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Introduction.

Let H,(R) be the vector space of n x n real symmetric matrices. The group
GL(n,R)° (= the identity component of GL(n, R)) acts on H,(R) by the rule: X — AX 4,
X € Hy(R), A€ GL(n,R)°. The Sylvester’s law of inertia asserts that, by this action of
GL(n,R)O, X is transformed into the canonical form diag(1,...,1,-1,...,-1,0,...,0),
which is uniquely determined by X. The simple Lie algebra sp(n, R) has a unique gra-
dation sp(n,R) = g_, + g, + 4, where g_, = H,(R) and g, ~ gl(n,R). The GL(n, R)°-
module H,(R) is imbedded in sp(n, R) as the G3-module g_,, where G is the analytic
subgroup of Aut g generated by g,. The Sylvester’s law of inertia for H,(R) is no other
than obtaining the complete representatives of GJ-orbits in g_;. As a generalization of
this situation, one can pose:

PrROBLEM. Let g=3;__, g, be a real simple graded Lie algebra, Gy the group of
grade-preserving automorphisms of g and let GJ be the identity component of Gy. Find
the GY-orbit decomposition and the Gy-orbit decomposition of g_;.

When v =1, this problem is equivalent to the problem of finding the orbits in a
compact simple Jordan triple system under the structure group or the identity component
of the structure group. Also it is equivalent to finding the orbit decomposition of a
tangent space by the linear isotropy group for a symmetric R-space.

The purpose of this paper is to settle the above problem for the case v =1 by a uni-
fied method. Partial answers have been obtained by Satake [22,23], Kaneyuki [9,10]
and Takeuchi [27]. In the following we shall describe briefly how to get the two kinds
of orbit decompositions of g_;. The sections 1 and 2 are preliminary sections. We
give a quick review for the followings: classification and construction of gradations in
semisimple Lie algebras [13,12], the root theory in simple graded Lie algebras
g=g_; + 6+ g; ([13]), the Jordan triple system B on g_; (Loos [18]) and the root-
theoretic version of a frame (= a maximal system of pairwise orthogonal idempotents)
{e1,...,e;} in g_;, and the Jordan algebra structure A, (0 <p<r) in g_;. In §3,
applying a result of Matsumoto [19], we get a set of good representatives of Gy mod G),
which allows us to get the Gy-orbit decomposition from the GS-orbit decomposition.
We consider the root system A* corresponding to a certain symmetric real flag domain
M*. It turns out that the Weyl group W (4*) of 4*, viewed as a subgroup of GJ, acts on
the frame {e;,...,e,} as signed permutations. Then we can choose the candidates
0p,g (0 <p,g<r,p+q<r) of representatives of the GJ-orbits, which are defined in
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terms of the frame. Let ¥, (0 < k < r) be the union of the GJ-orbits through the points
0pq With p+qg=k. The sets Vi were introduced by Takeuchi [28] in a different
way. Theorem 3.3 (Gindikin-Kaneyuki [6]) shows that each Vj is Gy-stable and that it
consists of equi-dimensional GJ-orbits. Therefore, in order to find the orbit decom-
position, we have only to separate the G)-orbits in ¥ (0 < k <r). In the sections 4 and
5, we carry out this procedure, by using the action of W(4") and the reduced norm of
the Jordan algebra A,. The main results are Theorems 4.1, 4.2, 5.1, 5.2 and 5.5-5.7.
In §6, we give a list of all open GY-orbits whose ambient spaces g_, are simple Jordan
algebras. (Partial results have been obtained by D’Atri-Gindikin [4] and Kaneyuki
[9].) This provides a classification of w-domains in the sense of Koecher [16] in simple
Jordan algebras.
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Notation and Convention: G° or ( G)0 denotes the identity component of a Lie group
G. Gy or (G)4 denotes the subgroup of a group G consisting of elements left fixed by
an involutive automorphism 6. GLA (resp. JTS) is an abbreviation for “graded Lie
algebra” (resp. Jordan triple system). E denotes a unit matrix.

§1. Semisimple graded Lie algebras.
Let

(1.1) g= Z Ok

k=—v
be a real semisimple GLA of the v-th kind (we are assuming that the subspace g_, is not
zero). We assume further that the gradation (1.1) is of type ap, thatis, g7 := >, o gy is
generated by g_,. Let (g,Z,7) be the associated graded triple; more precisely, Z € g is

the characteristic element of the gradation (1.1), i.e., each subspace g, is the eigenspace
of ad Z for the eigenvalue k, and 7 is a grade-reversing Cartan involution of g. Let

(1.2) h= Z O, M= Z O
k even k odd

Then g is expressed as a Z,-GLA

(1.3) g=h+m,

which is also the decomposition by the involution ¢ := AdexpziZ, in which case we
have g|y =1 and o|,» = —1. Consider the Cartan decomposition by 7:

(1.4) g=t+p,

where 7| = 1 and 7|, = —1. Since ¢ and 7 commutes, we have the (o, 7)-decomposition
(1.5) g = To +my + po + my,

where Iy =hNEpy=hNp,m=mNE and my =mNyp. Note that Zep,. Choose a
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maximal abelian subspace a of p containing Z. Then a is contained in g,Np < p,. Let
4 be the root system for the pair (g,a), which is called a root system of g compatible
with the gradation. Let (, ) denote the Killing form of g. Then we have a partition
of 4:

(1.6) A= H Ak,

k=—v
where 4y = {a € 4 : (1,Z) = k}, and each graded subspace g, can be written as

g =c(a)+ ) &%

OCEA()

ngZg“, k¢07

aed;

(1.7)

where c(a) is the centralizer of a in g, and g* denotes the root space for a root
x € 4. Choose a linear order in 4 in such a way that

(1.8) IVI Ay c A4t < ﬁ Ay,
k=1 k=0

where A1 denotes the set of positive roots with respect to this order. Let IT be the fun-
damental system for 4. Since the gradation is of type ap, it is known [13] that
IT,, .= I N 4 = § for k > 2, and hence we have a partition of IT:

(1.9) II =11 I]:]]l, I, #0.

Let us consider the reverse process. Let g be a semisimple Lie algebra and a be a
maximal R-split abelian subalgebra of g, and let IT = {a,...,a,} be a fundamental sys-
tem of the root system 4 for the pair (g,a). A root a € 4 can be written as

{

(1.10) o= Z m(o) ;.

i=l

Suppose that we are given a partition IT = ITy [[ IT; with IT| # ¢. For a root « € 4, we
define the height A7, () of a relative to II; by putting

(1.11) hi, (o) = Z m;(a).
a; eIl

If we put

(1.12) A ={oed: hy(x) =k},

then we have a partition 4 = [[;__, 4k, where v is equal to the the height Ay, (3) of
the highest root 3e 4. Let us define the subspaces (g;)_,.x., by the equalities
(1.7). Then we have a GLA g=>_;__, g; of type oo (cf. [13]).

