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0. Introduction.

A singular foliation on a complex manifold $M$ is determined by an involutive
coherent subsheaf $E$ of the tangent sheaf of $M$ . In this paper, we study the problem of
local (analytical and topological) triviality of the singular foliation along (a subset of) its
singular set $S(E)$ . In general, $S(E)$ is an analytic variety, so we examine by stratifying
the set.

For stratified subsets or stratified maps, the local topological triviality has been
studied by a number of people and it is generally known that if the stratification satisfies
the “Whitney condition” or the “Thom condition”, then we have the local topological
triviality along each stratum (the Isotopy Lemmas of Thom).

We first consider the case of analytical triviality in section 2 of this paper, after
reviewing basic definitions and facts on complex analytic singular foliations in section 1.
For complex analytic singular foliations we have the fundamental “Tangency Lemma”
(Theorem (2.5)), which says that every vector field defining the foliation is “tangential”
to the singular set $S(E)$ . We discuss and summarize the implications of this lemma,
which include the existence of the integral submanifold (leaf) through each point of $M$

(even on $S(E)$ ) and the local analytical triviality of the foliation along each leaf.
AS another application of the Tangency Lemma, we prove, for a complex analytic

singular foliation $E$ , the existence of a Whitney stratification of the singular set $S(E)$ so
that $E$ induces a non-singular foliation on each of its strata (Theorem (3.4)).

In section 4, we study the local topological triviality along each stratum of a
stratification of $S(E)$ as given in Theorem (3.4). This kind of triviality argument can be
applied to the case where a stratum consists of (infinitely) many leaves. A. Kabila
studied this problem for the case where the codimension of $E$ is one and $S(E)$ is non-
singular $([K])$ . We give, for a general singular foliation, a regularity condition and
prove the local topological triviality under the condition (Theorem (4.10)).

After the preparation of the manuscript, it was informed to me that a result similar
to the last one is indicated in an article of D. Trotman and L. Wilson [TW].

In the process of this work, I received many helpful suggestions and advices,
especially from T. Suwa. I would like to thank him for answering my questions and for
supporting me in various ways. I also thank J.-P. Brasselet, M. Kwiecinski, T. Ohmoto,
A. Saeki and the referee for helpful conversations and comments.

1. Complex analytic singular foliations.

First of all, we recall some general facts about singular foliations on complex mani-
folds and fix the notations used in this papar. For further details, see [BB] and [Sw].
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Let $M$ be a (connected) complex manifold of (complex) dimension $n$ , and let $\mathcal{O}_{M}$ ,
$\Theta_{M}$ and $\Omega_{M}$ be, respectively, the sheaf of holomorphic functions on $M$, the tangent
sheaf and the cotangent sheaf of $M$ .

NOW, let $E$ be a coherent subsheaf of $\Theta_{M}$ . Note that, in this case, $E$ is coherent if
and only if $E$ is locally finitely generated, since $\Theta_{M}$ is locally free. Then the singular set
of $E$ is defined by

$S(E)=$ {$p\in M|(\Theta_{M}/E)_{p}$ is not $(\mathcal{O}_{M})_{p}$ -free},

and each point in $S(E)$ is called a singular point of $E$ . Concretely, restricting $E$ to a
sufficiently small coordinate neighborhood $U$ with coordinates $(z_{1}, z_{2}, \ldots, z_{n})$ , we can
express $E$ on $U$ as follows:

(1.1) $E=(v_{1}, v_{2}, \ldots, v_{r})$ $(v_{i}= \sum_{j=1}^{n}f_{ij}(z)\frac{\partial}{\partial z_{j}}$ $(1 \leq i\leq r))$ ,

where $f_{ij}(z)$ are holomorphic functions defined on $U$ , and $r$ is a non-negative integer.
Then the singular set $S(E)$ is paraphrased on $U$ as

$S(E)\cap U=$ {$p\in U|rank(f_{ij}(p))$ is not maximal}.
Next, let us introduce the “integrability condition”. A coherent subsheaf $E$ of $\Theta_{M}$

is said to be integrable (or involutive) if for every point $p$ on $M-S(E)$ ,

(1.2) $[E, E_{p}]\subset E_{p}$

holds ([, ] means the Lie bracket of smooth vector fields). Moreover, we define the
rank (we sometimes call it dimension) of $E$ to be the rank of locally free sheaf $E|_{M-S(E)}$ ,
and denote it rankE. Using the notation in (1.1), we can rewrite as

rankE $= \max_{p\in M}rank(f_{ij}(p))$ .

In the following definition we define a singular foliation on $M$ in terms of vector
fields. Later, we will introduce it again from another viewpoint.

DEFINITION 1.3. A singular foliation on $M$ is a coherent subsheaf $E$ of $\Theta_{M}$ which is
integrable.

It is clear that a singular foliation $E$ induces a non-singular foliation on $M-S(E)$ .

DEFINITION 1.4. Let $E$ be a singular foliation on $M$ . We say that $E$ is reduced if

$v\in\Gamma(U, \Theta_{M}),$ $v|_{U-S(E)}\in\Gamma(U-S(E), E)\Rightarrow v\in\Gamma(U, E)$

holds for every open set $U$ in $M$ .

REMARK 1.5. We can check the following facts about reduced foliations:
(i) If a singular foliation $E$ is locally free,

$E$ is $reduced\Leftrightarrow co\dim S(E)\geq 2$ .

(ii) If $E$ is reduced, then the “integrability condition” holds not only on $M-S(E)$
but on $S(E)$ , i.e., (1.2) holds for every point $p\in M$ .



The singular set of a complex analytic foliation 839

Next, as stated above, let us represent singular foliations in terms of holomorphic
1-forms. It is not so difficult to rewrite it from the viewpoint of its “dual”, but there
are several points which require a little care.

DEFINITION 1.6. Let $F$ be a coherent subsheaf of $\Omega_{M}$ . Then we set

$S(F)=$ {$p\in M|(\Omega_{M}/F)_{p}$ is not $(\mathcal{O}_{M})_{p}$ -free},

and call it the singular set of $F$ . Each point in $S(F)$ is often called a singular point of
$F$ .

DEFINITION 1.7. A coherent subsheaf $F$ of $\Omega_{M}$ is said to be integrable (or
involutive) when

$dF_{p}\subset\Omega_{p}\wedge F_{p}$

holds for every point $p\in M-S(F)$ . Moreover, the rank of $F$ is defined to be the rank
of the locally free sheaf $F|_{M-S(F)}$ , and denoted rank $F$ .

DEFINITION 1.8. A singular foliation on $M$ is a coherent subsheaf $F$ of $\Omega_{M}$ which is
integrable.

DEFINITION 1.9. Let $F(\subset\Omega_{M})$ be a singular foliation on $M$ . We say that $F$ is
reduced if

$\omega\in\Gamma(U, \Omega_{M}),$ $\omega|_{U-S(F)}\in\Gamma(U-S(F), F)\Rightarrow\omega\in\Gamma(U, F)$

holds for every open set $U$ in $M$ .

NOW we discuss the relation between the two definitions, (1.3) and (1.8).

DEFINITION 1.10. For singular foliations $E\subset\Theta_{M}$ and $F\subset\Omega_{M}$ , we set

$E^{a}=$ {co $\in\Omega_{M}|\langle v,$ $\omega\rangle=0$ for all $v\in E$},

$F^{a}=$ { $v\in\Theta_{M}|\langle v,$ $\omega\rangle=0$ for all $co\in F$},

where $\langle, \rangle$ means the natural pairing between a vector field and a 1-form. Then
$E^{a}(\subset\Omega_{M})$ and $F^{a}(\subset\Theta_{M})$ define reduced singular foliations on $M$ . We call $E^{a}$ (resp.
$F^{a})$ the annihilator of $E$ (resp. $F$).

REMARK 1.11. Note that $S(E^{a})\subset S(E)$ and $S(F^{a})\subset S(F)$ hold.

DEFINITION 1.12. When $E\subset\Theta_{M}$ (resp. $F\subset\Omega_{M}$ ) is a singular foliation on $M$ ,
$(E^{a})^{a}$ (resp. $(F^{a})^{a}$ ) is called the reduction of $E$ (resp. $F$).

If we use the notations given in (1.10) and (1.12), a singular foliation $E\subset\Theta_{M}$ (resp.
$F\subset\Omega_{M})$ is reduced if and only if $(E^{a})^{a}=E$ (resp. $(F^{a})^{a}=F$). In this way we can
make any singular foliation reduced by taking its reduction. If we consider only reduced
foliations, then the two definitions of singular foliation stated above are equivalent, and
in this occasion, moreover, there is no difference between the singular set in terms of
vecter fields and that in terms of l-forms.
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2. Singular set of a singular foliation.

