frac{1}{2\pi}\int_{-\infty}^{\infty}\hat{\phi}(\xi)e_{*}^{i\xi\overline{f}}d\xi$ .

Since $\hat{\phi}(\xi)$ is rapidly decreasing in $\xi$ , Lemma 3.6 shows that the integral (3.8) defines an
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element of $C^{\infty}(M)[[\mu]]$ . As in Theorem 3.3, the value $\phi_{*}(\tilde{f})(p)$ is given by evaluating
$e_{*}^{i\xi\tilde{f}}$ at $p\in M$ .

It is not hard to see that

(3.9) $\phi_{*}(\tilde{f})*\phi_{*}’(\tilde{f})=(\phi\phi’)_{*}(\tilde{f})$ .

Case 2. We consider a real valued function with the exponential growth with
slightly strong properties: let $\phi(t)$ be a $C^{\infty}$ function $\phi(t)$ on the real line $R$ satisfying
the following; (a) $\phi(t)=0$ on $t\leq-K$ for some positive constant $K$, and (b) there is
a constant $\alpha$ such that $\phi(t)e^{-\alpha t}$ is rapidly decreasing. For a real valued function $\phi(t)$

with the above properties (a) and (b), we consider an integral similar to the Laplace
transform

$V(p)= \int_{-K}^{\infty}\phi(t)e^{-pt}dt$ .

For a constant $c>\alpha,$ $V(c+\xi i)$ is the Fourier transform of $\phi(t)e^{-ct}$ , and hence $V(c+\xi i)$

is rapidly decreasing in $\xi$ . Therefore the Fourier inversion formula shows that $\emptyset$ is
recaptured in the shape of the Bromwich integral

$\phi(t)=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}V(p)e^{pt}dp$ .

Let $\tilde{f}=\sum_{k\geq 0\mu^{k}}*f_{k}$ be an element of $C^{\infty}(M)[[\mu]]$ such that $f_{0}$ is real valued. Let $\phi(t)$

be a $C^{\infty}$ function on $R$ with properties (a) and (b). We consider the following quantity:

(3.10) $\phi_{*}(\tilde{f})=\frac{1}{2\pi i}\int_{c-i\infty}^{c+i\infty}V(p)e_{*}^{p\overline{f}}dp$ .

By Lemma 3.6, $e_{*}^{(c+\xi i)\overline{f}}$ is written in the shape (3.6). Since $V(c+\xi i)$ is rapidly
decreasing in $\xi$ , the integral (3.10) defines an element of $C^{\infty}(M)[[\mu]]$ . Similar to the
cases of Theorem 3.3 and the Case 1, the value $\phi_{*}(\tilde{f})(p)$ at $p\in M$ is given by

(3.11) $\phi_{*}(\tilde{f})(p)=\frac{1}{2\pi}\int_{-\infty}^{\infty}V(c+\xi i)e_{*}^{(c+\xi i)\overline{f}}(p)d\xi$ .

The following is an important lemma for computations:

LEMMA 3.7 (Bumping lemma). Let $a= \sum\mu^{k}*a_{k},$ $b= \sum\mu^{k}*b_{k}\in C^{\infty}(M)[[\mu]]$

and $\phi(s)$ be a smooth function on the range $R(a_{0}\cdot b_{0})$ . If $\phi(s)$ satisfies any of the
assumptions in Theorem 3.3, Case 1 or Case 2, then we have the following identity:

(3.12) $a*\phi_{*}(b*a)=\phi_{*}(a*b)*a$ .

PROOF. It is obvious that $a*(b*a)^{k}=(a*b)^{k}*a$ . Thus, (3.12) holds for any
polynomial $\emptyset$ . Suppose $\emptyset$ is a holomorphic function on a neighborhood of $R(a_{0}\cdot b_{0})$ .
For $c=a*b$ , $c’=b*a$, we define $\phi_{*}(c),$ $\phi_{*}(c’)$ by Theorem 3.3. The desired identity
follows from the polynomial approximation theorem.

By the above proof, we see in particular that

(3.13) $a*e_{*}^{zb*a}=e_{*}^{za*b}*a$ .

The desired identity follows directly from (3.8) and (3.10). $\square$
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The radial element $r$ given in \S 1 is redefined as an element of $C^{\infty}(C^{2}-\{0\})[[\mu]]$ as
follows: Remark that $\sqrt{z}$ is a holomorphic function on an appropriate sector in $C-\{0\}$ .
Hence recalling that

$r^{2}=\zeta_{1}*\overline{\zeta}_{1}+\overline{\zeta}_{2}*\zeta_{2}=\zeta_{1}\cdot\overline{\zeta}_{1}+\overline{\zeta}_{2}\cdot\zeta_{2}$

and that $r^{2}=(r^{2})_{0}$ , we define $r$ by

(3.14) $r=\sqrt[*]{r^{2}}$ .

By Theorem 3.3, $r$ is defined as an element of $C^{\infty}(C^{2}-\{0\})[[\mu]]$ . It is evident by
Lemma 3.5 that $r*r=r^{2}$ .

AS in \S 1, (1.6), we denote by $\sqrt[*]{}^{-}the$ square root of an element in the algebra. We
call $f\in C^{\infty}(M)[[\mu]]$ a unitary element if $f*f^{*}=f^{*}*f=1$ . Using Theorem 3.3 and
Lemma 3.7, we have the following application:

LEMMA 3.8 (Polar decomposition). Assume that $f= \sum\mu^{k}*f_{k}\in C^{\infty}(M)[[\mu]]$ sat-

isfies $|f_{0}|>0$ . Then, $|f|=*\sqrt{f*f^{*}}$ and $|f|^{-1}$ are defined as elements of $C^{\infty}(M)[[\mu]]$ .
Moreover $|f|^{-1}*f$ is a unitary element.

PROOF. By Theorem 3.3, $|f|=*\sqrt{f*f^{*}}$ is well defined. $|f|^{-1}$ exists and $f^{*}*f$ is
invertible by Lemma 3.1. Using Lemma 3.7, we have

$|f|^{-1}*f*(|f|^{-1}*f)^{*}=|f|^{-1}*f*f^{*}*|f|^{-1}$

$=|f|^{-2}*f*f^{*}=1$

(3.15) $(|f|^{-1}*f)^{*}*|f|^{-1}*f=f^{*}*|f|^{-2}*f$

$=f^{*}*(f*f^{*})^{-1}*f$

$=(f^{*}*f)^{-1}*f^{*}*f=1$ . $\square$

Let $\tilde{M}$ be the universal covering space of $M$ and let $C_{H}^{\infty}(\tilde{M})[[\mu]]$ be the subspace
consisting of all hermitian elements, i.e. elements such that $f^{*}=f$ .

LEMMA 3.9. For any unitary element $a\in C^{\infty}(M)[[\mu]]$ , there is an element $\tau\in$

$C_{H}^{\infty}(\tilde{M})[[\mu]]$ such that $a=e_{*}^{i\tau}$ .