THEOREM 1.1 ([13]). Let g be a real semisimple Lie algebra, and A be a restricted
root system of g. Let II be a fundamental system of A and 3§ be the highest root of
A. Then there exists a bijection between the set of gradations of the v-th kind of type oy in
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g and the set of subsets Il of II satisfying hj;,(3) =v. The bijection is compatible with
the respective isomorphisms.

A gradation of the first kind in g is trivially of type «p; any gradation of the second
kind in g is of type o, provided that g is simple (Tanaka [28]).

§2. Jordan triple systems on g_;.
We retain the notation in §1. Let

(2.1) g=6_11tg*+g

be a simple GLA (of the first kind), and (g, Z, 7) be the associated graded triple. Let 4
be a root system of g compatible with the gradation. As a special case of (1.6), we
have a partition 4 = 4_; [[ 40 ][] 41. Choose a linear order in 4 satisfying (1.8). As
is known in Takeuchi [26], one can choose a maximal system of strongly orthogonal
roots I = {f,,...,6,} in 4; in such a way that (,,6,) =--- = (8,,8,)- The number r
is equal to the split rank of the symmetric triple (g,gy,0). Choose a root vector
E;egficg, (1 <i<r)insuch a way that

, 2
22 E E =8 =——8,
(2.2) [ =8 BB B;
where E_; = —tE;jeg P cg ;. Let
(23) Xi=E +E_;¢e nt,.
Then the real span ¢ of Xj,..., X, is a maximal abelian subspace of m,. The root sys-

tem 4(g, ¢) for the pair (g, ¢) is the split root system for the symmetric triple (g,gy,0). It
is known (Oshima-Sekiguchi [20]) that 4(g, ¢) is either of type C or of type BC. Let ap
be the subspace of a spanned by f,,...,f,, and w be the orthogonal projection of a onto
ap with respect to (, ). Then, by considering the inverse Cayley transformation ([8]) of ¢
onto qp and by taking the inner products with Z, we have

(o)) -0 = {36~ 1 s i< <7},
(2.4)
w(dy) = {%(ﬁﬁ-ﬂj) | SiSer},

provided that 4(g, ¢) is of type C, or

o)) - O = {30~ ) 1 <i<j<ri 38 (1 isn)
(2.5)
wl) = {36 +8) (1 <i<j<ni sh A <isn)

provided that 4(g, ¢) is of type BC, where (4o)* = 4oN4*. We put

w= > g% i<j

dGAl

(@)=} +4))

¢ = Z s R

aedy
w(x)=48;

(2.6)
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Then g_, can be expressed as
(27) qg= Z a;; + Z ¢;.
1<i<j<r 1<i<r
If A(g,¢) is of type C, then the second term of the right-hand side of (2.7) does not
appear. The dimensions dima; (i <), dima; and dim¢; do not depend on the choice
of i and j ([7]).
Let us consider a triple product B; on g_;:

(2.8) B.(X,Y,U) = %[[’c Y,X|,U], X,Y,Ueg_,.

It is known (Loos [17], Satake [21]) that the pair B = (g_,, B;) is a compact simple JTS
and that g is isomorphic to the Kantor-Tits-Koecher construction for B (These two facts
can be obtained in more general setting of a simple GLA of the second kind and the
corresponding compact generalized JTS; see [1,13]). For simplicity we write e; for
E_;(1<i<r) and (XYU) for B,(X,Y,U). As usual, we define the linear operator
L(X,Y)ong_,; by

(2.9) L(X,Y)U = (XYU), Ueg_,.

Let
)4 p+q

(210) Opquzei—z €, 03p7qsra p+qsr
i=1 Jj=p+1

By using the facts [6] that e; (1 <i<r) is an idempotent of the JTS B and that
L(e;,e;) =0 (i # ), we see that 0, , is an idempotent of B and that

(2.11) L(0p,r—p,0p,r—p) = L(0s0,0r0), 0<p<r.

LeMMA 2.1. Let g_,(A) be the eigenspace of L(o,,0,0) corresponding to the eigen-
value 2. Then we have g_; =g_,(1) +g_,(3), and

(212) ea()= ) o
I<igj<r
/1\
(2.13) g, (5) =Y .
1<i<r

Proor. Consider the Peirce decomposition (Satake [21]) of g_; with respect to the
operator L(0p,;—p,0p,r—p) = L(0r,0,0:,0):

(.14) 0 =04+ 0.1 (3) +940)

Choose a root aed; such that w(x)=3(8;+8;), i<j. We have Siey Brr ) =
Skt By w(@) =4 5% (Br, B+ B;) =2. Let X e g™ Then it follows that

1
L(Or,O; Or,O)(X) = B‘r(or,O, Or,0, X) = 5[[‘[(0",0)’ 0’70]’ X]

= —;— i[[—Ek,E-k],X] = ——12— i[ﬁk,X] = %(i(ﬁk, a))X = X,
k=1 k=1 k=1
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which implies that the right-hand side of (2.12) is contained in g_;(1). Similarly we
have that the right-hand side of (2.13) is contained in g_l(%). Consequently the lemma
follows from (2.14) and (2.7). O

We introduce a multiplication [J, in g_;:
(2.15) XO,Y =B:(X,0p,—p,Y), X,Yeg_, O0<p<r.

As a property of the Peirce decomposition of a JTS ([21]), we know that g_,(1) become
a Jordan algebra with unit element o, ,_, with respect to the multiplication J,,.

PROPOSITION 2.2. Let g=g_,+g,+9, be a real simple GLA. Then the pair
(8_;,0p),0 < p <r, is a Jordan algebra with o, ,_, as unit element, if and only if the split
root system A(g, ) is of type C. In this case the Jordan algebra (g_,, ) is simple.

ProOOF. Suppose first that A(g,c) is of type C. Then we have (2.4). Therefore
there are no roots a € 4 such that w(a) =48; (1<i <r), and so we have g_;(}) = (0).
By Lemma 2.1, we have g_;(1) =g_;. Conversely, suppose that (g_;,[J,) is a Jordan
algebra with unit element o,,_,. Then, for any X eg_;, we have X =o0,,,[0,X =
B:(0p,r—p, 0p,r—p, X) = L(0r,0,0r,0)X, which implies that g_,(1) =g_; and g_,(3) = (0).
Consequently 4(g,¢) is of type C, by (2.4) and (2.5). To prove the second assertion,
consider the involution * of the Jordan algebra g_; = g_,(1):

(2.16) X* =B (0pr—p X,0pr—p), XeEg_.
Then B, can be reconstructed as follows ([21]):
(2.17) B.(X,Y,U)=(X0O,Y")O,U+XO,(Y"O,VU) — Y*O,(XO, V).