In this section, we recall some basic properties of the singular set of a singular
foliation, and summarize the “tangency lemma” and its consequences which have been
studied by P. Baum, D. Cerveau, Y. Mitera, T. Suwa and, for the real case, by
T. Nagano, P. Stefan, H.Sussmann, et al. In the preceding section we defined singular
foliations from two different aspects, and observed the relations between the two
definitions. We have checked that they produce “almost” the same results, so we often
express singular foliations only in terms of vector fields. Hereafter, we assume $E(\subset\Theta_{M})$

to be a singular foliation on a complex manifold $M$ and set $r=rankE$ .

DEFINITION 2.1. For each point $p$ in $M$ , we set

$E(p)=\{v(p)|v\in E_{p}\}$ ,

where $v(p)$ denotes the evaluation of the vector field germ $v$ at $p$ . Note that $E(p)$ is a
sub-vector space of the tangent space $T_{p}M$ .

DEFINITION 2.2. For an integer $k$ with $0\leq k\leq r$, we set

$L^{(k)}=\{p\in M|\dim_{C}E(p)=k\}$ ,

$S^{(k)}=\{p\in M|\dim_{C}E(p)\leq k\}$ ,

and set $L^{(-1)}=S^{(-1)}=\emptyset$ for convenience. Clearly we have

$L^{(k)}=S^{(k)}-S^{(k-1)}$ , $S^{(k)}= \bigcup_{i=0}^{k}L^{(i)}$

for $k=0,1,2,$ $\ldots,$
$r$ .

PROPOSITION 2.3. $L^{(k)}$ and $S^{(k)}$ are analytic sets for every integer $k$ with $0\leq k\leq r$ .

PROOF. If we use the notation in (1.1), $S^{(k)}$ is locally expressed on a small open set
$U$ in $M$ as follows:

$S^{(k)}\cap U=\{z\in U|rank(f_{ij}(z))\leq k\}$ .

All $f_{ij}$ are holomorphic on $U$ , so $S^{(k)}$ is analytic. And besides, we come to the
conclusion that $L^{(k)}(=S^{(k)}-S^{(k-1)})$ is analytic because $S^{(k)}$ is analytic and $S^{(k-1)}$ is
closed in $M$ . Q.E.D.

By the proposition stated above, we get the natural filtration which consists of
analytic sets:

$S^{(r)}\supset S^{(r-1)}\supset S^{(r-2)}\supset\cdots\cdots\supset S^{(1)}\supset S^{(0)}\supset S^{(-l)}$ .
(2.4)

$M||$ $S(E)||$ $\emptyset||$

This filtration seems to give us information only about the dimension of the space $E(p)$

at $p$ . In fact, however, if $E$ is integrable at every point $p\in M$ then all $S^{(k)}$ appearing in
(2.4) controll the “direction” of $E(p)$ at each point $p\in S^{(k)}$ . To be more precise,
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THEOREM 2.5 (Tangency Lemma). Suppose $E(\subset\Theta_{M})$ is integrable on the whole $M$ .
Let $k$ be an integer with $0\leq k\leq r$ and $p$ a point in $S^{(k)}$ . Then we have

$E(p)\subset C_{p}S^{(k)}$ ,

where $C_{p}S^{(k)}$ denotes the tangent cone of $S^{(k)}$ at $p$ .

REMARK 2.6. The assumption of theorem (2.5) cannot be dropped. The singular
foliation on $C^{2}=\{(x,y)\}$ generated by $v_{1}=\partial/\partial x$ and $v_{2}=x\partial/\partial y$ is a counterexample.

This theorem can be showed as a corollary of the main theorems in [C]. In this
paper, let us indicate that we can get a stronger result than (2.5) when $E$ is reduced.

PROPOSITION 2.7. Suppose $E(\subset\Theta_{M})$ is a reduced foliation and $p$ is a point in $M$ .
Let $v$ be a germ in $E_{p}$ and let $\{\varphi_{t}=\exp tv\}$ be the local 1 parameter group of trans-

formations induced by $v$ . For all $t$ sufficiently close to $0$ , we have

$(\varphi_{t})_{*}E_{p}=E_{\varphi_{t}(p)}$ ,

where $(\varphi_{t})_{*}$ denotes the differential map of $\varphi_{t}$ .

The following proof of this proposition is due to T. Suwa. We first prepare two
lemmas in advance. The first one is a property which is easily drawn from the
integrability of $E$ .

LEMMA 2.8. Let $v$ be a germ in $E_{p}$ and let $L_{v}$ denote the Lie derivative of $v$ . Then
we have

$L_{v}(F_{p})\subset F_{p}$ ,

where $F$ is the annihilator of $E$ .

PROOF. Take a germ $c$ in $F_{p}$ . For any germ $u$ in $E_{p}$ , we have

$\langle u, L_{v}c\rangle=v(\langle u, c\rangle)-\langle[v, u],\omega\rangle$ .

We have $\langle u, c\rangle=0$ and $\langle[v, u], \omega\rangle=0$ , since $[v, u]\in E_{p}$ . Hence $\langle u, L_{v}c\rangle=0$ for any
$u\in E_{p}$ , and this implies $L_{v}c\in E_{p}^{a}=F_{p}$ . Q.E.D.

LEMMA 2.9. Suppose that $E,$ $F,$ $v$ and $\{\varphi_{t}\}$ are as above. For any germ $u$ in $E_{p}$ and
any germ in $\omega$ in $F_{p}$ , we have

$\frac{\partial}{\partial t}\langle(\varphi_{t})_{*}u, c(\varphi_{t}(p))\rangle=\langle(\varphi_{t})_{*}u, L_{v}c(\varphi_{t}(p))\rangle$ .

PROOF. Choose a coordinate neighborhood $U$ with coordinates $(z_{1}, z_{2}, \ldots, z_{n})$

about $p$ such that $v,$ $u$ and ru have representatives on $U$ and that $E$ and $F$ have finite
numbers of generators on $U$ . Considering only for $t$ sufficiently close to $0$ , we may
assume that $\varphi_{t}(p)$ stays in $U$ . Now we write explicitly on $U$ as

$v= \sum_{i=1}^{n}f_{i}(z)\frac{\partial}{\partial z_{i}}$ , $u= \sum_{i=1}^{n}g_{i}(z)\frac{\partial}{\partial z_{i}}$ and $\omega=\sum_{i=1}^{n}h_{i}(z)dz_{i}$ ,

where $f_{i},$
$g_{i}$ and $h_{i}$ are holomorphic functions on $U$ . Moreover, we set $\varphi_{i}(t, z)=$
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$z_{i}o\varphi_{t}(z)$ and $\varphi(t, z)=(\varphi_{1}(t, z),$
$\ldots$ , $\varphi_{n}(t, z))$ . Then we have

(2.10) $\langle(\varphi_{t})_{*}u, \omega(\varphi_{t}(z))\rangle=\sum_{i,j=1}^{n}g_{i}(z)\frac{\partial\varphi_{j}(t,z)}{\partial z_{i}}h_{j}(\varphi(t, z))$

and

(2.11) $\frac{\partial\varphi_{i}(t,z)}{\partial t}=f_{i}(\varphi(t,z))$

for all $z$ in a small neighborhood around $p$ .
using (2.11), we obtain

$\frac{\partial}{\partial t}\langle(\varphi_{t})_{*}u,\omega(\varphi_{t}(z))\rangle$

Differentialing (2.10) with respect to $t$ and

$= \sum_{i,j=1}^{n}g_{i}(z)\frac{\partial^{2}\varphi_{j}(t,z)}{\partial t\partial z_{i}}h_{j}(\varphi(t, z))+\sum_{i,j,k=1}^{n}g_{i}(z)\frac{\partial\varphi_{j}(t,z)\partial h_{j}(\varphi(t,z))\partial\varphi_{k}(t,z)}{\partial z_{i}\partial z_{k}\partial t}$

$= \sum_{i,j,k=1}^{n}g_{i}(z)\frac{\partial\varphi_{j}(t,z)}{\partial z_{i}}\{\frac{\partial f_{k}}{\partial z_{j}}(\varphi(t,z))h_{k}(\varphi(t,z))+f_{k}(\varphi(t,z))\frac{\partial h_{j}}{\partial_{Z_{k}}}(\varphi(t, z))\}$

$=\langle(\varphi_{t})_{*}u, L_{v}\omega(\varphi_{t}(z))\rangle$ . Q.E.D.

