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Actions of loop groups on simply connected H-surfaces in space forms
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Abstract. In this paper we shall define certain loop groups which act on simply connected
H-surfaces in space forms preserving conformality, and obtain a criterion for these group
actions to be equivariant.

Introduction.

In recent years, there has been much progress in the theory of harmonic maps from
Riemann surfaces into Lie groups or symmetric spaces. For example, the discovery of
actions of loop groups on harmonic maps has played an important role [BG], [BP],
[DPW], [GO1], [GO2], [U]. As a special case of the results in [BP], it is shown that a
certain loop group of SO(4) acts on harmonic maps from a simply connected Riemann
surface into the standard 3-sphere S3.

Let 93 (c) denote the simply connected 3-dimensional space form of curvature ¢ and
M a Riemann surface. Since harmonic maps from M to S are H-surfaces* in M3(c)
for H=0, ¢ =1, it is natural to expect as an analogue to the results in [BP] above
mentioned, that a certain loop group of the isometry group of 9M>(c) acts on simply
connected H-surfaces in Mt>(c) naturally, preserving conformality. In this paper, we
shall show that it is true.

Before we state our main theorem precisely, we shall give some notations and
definitions.

First we shall describe Mt3(c) as a Riemannian symmetric space.

We put

Go = SO(3) X R® = {(g f) € GL(4, R); TeS0(3),seR3},

G. = SO(4)
for ¢ > 0, and

G, = SO*(3,1)
= {X = (xy) € GL(4,R);'XJX = J,det X = 1,x44 > 0}
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*Here an H-surface means a map which satisfies H-surface equations. Hence H-surfaces in the classical
sense are conformal H-surfaces.
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for ¢ <0, where J = diag(1,1,1,—1). Set

K. = {(g ?) € GL(4,R); T ¢ 50(3)}.

An involutive automorphism is defined by
o.(X) =JXJ,

where X e G,.
The corresponding Cartan decomposition g, = I, @ m, is given by

g, ={( ——sig::(c)’b g) € M(4,R); A € s0(3),b eR3},

i = {(61 g) e M(4,R); A 650(3)}

and

m,= {(—sigg(c)’b g) € M(4,R);b eR3},

1 if ¢>0,
sign(c) =< 0 ifc=0,
-1 ifc<O.

An Adg K -invariant metric on m, is defined by

oe((snere o) (_snieyw o)) =F05

where b,5 € R® and

where

1 if ¢=0,
L(c) = 1

Vel

if ¢ #0.

Then EIR3(c) is a Riemannian symmetric space corresponding to (G., K., 0.,9g.). Let

n: G, — ‘.IR3(C) = G./K, be the natural projection.

Let M be a simply connected Riemann surface. For any map f: M — M(c),
there always exists a map F : M — G, such that 7o F =f. Such a map F is called a
framing of f. Then we have a decomposition F~!dF =:a = a;, + am, . Since M is a
Riemann surface, we have a type decomposition oy, = ay, + oy, , where o is an m
valued (1,0)-form with complex conjugate oy, . We write the decomposition a = s, +

oy, + 0y, simply as o = o+ o, +oy. When we write o, as

(o0 b)
m = —sign(c)'b 0
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for be.Ql(M,R3), we shall define an m,-valued 2-form o, x o, by

X 0 bxb
moIm T —sign(e)(bxb) 0 )

where x is the exterior product on R®. Then we set

ne = %an(AdF * (am X (Xm)),

where * is the Hodge star operator on M. It is easy to see that ny is independent of the

choice of F.
We now fix ppe M and set o = {K.}. For H,ce R, we set

He={ £+ M= D)5 F1eace? f = Hrp f (o) = o},

€ = {f € #u.; f is weakly conformal}.

Then %u,. is the set of based branched conformal immersion with constant mean
curvature = H.

In the previous paper [F], the author obtained a criterion for the existence of a
natural bijective correspondence between simply connected H-surfaces in iUl3(c) and
simply connected H'-surfaces in M>(c'):

ProrosITION ([F]). Let H,H',c,c' e R. If sign(H? + c) = sign(H'? + ¢'), then there
exists a bijective map
¥ e}fH,c - e}fli’,c’
such that W(%H,c) = (gch/.

In this paper, we shall also obtain a criterion for the above bijective correspondence
to be equivariant with respect to the loop group actions:

MAIN THEOREM. Let H,H',c,c' € R. If sign(H? + ¢) = sign(H'? + ¢'), then there
exists a loop group %y (respectively Gy /) acting on #y . (respectively #y ) such that
(1) there exists a Lie group isomorphism

b gH,c - gH’,C',

(ii) the bijective map ¥ : Hy . — K, is P-equivariant,
(iii) Gy, (respectively Gy 1) acts on €n, (respectively € ) and the bijective map
¥Y\¢y. : €H,c — G, is P-equivariant.

