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For a sequence $a=\{a(n)\}$ of integers (a member of $N^{N}$ ), set

$A_{a}=\oplus_{m=1}^{\infty}\oplus_{n=}^{a(m_{1})}Z$ .

One can view $A_{a}$ as the group of all functions from the set $D_{a}=\{(m, n) : n\leq a(m)\}$ in
$Z$ which are equal to $0$ on all but finitely many pairs $(m, n)$ in $D_{a}$ . Considering $N^{N}$ as
a directed set ordered by the product-ordering ($a\leq b$ iff $a(n)\leq b(n)$ for all $n$ ), we get an
inverse system

$\mathscr{A}=\langle A_{a}, \pi_{a}^{b}, N^{N}\rangle$

of Abelian groups, where $\pi_{a}^{b}$ : $A_{b}arrow A_{a}$ are the natural projections. The first derived
limit

$\lim_{arrow}(1)\mathscr{A}$

of this inverse system is an object of considerable interest in several areas of mathe-
matics ([14], [4], [9], [10], [6; \S 8]). The purpose of this short note is to connect it with
yet another area, descriptive set theory. The problem we consider was originally asked
by Jayne and Rogers and formulated in its present form by Fremlin ([11], $[1; 230 (d)]$ ,
[2; DI] $)$ . The original question of J. E. Jayne and C. A. Rogers states whether for a
given Polish space $M$ and analytic subset $X$ of $M$ which is not Borel there is always a
compact subset $K$ of $M$ such that $X\cap K$ is not Borel. This of course leads to similar
questions about other classes of sets of reals and the way they behave from ’the point of
view of compact sets’ (see [11], [12], [18]). For example, the role of Martin’s axiom and
the negation of the continuum hypothesis (or more precisely the role of the boundedness
number of the ordering of eventual dominance in $N^{N}$ ) in finding positive answers to
these kind of questions has been recognized very early ([11]). This was the motivation
behind the problem (which we solve here) whether similar assumptions are also sufficient
to answer the Jayne-Rogers question without the restriction that the set $X$ is analytic
([1; 230 ( $d)],$ $[2$ ; DI]). In our proofs we shall use ideas from a few different subjects.
For background on the homological algebra needed for this paper the reader is referred
to [4]. The background on descriptive set theory can be found in [17], while the
background on forcing axioms can be found in [1], [5], [6], [7], and [15]. The basic
notions and facts from topology can be found in [19].

\S 1. A compactly-simple set.

THEOREM 1. If $\lim^{(1)}\mathscr{A}\neq 0$ then there is a subset $X$ of $R\backslash Q$ which is not analytic
but its intersection $witharrow$ every compact subset of $R\backslash Q$ is $F_{\sigma}$ .
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PROOF: The derived functors $\lim_{arrow}(n)$ have their origin in the cohomology theory.
In fact,

$\lim_{arrow}(n)\mathscr{A}$

can be viewed as \v{C}ech’s cohomology groups of the space $\langle N^{N}, \tau\rangle$ where $\tau$ is the
topology generated by sets of the form $\{a\in N^{N} : a\leq b\}$ for $b\in N^{N}$ (see [4]). This gives
us a simple reformulation of the equality $\lim_{arrow}(1)\mathscr{A}=0$ which one gets by considering the
long exact sequence

$0 arrow\lim_{arrow}\mathscr{A}arrow\lim_{arrow}\mathscr{B}arrow\lim_{arrow}\mathscr{B}/\mathscr{A}arrow\lim_{arrow}(1)\mathscr{A}arrow\lim_{arrow}(1)\mathscr{B}arrow\ldots$

obtained from $0arrow \mathscr{A}arrow garrow \mathscr{B}/\mathscr{A}arrow 0$ , where $\mathscr{B}=\langle B_{a}, \pi_{a}^{b}, N^{N}\rangle$ is the inverse system
of Abelian groups defined by

$B_{a}=Z^{D_{a}}$

for $a\in N^{N}$ (where $\pi_{a}^{b}’ s$ are again the natural projections), and where $\mathscr{B}/\mathscr{A}$ is the inverse
system of the corresponding quotients

$\langle B_{a}/A_{a}, \pi_{a}^{b}, N^{N}\rangle$ .