PROOF OF (2.7). We take a coordinate neighborhood $U$ with coordinates
$(z_{1}, z_{2}, \ldots, z_{n})$ about $p$ such that $v$ has a representative on $U$ and that $E$ and $F$ have
finite numbers of generators on $U$ . In order to prove this proposition, it suffices to
show that

(2.12) $(\varphi_{t})_{*}E_{p}\subset E_{\varphi_{t}(p)}$

hold for all $t$ sufficiently close to $0$ . Once we have (2.12), then
$(\varphi_{t}^{-l})_{*}E_{\varphi_{t}(p)}=(\varphi_{-t})_{*}E_{\varphi_{t}(p)}\subset E_{p}$ and thus this proposition.

NOW we take two sections $u\in\Gamma(U, E)$ and $\omega\in\Gamma(U, F)$ arbitrarily. Using (2.9)
repeatedly, we have

$\frac{\partial^{m}}{\partial t^{m}}\langle(\varphi_{t})_{*}u, \omega(\varphi_{t}(p))\rangle|_{t=0}=\langle_{\vee}u,L_{v}\cdots L_{v}\omega\rangle m-times$

for all non-negative integer $m$ , and the right-hand side of this equation is equal to zero
by (2.8). So we have

$\langle(\varphi_{t})_{*}u, \omega(\varphi_{t}(p))\rangle=0$

for all $t$ sufficiently close to $0$ . This implies (2.12). Q.E.D.

NOW let us look back at the tangency lemma (2.5). Take a germ $v\in E_{p}$ and set
$\varphi_{t}=\exp tv$ . Suppose $\varphi_{t}(p)\not\in S^{(k)}$ for some $t$ . Then we have

$\dim E(p)\leq k<\dim E(\varphi_{t}(p))$ ,

which contradicts proposition (2.7). So we have $\varphi_{t}(p)\in S^{(k)}$ for all $t$ sufficiently close
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to $0$ . Hence

$v(p)= \lim_{tarrow 0}\frac{\varphi_{t}(p)-p}{t}$

is in the tangent cone $C_{p}S^{(k)}$ of $S^{(k)}$ at $p$ .
Thus, in the case that $E$ is reduced, theorem (2.5) is easily proved as a corollary of

(2.7).

REMARK 2.13. Theorem (2.5) was proved by P. Baum under the hypotheses that $E$

is reduced, $k=1$ and $p$ is a non-singular point of $S^{(1)}$ (see [B]). For the case of real
singular foliations, see [N], [Ss] and [St].

Using theorem (2.5) we can prove the following results for a singular foliation $E$ of
dimension $r$ on $M$ . For details, we refer to [MY].

THEOREM 2.14. Let $k$ be an integer with $0\leq k\leq r$ and $\mathscr{L}^{(k)}=\{X_{\alpha}\}_{\alpha\in A}$ the natural
Whitney stratification of the analytic set $S^{(k)}$ . Then for any $\alpha\in A$ and $p\in X_{\alpha}$ , we have
$E(p)\subset T_{p}X_{\alpha}$ . Moreover, $E$ induces a non-singular foliation of dimension $k$ on
$X_{\alpha}-S^{(k-1)}$ .

THEOREM 2.15 (Existence of Integral Submanifolds). There exist integral sub-
manifolds (whose dimensions are lower than $r$ ) also on $S(E)$ . To be more precise, there is
a family $\mathscr{L}$ of submanifolds of $M$ such that $M= \bigcup_{L\in}gL$ is a disjoint union and that any
$L\in \mathscr{L}$ and $p\in L$ , we have $E(p)=T_{p}L$ .

Each element $L$ in $\mathscr{L}$ is often called a leaf of $E$ .

THEOREM 2.16 (Local Analytical Triviality). Let $k$ be an integer with $0\leq k\leq r$ and
$p$ a point in $L^{(k)}(=S^{(k)}-S^{(k-1)})$ . Then there exist a small polydisk $D$ of dimension
$n-k$ transverse to $E(p)$ in $T_{p}M$ , a singular foliation $E’$ on $D$ with $E’(p)=\{0\},$ $a$

neighborhood $U$ of $p$ in $M$ and a submersion $\pi$ : $Uarrow D$ such that

$E|_{U}\simeq(\pi^{*}(E^{\prime^{a}}))^{a}$ .

Theorem (2.16) says that the structure of a singular foliation $E$ is locally analytically
trivial along the leaf through each point $p$ in $M$ . However the decomposition
$M= \bigcup_{L\in\ovalbox{\tt\small REJECT}}L$ does not give a stratification because this is not always locally finite. In
the following sections we consider a stratification of $S(E)$ which gives a local triviality of
$E$ along each stratum.

3. Stratifications of the singular set.

Let $E$ be a singular foliation on $M$ . Since the singular set $S(E)$ is analytic, we can
construct the “natural Whitney stratification” of $S(E)$ (see [W]), but this is not enough
to achieve our purpose because the dimension of the leaf of $E$ is not always constant on
each stratum.

EXAMPLE 3.1. Let $f$ be the holomorphic function on $M=C^{3}$ defined by

$f(x,y, z)=x^{2}-y^{2}(y+z^{2})$ ,
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and $\omega$ the holomorphic 1-form on $C^{3}$ defined by

to $=df=2xdx-y(3y+2z^{2})dy-2y^{2}zdz$ .

The coherent subsheaf $F(\subset\Omega_{M})$ generated by $\omega$ is integrable since $dco=ddf=0$ , so $F$

defines a singular foliation on $C^{3}$ . $E=F^{a}(\subset\Theta_{M})$ is generated by the following three
vector fields:

(3.2) $\{$

$v_{1}=y(3y+2z^{2}) \frac{\partial}{\partial x}+2x\frac{\partial}{\partial y}$

$v_{2}=$ $2yz \frac{\partial}{\partial y}-(3y+2z^{2})\frac{\partial}{\partial z}$

$v_{3}=$
$y^{2}z \frac{\partial}{\partial x}$ $+X \frac{\partial}{\partial z}$ .

$E$ is reduced, and rank $E=2$ . By (3.2), $S(E)=S^{(1)}=\{x=yz=y(3y+2z^{2})=0\}=$

$\{x=y=0\}=$ {$z$-axis} and $S^{(0)}=\{(0,0,0)\}$ . Since $S(E)$ is non-singular, $S(E)=$

{$z$-axis} is the only stratum of the natural Whitney stratification of $S(E)$ , but $\dim E(p)$

is not constant on the stratum.

In the above example, in order to get a Whitney stratification such that the leaf
dimension is constant on each stratum, we may separate the bad point $(0,0,0)$ from the
$z$-axis. In this section we prove that there exists a Whitney stratification of $S(E)$ such
that $\dim E(p)$ is constant on each stratum.

DEFINITION 3.3. Let $E(\subset\Theta_{M})$ be a singular foliation of dimension $r$ on $M$, and let
$\mathscr{L}$ be a stratification of $M$ . We say that $\mathscr{L}$ is adapted to $E$ when, for any stratum
$X\in \mathscr{L}$ , there is an integer $i$ with $0\leq i\leq r$ such that $X\subset L^{(i)}$ , i.e., the leaf dimension of
$E$ is constant on each stratum $X\in \mathscr{L}$ .

THEOREM 3.4. Let $E$ be a singular foliation of dimension $r$ on M. Then there exists
a Whitney stratification $\mathscr{L}$ which satisfies:

(i) $\mathscr{L}$ consists offinitely many strata.
(ii) $\mathscr{L}$ is adapted to $E$ .

TO prove this theorem, we introduce some notations on analytic sets. The notation
and basic facts are due to H. Whitney $([W])$ .

Let $A$ be an analytic set. We denote by Sing $(A)$ the singular set of $A$ and denote
by $Reg(A)$ the set of regular (i.e., non-singular) points of $A$ . Moreover we set

$\Sigma(A)=Sing(A)U\{p\in Reg(A)|\dim_{p}A<\dim A\}$ ,

where $\dim_{p}$ $A$ denotes the dimension of $A$ at each point $p\in Reg(A)$ . For two manifolds
$X$ and $Y$, we define a subset $B(X, Y)$ of $X$ by

$B(X, Y)=$ {$p\in X|Y$ is not Whitney regular over $X$ at $p$ }.

Also for two analytic sets $A$ and $A’$ we set

(3.5) $W(A, A’)=\Sigma(A)\cup B(A-\Sigma(A), A’-\Sigma(A’))$ .
$W(A, A’)$ is a analytic subset of $A$ whose dimension is lower than $\dim A$ .
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PROOF OF (3.4). We proceed by downward induction, i.e., we show that if we have
already defined $\mathscr{L}$ which satisfies the two conditions in (3.4) on $\bigcup_{i=k+1}^{r}L^{(i)}$ then we can
extend it on $\bigcup_{i=k}^{r}L^{(i)}$ . At first, $S^{(r-1)}$ is closed in $M$ , so $L^{(r)}=M-S^{(r-1)}$ is a
submanifold. Hence we obtain a Whitney stratification $\tilde{\mathscr{L}}^{(r)}=\{L^{(r)}\}$ of $L^{(r)}$ , which
clearly satisfies the two conditions in (3.4).