Let W be an ideal of the Jordan algebra g_;. Then, by using (2.17), we have that
B.(W,8_1,9_1) + B:(a_,,8_1, W) = W. This means that W is a K-ideal (cf. [13]) of the
JTS B. B is compact simple, and hence by a result of [1], it is K-simple. Therefore
W =(0) or W =g_;. Thus the Jordan algebra g_, is simple. |

The simple Jordan algebra (g_;, [,) is denoted by A,,.

§3. Generalities on the orbit decomposition of g_;.

We retain the notation in the previous sections. We will consider exclusively a
simple GLA (2.1):g=g_, +gy+9;- We denote by Autg the automorphism group
of the Lie algebra g, and denote by G° the identity component of Autg. Let Gy be the
subgroup of Autg consisting of all grade-preserving automorphisms of the GLAg. We
need the following subgroups of Autg:

G := GyG®, which is an open subgroup of Autg,

G’ the Zariski connected component of Autg, which is a subgroup of G,

G;, := GoN G', which is the Zariski connected component of Gy,

G) the (topological) identity component of Gy,

K := {g € G : gt = tg}, which is the maximal compact subgroup of G with Lie K = {.
Ko = GoNK,

KJ the identity component of K.
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Let 4 be a root system of g compatible with the gradation and I7 = {«;,...,a,} be a
fundamental system of 4 with respect to an order satisfying (1.8). Let {Z;,...,Z,} be
the basis of a dual to I7 with respect to (, ). Consider the involutive automorphisms of

g
(3.1) & = AdexprmiZy, 1<k</.

Lemma 3.1 (Matsumoto [19]). Let Q) be the free abelian subgroup of Autg gen-
erated by ¢, ...,es, and let Qy := Q1 NG°. Then Q, is a subgroup of G', and

(3.2) G' /G ~ Q1/Qy,

in particular,
(3.3) G = 0,G".

Since ¢ is +1 or —1 on each root space g*,a € 4U (0), it follows from (1.7) that & is
grade-preserving for any gradation of g. This implies, in particular, that Q; is a sub-
group of Gy, and hence we have

(34) 01Gy = G,

Look at the (g, 7)-decomposition (1.5) for the GLA g =g_, + g, +g;- Itis easy to
see that g* :=Tp + m, is a reductive subalgebra of g. The center of g* is at most one-
dimensional and the semisimple part of g* is simple ([7]). The triple (g*,%,7) is a Rie-
mannian symmetric triple, the noncompact dual of (f,f,s). Let G* be the connected
Lie subgroup of G corresponding to g*. Then K{ is a maximal compact subgroup
of G*. M* = G*/K] is the symmetric space corresponding to (g*,%,7). We have the
Cartan decomposition

(3.5) G* = K expm,.

Since ¢ is a maximal abelian subspace of m,, one can consider the root system A4* for the
pair (g%, ¢) (or for the symmetric space M*). In Table I, we give a list of real simple
GLA'’s of the first kind and the corresponding subset I7; of IT ([13,12,14,18]). In
Table II, we give the root systems 4(g, ¢) and 4* for each simple GLA’s of the first kind
([20,25,18]). The following notations are used in Table I: H the quaternion algebra
over R,0 (resp. O') the Cayley (resp. the split Cayley) algebra over R, and
0¢ = 0Q®rC. M, ,(K) the vector space of p x q matrices with entries in K, where
K=R,C,H,0,0 or O%; H, (K) the vector space of hermitian matrices of degree n with
entries in K; SH,(H) the vector space of skew-hermitian quaternion matrices of degree
n; Alt,(K) the vector space of skew-symmetric matrices of degree » with entries in K;
Sym,,(C) the vector space of complex symmetric matrices of degree n. We employ the
numbering of simple roots used in Bourbaki [2].

By the property [fy, m] < [gy, m] <= m, the group K{ acts on m by the adjoint repre-
sentation. Moreover, since [f, m,] = m, and [fy,g ;] =g ,, it follows that this K-
action on m leaves both m, and g_, stable.
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Table I
(8,90,9-1) n I

I1 (sl(n,R),sl(p, R) + sl(n — p,R) + R, M, »_,(R)), n>31<p<n/2] Any {op}
12 (sl(n,H),sl(p,H) + sl(n — p,H) + R, M, ,_,(H)), n>31<p<(n/2 An_1 {op}
I3 (su(n,n),sl(n, C) + R, H,(C)), n>3 Ca {oa}
I4 (sp(n,R),sl(n,R) + R, H,(R)), n>3 Cs {on}
IS (sp(n,n),sl(n,H) + R, SH,(H)), nx>2 Cu {an}
16 (so(p + 1,9+ 1),50(p,9) + R, Mi1,,14(R)), 0<p<gqor3<p=g {Bp+1(p<q) {ou}

Dpii(p=9q) {ar}
17 (s0*(4n),sl(n,H) + R, H,(H)), nx=3 Cs {on}
I8 (so(n,n),sl(n,R) + R, Alt,(R)), n>4 D, {on}
19 (Ege),50(5,5) + R, M;2(0)) Es {m}
110 (E6(_26),50(1,9) + R, Ml,z(O)) Ay {(X]}
11 (B, Ee) + R, H3(0')) Ey {as}
112 (Ey2s), Eg(-26) + R, H3(0)) G {3}
113 (sl(n, C),sl(p, C) +sl(n — p,C) + C, M, ,_,(C)), nx=3,1<p<in/2 Any {ep}
114 (sp(n, C),sl(n, C) + C,Sym,(C)) nx3 C, {on}
I15 (so(n+2,C),s0(n, C) + C, M1,(C)) n>3,n#4 {B[(,,+2)/2] {oq}

Dini2)12 {ou}
116 (so(2n, C),sl(n,C) + C, Alt,(C)) n>4 D, {on}
117 (EE,s0(10, C) + C, M1 ,(0%)) Es {ou}
118 (ES,EE + C, H;(0°)) E; {or}

LeEMMA 3.2. Let us define a linear endomorphism ¢ on m by
(3.6) ¢(X)=%(X—IX), X em,
where I = adyw Z. Then ¢ is a K3-isomorphism of my, onto g_;.