It follows that $\lim_{arrow}(1)\mathscr{A}=0$ iff the mapping

$\phi:\varliminf \mathscr{B}arrow\lim_{arrow}\mathscr{B}/\mathscr{A}$

is onto (see [4; \S 1]). This is indeed a very useful reformulation which one can analyze
independently of the \v{C}ech cohomology. In fact, questions of this sort have been long
appearing in the area of combinatorial analysis of Hausdorff gaps of the structure
$\mathscr{P}(N)/fin$ (see [8], [7; p. 96], [10; \S 4], [6; 8.7], [13]). So, we can now start the proof of
Theorem 1 by assuming that the mapping $\emptyset$ is not onto and use this to describe a
compactly $F_{\sigma}$ set $X\subseteq R\backslash Q$ which is not analytic. So let $\langle[f_{a}] : a\in N^{N}\rangle$ be a member
of $\lim \mathscr{B}/\mathscr{A}$ not in the range of this mapping. Thus, $[f_{a}]$ is the set of all $g:D_{a}arrow Z$

$whi_{Ch}^{arrow}$ agree with $f_{a}$ on all but finitely many pairs $(m, n)$ from $D_{a}$ . Let

$X= \bigcup_{a\in N^{N}}[f_{a}]$
and $M= \bigcup_{a\in N^{N}}Z^{D_{a}}$

.

For $f$ and $g$ in $M$ let $\Delta(f, g)$ be the minimal $m\in N$ for which there is $n\in N$ such that
either $(m, n)$ belongs to the symmetric difference of $dom(f)$ and $dom(g)$ or $(m, n)\in$

$dom(f)\cap dom(g)$ and $f(m, n)\neq g(m, n)$ ; if such an $m$ does not exist (i.e. if $f=g$ ), we
set $\Delta(f, g)=\infty$ . Note that

$\Delta(f, h)\geq\min\{\Delta(f, g), \Delta(g, h)\}$

for every $fg$ and $h$ from $M$. So, if we define

$\rho(f, g)=1/\Delta(f, g)$

(with the convention that $1/\infty=0$), we get an ultrametric on $M$ which is easily seen to
be complete. Note also that compact sets of $(M,\rho)$ have empty interiors, so by
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Mazurkiewicz’s theorem ([19; \S 36 II]), $M$ is homeomorphic to the irrationals. Every
element $f$ of $M$ uniquely determines an $a\in N^{N}$ such that $D_{a}=dom(f)$ , so let $p(f)$

denote this $a$ . This gives us a mapping

$p:Marrow N^{N}$

which is easily seen to be continuous. We have two claims about the Polish space $M$

and its subset $X$.

CLAIM 1. $X$ is not analytic.

PROOF: The key ingredient of the proof is the following regularity property of a
given topological space $Y$ introduced by the author in [6; \S 8] and denoted by
$OCA_{Y}$ : For every open symmetric relation $R\subseteq Y^{2}$ either

(1) There is a countable decomposition $Y=\bigcup_{n=1}^{\infty},$ $Y_{n}$ such that $Y_{n}^{[2]}\cap R=\emptyset$ for all
$n$ , or

(2) there is uncountable $Z\subseteq Y$ such that $Z^{[2]}\subseteq R$ .
(Notation: $S^{[2]}$ denotes the set of all $(x,y)\in S^{2}$ such that $x\neq y.$ ) Let $OCA_{Y}^{*}$ denote

this statement when in (2) we require $Z$ to be homeomorphic to the Cantor set rather
than just to be uncountable. It is easily seen that $OCA_{Y}$ implies $OCA_{Z}$ for every
continuous image $Z$ of $Y$ and that same is true about the stronger version $OCA_{Y}^{*}$ . It is
also easily seen that $OCA_{Y}^{*}$ is true for some of the standard spaces like $Y=R$ or
$Y=R\backslash Q$ . It follows that $OCA_{Y}^{*}$ is true for every analytic subset $Y$ of some Polish
space $P$ . In fact, it is proved in [6; \S 6] that one of the standard forcing axioms, PFA,
implies $OCA_{Y}$ for every second countable space Y. It is also shown in [6; 8.7] that if
$OCA_{Y}$ is true for every separable metric space $Y$ then $\lim^{(1)}\mathscr{A}=0$ , and it was this result
(and its proof) that led us in discovering Theorem 1, the main result of this note. This
result also explains why PFA implies $\lim^{(1)}\mathscr{A}=0$ a fact first proved in [10] and a
fact which according to the referee $expllainsarrow$ the meaning of Theorem 2’ below. The
Principle of Open Colouring continues to be a rich source of quite diverse applications
and the reader is referred to [6], [15], [16] for an introduction to this area.

