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1. Introduction.

This paper presents techniques enabling one to connect potentials of the Brownian
motion process with a particular type of interpolation spaces known as Besov spaces.
Earlier works of Komatsu [6] and Yoshikawa [11], developed interpolation theory by
using semigroup resolvent; it tumed out that their approach is very useful, and it
parallels recent new results dealing with characterization of some excessive functions of
the Brownian motion in terms of $\Gamma$-potentials, obtained by Glover, Rao, \v{S}iki\v{c}, and
Song [5].

However, the main result of this paper states that Brownian potentials of finite
measures, given over bounded domains, belong to Besov spaces. This result, interesting
by itself, provides several important applications.

Namely, consider the Schr\"odinger equation

(1) $( \frac{1}{2}\triangle+q)u=0$ ,

understood in the sense of distributions. In order to study this equation from the
probabilistic point of view, the crucial notion of the gauge function was introduced in
earlier work by Chung and Rao [3]. This paper shows that under some assumptions,
the gauge function belongs to a Besov space; it measures its degree of continuity. An
earlier work by Aizenman and Simon [1], (p. 217, Theorem 1.5 and Remark), shows that
any solution of equation (1) is a continuous function, but it may not be H\"older

continuous of any order. (For probabilistic approach consider Pop-Stojanovi\v{c} and Rao
[8] $)$ . However, this paper shows more than its continuity, namely, that it belongs
locally to a Besov space.

Finally, it has been shown that every bounded solution $u$ of the Schr\"odinger
equation $((\triangle/2)+q)u=-f$ has the form $u=h+w$ , where $h$ is a bounded harmonic
function, and $w$ belongs to Besov space $B_{pp}^{2\theta}(\Omega)$ , with $p<n/(n-2+2\theta)$ .

2. Besov Spaces and Brownian Motion Process.

Let $\Omega\subseteq R^{n},$ $n\geq 3$ , be a bounded $C^{\infty}$ -domain, and let $D’(\Omega)$ denote the set of all
distributions on $\Omega$ . Furthermore, throughout this paper real numbers $2\theta$ and $p$ satisfy

* The publication is based on work sponsored by the Croatian-American Joint Fund in cooperation with the
Ministry of Science and Technology (Croatia), and the National Science Foundation (USA) under project No. JF159.



332 Z. P.-STOJANOVI\v{C}, M. RAO and H. \v{S}IKI\v{C}

$0<2\theta<1$ and $1\leq p<+\infty$ . Following Triebel [10], the Besov space $B_{pp}^{2\theta}(\Omega)$ is defined
as

(2) $B_{pp}^{2\theta}(\Omega)=$ { $f;f\in D’(\Omega)$ ; there exists $g\in B_{pp}^{2\theta}(R^{n}),$ $g|_{\Omega}=f$},

where

(3) $B_{pp}^{2\theta}(R^{n})= \{f;||f||_{p}+\{\int_{R^{n}\cross R^{n}}\frac{|f(x)-f(y)|^{p}}{|x-y|^{n+2\theta p}}dxdy\}^{1/p}<+\infty\}$ .

REMARK 1. Observe that assumptions made at the outset of the paper are needed
to obtain the main result of the paper. Several definitions and results are valid for
unbounded domain $\Omega$ and for $n=1,2$ , as well. Finally, requirement for $C^{\infty}$ -domain is
needed only in the above definition. (See Triebel [10] for more details). $\square$

Let $(X_{t};t\geq 0)$ be a Brownian motion process killed upon exit from $\Omega$ and $\tau$ the
first exit time of the process from $\Omega$ . Let $(T_{t})$ denote the corresponding semigroup of
operators, i.e., $(T_{t}f)(x)=E^{X}[f(X_{t})]$ , and $G$ the potential operator of $(X_{t})$ , i.e.,

(4) $(Gf)(x)=E^{\chi}[ \int_{0}^{+\infty}f(\chi_{t})dt]=E^{X}[\int_{0}^{\tau}f(X_{t})dt]$ .

The Brownian semigroup $(T_{t})$ is a $C_{0}$-semigroup of contractions on $L^{p}(\Omega)$ , whose
infinitesimal generator is (1/2) $\triangle$ ; here, the Laplacian $\triangle$ is taken with zero boundary
conditions. Since, $\mathscr{B}((1/2)\triangle)=\mathscr{B}(\triangle)=\mathscr{B}(-\triangle)$ , where 9 denotes the domain of an
operator with respect to $L^{p}$ space, the interpolation space

(5) $(\mathscr{B}(\triangle), L^{p}(\Omega))_{\theta,p}$

will be considered using approaches of Komatsu and Yoshikawa, and that of Besov
spaces. Consider the second approach first.