PROOF. It is obvious that $e_{*}^{i\tau}$ is a unitary element. For the converse, we set the
universal covering $\tilde{C}_{*}$ of the domain $C_{*}=C-\{0\}$ and consider the function $\log$ as a
function on $\tilde{C}_{*}$ . We denote by $\tilde{z}$ the lift of $z\in C_{*}$ to the universal covering. The $\mu^{0_{-}}$

term $a_{0}$ of $a= \sum\mu^{k}*a_{k}$ satisfies $|a_{0}(p)|=1$ for all $p\in M$ . Notice the contour integral
around $a_{0}(p),$ $(1/2 \pi i)\int_{c_{p}}\log\tilde{z}(z-a_{0}(p))_{*}^{-1}dz$ defines a smooth function on the universal
covering $\tilde{M}$ . Hence, we define the element $\log_{*}a\in C^{\infty}(\tilde{M})[[\mu]]$ by

(3.16) $\log_{*}a(\tilde{p})=\frac{1}{2\pi i}\int_{c_{p}}\log\tilde{z}(z-a)_{*}^{-1}(\tilde{p})dz$ , $\tilde{p}\in\tilde{M}$

where $c_{p}$ is a small contour around $a_{0}(p)$ .
Lemma 3.5 (ii) shows $\exp_{*}(\log_{*}a)=a$ .

$C^{\infty}(\tilde{M})[[\mu]]$ .
Thus, $i\tau=\log_{*}a$ is a desired element of

$\square$
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AS a byproduct, one can define “noncommutative polar coordinates” on $C_{*}=$

$C-\{0\}$ . Consider the smooth algebra $C^{\infty}(C_{*})[[\hslash]]$ such that $[\zeta,\overline{\zeta}]=-2\hslash$ (cf. \S 1). By
the above argument we set $r=*\sqrt{\zeta*\overline{\zeta}}$,

(3.17) $e_{*}^{i\tau}=r^{-1}*\zeta$ , and $\rho=r^{2}/2$

where $\tau$ is an element of the universal covering space of $C_{*}$ .

LEMMA 3.10 (Noncommutative polar coordinates). On $C^{\infty}(C_{*})[[\hslash]],$ $[\zeta,\overline{\zeta}]=-2\hslash$ if
and only if $[p, \tau]=-i\hslash$ .

PROOF. If $[p, \tau]=-i\hslash$ holds then

$\zeta*\overline{\zeta}=r^{2}$ , $\overline{\zeta}*\zeta=e^{-i\tau}*2\rho*e^{i\tau}=r^{2}+2\hslash$ .

For the converse, taking an appropriate sector or considering the universal covering
space of $C_{*}$ , we compute

(3.18) $[ \rho, i\tau]=[\frac{r^{2}}{2},$ $\log_{*}(r^{-1}*\zeta)]=\zeta^{-l}*r*r^{-1}*[\frac{r^{2}}{2},$ $\zeta]=h$ . $\square$

4. Local generator systems for $\mathscr{A}^{\infty}$

Recall that $\mathscr{A}^{\infty}\subset C^{\infty}(C_{*}^{2})[[\hslash]]$ . Let $U_{+}=\{\zeta_{1}\neq 0\},$ $U_{-}=\{\zeta_{2}\neq 0\}$ . By the local
property (cf. Proposition 2.7), the algebra extends to $C^{\infty}(U_{\pm})[[\hslash]]$ , in which one can
consider subalgebras of $R(e^{t})$ -invariant elements. These are in fact the localizations of
$\mathscr{A}^{\infty}$ , and will be denoted by $\mathscr{A}_{U_{+}}^{\infty},$

$\mathscr{A}_{U_{-}}^{\infty}$ . The algebra $\mathscr{A}^{\infty}$ is understood as the patch
work of these localized algebras.

In $\mathscr{A}_{U_{+}}^{\infty}$ (resp. $\mathscr{A}_{U_{-}}^{\infty}$ ), we have an element $z=\zeta_{1}^{-1}*\zeta_{2}=-1*--2$ (resp. $w=$

$\zeta_{2}^{-1}*\zeta l=-2*\Xi_{1})$ . It is easy to see by $\zeta_{i}*r^{2}=(r^{2}-2h)*\zeta_{i}$ that

(4.1) $[\mu,z]=[\mu,\overline{z}]=0$ , $[\mu, w]=[\mu,\overline{w}]=0$ ,

but $z$ and $w$ are not represented by matrices. Although we lose the matrix representa-
tions, we can obtain some geometric pictures.

First of all we note the following:

LEMMA 4.1.
(4.2) $[z*\overline{z},\overline{z}*z]=0$ , $[w*\overline{w},\overline{w}*w]=0$ .

PROOF. This is easy to see from $[\zeta_{i}*\overline{\zeta}_{i},\overline{\zeta}_{i}*\zeta_{i}]=0$ .

On $\mathscr{A}_{U_{+}}^{\infty}$ (resp. $\mathscr{A}_{U_{-}}^{\infty}$ ), $\{\mu, z,\overline{z}, -1, -1\}$ (resp. $\{\mu,$ $w,\overline{w},$ $-2,$ $-2\}$ ) generates a dense
subalgebra.

The following relations are given for $\{\mu, Z,\overline{Z}, -1, -\iota\}$ , with the corresponding
relations holding for $\{\mu, w,\overline{w}, -2, -2\}$ :

LEMMA 4.2.
$[\mu^{-1}, z]=0$ , $[z, \Xi_{1}]=[_{Z,-2}-]=0$ ,

(4.3) $[_{\overline{Z},-1}-*]=[_{\overline{Z},-2}-*]=0$ ,

$[_{Z,-1}-*]=-\mu*-1*z*(1+\mu)$ .
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$[z,\overline{z}]=\mu(1+z*\overline{z})*(1+\overline{z}*z)$ ,
(4.4)

$[z, (1+\overline{z}*z)^{-1}*\overline{z}]=\mu$ .

$(1+\overline{z}*z)^{-1}=\Xi_{1^{*}-1}^{-*}$ ,
(4.5)

$\mu+\overline{z}*z*(1+\overline{z}*z)^{-1}=-2^{*}-2$

PROOF. Recalling that $z=\Xi_{1}^{-1}*--2$ and using (1.17) and (1.18), we have the first
two equalities in (4.3). The equality

$[\Xi_{1}^{-1_{*}-}-2, \Xi_{1}^{*}]=[_{-1}^{--1-*}-1]*-2+-1*[_{-2,-1}]$

and (1.19) and Lemma 2.8 show the last equality of (4.3). For (4.4), we have

$[z,\overline{z}]=\zeta_{1}^{-1}*\zeta_{2}*\overline{\zeta}_{1}^{-1}*\overline{\zeta}_{2}-\overline{\zeta}_{1}^{-1}*\overline{\zeta}_{2}*\zeta_{1}^{-1}*\zeta_{2}$

(4.6) $=-2\hslash(\overline{\zeta}_{1}*\zeta_{1})^{-1}*(1+(\zeta_{1}*\overline{\zeta}_{1})^{-1}*\overline{\zeta}_{2}*\zeta_{2})$

$=\mu(1+z*\overline{z})*(1+\overline{z}*z)$ ,

and

$[z, (1+\overline{z}*z)^{-1}*\overline{z}]=[z, (1+\overline{z}*z)^{-1}]*\overline{z}+(1+\overline{z}*z)^{-1}*[z,\overline{z}]$

(4.7) $=-(1+\overline{z}*z)^{-1}*[z,\overline{z}]*\{z*(1+\overline{z}*z)^{-1}*\overline{z}-1\}$

$=\mu$ .