Proor. The inclusion ¢(m,) = g_, follows from the fact I>=1. Since I inter-
changes m, with my, ¢ sends m, to g_, isomorphically. Since K{ acts on g as grade-
preserving automorphisms, the element Z is left fixed by K{. Hence we have
[Ad\, KO, I] = 0, which implies that ¢ commutes with the K{-action. O

Let a_; :=¢(c) =g_;. Then a_; is spanned by ey,...,e, since ¢(X;) =e;. Let
W(4*) be the Weyl group for the root system A4* (or, for the symmetric space
M*). Then we have

(3.7) W(4") = Nya()/ Cra o),

where NKg(c) (resp. CKg(c)) is the normalizer (resp. centralizer) of ¢ in KJ. W(4*) acts
on ¢ as signed permutations:

(38) Xi— iXp(i)a pPE 6,,

where &, is the permutation group of {1,...,r}. By Lemma 3.2, this action of W (4")
is transferred onto a_; via ¢ as the signed permutations:

(3.9) eir> ey, pe,.
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Table 11
(8,80,81) 4(g,¢) a4
p= n/2 =1 A1 Ao
§ {p =n/2>1 G D,
1<p<n-p BC, B,
o { p=n/2 C, G,
I<p<n-p BC, BC,
I3 C, An
14 C, Ay
IS5 C Cn
{p=0&3$q#4 G G
16 p=1&2<4q(+#3) C; A
2<p<gq , G D,
17 C, Ap1
I8 {n even Cuj2 Dy,
n odd BCpy By
19 BG, B,
110 BC, BC,
111 G D3
112 G Az
p=n/2 G G
13 {1$p<n~p BC, BC,
114 C, C
115 G G
16 {n even Cap2 Ca2
n odd BCpyyy BCjypy)
117 BC, BC,
118 Cs C

Recall the quadratic representation P of the compact simple JTS B = (g_;, B;):
(3.10) P(X)Y = (XYX), X,Yeg_,.
The structure group StrB of the JTSB is, by definition, the totality of the elements
g € GL(g_,) satisfying the condition:
(3.11) g(XYU) = ((9X)(g" ' Y)(gV)), X,Y,Ueg_,

where g* is the adjoint operator of g with respect to the trace form of 8. A computa-
tion shows that

(3.12) Str®B ={ge GL(g_,) : P(gX) =gP(X)g*, X €g_,}.

Noting that the GLA g is isomorphic to the Kantor-Tits-Koecher construction for B,, we
conclude from Satake [21] that the group Gy is isomorphic to StrB and that this iso-
morphism is given by taking the restriction of the Gyp-action on g to g_;. As a result,
the rank of the operator P(X) is constant on each Gy-orbit in g_,, when X varies
through that orbit. Let ¥ (0 < k < r) be the union of GJ-orbits through the points o,
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with p + g = k, that is,

(3.13) Vi= U G -opgcg.,, 0<k<r
p+g=k

THEOREM 3.3 (Gindikin-Kaneyuki [6]). Let g =g_; + g, + g; be a real simple GLA
and r be the split rank of the symmetric pair (g,8,). Then (1) Vi is expressed as

(3.14) Vi={Xeg_:tkP(X)=1i}, 0<k<r,

where tk denotes the rank and iy = 1k P(oro). The closure Vi of Vi is given by
(3.15) Vi={Xeg_,:tkP(X)<i}, 0<k<r

(2) Each Vi is Gy-stable and

(3.16) sa=V][[n]Il 1"

(3) An orbit G - 0,4 is open if and only if it is contained in V,, or equivalently, p+q =r.
The assertion (2) was obtained also by Takeuchi [27] by a different method.
LEMMA 3.4. Let Aut®B denote the automorphism group of the JTS B. Then

(3.17) AutB = K.

Proor. The trace form yy of B is positive definite, since B is compact. Aut B is,
by definition, the subgroup of StrB = Gy consisting of all elements g € StrB satisfying
the condition

(318) y%(gXagY) :yB(X) Y)a X? Yeg-—l'
On the other hand, we have (cf. [1] and Lemma 3.10 [13])

(3.19) ra(X,¥) = —2(X,7¥), X, Yeg,.

Now let g € Ky. Then, since g commutes with 7, we have that g satisfies (3.18), which
implies that Ky < Aut®B. By the definition, AutB is a compact subgroup of StrB.
But Kj is a maximal compact subgroup of Gy. Hence we have that Ky = Aut‘B. O

§4. The orbit decompositions of g_;.

THEOREM 4.1. Let g = g_; + gy + g8, be a real simple GLA, and r be the split rank of
the symmetric pair (g,9,). Suppose that A* is of type A. Then the orbit decompositions
of g_, under the groups Gg and Gy are given by

(4.1) 9.1 = H Gg“’p,q: H Go - 0p,q-
p+q$r p+g§r
r

Proor. Since 4* is of type A, it follows (Tables I and II) that A, = (g_,,J,) is a
compact simple Jordan algebra. In this case, the JTS B comes from the Jordan algebra
A,. As a result, Gy, identified with the structure group Str B, coincides with the struc-
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ture group of A,. Therefore the first equality in (4.1) is the one proved by Kaneyuki
[9,10] and Satake [23]. Since U, is compact simple, it is known (Koecher [15], Vinberg
[29]) that Vo := Gg -oro i1s a homogeneous irreducible self-dual convex cone in g_;.
Let G(V;,) be the automorphism group of the cone V; 4. By Satake [21], we have

(4.2) G()Ig_1 =Str8 = G( Vr,O) X {i 1}.

As was shown in [10], any G(V, ¢)-orbit in g_, coincides with a G3-orbit in g_,. There-

fore the second equality in (4.1) follows from (4.2). O
Now let

k
Fk"—‘{/Z__]aileifea—l:51'17'-'75’7::il’}, ISkSr’

(4.3) 1<ip,....,ik <r
I, = {0}.
Then the Weyl group W (4*) acts on I'; by (3.9) and we have
(4.4) I'e= ) W) 0549, 0<k<r
p+g=k

Therefore it follows from (3.7) and (3.13) that
(4.5) Vi=GIy, 0<k<r.

THEOREM 4.2. Let g =g_; + gy + 8; and r be the same as in Theorem 4.1. Suppose
that A* is of type B, BC or C. Then the orbit decompositions of §_, under G} and G, are
given by

r

(4.6) a1 =[] G oro=]] Go-oxo-

k=0 k=0

In particular, there is a single open orbit Gg 070 = Go - 0,0.
PrOOF. In view of (3.16), it suffices to show that
(4.7) Vi =GY-0r0=Go-0kp, 0<k<r.