ACKNOWLEDGEMENT. The author would like to thank Professor Takushiro Ochiai
for his useful suggestions and constant encouragement. Thanks are also due to Dr.
Sakagawa and Mr. Higaki for valuable discussions and the referee for kind advice.

§1. Definition of loop groups.

We fix 0 < & < 1 and partition the Riemann sphere P! = CU {0} as follows. Let
C: and Cy/, denote the circles of radius & and 1/¢ about 0e C and define open
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sets by
L={AePY|il <&}, NLj,={ieP'|i|>1/e},
E® = {lePe<|i <1/e}.

Now put 7® =L, UI, and C® = C,UCy), so that P! =J®UC®UE®. For a map
&:Cl - g€, define 4;: C® — s0(3)€ and b; : C® — C? by

_ Ae(4) be(4)
¢4 = (—sign(c)’bg(i) o )
where 1 e C®. We define a bijective map 1: C* — s0(3)€ by

3 2 1

0 -p° p p
wp)=| p» 0 —p forp= | p? | e C>.
-p* pt 0 P’

First we define a loop group A°G. by
A:G, = {g e C*(C¥,GE); g(4) = g(1/7) for e C¥},

where conjugation is the Cartan involution of G¢ fixing G.. Then the Lie algebra A°g,
of the Lie group A°G. is defined by

A, = {& e C°(C®),gC); E(A) = &(1/2) for A e CO}.

(For the definition of the manifold structure, we refer to [M], [OMYK], [PS].)
Then the following loop algebras are important for us to define loop groups.
For ¢ =0,p e vV—1R\{0}, we set

4099, = {¢ e g1 %5 = i) for 2 col.

For ¢ =0,p =0, we set
APg. = {& € Ag,;be(A) = 0 for A e CO}.
For ¢ #0, pe vV—1R, we set

A+ 1+ (1)) if ¢>0,
oy =
Ao~V + (p+VII} fe<o,
o1y = (p-1y) if >0,
=1

T{(P—\/—_l)"— (p+V-1)"} ifc<0

for ne Z. Here we put 0° =1. Then we set

A%Pg, = {& € A%g,; A¢ and bg have Fourier series ()},
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where
(%) As(2) =) ant(an)i",be(A) = Y _ B,and" fora, € C* A€ C,.
neZ neZ
It is easy to see that A%’g, is a Lie subalgebra of A°g,.. Then we have the

following:

LemMA 1.1. Suppose one of the following conditions are satisfied.
i) ¢e=0 (i) ¢>0, (1-p¥e?2<1 (iii) c¢<0, (1+]|p)e< 1.
Then we have a Lie subgroup A*’G. < A*G. such that its Lie algebra is A*’g,.

PROOF.
Case I: ¢=0, p=0.
For g e A°G,, set T, e C*(C®,SO(3)€) and s, € C*(C®,C?) by

= (TP ),

where A e C®. Then it is obvious to see that
A5G, = {g € A°G.;5,(4) = O for e C®}.

Case II: ¢ =0, pe v-1R\{0}.
By direct computation, it is easy to see that

a,

7 = pi(s;) T, for A e C(‘)}.

A5G, = {g € A°G,; A

Case III: ¢ >0, p=0.
In this case, we have
AP, = {& € A%g,; E(—4) = 0. £(A), E(A) = &(1/2) for A e C@}.
Hence we have
A5G, = {g € £°G.;9(~1) = 0.9(2),g() = g(1/7) for A e CV}.
Case IV: ¢ >0, pe vV—1R\{0}, (1 —p?e? < L.

It is well-known that the condition ¢ € C*(C®,g€) is equivalent to

(L.1) > (147 (lanl® + |B,*)e™ anl® < o0
neZ
for any /> 0. Since |a,|> + |B,|* = (1 — «?)", (1.1) is equivalent to
(1.2) > (1 +n?) (a1 = p2)?an)* < 0
neZ

for any /> 0. We set

ZneZ l(azn)'lzn Znez a2n+1/12n+1 )

1.3 A) =
(13) W) (—’(Znezaw"*‘) ’
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for Ae C;. Note that from (1.2), ¢ defines a well-defined Lie algebra isomorphism:

l//:Ae”’gc—>A£ l—pZ,Ogl'
Then by [OMYK, Theorem 3.2], we have a homomorphism:

0 : AVIPOG 5 A6,

such that dg = ¢!, where we denote the universal covering group of a Lie group G as
G. Set A%”G,=1Img. Then A*’G, is the desired Lie subgroup of A°G..