Consider the set $R$ of all $(f, g)\in X$ such that $f(n, m)\neq g(n, m)$ for some $(n, m)\in$

$dom(f)\cap dom(g)$ . Clearly, this is an open symmetric relation on $X$, so if $X$ is analytic,
the Principle of Open Colouring would apply to it. So let us examine the two alter-
natives of $OCA_{X}^{*}$ (see [6; 8.7]):

CASE 1. $X= \bigcup_{n=1}^{\infty}X_{n}$ , where $X_{n}^{[2]}\cap R=\emptyset$ for all $n$ . Then there must be $n$ such
that

$K_{n}=$ { $a\in N^{N}$ : $dom(f)=D_{a}$ for some $f\in X_{n}$ }

is cofinal in $N^{N}$ under the ordering of eventual dominance. Fixing such $n$ , note that, by
the definition of $R$, the union of $X_{n}$ is a partial function from $N\cross N$ into $Z$ . Let
$g:N\cross Narrow Z$ be an arbitrary extension of this function. Then $g\in lim^{\mathscr{B}}$ and

$grD_{a}\in[f_{a}]$ for all $a\in N^{N}$ ,

i.e., $\langle[f_{a}] : a\in N^{N}\rangle=\phi(g)$ , a contradiction.
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CASE 2. There is a perfect set $P\subseteq X$ such that $P^{[2]}\subseteq R$ . Note that

$K=$ {$a\in N^{N}$ : $dom()=D_{a}$ for some $f\in P$},

being the image of $P$ under the continuous map $p:Marrow N^{N}$ , is a compact subset of
$N^{N}$ , so we can find a $b\in N^{N}$ such that $a\leq b$ for all $a\in K$ . It follows that every
function from $P$ is a subfunction of some function from the countable set $[f_{b}]$ . Since $P$

is uncountable there exist two distinct $fg\in P$ which are induced by the same member of
$[f_{b}]$ . So, in particular, $f\cup g$ is a function which is in direct contradiction of the fact
that $(fg)$ belongs to $R$ .

CLAIM 2. $X\cap K$ is $F_{\sigma}$ for every compact subset $K$ of $M$.

PROOF: Since the image of $K$ under the continuous mapping $p:Marrow N^{N}$ is a
compact subset of $N^{N}$ there is $b\in N^{N}$ which bounds (everywhere) all $a’ s$ for which $D_{a}$

appears as the domain of some function from $K$. It follows that every member from
$X\cap K$ is a subfunction of some function from the countable set $[f_{b}]$ . But for a fixed
$f\in[f_{b}]$ the set

$X_{f}=\{f[D_{a} : a\in N^{N}, a\leq b\}$

is compact in $M$ and it is a subset of $X$. Hence $X\cap K$, being equal to the union of the
countable family $x_{f}\cap K(f\in[f_{b}])$ of compact sets, is a $\sigma$-compact subset of $M$.

\S 2. A nonempty derived limit.

THEOREM 2. (PFA) There is a $\sigma$-closed poset which preserves the power-set of $\omega_{1}$ and
which forces $\lim_{arrow}(1)\mathscr{A}\neq 0$ .

COROLLARY 3. $\lim_{arrow}(1)\mathscr{A}\neq 0$ is consistent with Martin’s axiom and the negation
of $CH$.

REMARK. Note that this answers another question found in the literature, the
question of S. Kamo [13; p. 358].

COROLLARY 4. Martin’s axiom together with the negation of $CH$ does not imply that
a subset of $R\backslash Q$ is Borel if its intersection with every compact subset of $R\backslash Q$ is Borel.