Next let $k$ be an integer with $0\leq k\leq r-1$ , and suppose we have already defined a
Whitney stratification $\tilde{\mathscr{L}}^{(k+1)}$ of $\bigcup_{i=k+1}^{r}L^{(i)}$ which satisfies the two conditions in
(3.4). Let $l$ denote the dimension of $L^{(k)}$ as an analytic set. We define a family of
analytic subsets $\{V_{i}\}_{-1\leq i\leq l}$ (inductively) as follows:

(3.6) $\{$

$V_{l}=L^{(k)}$

$V_{l-1}= Clos_{L^{(k)}}(\bigcup_{X\in\ovalbox{\tt\small REJECT}^{-(k+1)}}W(V_{l}, X))$

For each integer with-l $\leq i\leq l-2$ ,

$V_{i}= \{_{(if\dim V_{i+1}=i+1)}^{V_{i+1}(if\dim V_{i+1}<i+1)}C1os_{L^{(k)}}[(\bigcup_{j=i}^{l-2}W(V_{i+1},V_{j+2}-V_{j+1}))\cup(\bigcup_{X\in\tilde{\ovalbox{\tt\small REJECT}}^{(k+1)}}W(V_{i+1}, X))]$

where $Clos_{L^{(k)}}$ $($ $)$ denotes the closure in $L^{(k)}$ . The family $\{V_{i}\}_{-1\leq i\leq l}$ is well-defined
since

(3.7) $\dim V_{i}\leq i$

holds for each integer $i$ with $-1\leq i\leq l$ by the definition of $V\cdot$ , and all $V_{i}$ are analytic
since $\tilde{\mathscr{L}}^{(k+1)}$ has only a finite number of strata. Note that we also have $V_{-1}=\emptyset$ by
(3.7). For each integer $i$ with $-1\leq i\leq l-1$ , moreover, we have $V_{i}\subset V_{i+1}$ because
$V_{i+1}$ is closed in $L^{(k)}$ . Thus we obtain a sequence of analytic subsets of $L^{(k)}$ :
$0V_{l}$

$V_{l}\supset V_{-1}\supset V_{l-2}\supset\cdots\cdots\supset V_{1}\supset V_{0}\supset V_{-1}$ .
(3.8) $||$ $||$

$L^{(k)}$
$\emptyset$

By (3.8),

$L^{(k)}= \bigcup_{i=0}^{l}(V_{i}-V_{i-1})$

tums out to be a disjoint union, so we define a partition of $\bigcup_{i=k}^{r}L^{(i)}$ by

(3.9) $\tilde{\mathscr{L}}^{(k)}=\tilde{\mathscr{L}}^{(k+1)}\cup\{V_{i}-V_{i-1}|0\leq i\leq l, V_{i}-V_{i-1}\neq\emptyset\}$ .

This partition, in fact, gives a Whitney stratification of $\bigcup_{i=k}^{r}L^{(i)}$ with our two conditions
in (3.4). Obviously $\tilde{\mathscr{L}}^{(k)}$ satisfies the two conditions in (3.4) by the definition of $\tilde{\mathscr{L}}^{(k)}$ in
(3.9), so all we have to do is to show that $\tilde{\mathscr{L}}^{(k)}$ is a Whitney stratification.
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First, let us check that each $V_{i}-V_{i-l}(\neq\emptyset)$ is a submanifold of $M$ . By (3.5) and
(3.6) we have $V_{i-1}\supset\Sigma(V_{i})$ , hence

$V_{i}-V_{i-l}\subset V_{i}-\Sigma(V_{i})$

holds. Since $V_{i}-\Sigma(V_{i})$ is a submanifold of $M$ and $V_{i-l}$ is closed in $V_{i},$ $V_{i}-V_{i-1}$ is
also a submanifold.

Next we check the Whitney regularity of $\tilde{\mathscr{L}}^{(k)}$ . Take two strata $X,$
$Y\in\tilde{\mathscr{L}}^{(k)}$

$(X\neq Y)$ .

(CASE 1). If $X,$
$Y\in\tilde{\mathscr{L}}^{(k+1)}$ , the Whitney regularity between $X$ and $Y$ holds by the

inductive assumption.

(CASE 2). If $X\not\in\tilde{\mathscr{L}}^{(k+1)}$ and $Ye\tilde{\mathscr{L}}^{(k+1)},$ $X=V_{i}-V_{i-1}$ holds for an integer $i$

$(0\leq i\leq l)$ . $X$ is a subset of $S^{(k)}$ since $X$ is contained in $L^{(k)}$ , and $S^{(k)}$ is closed in $M$ ,
so we have $Clos_{M}(X)\subset S^{(k)}$ . On the other hand $Y\in\tilde{\mathscr{L}}^{(k+1)}$ implies $Y\subset M-S^{(k)}$ ,
hence we have $Clos_{M}(X)\cap Y=\emptyset$ . Therefore there is no problem about the Whitney
regularity of $X$ over $Y$ .

Next, let $p$ be an arbitrary point in $X=V_{i}-V_{i-1}$ . Then we have

(3.10) $p\not\in W(V_{i}, Y)$

by $p\in V_{i},$ $p\not\in V_{i-1}$ and the definition of $V_{i-1}$ . (3.5) and (3.10) imply

(3.11) $p\not\in\Sigma(V_{i})$ ,

(3.12) $p\not\in B(V_{i}-\Sigma(V_{i}), Y)$ .

We can rewrite (3. 11) as

(3.13) $p\in V_{i}-\Sigma(V_{i})$ ,

so it tums out that $Y$ is Whitney regular at $p$ over $V_{i}-\Sigma(V_{i})$ by (3.12) and
(3.13). Since $V_{i}-V_{i-1}$ is a submanifold of $V_{i}-\Sigma(V_{i})$ , we also find $Y$ to be Whitney
regular at $p$ over $V_{i}-V_{i-1}(=X)$ . This implies the Whitney regularity of $Y$ over $X$ .

(CASE 3) If $X,$ $Y\not\in\tilde{\mathscr{L}}^{(k+1)}$ , we can take two integers $i,j(0\leq i, j\leq l)$ such that
$X=V_{i}-V_{i-1}$ and $Y=V_{j}-V_{j-1}$ . We may assume $i<j$ . First, $Y$ is Whitney regular
over $X$ because (3.6) says that $V_{i-1}$ contains all points in $V_{i}$ at which $Y(=V_{j}-V_{j-1})$ is
not Whitney regular over $V_{i}-\Sigma(V_{i})$ , so those points cannot remain on $V_{i}-V_{i-1}(=X)$ .
In order to check the Whitney regularity of $X$ over $Y$ , it suffices to show

(3.14) $Clos_{M}(X)\cap Y=\emptyset$ .

Since $V_{i}$ is closed in $L^{(k)}$ by (3.6), we have

$Clos_{L^{(k)}}(X)\subset Clos_{L^{(k)}}(V_{i})=V_{i}\subset V_{j-1}$ .

Moreover using $Y=V_{j}-V_{j-1}$ and $Y\subset L^{(k)}$ yields

$Clos_{L^{(k)}}(X)\cap Y=\emptyset$ ,
(3.15)

$(M-L^{(k)})\cap Y=\emptyset$ ,
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and on the other hand we can rewrite $Clos_{M}(X)$ as

$Clos_{M}(X)=(Clos_{M}(X)\cap L^{(k)})\cup(Clos_{M}(X)\cap(M-L^{(k)}))$

(3.16)
$=Clos_{L^{(k)}}(X)U(Clos_{M}(X)\cap(M-L^{(k)}))$ .

Then (3.14) is an immediate consequence of (3.15) and (3.16). Q.E.D.

NOW we give some examples of singular foliations and observe the stratifications we
mentioned in theorem (3.4).

EXAMPLE 3.17. Let $f$ be the holomorphic function on $M=C^{3}$ defined by

$f(x,y, z)=z(x^{2}-y^{3})$ ,

and to the holomorphic 1-form on $C^{3}$ defined by

$\omega=df=2xzdx-3y^{2}zdy+(x^{2}-y^{3})dz$ .

The coherent subsheaf $F(\subset\Omega_{M})$ generated by $c$ is integrable since $d\omega=ddf=0$ , so $F$

defines a singular foliation on $C^{3}$ . $E=F^{a}(\subset\Theta_{M})$ is generated by the following two
vector fields:

(3.18) $\{$

$v_{1}=3y^{2} \frac{\partial}{\partial x}+2x\frac{\partial}{\partial y}$

$v_{2}=3x \frac{\partial}{\partial x}+2y\frac{\partial}{\partial y}-6z\frac{\partial}{\partial z}$ .