Case V: ¢ <0, (1+|p)e< 1.

Since |oa|? 4 | 8,12 = 1/2{(1 + |p)?* + (1 — |p])*"}, £ € C®(C®,gE) is equivalent to

(1.4) D (1 +m){(1 £ |pey*"|an* < oo
neZ

for any / > 0. If we define y(&)(4) by (1.3), from (1.4), ¥ defines a well-defined Lie
algebra isomorphism:

(1+1pl)e,0 [1-|plle,0 ;
l//:Ae’pgc—> 4 Ve glﬂA d 91 if |pl.—,£:1,
A(Hlpl)e,ogl if |p| = 1.
Similar to the case IV, we have the desired Lie subgroup A*/G,. O

We identify K. with SO(3) and fix an Iwasawa decomposition of SO(3)C:
SO(3)¢ = SO(3)B, where B is a Borel subgroup of SO(3)€. We define subgroups of
A%?@G, as follows.

A G, = {g € 4°”G; g extends holomorphically to g : E® - G¢},
AP G, = {g € A*?G.; g extends holomorphically to g : I® — GE}.
It is easy to see that g € A7°G, satisfies g(0) e K€. We define a subgroup of A7”G. by
A7%Ge = {g € 47°Ge;9(0) € B}
Then we obtain the following Iwasawa type decomposition for A*’G..

LEMMA 1.2. Suppose one of the following conditions are satisfied:
i) c=0 () ¢>0, (1-p2e2<1 (iii) ¢<0, (1+]p))e<1.
Then a map defined by multiplication

A G, x Aj’,’;Gc — AP G,
is bijective.

PROOF.

Case . ¢c=0,p=00rc>0, p=0.

This is a special case of the result due to McIntosh [M, Proposition 6.2].

Case II: ¢ =0, pevV—1R\{0}.

Similar to the case I, for g € A% G,, since T, satisfies T,(4) = T,(1/4) for A e C®,
there exist 77, T, € C*(C®,SO(3)€) such that (i) T, = Ti T, (ii) T:(A) = T;(1/4) for
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AeC® i=1,2, (iii) T; extends holomorphically to T; : E® — SO(3), (iv) T, extends
holomorphically to T :I® — SO(3)€, (v) T»(0) e B. We define s1,s, € C*(C®, C?)
by

dT; .
AE = pu(s;))T; for i=1,2.
By definition, we have (i) s;(4) = s;(1/4) for Ae C®, i=1,2, (ii) s; extends holo-

morphically to s, : E® — C3, (iii) s, extends holomorphically to s, : I — C3, (iv)
52(0)=0. On C® we have

T s I 2N (ThT: Tis2+s
0 1 0 1) \ 0 1 '
Direct computation shows that
ld(Tl T»)
di

Hence we have the desired decomposition.
Case III: ¢ >0, pe vV~-1R\{0}, (1 —p?)e® < 1.
Using the decomposition of A4°V!7?*G, and the covering map

= pz(T152 + S])Tl T>.

¢ AVIPOG S A6,
we have the following decomposition:
A7G, = A5G A7%G..

Since any g € A7%G, is homotopic to a constant loop by definition of A7%G., 473G is
simply connected. Hence we have the desired decomposition.

Case IV: ¢ <0, (1+|p))e< 1.

Similar to the case III, we have the desired decomposition. O

§2. Extended framings.

Let fe#u. and F be a framing of f. Then direct computation shows that
1/2trace Vdf = Hny is equivalent to

(2.1) (do, + [ar Ao ]) — (day, + [0 Aoy ]) =2V —1HL(c)ot), X oty
Taking the m.- and f.-parts of the Maurer-Cartan equations for a, we have
(2.2) (dog, + [ Aog]) + (o + [ Aag]) =0
and

1
(2.3) dos + 3 e Aott] + o, Ao ] = 0.