REMARK 2. Notation used in (5) for the interpolation space, is that of Yoshikawa
[11]. The same space is obtained, but differently denoted, in Bergh and L\"ofstr\"om [2] by
using the $J$-method from Banach spaces $L^{p}(\Omega)$ , with its usual norms, and $\mathscr{B}(\triangle)$ ,
endowed with the norm $||f||_{p}+||\triangle f||_{p}$ . Notice that in the notation of Bergh and
L\"ofstr\"om, the spaces appear in the reverse order of that used in this paper, as well as
in Yoshikawa’s. Again, the same spaces, although under different notation, appear in
Komatsu [6]. $\square$

It is well-known (see, for example, Theorem 6.7.4, p. 160 in Bergh and L\"ofstr\"om [2])

that

(6) $B_{pp}^{2\theta}(R^{n})=(\mathscr{B}(\triangle), L^{p}(R^{n}))_{\theta,p}$ ,

where the Laplacian $\triangle$ is considered over the entire $R^{n}$ . The set of $C^{\infty}$ functions with
compact supports in $\Omega$ is the core for the Laplacian on $\Omega$ with zero boundary con-
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ditions. Therefore, every $f\in \mathscr{B}(\triangle)$ over $\Omega$ is also in $\mathscr{B}(\triangle)$ over $R^{n}$ , and corresponding
norms coincide. Of course, every $f\in L^{p}(\Omega)$ is also in If $(R^{n})$ , and their two norms
coincide. Since only these spaces and their norms are involved in the $J$-method, one
concludes that

for every $f\in(\mathscr{B}(\triangle), L^{p}(\Omega))_{\theta,p}$ there exists
(7)

$g\in(\mathscr{B}(\triangle), L^{p}(R^{n}))_{\theta,p}$ such that $g|_{\Omega}=f$ .

NOW, consider the other approach. It has been proved in Komatsu [6], (see also
Proposition 2.1. in Yoshikawa [11] $)$ , that the interpolation space $(\mathscr{B}(\triangle), L^{p}(\Omega))_{\theta,p}$ is the
set of all $f\in L^{p}(\Omega)$ such that

(8) $\int_{0}^{+\infty}||\lambda^{\theta}AR_{\lambda}f||_{p}^{p}\frac{d\lambda}{\lambda}<+\infty$ ,

where $A=-(\triangle/2)$ , and $(R_{\lambda})$ is the resolvent of the semigroup $(T_{t})$ . It is obvious, that
the same statement could be obtained by replacing the Laplacian $\triangle$ in (8) instead of $A$ .
Using Fubini theorem, Jensen inequality and the fact that $\lambda e^{-\lambda t}$ is the density of a
probability measure on $[0, +\infty),$ (8) yields to

$\int_{0}^{+\infty}\lambda^{\theta p-1}||AR_{\lambda}f||_{p}^{p}d\lambda=\int_{0}^{+\infty}\lambda^{\theta p-1}||\lambda R_{\lambda}f-f||_{p}^{p}d\lambda$

$= \int_{0}^{+\infty}\lambda^{\theta p-1}||\int_{0}^{+\infty}\lambda e^{-\lambda t}(T_{t}f-f)dt||_{p}^{p}d\lambda$

$\leq\int_{0}^{\infty}\lambda^{\theta p-1}[\int_{0}^{+\infty}\lambda e^{-\lambda t}||T_{t}f-f||_{p}dt]^{p}d\lambda$

$\leq\int_{0}^{\infty}\lambda^{\theta p-1}\int_{0}^{+\infty}\lambda e^{-\lambda t}||T_{t}f-f||_{p}^{p}dtd\lambda$

$= \int_{0}^{+\infty}||T_{t}f-f||_{p}^{p}\int_{0}^{+\infty}\lambda^{\theta p}e^{-\lambda t}d\lambda dt$

$= \Gamma(\theta p+1)\int_{0}^{+\infty}||\frac{T_{t}f-f}{t^{\theta}}||_{p}^{p}\frac{dt}{t}$ .

Combining this with (2), (6), (7), and (8), one gets the following

THEOREM 1. Let $f$ be in $L^{p}(\Omega)$ .

a) If $\int_{0}^{+\infty}||\lambda^{\theta}\triangle R_{\lambda}f||_{p}^{p}\frac{d\lambda}{\lambda}<+\infty$ , then $f\in B_{pp}^{2\theta}(\Omega)$ .

b) If
$\int_{0}^{+\infty}||\frac{E[f(X_{t})]-E[f(X_{0})]}{t^{\theta}}||_{p}^{p}\frac{dt}{t}<+\infty$ , then $f\in B_{pp}^{2\theta}(\Omega)$ .