For the first equality of (4.5), using (1.18-19) and (1.22) gives

$(1+\overline{z}*z)*\cdot*\cdot$ I $=(1+-2*\Xi_{1}^{*-1}*\Xi_{1}^{-1_{*}-}-2)*\Xi_{1}*\Xi_{1}^{*}$

(4.8) $=-1^{*}-2$

$=1$ .

The equality $z*((1+\overline{z}*z)^{-1}---1*-\iota)*\overline{z}=0$ , combined with (4.7) gives the second
equality of (4.5). $\square$

REMARK 4.3. The first equality of (4.4) can be viewed as the quantum version of
the K\"ahler form on the standard sphere, which is given by $\{z,\overline{z}\}=(1+z\overline{z})^{2}$ , and the
second one may interpret $(1+\overline{z}*z)^{-1}*\overline{z}$ as the quantum version of the canonical
conjugate variable of $z$ . In [St], \v{S}tovi\v{c}ek treat the quantum K\"ahler form given in the
form $[z,\overline{z}]=\mu(1+e^{t}z*\overline{z})*(1+e^{-t}\overline{z}*z)$ .

On $U_{+}\cap U_{-}$ , we see that $z$ and $w$ are invertible and $z*w=1$ . The relations
between the two given systems of generators (i.e. the coordinate transformation) are
given by

(4.9) $\{\mu, w,\overline{w},\cdot-\}=\{\mu,\cdot*z,\overline{z}*\cdot\}$ .
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The relations giving constraints are

(4.10) $(1+\overline{z}*z)^{-1}-\Xi_{1}*\Xi_{1}^{*}=0$ , $(1+\overline{w}*w)^{-1--*}--2^{*}-2=0$ .

Note that $[z, \Xi_{1}]=[\overline{z}, -1]=0$ , and that $z*((1+\overline{z}*z)^{-1}-\Xi_{1}*-1)*\overline{z}=0$ gives the
second equality in (4.10).

By (1.17), we see that eigenvalues $of-ad(\mu^{-1})$ are integers and the eigenspace of the
eigenvalue $m$ is spanned in the coefficients $C^{\infty}(U_{+})$ (resp. $C^{\infty}(U_{-})$ ) by $-1*\Xi_{1}^{*l}$

$(k-l=m)$ on $U_{+}$ (resp. $-2*-2(k-l=m)$ on $U_{-}$ ). We denote by $\mathscr{A}_{m}^{\infty}$ the eigen-
space of $-ad(\mu^{-1})$ with the eigenvalue $m\in Z$ .

The coordinate transformation (4.9) may be understood as follows:
(i) First, $\{\mu, z\}$ and $\{\mu, w\}$ give holomorphic local generator systems on the

Riemann sphere $P^{1}(C)=S^{2}$ ,
(ii) (4.9) defines a holomorphic line bundle $L$ over $S^{2}$ .
Since $[Z, --i]=0,$ $[w, --i]=0(i=0,1)$ by Lemma 4.2, one may regard $\Xi_{1},$ $--2$ as

holomorphic sections of $L$ , although these are not mappings but only elements of the
algebra. Such elements will be referred to as holomorphic q-sections.

On $U_{+}$ (resp. $U_{-}$ ), we see that $--2=z*--1$ (resp. $\Xi_{1}=w*--2$ ).
Similarly,

(4.11) $\Xi_{1}^{k}*-2$
’ $(k+l=m)$

forms a linear basis in the coefficients $C[[\mu]]$ of the space $\ovalbox{\tt\small REJECT}_{m}$ of all holomorphic
$q$-sections of the holomorphic line bundle $L^{m}$ . We see easily that $\ovalbox{\tt\small REJECT}_{m}=\{0\}$ for $m<0$

and $\ovalbox{\tt\small REJECT}_{m}\subset \mathscr{A}_{m}^{\infty}$ for $m\geq 0$ . On $U_{+}$ (resp. $U_{-}$ ), we see that

$-1*--l2=z^{l}*\Xi_{1}^{m}$ , (resp. $=w^{k}*-2$ ).

The coordinate transformation is given by

(4.12) $-1*--l2=w^{k}*-2=(w^{k}*-1)*z^{m}=z^{l}*-1$

Here we define precisely the notion of constraint relations (cf. (4.10)). A relation
will be called a constraint relation if it gives the defining equation of $S^{3}$ in $R^{4}$ under the
condition $\hslash=0$ or $\mu=0$ . In our system, relations expressed via commutator brackets
do not give constraint relations since commutators are vanishing under $\hslash=0$ or $\mu=0$ .

TO obtain a local generator system without constraint relations, we use Lemma
3.10. By this lemma, we can define $\tau_{\pm}\in C^{\infty}(\tilde{W}_{\pm})$ where $\tilde{W}_{\pm}$ is the universal covering
space of $U_{\pm}-\{O\}$ as follows: set

$e_{*}^{i\tau_{+}}=|\Xi_{1}|^{-1}*--1$ , $e_{*}^{i\tau_{-}}=|_{-2}^{-}|^{-1}*--2$ , (cf. Lemma 3.8).

Then $\{\mu, z,\overline{z}, e^{i\tau_{+}}\},$ $\{\mu, w,\overline{w}, e^{i\tau_{-}}\}$ are local generator systems without constraint relations.
The coordinate transformation is given by

(4.13) $\{\mu, w,\overline{w}, e_{*}^{i\tau_{-}}\}=\{\mu, z,\overline{z}, e_{*}^{i\theta_{+}}*e_{*}^{i\tau_{+}}\}$

where $e_{*}^{i\theta_{+}}$ is the unitary part of the polar decomposition of $z$ . By using (1.10) and
$z=\zeta_{1}^{-1}*\zeta_{2}$ , it is not hard to see that

(4.14) $e_{*}^{i\theta_{+}}*e_{*}^{i\tau_{+}}=e_{*}^{i\tau_{+}}*e_{*}^{i\theta_{+}}=e_{*}^{i\tau_{-}}$ .
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The coordinate transformation (4.13) may be understood as that of quantum version of
Hopf fibration of $S^{3}$ over the Riemann sphere $P^{1}(C)=S^{2}$ .

By (4.10) we have

(4.15) $--1=*\sqrt{1+\overline{z}*z}^{-1}*e^{i\tau_{+}}$ , $-2=*e^{i\tau_{-}}$ .

By (1.17) we have

$[\mu^{-1}, e^{i\tau_{\pm}}]=-e^{i\tau_{\pm}}$ .