$E$ is reduced, and rank $E=2$ . By (3.18), $S(E)=S^{(1)}=\{xz=yz=x^{2}-y^{3}=0\}=$

$\{x=y=0\}\cup\{z=x^{2}-y^{3}=0\}$ and $S^{(0)}=\{(0,0,0)\}$ . In this case, a Whitney stratifi-
cation $\mathscr{L}$ of $M$ defined by

$\mathscr{L}=\{M-S(E), X_{1}, X_{2}, \{0\}\}$ $(\begin{array}{lll}X_{1} =\{x=y =0\}-\{0\}X_{2} =\{z=x^{2} -y^{3}=0\}-\{0\}\end{array})$

meets the requirements in theorem (3.4).
The following example tells us that a Whitney stratification on $M$ which satisfies

(3.4) cannot generally be obtained by adding some strata to the natural Whitney
stratification of $S^{(0)}$ .

EXAMPLE 3.19. Let $\omega$ be a holomorphic 1-form on $M=C^{3}$ defined by

$\omega=2xz^{2}dx-2yzdy+y^{2}dz$ ,

and $F(\subset\Omega_{M})$ a coherent subsheaf generated by to. $E=F^{a}(\subset\Theta_{M})$ is generated by the
following two vector fields:

(3.20) $\{$

$v_{1}=y \frac{\partial}{\partial y}+2z\frac{\partial}{\partial z}$

$v_{2}=y \frac{\partial}{\partial x}+xz\frac{\partial}{\partial y}$ .
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$E$ is integrable since $[v_{1}, v_{2}]=v_{2}$ , so $E$ defines a singular foliation on $C^{3}$ . $E$ is reduced,
and $rankE=2$ . By (3.20), $S(E)=S^{(1)}=\{y=xz=0\}=\{x- axis\}\cup$ {$z$-axis} and
$S^{(0)}=\{y=z=0\}=$ {$x$-axis}. In this situation, a stratification $\mathscr{L}’$ of $M$ defined by

$\mathscr{L}’=\{M-S(E), S(E)-S^{(0)}, S^{(0)}\}$

satisfies the two conditions in theorem (3.4), but this is not a Whitney stratification (and
$E$ is not trivial along $S^{(0)}$ ). A Whitney stratification $\mathscr{L}$ of $M$ which meets the
requirements in theorem (3.4) is given by

$\mathscr{L}=\{M-S(E), X_{1}, X_{2}, \{0\}\}$ $(\begin{array}{ll}X_{1} =\{z- axis\}-\{0\}X_{2} =\{x- axis\}-\{0\}\end{array})$

4. Local topological triviality of singular foliations.

In this section we examine the local topological triviality of singular foliations,
which is the main subject in this paper. Let $E$ be a singular foliation on $M$ and $\mathscr{L}$ a
stratification of $M$ . For the topological triviality of $E$ along each stratum in $\mathscr{L}$ , it is
necessary that ,9‘ is adapted to $E$ as stated in the preceding section. We consider only
stratifications adapted to $E$ hereafter. Note that theorem (3.4) assures that there always
exists a stratification adapted to $E$ with a stronger condition (Whitney regularity).

TO tell the consequence at first, $E$ is topologically locally trivial along each stratum
in $\mathscr{L}$ if $\mathscr{L}$ satisfies the “foliated Verdier condition” which will be mentioned later. We
begin this section by recalling basic concepts to give the precise definition of the local
topological triviality. For more details, see, for example, [GWPL] pp 41-50.

DEFINITION 4.1. Let $X$ be a submanifold of $M$ . A tubular neighborhood of $X$ is a
triple $(T, \pi,p)$ which satisfies:

(i) $T$ is a neighborho$od$ of $X$ in $M$ .
(ii) $\pi:Tarrow X$ is a submersion (with $\pi|_{X}=id_{X}$ ).
(iii) $\rho:Tarrow R$ is a $C^{\infty}$ -function.
(iv) Let $\pi_{X}$ : $N_{X}arrow X$ denote the normal bundle of $X$ in $M$ , and let $Z$ denote the

image of the zero section of $N_{X}$ . Then there exist a neighborhood $D$ of $Z$ in $N_{X}$ and a
diffeomorphism $\varphi:Darrow T$ such that

$\pi_{X}|_{D}DT\backslash _{X}^{\underline{\varphi}}\nearrow\pi$

commutes.
(v) Let $\tau$ : $N_{X}arrow R$ denote the distance function to $Z$ which is determined by a

Riemannian metric induced on $N_{X}$ . Then

$\tau|_{D}D\backslash _{R}^{\underline{\varphi}}A^{\tau}\rho$

commutes.
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DEFINITION 4.2. Let $M$ be a differentiable manifold of dimension $n$ and $A$ a subset
of $M$ . For a Whitney stratification $\mathscr{A}$ of $A$ , we set

$A^{i}=$
$\bigcup_{X\in d,d1mX=i}X$

$(0\leq i\leq n)$ ,

i.e., $A^{i}$ is the union of all strata of dimension $i$ . Each $A^{i}(\neq\emptyset)$ is an i-dimensional
submanifold in $M$ since $\mathscr{A}$ is a Whitney stratification. A family of a tubular
neighborhood of each $A^{i}(\neq\Phi)$

$g^{-}=\{(T^{i}, \pi^{i},\rho^{i})\}_{0\leq i\leq n}$

is called a tubular neighborhood system of $\mathscr{A}$ . A tubular neighborhood system $F=$
$\{(T^{i}, \pi^{i},\rho^{i})\}$ of $\mathscr{A}$ is said to be controlled if for all integers $i,j(i<j)$ there exist a
neighborhood $U^{i}$ of $A^{i}$ in $T^{i}$ and a neighborhood $U^{j}$ of $A^{j}$ in $T^{j}$ such that

(4.3) $\pi^{l}0\pi^{J}=\pi$ ,

(4.4) $\rho^{i}\circ\pi^{j}=p^{i}$

hold on $U^{i}\cap U^{j}$ .

It is generally known that every Whitney stratification admits a controlled tubular
neighborhood system.

NOW we give the definition of the local topological triviality. In the following we
shall fix a Riemannian metric of $M$ .

DEFINITION 4.5. Let $M$ be a complex manifold of dimension $n$ and $E(\subset\Theta_{M})$ a
singular foliation on $M$ . Also, let $X$ be a submanifold in $M$ and set $l=\dim_{C}X$ .
Suppose $X\subset L^{(k)}$ , i.e., the leaf dimension of $E$ is constant on X. $E$ is said to be
topologically locally trivial along $X$ when for any point $p\in X$ there exist

$(T, \pi,\rho)$ : a tubular neighborhood of $X$ ,

$U_{p}$ : a sufficiently small neighborhood of $p$ in $M$ ,

$D$ : a small neighborhood around $0$ in $C^{n-l}$ ,

$E’$ : a singular foliation on $D$ ,

$h$ : a homeomorphism from $U_{p}$ onto $(X\cap U_{p})\cross D$

such that
(i) $h(x)=(x, 0)$ holds for any $x\in X\cap U_{p}$ .
(ii) $h|_{U_{p^{-}}X}$ transforms the leaves defined by $E$ into the product of $X\cap U_{p}$ and the

leaves defined by $E’$ .
(iii) Let $pr_{1}$ : $(X\cap U_{p})\cross Darrow X$ denote the natural projection to the first com-

ponent, then

$U_{p}$
$\underline{h}$

$(X\cap U_{p})\cross D$

$\pi|_{U}\searrow_{X}\nearrow pr_{1}$

commutes.
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REMARK 4.6. In this paper we consider only complex analytic foliations, so the
trivialization $h:U_{p}arrow(X\cap U_{p})\cross D$ is in practice a diffeomorphism.

Next, let us introduce the foliated Verdier condition for a stratification of $S(E)$ . In
order to define the condition, it is necessary to refer to the notion of the distance
between two vector subspaces. The distance is generally defined by measuring the angle
between $V$ and $W$ .

DEFINITION 4.7. Let $V,$ $W$ be two vector subspaces of a finite-dimensional inner
product space. We define the distance between $V$ and $W$ by

$\delta(W, V)=\sup_{u\epsilon W^{\perp}-\{0\}}\frac{|\langle u,.v\rangle|}{||u||||v||}$

where $||\cdot||$ denotes the norm induced by the inner product $\langle$ , $\rangle$ .