By the assumption for 4*, the Weyl group W (4*) consists of all signed permutations of
the form (3.9). Consequently, W(4"*) acts on I'y transitively, i.e., I'x = W(4") - op.
Hence (4.5) implies the first equality in (4.7). The second equality in (4.7) follows from
the fact that Vj is Gy-stable (Theorem 3.3). O

REMARK. The second equality in (4.7) was obtained also by Takeuchi [27].
In the following we will be concerned exclusively with the case where 4* is of type D.
LemMA 4.3. Suppose that A* is of type D,. Then

(4.8) V, = Gg “0p0 U Gg “0p-1 1.

(4.9) Vk=Gg‘0k,0=G0'0k,0, 0<k<r-1.
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Proor. In view of (4.5), it suffices to prove that
=W o0 [[ W(4") 0011,

I-'k=W(A*)-0k,0, O0<k<r-1.

(4.10)

By the assumption for A4*, a signed permutation e;—~d;e;, 6, = + 1 (1 <i<r) lies in
W (4*) if and only if [];_, d; = 1. Therefore o,, with g even (resp. odd) is conjugate
to 0,0 (resp. o,-1,1) under W(4*). Hence (4.10); follows from (4.4). Let us next con-
sider 0,4 with p4+g=4k, 0<k<r—1. If g is even, then 0,, is conjugate to o4
under W(A4"). Suppose q is odd. Let u be the signed permutation defined by
ules) =oces (1<¢<r), where o, =—1 for p+1<¢<p+q+1, otherwise J, = 1.
Then u belongs to W(4*) and u(op 4) = oko. This implies (4.10),. O

Back to the situation in §2, suppose that A4(g,c) is of type C, and consider the
Jordan algebra A, =(g_;,,), 0<p<r. Let P,:g_, — Endg_, be the quadratic
representation of A,. Then we have

LemMa 44. Let0<p<r. Then
(4.11) P(X) = Pp(X)P(0p,r—p), Xe€g_;
Moreover the operator P(o,,_p) is nondegenerate on g_;.
PrOOF. Let Y eg_;. By using (2.16) and (2.17), we have
(4.12) PX)Y = (XYX) = (XO, YO, X + XO,(Y*'O,X) — YO (X, X)
=2X,(XO,Y") — (XOp,X)O, Y
= Pp(X)Y* = Pp(X)P(0p,—p)Y.

Since A4(g,c¢) is of type C, we have that g_;(1) =g_; (cf. §2). On the other hand, by
Satake [21], +1 are the only eigenvalues of P(0,,-,) on g_;(1), which yields the second
assertion. 0

Consider the JTS ( ), coming from 2, (0 <p <r):
(4.13) (XYU), = (X0, Y)0,U + XO,(Y0,U) - YO,(X0,0),
where X, Y, U € g_;, and define the linear operator L,(X, Y) by
(4.14) Ly(X,Y)U = (XYU),.
LemMMA 4.5. Let X,Yeg_,. Then
(4.15) L,(X,Y)=L(X,P(op,—p)Y).
Proor. For simplicity we write f, for 0,,_,. By the definition of a JTS, we have
(4.16)  L(X,P(f,)Y)U = (X (% Yf,)U)
= (Y X)/pU) + (Xfp(Y5pU)) - (Y (XS, U))
= (X0, Y)DPU + XDP(YDPU) - YDp(XDpU)
= (XYU)p, = L,(X,Y)U. O
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PROPOSITION 4.6. Suppose that A(g,c¢) is of type C. Let (Str%[,,)0 and (StrB)°
denote the identity components of the structure groups StrW, and StrB, respectively.
Then we have

(4.17) (stroL,)° = (Str8)° = G).

Proor. Lie Str U, (resp. Lie StrB) is generated by L,(X, Y) (resp. L(X, Y)), when
X and Y vary through g_,. Therefore the proposition follows from Lemma 4.5 and the
non-degeneracy of P(o0p,—). O

Table II tells us that if 4* is of type D,, then A4(g,¢) is of type C. In this case one
has the Jordan algebra A, = (g_,, [J,) (Proposition 2.2).

PROPOSITION 4.7. Let g =g_, + gy + g, be a real simple GLA. Suppose that 4" is
of type D,. Let N be the reduced norm of the Jordan algebra W, = (g_,,,). Suppose
N(Or,o)N(Or-l,l) < 0. Then

(4.18) Vr = Gg * 0r,0 H Gg *Or—1,1-
In particular, there are exactly two open Gy-orbits in g_,.

PrOOF. By the assumption, 4(g,¢) is of type C. Therefore, by Corollary 2.11 [6],
we have that V, = {X e g_, : det P(X) # 0}. Lemma 4.4 implies that X € V, if and only
if det P,(X) # 0 if and only if N(X) # 0. We have thus

(4.19) Vi={Xeg_, : NX) #0}.

Let V;* (resp. ¥,”) be the totality of elements X eg_, satisfying N(X)>0
(resp. < 0). Then

(4.20) v=v1I v

Suppose for simplicity that N(o,9) > 0. Then N(o,;,;) <o0. We have o, € V," and
0r-1,1 € V,”. The reduced norm N is a relative invariant polynomial on g_,, that is,

(4.21) N(gX) = 2(@)N(X), Xeg_, geSirl,

where x is an R*-valued character of Str?,. Suppose now that ge GJ = (Str %2,)°
(cf. Proposition 4.6). Then we have N(go,0) = x(9)N(0r0) > 0, and hence Gg cor0 < V.
Similarly GJ - 0,-1,1 = ¥,~. These two imply (4.18). O

COROLLARY 4.8. Under the situation in Proposition 4.7, suppose that N(o,0) > 0
(resp. < 0) and N(0,-1,1) < 0 (resp. > 0). Then
G -0,0={Xeg_,: N(X) >0 (resp. < 0)},

(4.22)
G -0,.11={Xeg_,:N(X) <0 (resp. > 0)}.

§5. The orbit decompositions of g_, (continued).

In this section we consider the case where 4* is of type D.
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5.1.

THEOREM 5.1.  Let (g, 8y,9_,) = (sI(2p, R), sl(p, R) + sl(p, R) + R, M,(R)). Then the
orbit decompositions of §_, under the groups G and Gy are given by

-1
(5.1) g1 =]] G- oxo J] G- 00 [ GO - 0p-1.1,
k=0
V4
(5.2) g = H Go - 0x,0-

k=0
There are exactly two open orbits G -0,0 and Gj- 0,11 which are mutually diffeo-
morphic.

PrOOF. In this case, 4 is of type 42,1 and is given by

(5.3) Ad={x(Ah—-4):1<i<j<2p}.
The simple root system /7 is given by

(5.4) I={e;=4— A1 :1<i<2p-1}
Since 1Ty = {a,} (cf. Table I), we have

(5.5) Ay ={di—Apyj: 1 <i,j <p}.