It follows that the eigenspace of $-ad(\mu^{-1})$ is given by $\mathscr{A}_{m}^{\infty}=C^{\infty}(S^{2})[[\mu]]*e^{mi\tau_{\pm}}$ .
Using $\tau\pm=-i\log e^{i\tau_{\pm}}$ , we see

(4.16) $[\mu^{-1}, \tau_{\pm}]=i$ , hence $[\tau_{\pm},\mu]=\mu^{2}i$ .

Functions on $S^{2}$ are elements of $\mathscr{A}^{\infty}$ which commutes with $\mu$ . Set

(4.17) $\mathscr{A}_{0}^{\infty}=\{f\in \mathscr{A}^{\infty} ; [\mu,f]=0\}$ .

$\{U_{+};\mu, z\}$ and $\{U_{-}; \mu, w\}$ may be understood as local holomorphic coordinate systems
on $S^{2}$ respectively. Since the coordinate transformation $w=1/z$ does not involve $\overline{z}$,
one may say that is holomorphic. This motivates the definition of a noncommutative
K\"ahler manifolds:

DEFINITION 4.4. A $\mu$-regulated smooth algebra $(C^{\infty}(M)[[\mu]], *)$ is called a non-
commutative Kahler manifold, if there is a simple open covering $\{U_{\alpha}\}_{\alpha}$ of $M$ with the
following properties:

(1) On each $C^{\infty}(U_{\alpha})[[\mu]]$ there is a local generator system

$z_{\alpha}^{1},$

$\ldots,$

$z_{\alpha}^{m},\overline{z}_{\alpha}^{1},$
$\ldots,\overline{z}_{\alpha}^{m}$ such that $[z_{\alpha}^{i}, z_{\alpha}^{j}]=[\overline{z}_{\alpha}^{i},\overline{z}_{\alpha}^{j}]=0$

and the matrix $([z_{i},\overline{z}_{j}])$ is non-degenerate.
(2) On any intersection $C^{\infty}(U_{\alpha}\cap U_{\beta})[[\mu]]$ , the coordinate transformation $\Phi_{\alpha\beta}$ is

holomorphic, that is

$\Phi_{\alpha\beta}(z_{\beta}^{i})=f_{\alpha\beta}(z_{\alpha}^{1}, \cdots,z_{\alpha}^{m})$

$\Phi_{\alpha\beta}(\overline{z}_{\beta}^{i})=\overline{f}_{\alpha\beta}(\overline{z}_{\alpha}^{1}, \cdots,\overline{z}_{\alpha}^{m})$ .

It is clear that $S^{2}$ given above is a noncommutative K\"ahler manifold.

REMARK 4.5. Here we give a little long remark involving a summary of the result
of our paper [OMMY2].

(i) Karabegov [K] gives a slightly different definition of noncommutative K\"ahler

manifolds using both of the $*$ -product and the usual commutative product. Definition
4.3 contains only the $*$ -product. Note that the commutative structure cannot be
specified from a given $*$ -product.

(ii) By the localization theorem (cf. [OMY2]), combined with the quantum version
of Darboux theorem (cf. [O]), we see that every deformation quantization $(C^{\infty}(M)[[\mu]], *)$

on a symplectic manifold $M$ is obtained as a Weyl function algebra of a Weyl mani-
fold $W_{M}$ constructed on $M$ . In [OMMY2], we gave that Weyl manifold $W_{M}$ for a
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fixed symplectic manifold $M$ , and hence the deformation quantization of $C^{\infty}(M)$

is parameterized by a de Rham cohomology class, called Poincar\’e-Cartan class,
$\sum_{k\geq 0\mu^{2k}}c_{k}(W_{M})\in H^{2}(M)[[\mu^{2}]]$ . This corresponds to the result of Deligne [De], which
gives Fedosov’s construction of $*$ -products is parameterized by the same classes.
$c_{0}(W_{M})$ is known to be the class determined by the symplectic 2-form.

$\mathscr{A}_{0}^{\infty}$ in (4.17) regarded as a deformation quantization of $C^{\infty}(S^{2})$ is labeled by the
natural volume form of 2-sphere. Namely, $\mathscr{A}_{0}^{\infty}$ gives the Poincar\’e-Cartan class such
that $\sum_{k\geq 1\mu^{2k}}c_{k}(W_{M})=0$ .

In [OMMY2], we showed that on any K\"ahler manifold $M$, we can construct a
noncommutative K\"ahler manifold. More precisely, for a Weyl manifold $W_{M}$ over $M$ , if
the Poincar\’e-Cartan class $\sum_{k\geq 0\mu^{2k}c_{k}}(W_{M})$ has the property that $\sum_{k\geq 1\mu^{2k_{C_{k}}}}(W_{M})$

vanishes in the cohomology group $H^{2}(M, \mathcal{O})[[\mu^{2}]]$ of sheaf of holomorphic functions,
then $(C^{\infty}(M)[[\mu]], *)$ is a noncommutative K\"ahler manifold.

Furthermore, if the original simplectic manifold is of integral class, then we can
construct a noncommutative contact algebra on which $\exp tad(\mu^{-1})$ gives a free $S^{1_{-}}$

action, which may be regarded as an $S^{1}$ -bundle over $M$ .
In the last part of this section, we give a local generator system which may be

understood as a canonical local coordinate system on a contact manifold.
On $U_{+}$ (resp. $U_{-}$ ) we set

$\xi_{+}=\sqrt{2}*\sqrt{1+z*\overline{z}}^{-1}*Z$ , (resp. $\xi_{-}=\sqrt{2}*\sqrt{1+w*\overline{w}}^{-1}*w$).

Using (4.4) of Lemma 4.2 and bumping lemma (Lemma 3.7), we see that

(4.18) $[\xi_{+’+}]-=2\mu$ (resp. $[\xi_{-},\overline{\xi}_{-}]=2\mu$).

Take the polar decomposition $\xi_{\pm}=p_{\pm}*e_{*}^{i\theta_{\pm}}$ . It is obvious that $e_{*}^{i\theta_{\pm}}$ are the unitary
parts of $z,$ $w$ respectively. Then, we have

LEMMA 4.6.

(4.19) $[ \frac{1}{2}\rho_{+}^{2},$ $\theta_{+}]=i\mu$ .

PROOF. By (4.18), we have $\rho_{+}^{2}-e_{*}^{-i\theta_{+}}*\rho_{+}^{2}*e_{*}^{i\theta_{+}}=2\mu$ . Hence we have

(4.20) $[\rho_{+}^{2}, e_{*}^{i\theta_{+}}]=-2\mu*e_{*}^{i\theta_{+}}$ .

Taking $\log$ in (4.20) we have Lemma 4.6. $\square$

The following is not hard to see:

LEMMA 4.7. On $U_{+}$ it holds the following relation:

(4.21) $[\mu, \xi_{+}]=0$ , $\xi_{+}*e_{*}^{i\tau_{+}}=e_{*}^{i\tau_{+}}*\xi_{+}**\sqrt{1-\mu}^{-1}$

Similar relations hold also on $U_{-}$ .