Note that $\delta(W, V)$ is not always equal to $\delta(V, W)$ . Clearly we have $\delta(W, V)\in$

$[0,1]$ , and we can also express $\delta(W, V)$ as follows:

$\delta(W, V)=\sup_{v\in V-\{0\}^{w\in W-\{0\}}}$
inf $\sin\ll v,$ $w\gg$ ,

where $\ll v,$ $w\gg$ denotes the angle between $v$ and $w$ .

REMARK 4.8. It is easy to check that $\delta(W, V)$ satisfies the following properties.
(i) $\delta(W, V)=0\Leftrightarrow V\subset W$ .
(ii) $\dim V=\dim W\Rightarrow\delta(V, W)=\delta(W, V)$ .
(iii) $\delta(W, V)=1\Leftrightarrow$ there exists a non-zero vector $v\in V$ such that $\langle v, w\rangle-0$ for

all $w\in W$

$\Leftrightarrow V\cap W^{\perp}\neq\{0\}$ .
(iv) $\dim W<\dim V\Rightarrow\delta(W, V)=1$ .

NOW, we are ready to define the foliated Verdier condition for a stratification
adapted to $E$ . In the following we identify tangent spaces of nearby points by parallel
translation determined by the Riemannian metric.

DEFINITION 4.9. Let $E(\subset\Theta_{M})$ be a singular foliation on $M$ and let $X$ be a
submanifold in $M$ such that $X\subset L^{(k)}$ , i.e., the leaf dimension of $E$ is constant on $X$ .
Let $p$ be a point in $X$ . We say $E$ satisfies the foliated Verdier condition at $p$ over $X$

when there exist a tubular neighborhood $(T, \pi,\rho)$ of $X$ , a neighborhood $U_{p}$ around $p$

contained in $T$ , and a real number $\lambda>0$ such that

$\delta(E(y), T_{p}X)\leq\lambda\cdot\rho(y)$

hold for all $y\in U_{p}-X$ . If $E$ satisfies the foliated Verdier condition over $X$ at every
point $p\in X$ , then $E$ is simply said to satisfy the foliated Verdier condition over $X$ .
Moreover, a stratification ,9“ adapted to $E$ is called a foliated Verdier stratification if $E$

satisfies the foliated Verdier condition over all strata $X\in \mathscr{L}$ .

We have the following “isotopy lemma” for singular foliations.
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THEOREM 4.10. Let $E(\subset\Theta_{M})$ be a singular foliation of dimension $r$ on M. Suppose
$\mathscr{L}$ is a foliated Verdier stratification. Then $E$ is topologically locally trivial along each
stratum $X\in \mathscr{L}$ .

We introduce here a lemma for the proof of theorem (4.10). This lemma, which is
the most essential part in the proof of (4.10), says that the foliated Verdier condition
assures that any continuous vector field on a stratum $X$ can be “lifted” onto each
stratum sufficiently close to $X$ .

LEMMA 4.11. Let $E(\subset\Theta_{M})$ be a singular foliation of dimension $r$ on $M$ and let $\mathscr{L}$ be
a foliated Verdier stratification. Let $X,$ $Y$ be two strata of $\mathscr{L}$ such that $X\cap\overline{Y}\neq\emptyset$ .
Given a real continuous vector field $v:Xarrow TX$ such that $v(x)\neq 0$ for all $x\in X$ . Then
for any tubular neighborhood $(T, \pi,p)$ of $X$ , we can construct a continuous extension $\xi$ of
$v$ on $U\cap Y$ (where $U$ is a sufficiently small neighborhood of $X$) so that the following
conditions are fulfilled:

(i) $\pi_{*}\circ\xi=v\circ\pi$ holds on $U\cap Y$ .
(ii) $\xi(y)\in E(y)$ holdfor all $y\in U\cap Y$ , i.e., $\xi$ is tangent to the leaves defined by $E$ at

all point $y$ in $U\cap Y$ .
(iii) Let $\{\varphi_{t}=\exp t\xi\}$ be the local 1-parameter group of transformations induced by

$\xi$ . Then for all $t$ sufficiently close to $0$ and all point $y\in U\cap Y$ , we have $\rho(\varphi_{t}(y))>0,$ $i.e.$ ,
the (local) integral curve through $y$ does not meet $X$ .

In the proof of this lemma, we use some basic facts about linear algebra. Let $\gamma$ be
a finite-dimensional vector space with an inner product $\langle$ , $\rangle$ , and let $V,$ $W$ be two
vector subspaces of $\gamma$ . We set $K=W\cap V^{\perp}$ and $J=W\cap K^{\perp}$ , and we denote by
$pr_{V}$ : $\gammaarrow V$ the orthogonal projection to $V$. Then we have the following properties.

(i) $pr_{V}|_{J}$ : $Jarrow V$ is injective.
(ii) $pr_{V}|_{J}$ : $Jarrow V$ is $surjective\Leftrightarrow V\cap W^{\perp}=\{0\}$ .
(iii) $\delta(W, V)=\delta(J, V)$ .

PROOF OF (4.11). Set $\dim_{R}X=2l$ . We will give below how to determine $\xi(y)$ for
all point $y\in Y$ around a fixed point $p\in X$ . Since we may only consider $y$ sufficiently
close to $X$ , we may discuss under the following situation:

$U_{p}$ : a coordinate neighborhood around $p$ ,

$(x_{1}, \ldots, x_{2n})$ : real coordinates on $U_{p}$ such that $x(p)=(0,0, \ldots, 0)$

and $X\cap U_{p}=\{x_{2l+1}=x_{2l+2}=\cdots=x_{2n}=0\}$ ,

$\pi$ : $U_{p}$ $arrow$ $X$

$(x_{1}, x_{2}, \ldots, x_{2n})\mapsto(x_{1}, x_{2}, \ldots, x_{2l}, 0,0, \ldots, 0)$ ,

$\rho$ : $U_{p}$ $arrow$ $R$

$(x_{1}, x_{2}, \ldots, x_{2n})->\sqrt{x_{2l+1}^{2}+x_{2l+2}^{2}++x_{2n}^{2}}$ .

For any point $y\in U_{p}$ , the vectors $\{(\partial/\partial x_{1})_{y}, (\partial/\partial x_{2})_{y}, \ldots, (\partial/\partial x_{2n})_{y}\}$ form an ortho-
normal basis of $T_{y}M$ . We may also assume that there exists $\lambda>0$ such that
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(4.12) $\delta(E(y), T_{p}X)\leq\lambda\cdot\rho(y)$

hold for all $y\in U_{p}\cap Y$ . For the sake of simplicity, we put $q=\pi(y)$ .
Let $\psi_{y}$ be the linear map from $T_{q}X$ to $T_{y}M$ defined by

$\psi_{y}((\frac{\partial}{\partial x_{i}})_{q})=(\frac{\partial}{\partial x_{i}})_{y}$ $(i=1,2, \ldots, 2l)$ ,

i.e., $\psi_{y}(u)$ is the parallel displacement of $u$ . Then the vector field $\eta$ on $U_{p}\cap Y$ deter-
mined by $\eta(y)=\psi_{y}(v(q))$ is clearly a continuous extension of $v$ and satisfies the first and
third conditions in (4.11), but does not meet the requirement of the second condition.
So we will modify $\eta$ so that $\eta(y)$ is tangent to the leaf defined by $E$ at each $y$ .

We also define two sub-vector spaces of $T_{y}M$ by

$K(y)=E(y)\cap ker(\pi_{*}|_{T_{y}M})(=E(y)\cap(\psi_{y}(T_{q}X))^{\perp})$

$J(y)=E(y)\cap K(y)^{\perp}$ .
By (4.12), we have

(4.13) $\delta(E(y), T_{q}X)<\frac{1}{2}$

for all $y$ sufficiently close to $X$ , so we may assume (4.13) hold for all $y\in U_{p}\cap Y$ . Then
we have $T_{q}X\cap E(y)^{\perp}=\{0\}$ from (4.8), thus $\pi_{*}|_{J(y)}$ : $J(y)arrow T_{q}X$ is a linear iso-
morphism. We define here a linear map $L_{y}$ : $T_{q}Xarrow T_{y}M$ , which gives the modification
for $\eta$ , by

$L_{y}=(\pi_{*}|_{J(y)})^{-1}-\psi_{y}$ .

Then we have

(4.14) $\delta(E(y), T_{q}X)=\delta(J(y), T_{q}X)$

$=\delta(T_{q}X, J(y))$

$= \sup_{w\in J(y)-\{0\}}\inf_{u\in T_{q}X-\{0\}}\sin\ll w,$
$u\gg$

$= \sup_{w\in J(y)-\{0\}}\sin\ll w,$
$\pi_{*}(w)\gg$

$= \sup_{w\in J(y)-\{0\}}\tan\ll w,$
$\pi_{*}(w)\gg\cdot\cos\ll w,$ $\pi_{*}(w)\gg$

$= \sup_{w\in J(y)-\{0\}}\frac{||w-\psi_{y}(\pi_{*}(w))||}{||\psi_{y}(\pi_{*}(w))||}\cdot\cos\ll w,$ $\pi_{*}(w)\gg$

$= \sup_{w\in J(y)-\{0\}}\frac{||L_{y}(\pi_{*}(w))||}{||\pi_{*}(w)||}\cdot\cos\ll w,$ $\pi_{*}(w)\gg$ .