Equations (2.1) and (2.2) are equivalent to

(2.4) do) + [ Al ] = V—1HL(c)o,, X oy
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If we write o as

(2.5) i, = (-—sig:(c)’b' Z’)

for b € Q'0(M, C?), we shall define () € 2'%(M, ) by

ool ) = (’(3') g)

We define 1(a/) € Q%! (M,1S) similarly. For A e C\{0}, define a g€-valued 1-form by

oy = A ol + Aol + ap — V=THL(c)(A™' = D)i(al,) + V—THL(c)(A — )a(al).
It is computed in [F] that o satisfies equations (2.3) and (2.4) if and only if

du; +%[cx,1/\oz,1] =0

for all Ae C\{0}. Then from the standard fact, there exists a map F;: M — G,
unique up to left translation by a constant element of G, satisfying FldF, = a,.
Furthermore, we set

MyGe= () 4G,

O<e<egg

where g satisfies one of the following conditions:
i) ¢=0,e=1 (i) c¢>0, (1-p2e?=1, (iii) c<0, (14 |p|)e = 1.
These observations lead us to the following definition.

DEFINITION 2.1. A map F): M — A, |G. is an extended framing if AF;'0F; is
holomorphic at A =0, where F;'0F, is the (1,0)-part of Fy'dF;.

Then it is easy to see that f e #y. admits an extended framing F;: M —

A};{f HL G, such that F; is a framing of f. Conversely, if F : M — A;ﬁT HHIG, is an

extended framing with F;(po) € K, then no F; € #n,. We set
Ene={F:M— AI‘I/O?HL(C) G.; F; is an extended framing, F;(po) € K.},
A, =C*(M,K,).
Then we have a bijective correspondence
H) H,c =& H ,c/ xfc
which maps f € #y . to {F,} € £n /K., where A, acts by point-wise multiplication on
the right.
§3. Action of 47°G, on extended framings.

For any g € A%”G, such that (i) ¢ =0, or (ii) ¢ >0, (1 —p?)e? <1 or (iii) ¢ <0,
(1 +|pl)e <1, we have a unique factorization by Lemma 1.2

g = 9kedgr,
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where gg € A3 G., g1 eA%GC. Then we define an action of A7”G, on A%’G. by

where g € A7 G,, he AYG.,.
ProrosiTioN 3.1 ([BP, Proposition 2.9]). Let p=+v-1HL(c), ge A7’G, and
F,-M— Aﬁoch be an extended framing. Define g#F;, : M — Aﬁoch by
(9# F2)(p) = g# (Fu(p)),

for pe M: Then
(1) g#F, is also an extended framing.
(i) If F, is based (that is, F, € En ) then so is g#F,.
(ii1) If ke A, then

g# (Fik) = (g# F)k

with k € Ae.

Thus A7°G. acts on Ky = Epc/HAe.

Furthermore, we have

LEMMA 3.2. Let g€ Aj’ﬁHL(C) G. and F) € Ep,. If moF, is weakly conformal, so
is mo (g#F,).

PrOOF. Write

gF, = pq,

where p=g#F,, g: M — Aj’,‘é__lHL(”) G.. Then

p~'dp = Adq(F;'dF; — q”'dg).

Hence if we write o, as (2.5), the (1,0)-part of the m.-part of p~ldp is

<—Sign(g)‘(Qb’) QOb, )

«=(3 )

with Q € B. This completes the proof. O

where

LeMMA 3.3. There exist Lie group isomorphisms

(i) A¥G, = A2Gy, if c=0,

(i) A¥G. = AV if ¢>0, e/T-p2 < 1,

(i) A%°G, = ATTOG if ¢ <0, &1+ |p|) < L.

Proor. By the proof of Lemma 1.1 and Lemma 1.2, we have (ii) and (ii1)). We
have only to show (i).
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Case I. p=0.
For ¢ e A*%g,, we have a Fourier series of A

Ae(A) =D i(an) i,

neZ

where a, € C?) 1€ C,. We set y(£)(4) by (1.3). Then ¢ defines a well-defined Lie
algebra isomorphism:

Y 4%%, — 4%%g,.

Hence we have the desired isomorphism.
Case II: pe vV—1R\{0}.

For & e A%%g,, it is straightforward to see that we have Fourier series:

As(A) = 1(ag) + Z——l(a,,)i” b:(A) = Za,,i",

n%O neZ

where a, € C3, Ae C,. We set y(£)(4) by

n a n n
Ha0) + Cpo gm0 i Cpegpat !
W(E)@) = )

An+1 priag
lEnelzn:_l * 0

for A€ C,. Then y defines a well-defined Lie algebra isomorphism:

Y : A%g, — A%,

Hence we have the desired isomorphism. O

If we define ¥y, = A2 THIG, gy = A

eVSIHLE G for suitable & & with

0 <e¢ & <1, then using Lemma 3.2, Lemma 3.3 and Proposition in the introduction, we
obtain our main theorem.

[BG]
(BP]
(DPW]
(F]
[GO1]

[GO2]
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