Regard $\{\mu, (1/2)\rho_{+}^{2}, \theta_{+}, \tau_{+}\}$ (resp. $\{\mu,$ $(1/2)p_{-}^{2},$ $\theta_{-},$ $\tau_{-}\}$ ) as a local generator system.
These may be regarded as a canonical local coordinate system on a noncommutative

contact algebra, because the commutation relations are given in the following Lemma.
Note that $ad(\tau_{\pm})$ plays the role of the degree operator field (cf. [OMY]).
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PROPOSITION 4.8. Following relations hold on $U_{\pm}$ :

(4.22) $[\mu,\rho_{\pm}^{2}]=[\mu, \theta_{\pm}]=0$ , $[ \frac{1}{2}p_{\pm}^{2},$ $\theta_{\pm}]=i\mu$ .

(4.23) $[\tau_{\pm},\mu]=i\mu^{2},$ $[\tau_{\pm}, \theta_{\pm}]=0,$ $[ \tau_{\pm},\frac{1}{2}\rho_{\pm}^{2}]=i\mu\frac{1}{2}\rho_{\pm}^{2}$ .

(4.24) $[ \tau_{\pm}, \xi_{\pm}]=\frac{i\mu}{2}*\xi_{\pm}$ , $[ \tau_{\pm},\overline{\xi}_{\pm}]=\frac{i\mu}{2}*\overline{\xi}_{\pm}$ .

PROOF. The first one is trivial and the second is given by Lemma 4.6. First two
equalities of (4.23) are proved by (4.21) and (4.14).

TO obtain the second equality of (4.23), remark at first that (4.16) yields $e_{*}^{i\tau_{\pm}}*\mu=$

$\mu*e_{*}^{i(\tau_{\pm}+\mu i)}$ . Combining this with the identity $[\mu^{-1}, e_{*}^{i\tau_{\pm}}]=-e_{*}^{i\tau_{\pm}}$ , we have

$e_{*}^{i(\tau_{\pm}+\mu i)}=e_{*}^{i\tau_{\pm}}*(1-\mu)$ .

By (4.21), we have

$e_{*}^{i\tau_{\pm}}*\rho^{2}=\rho^{2}*e_{*}^{i\tau_{\pm}}*(1-\mu)=p^{2}*e_{*}^{i(\tau_{\pm}+\mu i)}$ .

Thus for any holomorphic function $f$ we see

$f_{*}(e_{*}^{i\tau_{\pm}})*\rho^{2}=\rho^{2}*f_{*}(e_{*}^{i(\tau_{\pm}+\mu i)})$ .

Putting $f=log$ , we have the third one of (4.23).
TO obtain the last two equalities, remark that (4.23) yields $[\tau_{\pm,p_{\pm}}]=i\mu/2*\rho_{\pm}$ by

taking square root. (4.24) is obtained by a similar computation. $\square$

The coordinate transformation is given by

(4.25) $(\rho_{-}, \theta_{-}, e^{\tau_{-}})=(2-p_{+}, -\theta_{+}, e^{i\theta_{+}}*e^{\tau_{+}})$ .

For various $m$ we consider elements $\tilde{f}*e^{m\tau_{\pm}}$ . We compute

$[\xi_{+},\tilde{f}*e^{im\tau_{+}}]=[\xi_{+},\tilde{f}]*e^{m\tau_{+}}+\tilde{f}*[\xi_{+}, e^{m\tau_{+}}]$

(4.26)
$=([\xi_{+},\tilde{f}]+(1-\sqrt{1+m\mu}^{-1})\tilde{f}*\xi_{+})*e^{im\tau_{+}}$ .

Setting $\kappa=\sqrt{1+m\mu}^{-1}$ and using $\tilde{f}*\xi_{+}=\xi_{+}\cdot\tilde{f}+\mu(\partial\tilde{f})/(\partial\overline{\xi}_{+})$ , obtained by Moyal
product formula (2.1), we have

(4.27) $[ \xi_{+},\tilde{f}*e^{im\tau_{+}}]=\{-\mu(1+\kappa)\frac{\partial\tilde{f}}{\partial\overline{\xi}_{+}}+(1-\kappa)\xi_{+}\cdot\tilde{f}\}*e^{im\tau_{+}}$ .

The same formulae hold for $\overline{\xi}_{+}$ and $\mu$ :

(4.28) $[ \overline{\xi}_{+},\tilde{f}*e^{im\tau_{+}}]=\{\mu(1+\kappa)\frac{\partial\tilde{f}}{\partial\xi_{+}}+(1-\kappa)\overline{\xi}_{+}\cdot\tilde{f}\}*e^{im\tau_{+}}$ .

(4.29) $[\mu,\tilde{f}*e^{im\tau_{+}}]=\mu(1-\kappa^{2})\tilde{f}*e^{im\tau_{+}}$ .
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A calculation using Lemma 2.8 shows that these are compatible with (4.18) and Lemma
2.8. Remark that the right hand sides are differential operators.

We can obtain the same formula for $\xi_{-},\overline{\xi}_{-}$ . Thus, $ad(\xi_{\pm}),$ $ad(\overline{\xi}_{\pm}),$ $ad(\mu)$ can be
viewed as differential operators $\hat{\xi}_{\pm},\overline{\xi}_{\pm},\hat{\mu}$ acting on $C^{\infty}(U_{\pm})[[\mu]]*e^{im\tau_{\pm}}$ . Here $*e^{im\tau_{\pm}}$

plays only a role of local basis of a line bundle. It is obvious that

(4.30) $[\hat{\xi}_{\pm},\overline{\xi}_{\pm}]=2\hat{\mu}-$ .

Remark now that we can write as follows:

$\hat{\xi}_{\pm}=(1-\kappa)\xi_{\pm}+(1+\kappa)\hat{X}$ , $\hat{X}=-\mu\frac{\partial}{\partial\overline{\xi}_{\pm}}$

$-\overline{\xi}_{\pm}=(1-\kappa)\overline{\xi}_{\pm}+(1+\kappa)\hat{Y}$ , $\hat{Y}=\mu\frac{\partial}{\partial\xi_{\pm}}$ .

Since $\mu$ is a formal parameter, we can define the operator $f(\hat{\xi},\overline{\xi},\hat{v})\wedge$ for any smooth
function. To be precise, we have to use here the notion of Weyl continuations
(cf. [OMYI]).

So far we have treated $\mu$ as a formal parameter. Following the idea of Guillemin
[G], we regard $m$ as a $Z$-asymptotics (cf. [GS]). Instead of this, we fix $m\mu$ as a real
number, e.g. $m\mu=\hslash$ . Hence we set $\kappa^{-2}=1+\hslash$ and $\mu=\hslash/m$ .