NOW we define the vector field $\xi(y)$ , which we are asking for, by

$\xi(y)=\psi_{y}(v(q))+L_{y}(v(q))$ $(=(\pi_{*}|_{J(y)})^{-1}(v(q)))$

$foral1y\in U_{p}\cap Y$ . $Itisclearthat\xi satisfies(i)and(ii)in(4.11),$ $soletuscheck(iii)and$

that $\xi$ is a continuous extension of $v$ .
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Take a sufficiently small $\epsilon>0$ and set $I=(-\epsilon, \epsilon)$ . Suppose that there exists $y\in$

$U_{p}\cap Y$ such that $p(\varphi_{t}(y))=0$ for some $t\in I$ . Since $\rho(\varphi_{0}(y))=\rho(y)>0$ , we can take a
real number $t_{0}\neq 0$ such that $\rho(\varphi_{t}(y))>0$ for all $t\in(-|t_{0}|, |t_{0}|)$ and $p(\varphi_{t_{0}}(y))=0$ . We
may assume $t_{0}>0$ . For the sake of simplicity, we put $f(t)=\rho(\varphi_{t}(y))$ .

Set $\varphi_{t}(y)=(y_{1}(t),y_{2}(t),$ $\ldots,y_{2n}(t))$ . Since $\varphi_{t}=\exp t\xi$ , we have

$\xi(\varphi_{t}(y))=\sum_{i=1}^{2n}y_{i}’(t)\frac{\partial}{\partial x_{i}}$ .

Then for all $t\in(O, t_{0})$ we obtain

(4.15) $| \frac{df}{dt}(t)|=|\sum_{i=1}^{2n}\frac{\partial\rho}{\partial x_{i}}(\varphi_{t}(y))\cdot\frac{dy_{i}}{dt}(t)|$

$=| \sum_{i=2l+1}^{2n}\frac{y_{i}(t)}{\sqrt{y_{2l+1}(t)^{2}++y_{2n}(t)^{2}}}\cdot y_{i}’(t)|$

$=| \sum_{\iota=2l+1}^{2n}\frac{y_{i}(t)}{\rho(\varphi_{t}(y))}\cdot y_{i}’(t)|$

$=1\cdot||L_{\varphi_{t}(y)}(v(\pi(\varphi_{t}(y))))||$

$=||L_{\varphi_{t}(y)}(v(q_{t}))||$ ,

where $q_{t}=\pi(\varphi_{t}(y))$ . On the other hand, (4.14) tells us that for all $y$ we have

(4.16) $\delta(E(y), T_{q}X)\geq\frac{||L_{y}(v(q))||}{||v(q)||}\cdot\cos\ll(\pi_{*}|_{J(y)})^{-1}(v(q)),$ $v(q)\gg$ ,

and the foliated Verdier condition implies

$\ll(\pi_{*}|_{J(y)})^{-1}(v(q)),$ $v(q)\ggarrow 0$ (as $\rho(y)arrow 0$).

Moreover we may assume $U_{p}$ is relatively compact, thus

$M_{0}= \sup_{X\in X\cap U_{p}}||v(x)||<+\infty$
.

Hence (4.16) implies that

(4.17) $||L_{y}(v(q))|| \leq\delta(E(y), T_{q}X)\cdot\frac{||v(q)||}{\cos\ll(\pi_{*}|_{J(y)})^{-1}(v(q)),v(q)\gg}$

$\leq 2M_{0}\cdot\delta(E(y), T_{q}X)$

$\leq 2\lambda M_{0}\cdot p(y)$
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hold for all $y\in U_{p}\cap Y$ . By (4.15) and (4.17), we obtain

$| \frac{df}{dt}(t)|\leq 2\lambda M_{0}\cdot\rho(\varphi_{t}(y))=\exists\lambda_{0}\cdot f(t)$

for all $t\in(O, t_{0})$ . Thus we have $-\lambda_{0}\cdot f(t)\leq(df/dt)(t)$ . Integrating the both sides
from $0$ to $t$ , it tums out that

$p(y)\cdot e^{-\lambda_{\{)}t}\leq f(t)$

hold for all $t\in(O, t_{0})$ . This contradicts $f(t_{0})=0$ , thus (iii) in (4.11) holds.
Next let us check the continuity of $\xi$ constructed above. $E$ induces a non-singular

foliation on $Y$ because ,9‘ is adapted to $E$ . Hence it is clear that $\xi$ is continuous on $Y$

by the way of construction. The fact that $\xi$ is a continuous extension of $v$ is an
immediate consequence of (4.17). Q.E.D.

PROOF OF (4.10). Let $\mathscr{L}$ be a foliated Verdier stratification. Look upon all strata
in $\mathscr{L}$ as real differentiable submanifolds and take a controlled tubular neighborhood
system $\mathscr{F}=\{(T^{2i}, \pi^{2i},p^{2i})\}$ of $\mathscr{L}$ . Recall that $M^{2i}$ denotes the union of all strata of
dimension $2i$ and each $(T^{2i}, \pi^{2i},\rho^{2i})$ is a tubular neighborhood of $M^{2i}$ . Choose a
stratum $X\in \mathscr{L}$ arbitrarily, and set $\dim_{R}X=2l$ .

By the definition of the local topological triviality, it suffices to show that for every
point $p\in XE$ is trivial along $X$ on a sufficiently small neighborhood $U$ of $p$ . This is a
local assertion at $p$ , so we may assume

$U$ : a coordinate neighborhood of $p$ contained in $T^{2l}$ ,

$(x_{1}, \ldots, x_{2n})$ : real coordinates on $U$ such that $x(p)=(0,0, \ldots, 0)$

and $X\cap U=\{x_{2l+1}=x_{2l+2}=\cdots=x_{2n}=0\}$ .

Hereafter we argue only on $U$ . By shrinking all $T^{2i}(l\leq i<n)$ , we can take (suf-
ficiently small) closed disk bundles $F^{2i}\subset T^{2i}$ so that

(4.18)
$Clos_{U}(F^{2i})-F^{2i}\subset\bigcup_{l\leq j\leq i-1}(M^{2j}\cap U)$ .

In order to get a local trivialization $h:Uarrow(U\cap X)\cross D$ , it is sufficient to integrate
continuous vector fields $\xi_{1},$ $\xi_{2},$

$\ldots,$
$\xi_{2l}$ on $U$ such that for every $j(1\leq j\leq 2l)$ we have

(4.19) (i) $( \pi^{2l})_{*}\circ\xi_{j}=\frac{\partial}{\partial x_{j}}\circ\pi^{2l}$ holds on $U$ .

(1i) $\xi_{j}(y)\in E(y)$ hold for all $y\in U-X$ , i.e., $\xi_{j}$ is tangent to the
leaves defined by $E$ at all point $y$ in $U-X$ .

(iii) For any point $y\in U$ , the integral curve of $\xi_{j}$ through $y$ stays in
the stratum including $y$ .

We do this work by constructing $\xi_{1}^{(2i)},$ $\xi_{2}^{(2i)},$

$\ldots,$

$\xi_{2l}^{(2i)}$ on each $M^{2i}\cap U$ successively for
$i=l,$ $l+1,$

$\ldots,$
$n$ .
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We define $\xi_{1}^{(2l)},$ $\xi_{2}^{(2l)},$

$\ldots$ , $\xi_{2l}^{(2l)}$ on $M^{2l}\cap U(=X\cap U=\{x_{2l+1}=x_{2l+2}=\cdots=x_{2n}=0\})$

to be $\partial/\partial x_{1},$ $\partial/\partial x_{2},$

$\ldots,$
$\partial/\partial x_{2l}$ respectively. It is clear that $\xi_{1}^{(2l)},$ $\xi_{2}^{(2l)},$

$\ldots,$

$\xi_{2l}^{(2l)}$ satisfy the
three conditions in (4.19).

Suppose we have already constructed all $\xi_{1}^{(2i)},$ $\xi_{2}^{(2i)},$

$\ldots,$

$\xi_{2l}^{(2i)}$ which satisfy $(i)-(iii)$ in
(4.19) on each $M^{2i}\cap U$ for $l\leq i\leq a-1$ . In order to define $\xi_{1}^{(2a)},$ $\xi_{2}^{(2a)},$

$\ldots,$

$\xi_{2l}^{(2a)}$ on
$M^{2a}\cap U$ , we construct them on each $T^{2i}\cap M^{2a}\cap U(l\leq i\leq a-1)$ and glue the pieces
together by means of a partition of unity on $M^{2a}\cap U$ .