The corresponding gradation of g = sl(2p, R) is
§=96.11t9 +g

(5.6) rr

~{GH) GG
Let
(5.7) I'={f;=4—4p4i: 1 <i<p}

Then I' is a maximal system of strongly orthogonal roots in 4;. Let Ejeg_; =
M,(R) (1 <i,j < p) be the matrix whose (k,?)-entry is dxd;s. It can be seen that the
root vector E_; € g7 (1 <i < p) is given by the matrix E; € M,(R) = g_,. Therefore

k

Ok,0 = E Eie M,(R), 1<k <p,
i=1

(5.8) b

Op-1,1 = Z Eii — Epp.

i=1
The reduced norm N of the Jordan algebra U, = M,(R) is given by N(X) =detX,
X € My(R). Hence N(o0,0) =1 and N(o0p,-1,1)) = —1. Consequently, by Proposition
4.7, we have that ¥, = G- 0,0 [[ G5 - 0,-1,1. Combining this with (4.9) and (3.16), we
get (5.1).

Let us next consider the Gp-orbit decomposition of g_;. For g=sl(2p,R), it
is known (Matsumoto [19]) that Q; mod Qq is generated by ¢;. Since & is not in G°,
we have & €Gy—GS (cf. (3.4)). Choose the subset IT) ={o} of II. Then
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(5.9) g=g_,+8 +9i
be the gradation of g corresponding to IT| (cf. §1), and let

(5.10) 4= ﬁ 4,

k=—1
be the corresponding partition of 4. Since B, € 4] and g € 4; for k > 2, we have that
E_; liesin ¢’ ; and E_; (k > 2) lies in g;. On the other hand ¢ =1 on g; and & = —1
on ¢, +4) (cf. (3.1), (1.7), (1.11), (1.12)). Hence ¢ sends E_; to —E_; and leaves
Ey (k > 2) fixed. Consequently & (0p0) = —E_1 + 3%, E_;. Letae W(4*) be the el-
ement interchanging E_; with E_, and leaving all other E_; (k#1,p) fixed. Then it fol-

lows that ae(0p,0) = 0p-1,1, and hence Go - 0p—1,1 = Goaei(0,,0) = Go - 0p,0, which proves
(5.2). Since & normalizes GJ, it is easily seen that & sends G - 0,0 to G) - 0p_1,1. O]
5.2.

THEOREM 5.2. Let (g,8y,9_1) = (s0(2n,2n), gl(2n, R), Alts,(R)). Then the orbit de-
compositions of g_, under the groups Gy and Gy are given by (5.1) and (5.2) with p replaced
by n.

ProOF. The Lie algebra g = so(2n, 2n) is realized as

(5.11) s0(2n,2n) = {4 € gl(4n, R) : ‘A4S + SA = 0}
Ay A
= T+ Ay = 0, Ay, A5€ Alt;)_,,(R) ,
A3y Ag

0 E
where S = (E 0 ) The root system 4 is of type D,,.

A={(ith):1<i<j<m},

(5.12)
II = {OC,' = Ai — Ait1 (1 <i<2n-— 1),0(2,, = A1 +/12,,}.

Since IT; = {az,} (cf. Table I), we have
(513) A1={A,+ijlsz<1£2n}

The gradation g = g_; + g, + g, corresponding to I7; is given by (5.6) with p replaced by
2n. Put

(514) I'= {,B, = /12,'_1 + 121' 1<i< n}.

Then I' is a maximal system of strongly orthogonal roots in 4;. It can be seen that the
root vector E_; e 7% (1 <i <n) is given by the matrix —FEy; 15 + Ejizi1 € Altyy(R) =
g_;. If we denote by Pff(X) the Pfaffian of an alternating matrix X, then the above
matrix realization of E_; shows that Pff(0,0) = (—1)" and Pff(0,_1,1) = (=1)"'. Since
the Pfaffian is the reduced norm of the Jordan algebra U, = Alty,(R), it follows from
Proposition 4.7 that V, = Gg ~omo [ Gg -0p—1,1. Therefore we get (5.1) with p replaced
by n.
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Let us next study the open Gy-orbits. For g = so(2n,2n), it is known (Matsumoto
[19]) that & is one of representatives of Q; mod Qp. Similarly as before, we have
&1 € G — G). Choose a subset IT; = {01} of 1. Then hy (9) = 1.

Consider the gradation (5.9) of g = s0(2n,2n) corresponding to IT| and the partition
(5.10) of 4. Since ki (B;) =1+# 0 and hy (B;) =0 for k > 2, we have that E_ e g’
and E_; € g; for k > 2. On the other hand ¢; =1 on gj and = —1 on ¢’ ; + g). Hence
¢ sends E_; to —E_; and leaves E_; (k >2) fixed. Let ae W(4") be the element in-
terchanging E£_; with E_, and leaving all other elements E_ (k # 1,n) fixed. Then we
have that aei(0n0) = 0s—1,1, and hence Go - 0,—1,1 = Go - 04,0, Which proves (5.2) with p
replaced by n. Since & normalizes GJ, we see that & (G - 040) = G - 0511 0

5.3 Let us now consider the case (g,8y,9_;) = (E7(7), E¢6) + R, H3(0')). There is
only one possibility of gradations of the first kind for g = E77). That gradation corre-
sponds to IT; = {a7}. Let I' = {f,,5,, 55}, where

B = 20y + 205 + 303 + 4og + 3as5 + 206 + 27,
(5.15) B = o + a3+ 204 + 205 + 206 + 7,

ﬂ3 = og.

It can be checked that I" is a maximal system of strongly orthogonal roots in 4;. As
was shown in [6],{e;,e2,e3},e; = E_;, is a frame (= a maximal system of orthogonal
primitive idempotents) of B. In the present case, the triple product B, of B comes from
the natural Jordan algebra structure U« of g_;, = H3(O’) (cf. Loos [18]), that is,

(5.16) B.(X,U,Y)=Xo(UoY)+(XoU)oY—Uo(XoY),

where o denotes the Jordan multiplication in 2. Therefore the two structure groups
coincide:

(5.17) Str U = Str B.

Let e; (i = 1,2,3) be the diagonal matrix diag(dy;,d2:,03;) € H3(0'). Then {e;, exn, e}
is a frame in H3(O').

LEMMA 5.3. 03 is an invertible element in the Jordan algebra W := H;3(0').