Since $m$ appears always with $\mu,$
$-\iota i.e$

. $m\mu$ in the above equalities, we treat the
asymptotic behavior with respect to $m$

By virtue of treating $m$ as a moving parameter, we can now restrict the repre-
sentation space, by setting $\mu=h/m$

$C^{\infty}(U_{\pm})[[\mu]]*e^{im\tau_{\pm}}$ to $C^{\infty}(U_{\pm})*e^{im\tau_{\pm}}$ .

The latter can be identified with the space of all classical sections of classical $C$ bundle
associated to $S^{1}$ -principal bundle.

Thus, we obtain an operator representation of the algebra $C^{\infty}(S^{2})[[\mu]]$ . This is
indeed the van Hove representation of the quantized algebra of prequantized $S^{1}$ -bundle
over $S^{2}([vH])$ . This procedure may give the answer to the conjecture of Guillemin [G],
because the compactness of the underlying space is not used in the above argument.

5. Global generators with matrix representations

Set $\mathscr{A}_{0}^{\infty}=\{f\in \mathscr{A}^{\infty} ; [\mu;f]=0\}$ . By (1.17), we see that

(5.1) $\mu,$ $-1^{*},$ $-2^{*\Xi_{1}^{*}}(=(\Xi_{1^{*}-2}-*)^{*})$

generates a dense subalgebra $\mathscr{A}_{0}$ of $\mathscr{A}_{0}^{\infty}$ . Besides the van Hove representation
mentioned in the last paragraph of \S 4, the argument in \S 1 shows that $\mu^{-1}$ and each of
the generators (5.1) are represented by blockwise diagonal matrices:

$diag\{B_{1,1}, B_{2,2}, \ldots, B_{k,k}, \ldots\}$ .

Moreover, we have the following relations:
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LEMMA 5.1.

(5.2) $(- \Xi_{1}^{*}-\frac{1}{2})^{2}+\Xi_{1^{*}-2^{*(_{-1^{*}-2}^{--*})^{*}=\frac{1}{4}}}-*.$.

(5.3) $[_{-1^{*-2},-2^{*}-1}^{--*--*}]=-2\mu*(-]^{*}-\iota^{-\frac{1+\mu}{2}})$

(5.4) $[\Xi_{1^{*-}}^{-}$I $- \frac{1+\mu}{2},$ $-1^{*}-2]=-\mu*\cdot*\cdot$

(5.5) $[\cdot--*]=\mu*\cdot*\cdot$

PROOF. By a direct calculation using (1.20), we have (5.2).
For (5.3), we compute by using (1.22) as follows:

$\Xi_{\iota-2}\cdot\cdot=\cdot*(1^{-*-}--l^{*}-1)*\Xi_{1}^{*}$

$=_{-1^{*}-1^{-(_{-1^{*}-1}^{--*})^{2}}}--*$

$=1+\mu^{--*}--2^{*}-2-(1+--2^{*}-2$

$=-\mu*(1+\mu)+(1+2\mu)*\cdot*\cdot-(_{-2^{*}-2}^{--*})^{2}$
(5.6)

$=-\mu*(1+\mu)+2^{--*-}\mu*\cdot*+-2*\Xi_{1}^{*}*\Xi_{1^{*}-2}^{-*}$

$=\mu*(1+\mu)-2*--$ I $+-2*$

$=-2 \mu*(_{-1^{*}-1}--*-\frac{1+\mu}{2})+-2*-*.$

Computations similar to (5.6) give (5.4) and (5.5). $\square$

If we set

(5.7) $H= \cdot*\cdot-\frac{1+\mu}{2}$ , $Z=\Xi_{1^{*}-2}^{-*}$ , $Z^{*}=\cdot*-$

the above lemma shows that the algebra generated is the universal enveloping algebra
of the Lie algebra $sl_{\mu}(2;C)$ :

(5.8) $[H, Z]=-\mu*Z$ , $[H, Z^{*}]=\mu*Z^{*}$ , $[Z, Z^{*}]=-2\mu*H$

constrained by

(5.9) $(H+ \frac{\mu}{2})^{2}+Z*Z^{*}=\frac{1}{4}$ .

Note that $(H+\mu/2)^{2}+Z*Z^{*}$ is in the center of the enveloping algebra.
The matrix representations for $H$ and $Z$ are given as follows:

$H=diag\{B_{1,1}, B_{2,2}, \ldots, B_{k,k}, \ldots\}$ ,
(5.10)

$Z=diag\{B_{1,1}’, F_{2,2}, \ldots, B_{k,k}’, \ldots\}$ ,
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with $Z^{*}={}^{t}Z$ . Here we set

(5.11) $B_{k,k}= \frac{1}{2k}diag\{k-1, k-3, \ldots, -(k-3), -(k-1)\}$ ,

(5.12) $B_{k,k}’= \frac{1}{k}\{\begin{array}{llllll}0 \sqrt{(k-1)1}0 \sqrt{(k-2)2} 0 \sqrt{2(k-2)}0 \sqrt{1(k-1)}0\end{array})$ .

$\mathscr{A}_{0}$ is the algebra generated by $\mu,$ $H,$ $Z,$ $Z^{*}$ and $\mathscr{A}_{0}$ is linearly isomorphic to
$C[H, Z, Z^{*},\mu]$ .

Let $\pi_{k}(a)$ be the $B_{k,k}$-component of $a\in \mathscr{A}_{0}$ . $\pi_{k}$ is then an algebra homomorphism
of $\mathscr{A}_{0}$ onto the full matrix algebra of rank $k$ . The kemel of $\pi_{k}$ is a maximal 2-sided
ideal of $\mathscr{A}_{0}$ .

On the other hand, $\mu*\mathscr{A}_{0}$ is a 2-sided ideal of $\mathscr{A}_{0}$ with

$\mathscr{A}_{0}/\mu*\mathscr{A}_{0}\cong\{C[H, Z, Z^{*}];H^{2}+ZZ^{*}=\frac{1}{4}\}$ .

Thus for each point $p$ of $\{R\cross C : H^{2}+ZZ^{*}=1/4\}$ , there is a 2-sided ideal of
codimension 1 and containing $\mu$ consisting of the pullback of functions vanishing at
a point $p$ . We denote such an ideal by $J_{p}$ .

The above argument shows that the kemel of $\pi_{k}$ does not correspond to a classical
point. Moreover, it is not hard to see that $\pi_{k}(J_{p})=\pi_{k}(\mathscr{A}_{0})$ for any $p$ and $k$ .

It is remarkable that we have to avoid matrix representations to obtain the classical
picture. As we have seen above, the classical picture does not appear directly in these
matrix representations. If we want to recover the classical picture, then we have to take
asymptotic expansions by $\mu=\hslash/m$ . Thus it is impossible to recover the classical picture
from $\pi_{k}(\mathscr{A}^{\infty})$ for a fixed $k$ .

Let $K_{m}= \bigcap_{m\geq k}ker\pi_{k}$ . Then, $K_{m}\supset K_{m+l},$ $\cap K_{m}=\{0\}$ and $\mathscr{A}_{0}^{\infty}/K_{m}$ is a finite
dimensional algebra.