PROOF OF THEOREM 2: Let dZ4 be a fixed ultrafilter on $N$ generated by a $\subseteq^{*}-$

decreasing $\omega_{2}$-sequence of its elements. (Under our assumption Martin’s axiom holds
and the continuum is equal to to2 so a straightforward diagonalization gives us such
an ultrafilter; see for example [7; Chapter 3].) Let $J$ be the set of all $X\subseteq N\cross N$ such
that for every $m\in N$ the set $(X)_{m}=\{n\in N:\langle m,n\rangle\in X\}$ does not belong to %.

Finally, let

$\mathscr{P}=\bigcup_{X\in J}\{0,1\}^{X}$

ordered by $\subseteq*$ Clearly, $\mathscr{P}$ is a $\sigma$-closed poset. We shall show that it satisfies the
conclusions of Theorem 2. Note that for every $a\in N^{N}$ the set $D_{a}$ belongs to $J$ so the
generic filter of $\mathscr{P}$ contains a function $f_{a}$ : $D_{a}arrow\{0,1\}$ . Moreover, it is easily seen that
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so obtained $\langle[f_{a}] : a\in N^{N}\rangle$ is an element of $\lim_{arrow}\mathscr{B}/\mathscr{A}$ not in the range of the mapping

$\phi$ : $\lim_{arrow}\mathscr{B}arrow\lim_{arrow}\mathscr{B}/\mathscr{A}$ .

Hence, the proof of Theorem 2 is finished once we show that $\mathscr{P}$ is sufficiently dis-
tributive so that no new subsets of $\omega_{1}$ are added and therefore that $\mathfrak{c}=\omega_{2}$ and MA
get preserved. So, let $\mathscr{B}_{\alpha}(\alpha<\omega_{1})$ be a given $\subseteq$ -decreasing sequence of dense open
subsets of $\mathscr{P}$ . We shall show that $\bigcap_{\alpha<\omega_{1}}\mathscr{B}_{\alpha}$ is nonempty and, therefore, dense by the
homogeneity of $\mathscr{P}$ . Let

$\mathscr{B}=\bigcup_{X\in J}\{0,1\}^{X}$

but with $\subseteq$ as the ordering rather than $\subseteq*$ Then $a$ is the so-called Grigorieff poset
associated to the ideal Y. Now, we know that $J$ is a second category $P$-ideal and so
the poset ee is proper (see [3], [5; pp. 214-221]). Note that each $9_{\alpha}$ is also dense in $\mathscr{B}$ ,
so an application of PFA would give us a sequence $p_{\alpha}\in 9_{\alpha}(\alpha<\omega_{1})$ such that $p_{\alpha}\cup p_{\beta}$ is
a function for all $\alpha$ and $\beta$ in $\omega_{1}$ . Let $X_{\alpha}=dom(p_{\alpha})$ for $\alpha<\omega_{1}$ . By our assumption on
dZ4 for each $m\in N$ we can find $Y_{m}\not\in\%$ such that

$(X_{\alpha})_{m}\subseteq*Y_{m}$ for all $\alpha<\omega_{1}$ .

For each $\alpha$ , fix $b_{\alpha}\in N^{N}$ such that

$(X_{\alpha})_{m}\subseteq Y_{m}\cup\{1, \ldots, b_{\alpha}(m)\}$ for all $m\in N$ .

Then again by PFA, we can find $c\in N^{N}$ and uncountable $\Omega\subseteq\omega_{1}$ such that $b_{\alpha}(m)\leq$

$c(m)$ for all $\alpha\in\Omega$ and all $m\in N$ . Let

$X= \bigcup_{m=1}^{\infty}\{m\}\cross(Y_{m}\cup\{1, \ldots, c(m)\})$ .

Then $X\in J$ and $X_{\alpha}\subseteq X$ for all $\alpha\in\Omega$ . Choose $p:Xarrow\{0,1\}$ arbitrarily extending

$\bigcup_{\alpha\in\Omega}p_{\alpha}$
.

Then $p\in 1$ and $p_{\alpha}\subseteq p$ for all $\alpha\in\Omega$ , i.e., $p\in \mathscr{B}_{\alpha}$ for all $\alpha\in\Omega$ . Since $\ovalbox{\tt\small REJECT}_{\alpha}s$ are
decreasing, it follows that $p$ is a member of the intersection $\bigcap_{\alpha<\omega_{1}}\mathscr{B}_{\alpha}$ .
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