We may assume that each $T^{2i}(l\leq i\leq a-1)$ is so small that we could apply lemma
(4.11) to $M^{2i}\cap U$ and $T^{2i}\cap U$ . Note that $\xi_{j}^{(2i)}\neq 0$ on $M^{2i}\cap U$ for all $i$ with
$l\leq i\leq a-1$ and for all $j$ with $1\leq j\leq 2l$ because $(\pi^{2l})_{*}\circ\xi_{j}^{(2i)}=\partial/\partial x_{j}\circ\pi^{2l}$ holds on
$M^{2i}\cap U$ by the inductive assumption. Thus, applying lemma (4.11), we obtain con-
tinuous extensions $\eta_{j}^{2i}$ of $\xi_{j}^{(2i)}$ on $T^{2i}\cap M^{2a}\cap U$ which satisfy $(i)-(iii)$ in (4.11) for all $i,j$

with $l\leq i\leq a-1,1\leq j\leq 2l$ .
NOW we define $\xi_{j}^{(2a)}$ on $M^{2a}\cap U$ as follows. First, we set

$Q^{2(a-1)}=T^{2(a-1)}\cap M^{2a}\cap U$ ,

$Q^{2i}=(T^{2i}- \bigcup_{m=i+1}^{a-1}Clos_{U}(F^{2m}))\cap M^{2a}\cap U$ (for $i=a-2,a-3,$ $\ldots,$
$l+1,$ $l$).

Note that $\{Q^{2i}\}_{l\leq i\leq a-1}$ is an open covering of $M^{2a}\cap U$ by (4.18). Then glue all $\eta_{j}^{2i}$ on
$Q^{2i}$ together by means of a partition of unity on $M^{2a}\cap U$ subordinate to $\{Q^{2i}\}$ , and
define $\xi_{j}^{(2a)}$ to be the resulting vecter field. Let us check below that $\xi_{i}^{(2a)}$ meets the three
requirements in (4.19) for each $j$ .

At first, we will show that all $\eta_{j}^{2k}(l\leq k\leq a-1)$ satisfy (i). The following
equation holds on $Q^{2k}$ :

$(\pi^{2l})_{*}\circ\eta_{j}^{2k}=(\pi^{2l}0\pi^{2k})_{*}\circ\eta_{j}^{2k}=(\pi^{2l})_{*}\circ(\pi^{2k})_{*}\circ\eta_{j}^{2k}=(\pi^{2l})_{*}\circ\xi_{j}^{(2k)}0\pi^{2k}$

$= \xi_{j}^{(2l)}0\pi^{2l}0\pi^{2k}=\frac{\partial}{\partial x_{j}}o\pi^{2l}$ ,

thus $\eta_{j}^{2k}$ fulfills (i). It is obvious that all $\eta_{j}^{2k}$ satisfy (ii). For (iii), it suffices to show
that if $y\in Int(F^{2i})\cap M^{2a}\cap U$ then the integral curve of $\xi_{j}^{(2a)}$ through $y$ does not meet
$M^{2i}\cap U$ (for every integer $i$ with $l\leq i\leq a-1$ ). Since $F^{2i}$ does not intersect $Q^{2k}$

with $l\leq k\leq i-1$ by the definition of $Q^{2k},$ $\xi_{j}^{(2a)}$ has been determined on Int $(F^{2i})\cap$

$M^{2a}\cap U$ using only $\eta_{j}^{2k}$ with $i\leq k\leq a-1$ . Let $\{(\psi_{j}^{2k})_{t}=\exp t\eta_{j}^{2k}\}$ and $\{(\varphi_{j}^{(2k)})_{t}=$

$\exp t\xi_{j}^{(2k)}\}$ denote the local 1-parameter groups of transformations respectively. By the
construction of $\eta_{j}^{2i},$ $(\psi_{j}^{2i})_{t}(y)$ does not meet $M^{2i}$ . For each integer $k$ with $i<k$

$\leq a-1$ , we have $p^{2i}=p^{2i}\circ\pi^{2k}$ by (4.4). Hence

$p^{2i}\circ(\psi_{j}^{2k})_{t}(y)=\rho^{2i}\circ\pi^{2k}\circ(\psi_{j}^{2k})_{t}(y)=p^{2i}\circ(\varphi_{j}^{(2k)})_{t}(y)>0$

hold for all $t$ sufficiently close to $0$ by the inductive assumption. This implies that
$(\psi_{j}^{2k})_{t}(y)$ does not meet $M^{2i}$ for all $t$ sufficiently close to $0$ , thus (iii) holds.

This completes the induction and the proof of this theorem. Q.E.D.

Let us close this paper by giving some examples about foliated Verdier stratifications.
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EXAMPLE 4.20. Let $v_{1},$ $v_{2}$ be holomorphic vector fields on $M=C^{3}$ defined by

(4.21) $\{$

$v_{1}=y \frac{\partial}{\partial x}-xyz\frac{\partial}{\partial y}+xy^{2}\frac{\partial}{\partial z}$

$v_{2}=z \frac{\partial}{\partial x}-xz^{2}\frac{\partial}{\partial y}+xyz\frac{\partial}{\partial z}$ .

Let $E(\subset\Theta_{M})$ be the coherent subsheaf generated by $v_{1},$ $v_{2}$ . $E$ is integrable since
$[v_{1}, v_{2}]=xyv_{1}+xzv_{2}$ , so $E$ defines a singular foliation on $C^{3}$ . The rank of $E$ is one,
and by (4.21), $S(E)=S^{(0)}=\{y=z=0\}=$ {$x$-axis}. Set $X=$ { $x$-axis} and $Y=C^{3}-$

{$x$-axis}, then $\mathscr{L}=\{X, Y\}$ gives a foliated Verdier stratification of $C^{3}$ . Therefore $E$ is
topologically locally trivial along $X$ by (4.10).

EXAMPLE 4.22. Let $v_{1},$ $v_{2},$ $v_{3}$ be holomorphic vector fields on $M=C^{3}$ defined by

(4.23) $\{$

$v_{1}=$
$3y^{2} \frac{\partial}{\partial x}$

$+2x \frac{\partial}{\partial y}$

$v_{2}=$ $(x^{2}-y^{3}) \frac{\partial}{\partial y}+3y^{2}z\frac{\partial}{\partial z}$

$v_{3}=(x^{2}-y^{3}) \frac{\partial}{\partial x}$ $-2xz \frac{\partial}{\partial z}$ .

Let $E(\subset\Theta_{M})$ be the coherent subsheaf generated by $v_{1},$ $v_{2},$ $v_{3}$ . We can easily check
that $E$ is integrable (at every point of $C^{3}$ ), so $E$ defines a singular foliation on $C^{3}$ .
The rank of $E$ is two, and by (4.23), $S(E)=S^{(1)}=\{xz=yz=x^{2}-y^{3}=0\}=$

$\{x=y=0\}\cup\{z=x^{2}-y^{3}=0\}$ and $S^{(0)}=\{x=y=0\}$ . Set $X_{1}=\{x=y=0\}-\{0\}$

and $X_{2}=\{z=x^{2}-y^{3}=0\}-\{0\}$ , then $\mathscr{L}=\{C^{3}-S(E), X_{1}, X_{2}, \{0\}\}$ gives a foliated
Verdier stratification of $C^{3}$ . Therefore $E$ is topologically locally trivial along each
stratum of $\mathscr{L}$ by (4.10).

EXAMPLE 4.24. Let us recall the singular foliation $E$ on $C^{3}$ given in (3.19). If we
take the stratification $\mathscr{L}’=\{C^{3}-S(E), S(E)-S^{(0)}, S^{(0)}\}$ , the structure of $E$ is not
trivial at $0$ along the strarum $S^{(0)}$ . So it is necessary to separate the bad point $0$

from $S^{(0)}$ to obtain the local triviality along each stratum. The stratiPcation $\mathscr{L}=$

$\{C^{3}-S(E), X_{1}, X_{2}, \{0\}\}$ is adapted to $E$, but this is not a foliated Verdier stratification
( $E$ does not satisfy the foliated Verdier condition at $p=(x, 0,0)$ $(x\neq 0)$ over
$X_{2}=\{x- axis\}-\{0\}$ . See the directions of the leaves through $(x, 0, z)\in C^{3}$ for $z\in C$

sufficiently close to $0$). We cannot take a foliated Verdier stratification for this type of
singular foliations.
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