6. Orthogonal projections and Berezin representations

We give a representation of $\mathscr{A}_{0}$ as an algebra of linear maps on $\ovalbox{\tt\small REJECT}_{m}$ (see between
(4.11) and (4.12) $)$ and show that the representation in this section is the same as the
representation given by Berezin [Be].

Let $\Gamma(L^{m})$ be the eigenspace of $-ad(\mu^{-1})$ with the eigenvalue $m$ . By (1.17), we
have $\ovalbox{\tt\small REJECT}_{m}\subset\Gamma(L^{m})$ and

(6.1) $\{$

$C^{\infty}(S^{2})[[\mu]]*\Gamma(L^{m})*C^{\infty}(S^{2})[[\mu]]=\Gamma(L^{m})$ ,

$\Xi_{i}*\Gamma(L^{m})\subset\Gamma(L^{m+1})$ .
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Since each element of $\Gamma(L^{m})$ is written as $f(\mu, z,\overline{z})*-1$ (resp. $g(\mu,$ $w,\overline{w})*-2$ ) on $U_{+}$

(resp. $U_{-}$ ), an element of $\Gamma(L^{m})$ may be regarded as a “smooth section” of $L^{m}$ .
Note that $\mu^{-1}$ commutes with each element of $C^{\infty}(S^{2})[[\mu]]$ . If $\mu^{-1}$ is represented as

a linear mapping on $\sum\oplus\Gamma(L^{m})$ , we may assume that $\mu^{-1}$ is $-\lambda_{m}I$ on each $\Gamma(L^{m})$ .
Note that $(\mu^{-1}+1)*\Xi_{i}=\Xi_{i}*\mu^{-1}$ (cf. (1.17)). By (6.1), we have $\lambda_{m}=m+c$ ,

where $c$ is an arbitrary constant.
In what follows we set $c=1$ to obtain the Berezin representation. So far, $\mu$ is

regarded as a formal parameter. In the spirit of \S 4, we set here $\mu^{-1}=-(m+1)$ on
each $\Gamma(L^{m})$ . Thus, the space $\Gamma(L^{m})$ is changed to the space which does not involve $\mu$ .

Recall that the holomorphic line bundle $L^{m}$ is expressed in the local generator
systems as

(6.2) $\{\mu, z;\Xi_{1}^{m}\}$ , $\{\mu, w;-2\}$ .

A linear basis of the space $\ovalbox{\tt\small REJECT}_{m}$ of all holomorphic $q$-sections is given by

$\frac{\sqrt{(m+1)!}}{\sqrt{k!l!}}-1-2=\{$

$\frac{\sqrt{(m+1)!}}{\sqrt{k!l!}}z^{l}*\Xi_{1}^{m}$ (on $U_{+}$ )

$\frac{\sqrt{(m+1)!}}{\sqrt{k!l!}}w^{k_{*}-m}-2$ (on $U_{-}$ )

$(k+l=m)$ .

These form an orthonormal basis. By (1.10), (1.16) and Lemma 3.7, we have for
$k+l=m$

(6.3) $\frac{11}{\sqrt{2\hslash}m\sqrt{k!l!}}\zeta_{1}^{k}*\zeta_{2}^{l}=\sqrt{-\mu}^{-m}\prod_{j=0}^{m-1}\sqrt{1+j\mu}*\frac{1}{\sqrt{k!l!}}-1-2$

Since we set $\mu^{-1}=-(m+1)$ on $\Gamma(L^{m})$ , we have

(6.4) $\frac{1}{\sqrt{2h}m}\frac{1}{\sqrt{k!l!}}\zeta_{1}^{k}*\zeta_{2}^{l}=\sqrt{\frac{(m+1)!}{k!l!}}^{-k}-1*\Xi_{2}^{l}=\sqrt{\frac{(m+1)!}{k!l!}}z^{l}*-1$ on $U_{+}$ .

NOW recall that the generators $\Xi_{1}*-1’--1*-2’--2*-1$ are expressed as matrices.
Using (1.10) and Lemma 3.7, we note the following:

$-1-1=r^{-2}* \zeta_{1}*\overline{\zeta}_{1}=-\frac{\mu}{2h}*\zeta_{1}*\overline{\zeta}_{1}$

(6.5)
$-1^{*}-2^{-r^{-1}*\zeta_{1}*\overline{\zeta}_{2}*r^{-1}}=r^{-2}* \zeta_{1}*\overline{\zeta}_{2}=-\frac{\mu}{2\hslash}*\zeta_{1}*\overline{\zeta}_{2}$ .

$-1^{*\Xi_{1}}=- \frac{\mu}{2\hslash}*\frac{1}{1-\mu}*\overline{\zeta}_{1}*\zeta_{1}$

(6.6)
$-2^{*}-1=- \frac{\mu}{2h}*\frac{1}{1-\mu}*\overline{\zeta}_{2}*\zeta_{1}$ .

Thus the matrix representations of \S 1 for the above generators are written for each
non-negative integer $m$ as
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$\Xi_{1}*\Xi_{1}^{*}:$ $\sqrt{\frac{(m+1)!}{(m-l)!l!}}z^{l}*\Xi_{1}^{m}arrow\frac{m-l}{m+1}\sqrt{\frac{(m+1)!}{(m-l)!l!}}z^{l_{*}-m}-1$

’

(6.7) $\Xi_{1}*-2:\sqrt{\frac{(m+1)!}{k!l!}}z^{l_{*}-m}-larrow\frac{\sqrt{(k+1)l}}{m+1}\sqrt{\frac{(m+1)!}{(k+1)!(l-1)!}}z^{l-1}*\Xi_{1}^{m}$ ,

$-2^{*}-1$ : $\sqrt{\frac{(m+1)!}{k!l!}}z^{l}*\Xi_{1}^{m}arrow\frac{\sqrt{k(l+1)}}{m+1}\sqrt{}\overline{\frac{(m+1)!}{(k-1)!(l+1)!}}z^{l+1_{*}-m}-1$
’

where we set $z^{-1}=z^{m+1}=0$ .
Here, note that $\{_{-1}^{-*}*-1-2*\Xi_{1-1}-**--2\}$ also forms a system of generators.

These have also matrix representations as follows:

$-1^{*}-1$ : $\sqrt{\frac{(m+1)!}{(m-l)!l!}}z^{l_{*}-m}-1arrow\frac{m+1-l}{m+2}\sqrt{\frac{(m+1)!}{(m-l)!l!}}z^{l}*\Xi_{1}^{m}$ ,

(6.8) $-2^{*}-1$ : $\sqrt{\frac{(m+1)!}{k!l!}}z^{l}*\Xi_{1}^{m}arrow\frac{\sqrt{(k+1)l}}{m+2}\sqrt{\frac{(m+1)!}{(k+1)!(l-1)!}}z^{l-1_{*}-m}-1$
’

$--f*--2$ : $\sqrt{\frac{(m+1)!}{k!l!}}z^{l_{*}-m}-1arrow\frac{\sqrt{k(l+1)}}{m+2}\sqrt{\frac{(m+1)!}{(k-1)!(l+1)!}}z^{l+1_{*}-m}-1$ ,

where we set $z^{-1}=z^{m+1}=0$ . To give the Berezin representation, it is convenient to use
$\{\Xi_{1}^{*}*\Xi_{1,-2}-**\Xi_{1}, \Xi_{1}^{*}*--2\}$ , rather than $\{_{-1}^{-}*-1’-1*-2’-2*-1\}$ .