ProOOF. Let Py be the quadratic representation of 2. Then (5.16) implies that
Py(X) = P(X) for X eg_,=H;3(0), and hence Py(030) = P(030). The operator
P(030) is nondegenerate, by Lemma 4.4. Therefore o030 is an invertible element in

A. (]

Recall the Jordan algebra A3 = (g_;,[3) in §2. By (5.16), A3 is a mutant of A by
the invertible element 03 o.

LEMMA 5.4. N(0370)N(02,1) < 0.
PrOOF. Let Ny be the reduced norm of 2A. Then we have (Braun-Koecher [3])

(5.18) N(X) = Ny(X)Nu(030), Xeg_,.
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Since 03¢ is invertible in A, we have Ng(o0309) #0. Now consider the two frames
{e1,e2,e3} and {ey,exn,e33} in B. By Proposition 11.8 in Loos [18] and Lemma 3.4
here, there exists an element k € K such that

3
(5.19) kes o = Z diei,
i=1

where d; = +1. Ny is a relative invariant polynomial for the group Str . Therefore
there exists an R*-valued character y of Str U = StrB = Gy such that
(5.20) Nu(9X) = x(9)Nu(X), Xeg ,,9¢€ Go.

Since K is contained in the commutator subgroup [Gy, Go], x(Ko) = 1. Therefore we
have

(5.21) Nu(030) = Nur(kos o) = Ny (Z J; e,,) = 010203.

p
Similarly we have Ng(0;,1) = —010203. Therefore, in view of (5.18), we have
N(03,0)N(02,1) < 0. O

THEOREM 5.5. Let (8,89,8_;) = (E7(7), Eg) + R, H3(0')). Then the orbit decom-
positions of §_, under the groups Gg and Gy are given by

2
(5.22) 1= H Go - 0,0 H Gp - 030 H Gy - 021,
k=
3
(523) g = H Gy - Ok.0-
k=0

There are exactly two open orbits Gg <030 and Gg-ozyl which are mutually diffeo-
morphic. There is a single open Gy-orbit in g_,.

Proor. (5.22) follows from Lemmas 4.3 and 5.4 and Proposition 4.7. Let us con-
sider the Go-orbit decomposition of g_;. In the present case g = Ey(7), 01 mod Qo is
generated by & (Matsumoto [19]), and hence & e Gy — G). Consider the subset
IT] = {az} of IT;. Then hm, (8) =2 Let g= Zk~—2 g, be the gradation of g corre-
spondmg to IT) and let 4 = I_[k_ , 4}, be the corresponding partition of 4. By the same
reason as for g =sl(2p,R), we have that & =1 on ¢, +g;+g, and & =—1 on
g’ | +4d}. On the other hand, we have 8, € 43, B, € 4| and f; € 45 (cf. (5.15)). Con-
sequently &(030) = e1 — ez +e3. Let ae W(4") be the element interchanging e, with e3
and leaving e, fixed. Then it follows that ae;(030) = 02,1, which implies 82(G8 1030) =
GY - 0,1. This proves (5.23). O

5.4. Let us consider the final case (g,gq,8_;) = (s0(p+1,9+1), so(p,q) + R,
R?*%), 2 < p < q, in which case r = 2 (cf. Table II). The root system 4 of g is of type
B, or D,,1, according as p < q or p = g, respectively. A4 is given by

(5.24) d={t(Lztid)(1<i<j<p+1)L(1<i<p+1)}, p<yq,
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or
A={+(Akx4):1<i<j<p+1}, p=qy.

The gradation of g corresponds to the subset I7) = {o¢) = 1) — A2} of IT. 4, is given by

(5.25) i={L A4 2<i<p+1)i},

where 4, occurs only when p < gq. The subset of 4,

(5.26) F'={py=A+4,p=%4 4}

is a maximal system of strongly orthogonal roots in 4;. In this situation we get the
simple Jordan algebra A, = (g_;, (>) of rank 2 with unit element e := 0 (cf. §2). We
need some results on simple Jordan algebras of rank 2 due to Braun-Koecher [3]: The
reduced norm N of U, is of signature (p, g), and the multiplication [J, can be expressed
as

(527) x[]2y=N(e,x)y+N(e,y)x—N(x,y)e, X, Y €9 1,
where N(x,y) = (1/2)(N(x+y) — N(x) — N(y)). From this it follows that

1
(5.28) N(el,el) = N(ez, ez) = O, N(el,ez) =—2-.

THEOREM 5.6. Let (8,89,8_;) = (so(p+ 1,9+ 1), so(p,q) + R,R*"*?), 2<p<gq.
Then the G3-orbit decomposition of §_, is given by

1

(5.29) 8-1= H Gy - 0k H Go - 02,0 H Gy - o1,1.

k=0

ProoF. By using (5.28), we see that N(oy0) =1 and N(o1,;) = —1. Therefore,
from Lemma 4.3 and Proposition 4.7, the assertion follows. O

THEOREM 5.7. Under the same assumption as in Theorem 5.6, the Gy-orbit decom-
position of g_, is given as follows:

2
(5.30) g1 = H Go-oko forp=y,
k=0
1
(5.31) g = H Go - or0 H Go - 02,0 H Go-011 forp<g.
k=0

PROOF. Suppose first p = g. In this case, one of generators of Q1 mod Qy is &p41
(Matsumoto [19]). Note that ¢, € Go — GJ. Choose the subset IT| = {a,41} of II.
Then b (3) =1. Letg= E/lc=-1 g, be the gradation of g corresponding to /77, and let
4= ]_[,1c=_1 4; be the corresponding partition of 4. We have ¢, =1 on g), and
g+1=—1 on ¢, +g;. We also have f; e 4] and B, € 4, since hy (f;)=1 and
hir (B,) = 0. As a result, &11(020) = —e1 +e€;. Choose an element a e W(4") inter-
changing e; with e;. Then ae,(1(02,0) =011, which implies that ep+1(Gg c020) =
Gg -01,1. This, together with Lemma 4.3, proves (5.30).
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Next consider the case p < ¢. Put C = G) - 02,0 and Co = G - 01, for simplicity.
Choose a coordinate system (x;) in g_, = R?*? such that the reduced norm N(X) is
2

i 24 ... 2 _ — X2
expressed as the canonical form x7 +--- + x; — x; X5, Then

P ptg

(5.32) Ci = {(x,-) ERPY:Y xXI- > X2 0}.
im1 J=p+1

Let S} be the level surfaces of N, that is,

(5.33) St ={(x)eCt:N(X) = %1}.

Then CZ, are diffeomorphic to S x R¥, respectively. An easy argument shows that S,

(resp. S,.) is diffeomorphic to $P~' x R? (resp. S9! x R?), where S* denotes a k-

sphere. Consider the i-th homology groups H,-(Cpiq, Z),0<i<p+gq. Then the above
argument shows that H;(C}, Z) ~ H;(S*~!, Z) and H;(C,,,Z) ~ H,(S%"',Z). Suppose

that C are homeomorphic to each other. Then we have H;(S7~!, Z) ~ H;(S%"!, Z) for
any i,0<i<p+gq, which implies p=g¢g. This contradicts the hypothesis p < gq.
Therefore C;; is not homeomorphic to C,,. Suppose now that there exists only one
open Gp-orbit in g_,. Then there exists a e Gy — Gg such that ao, 9 =01;. We then
have a(C;)) = C,,, and hence C;;] is homeomorphic to C,,, which is a contradiction.
Therefore there are exactly two open Gy-orbits. O

6. Open G)-orbits

Let g=g_; +g,+g, be a real simple GLA. Suppose that the split root system
4(g,¢) of the symmetric pair (g,g,) is of type C,. Then we have the simple Jordan
algebras A, = (g_;, d,) with unit element o0,, ,(0 <p <r) (cf. §2). For an element
g € Str U, we define

(6.1) 0(9) = (¢")",

where g* is the adjoint operator of g with respect to the trace form y, of %,. Then 6 is
an involutive automorphism of Str2,. We denote by Autyrs 2, the automorphism
group of the JTS (4.13) coming from the Jordan algebra 2, and we denote by (Str,),
the subgroup of f-fixed elements of StrW,. Then, by the definition of Autyrs U, we
have

(6.2) (Str20,), = Autyrs 2,

PROPOSITION 6.1. Suppose that the split root system A(g,c) of the symmetric pair
(8,80) is of type C,. Then the open orbit Gy - 0p,, (0 < p <r) is expressed as a sym-
metric coset space.

(6.3) GY - 0pr—p = (Str,)°/(Str A,)° N Aut A,

where AutU, denotes the automorphism group of the Jordan algebra W,. (Note that
GY = (Str21,)° by (4.17)).
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PrOOF. Aut 2, is an open subgroup of Autyrs U, (cf. Satake [21]). Consequently,
noting (6.2), we have the inclusions

(6.4) ((Str20,),)° = Aut 2, < (Str ),

By taking the intersection of each term in (6.4) with (Str Q[p)o, it follows that

(6.5) (((Str21,)%)g)° = (Str20,)° NAut A, < ((StrA,)°)y,

which implies that the coset space in the right-hand side of (6.3) is a symmetric coset
space. Since Aut, is the isotropy subgroup of Str, at the unit element op,,,
G) - 0p,,—p has the coset space expression (6.3). O

Every open orbit GJ - 0,,_, is an w-domain in the sense of Koecher [16], since that
orbit is a connected component of ¥, (note that ¥, coincides with the totality of invertible
elements in A,, by Lemma 4.4). As a result, open GJ-orbits exhaust all w-domains in
real simple Jordan algebras. The results similar to Proposition 6.1 were obtained also
by Faraut-Gindikin [5] and Vinberg [29].

REMARK 6.2. Assuming that 4(g, c) is of type C, let us consider the quadratic rep-
resentation P(X) of the JTSB. Then P(X) is nondegenerate for X € V; ([6]). det P(X)
has a constant sign on each connected component of V,. Put

(6.6) d(X) =log|det P(X)|, X eV,.

Then, by Koecher [16] together with Lemma 4.4, the Hessian Hess(®(X)) is non-
degenerate on each open G)-orbit. Hence Hess(®(X)) is a Gb-invariant pseudo-
riemannian metric on it. As a conclusion, an open GJ-orbit provides with an example
of pseudo-Hessian symmetric space (For the definition of a Hessian symmetric space, see
Shima [24]).

In the following, we give the explicit forms of open GJ-orbits and their coset space
expression (6.3) for each simple GLA(g,g,,8_,) with split root system of type C.
Partial results have been obtained by Kaneyuki [11] and d’Atri-Gindikin [4].

(I1) with p =n/2,

{X € M,(R) : detX >0}, {X e M,(R):detX < 0}.

Both are expressed as GL( p,R)0 X GL(p,R)O/ diagonal.
(I2) with p=n/2,

{X e M,(H) : detX # 0} = GL(p,H) x GL(p, H)/diagonal.

(13) H,_ ;(C)=GL(n,C)/Un—1ii), 0<i<n.
(14) H,_;(R) = GL(n,R)°/SO(n —i,i), 0<i<n.
(15) {X € SH,(H) : det X # 0} = GL(n, H)/SO*(2n).
(I6) i) p=0,

{(x)eR?:x7 +--- +x; # 0} = R* x SO(q)/SO(q - 1).
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() eRI s =
{(6) e R*™! 1 xf =03 — - = x> 0,31 <0},
%

{(x) e R i = o =L, <O},

>0,x) > 0},

The first two are expressed as R* x SO(1,4)°/SO(g). The third one is expressed as
R* x SO(1,¢)°/S0(1,9 — 1)°.
i) p =2,

2]

+
{(xi) € RI* ‘2 X} - ) X > 0} =R* x SO(p,q)°/SO(p - 1,9)°,

i=1 Jj=p+1
{(xi) € RI*P i X2 - 5 X < 0} =R x SO(p,9)°/SO(p,q - 1)°.
i=1 j=p+1
I7) H,_ ;i(H)= GL(n,H)/Sp(n—1i,i), 0<i<n.
(I8) {X € Alt;,(R) : Pff(X) > 0}, {X € Alty,(R) : Pff(X) < 0}.
Both are expressed as GL(2n, R)°/Sp(n, R).
(I11) {X eH;(0): N(X) >0}, {XeH;O):NX)<O0},

where N denotes the reduced norm of H3(0'). Both are expressed as RY x Eg)/Fa).-
(112) H_;;(0), i=0,1,2,3.

H;0(0) and Hy3(O) are expressed as R* x Eg_a)/F4.

H,,1(0) and H;»(0) are expressed as R* x Eg(_s6)/Fa-20)-
(113) with p = n/2,

{X € M,(C) : det X # 0} = GL(p, C) x GL(p, C)/diagonal.

(114) {X e Sym,(C) : det X # 0} = GL(p, C)/SO(n, C).

(115) {@)eC": 224+ 22 £0} = C* x SO(n,C)/SO(n - 1,C).
(116) {X € Alty,(C) : Pf(X) # 0} = GL(2n,C)/Sp(n, C).
(118) {X € H3(0€) : N(X) # 0} = C* x EC /F¥,

where N denotes the reduced norm of the Jordan algebra H3(OC).
In the above list, H,_; ;(K) denotes the set of n x n K-hermitian matrices of signature
(n—1i,i), where K =R,C,H, O.
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