We now define integral operators for representing (6.8). The following is easily
obtained:

LEMMA 6.1. Let $z$ and $v$ denote the complex variables on $U_{+}$ . Then, for each non-
negative integer $m$ the mapping

$I_{m}(p)(z)= \frac{m+1}{\pi}\int_{C^{2}}p(v)\frac{(1+z\overline{v})^{m}}{(1+v\overline{v})^{m}}\frac{1}{(1+v\overline{v})^{2}}dvd\overline{v}$

defines the identity on the space $\mathscr{P}_{m}$ of all polynomials of degree up to $m$ .

Since $1/(1+v\overline{v})^{2}dvd\overline{v}$ is the volume form on $S^{2}$ , the right hand of the equality in
Lemma 6.1 can be viewed as the integral over $S^{2}$ . Using Lemma 6.1, we define the
projection operator $P_{m}$ by

(6.9) $(P_{m}f)(z)= \frac{m+1}{\pi}\int_{C^{2}}f(v,\overline{v})\frac{(1+z\overline{v})^{m}1}{(1+v\overline{v})^{m}(1+v\overline{v})^{2}}dvd\overline{v}$

and we define $B(a)f$ for any $f= \sum_{m}f_{m}*-1$ , $f_{m}\in \mathscr{P}_{m}$ by

$B(a)f= \sum_{m\geq 0}P_{m}(af_{m})*-1$

for any $a\in C^{\infty}(S^{2})-m$ It is easily seen that $B(a)$ defines a linear operator of
$\sum\oplus \mathscr{P}_{m}*-1$ into itself.
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A direct computation gives the following identities:

(6.10) $\Xi_{1}^{*}*--1=B(\frac{1}{1+\overline{z}z})$ , $-2*--1=B( \frac{\overline{Z}}{1+\overline{z}z})$ , $-1*--2=B( \frac{Z}{1+\overline{z}z})$ .

This constitutes the Berezin representation [Be]. Using (6.10), we have an operator
representation of the algebra $\mathscr{A}_{0}$ . This coincides with the matrix representation given
in \S 1.

By (6.9), $B(a)f$ can be expressed as an integral operator

$B(a)f= \sum_{m\geq 0}\{\frac{m+1}{\pi}\int_{C^{2}}a(v,\overline{v})f_{m}(v)\frac{(1+z\overline{v})^{m}1}{(1+v\overline{v})^{m}(1+v\overline{v})^{2}}dvd\overline{v}\}*\Xi_{1}^{m}$ .

We have already seen in \S 1, any element of the algebra $\mathscr{A}$ are represented as matrices,
although these are not blockwise diagonal matrices.

Recall the topology on matrices given in \S 1. Since the above representation is given
via the $*$ -product, we see this representation gives a continuous homomorphism of $\mathscr{A}$

into the space of matrices with the weak topology. Hence, we have the following:

THEOREM 6.2. The matrix representation (6.8) extends to the algebra $\mathscr{A}$ . The
algebra $\mathscr{A}_{0}$ is represented by blockwise diagonal matrices, and $\mu^{-1}$ is represented as a
diagonal matrix. Thus, we have a matrix representation for the Lie algebra $\mu^{-1}*\mathscr{A}$ .

In particular, the Lie algebra $\mu^{-1}*\mathscr{A}_{0}$ is represented by blockwise diagonal
matrices. Since each block is finite rank, we see that the group $G$ generated by
$\exp\mu^{-1}*\mathscr{A}_{0}$ is also represented by blockwise diagonal matrices. This means that
$\mu^{-1}*\mathscr{A}_{0}$ is continuously embedded in a projective limit of finite dimensional Lie
algebras.

It follows also that $G$ has a series of finite codimensional normal subgroups $N_{k}$ such
that $N_{k}\supset N_{k+1},$ $\cap N_{k}=\{e\}$ . Thus, there is an isomorphism from $G$ into the group $F$

obtained as the projective limit of finite dimensional Lie groups.
We finish with some remarks on the noncommutative Riemann sphere from a more

general point of view. Thinking of $S^{2}$ as a compact K\"ahler manifold, we have an $S^{1_{-}}$

bundle $S^{3}=S_{S^{2}}^{1}$ , and then a holomorphic line bundle $L_{S^{2}}$ associated with the K\"ahler

polarization of $S^{2}$ . Let $L_{*,s^{2}}$ be $L_{S^{2}}-$ { $0$-section}, which is in fact the space $C^{2}-\{0\}$ .
Denoting a point of $L_{*,s^{2}}$ by $(z;s)$ , we may regard the radial element $r$ as an element of
$L_{*,s^{2}}$ defined by

$r(z;s)=|s|$ .

Here $|s|$ is defined via the hermitian structures on $L_{S^{2}}$ . Define a holomorphic
transformation $R(e^{t})$ : $L_{*,S^{2}}arrow L_{*,S^{2}}$ by

(6.11) $R(e^{t})(z;s)=(z;e^{t}s)$ .

By applying Lemma 3.10 to each fiber, the pullback of $R(e^{t})$ induces an automorphism
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(6.12) $R(e^{t})^{*}$ : $(C^{\infty}(L_{*,s^{2}})[[h]], *)arrow(C^{\infty}(L_{*,s^{2}})[[\hslash]], *)$

by setting $R(e^{t})^{*}\hslash=e^{2t}\hslash$ .
Besides representing elements of the algebra $\mathscr{A}_{0}$ , it is possible to represent the

elements of the algebra $\mathscr{A}$ which are $R(e^{t})$ -invariant on the space $\sum_{m\geq 0}\oplus\ovalbox{\tt\small REJECT}_{m}$ of all
holomorphic $q$-sections. Note again that the element $\mu$ which is not a central element
is represented as an operator. $ad(\mu^{-1})$ acts as a fiber preserving diffeomorphism on $L_{S^{2}}^{m}$

and each $\ovalbox{\tt\small REJECT}_{m}$ is an eigenspace of $\mu^{-1}$ with eigenvalue $-m$ . Since $S^{2}$ is compact, every
$\ovalbox{\tt\small REJECT}_{m}$ is a finite dimensional vector space. Hence the algebra $\mathscr{A}_{0}$ is represented by
blockwise diagonal matrices. As $\mu,\mu^{-1}$ are represented, one obtain the representation
of $\mu^{-1}*\mathscr{A}$ , the Lie algebra of all infinitesimal automorphisms of $\mathscr{A}$ .

It appears that this method can be applied for any K\"ahler manifold of integral
class whenever the associated line bundle of the $S^{1}$ -bundle over $M$ has a nontrivial
holomorphic section.
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