In both cases one obtains that

(9) $\int_{\Omega\cross\Omega}\frac{|f(x)-f(y)|^{p}}{|x-y|^{n+2\theta p}}dxdy$

is finite.
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REMARK 3. TO get the main result, one needs only the part a) of Theorem 1.
However, the part b) is interesting, since it gives a probabilistic sufficient condition for a
function to belong in the Besov space. Observe that one can consider $R^{n}$ instead of $\Omega$

(even for any $n\in N$), and use (2) and Theorem 4.3 in Komatsu [6]. Hence, one gets the
following (probabilistic) characterization of the Besov space: $f\in B_{pp}^{2\theta}(R^{n})$ if and only if
$f\in L^{p}(R^{n})$ and

(10) $\int_{0}^{+\infty}||\frac{E[f(B_{t})]-E[f(B_{0})]}{t^{\theta}}||_{p}^{p}\frac{dt}{t}<+\infty$ ,

where $(B_{t})$ is a standard Brownian motion process on $R^{n}$ , unlike $(X_{t})$ which is Brownian
motion process killed upon exit from $\Omega$ . It follows also that corresponding norms are
equivalent as well. $\square$

NOW, the main result of the paper. Following Glover, Rao, \v{S}iki\v{c}, and Song [5], for
$0<\alpha<1$ and $f\geq 0$ , one defines the F-potential:

(11) $V^{\alpha}f(x)= \frac{1}{\Gamma(\alpha)}E^{X}[\int_{0}^{+\infty}t^{\alpha-1}f(X_{t})dt]$ .

It follows that

(12) $Gf(x)=V^{\alpha}V^{1-\alpha}f(x)$ ,

and the same holds true for a positive measure $\mu$ instead of function $f$ .

THEOREM 2. If $s=G\mu$ , where $\mu$ is a finite positive measure on $\Omega$ , then, for every
$p<n/(n-2+2\theta),$ $s\in B_{pp}^{2\theta}(\Omega),$ $i.e.$ ,

(13) $\int_{\Omega\cross\Omega}\frac{|s(x)-s(y)|^{p}}{|x-y|^{n+2\theta p}}dxdy$

is finite.
PROOF. Since $n\geq 3$ , the Green potential $G$ is dominated by function

$C|x-y|^{-(n-2)}$ , where $C$ is a constant depending on $n$ and $\Omega$ only. Therefore, on a
bounded domain and with respect to the finite measure $\mu,$ $s=G\mu$ is in $L^{p}(\Omega)$ for
$1\leq p<n/(n-2)$ . Since $p<n/(n-2+2\theta)<n/(n-2)$ , one has that $s\in L^{p}(\Omega)$ .

Considering Theorem 1. a), it is sufficient to check that $s$ satisfies equation (8).

Function $s$ is excessive. Hence, $-s^{\lambda}=\lambda R_{\lambda^{S}}-s=(\triangle/2)R_{\lambda^{S}}$ satisfies the equation
$s=s^{\lambda}+\lambda R_{\lambda}s$ , for each $\lambda>0$ , and $s^{\lambda}$ is a unique $\lambda$-excessive function with such a
property (see Rao [9] for details). Therefore, it is sufficient to show that

(14) $\int_{0}^{+\infty}\lambda^{\theta p-1}\int_{\Omega}[s^{\lambda}(x)]^{p}dxd\lambda<+\infty$ .

Using Lemma 1, p. 49, in Mazja [7], one can estimate the integral in (14).
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$\int_{0}^{+\infty}\lambda^{p-1}\int_{\Omega}[\lambda^{\theta-1}s^{\lambda}(x)]^{p}dxd\lambda=\int_{\Omega}\int_{0}^{+\infty}\lambda^{p-1}[\lambda^{\theta-1}s^{\lambda}(x)]^{p}d\lambda dx$

$\leq\int_{\Omega}\frac{1}{p}(\int_{0}^{+\infty}\lambda^{\theta-1}s^{\lambda}(x)d\lambda)^{p}dx$ .

Hence, it is sufficient to prove that

(15) $x \vdash\int_{0}^{+\infty}\lambda^{\theta-1}s^{\lambda}(x)d\lambda$

is in $L^{p}(\Omega)$ .
The potential $s=G\mu$ is also purely excessive, i.e., it allows the T-potential

representation $s=V^{\theta}g$ , with

(16) $g= \frac{1}{\Gamma(\theta)\Gamma(1-\theta)}\int_{0}^{+\infty}\lambda^{\theta-1}s^{\lambda}d\lambda$ ,

wherefrom one sees that (15) and (16) only differ for a multiplicative constant (see

Glover, Rao, \v{S}iki\v{c}, Song [5] for derivation of (16) $)$ . However,

(17) $s=G\mu=V^{\theta}V^{1-\theta}\mu$ ,

and $g=V^{1-\theta}\mu$ , as shown in Glover, Rao, \v{S}iki\v{c}, Song [5]. Therefore, it remains to
show that $V^{1-\theta}\mu\in L^{p}(\Omega)$ . Denote by $p_{t}(x,y)$ the transition probability density for $(X_{t})$ .
Then, one gets the following estimate:

$(V^{1-\theta} \mu)(x)=\frac{1}{\Gamma(1-\theta)}\int_{0}^{+\infty}\int_{\Omega}t^{(1-\theta)-1}p_{t}(x,y)\mu(dy)dt$

$\leq M\int_{\Omega}\frac{1}{|x-y|^{n-2(1-\theta)}}\mu(dy)$ ,

where $M$ is a constant depending on $\Omega,$ $n$ and $\theta$ , only. Since $\mu$ is a finite measure,
function

(18) $x-> \int_{\Omega}\frac{1}{|x-y|^{n-2(1-\theta)}}\mu(dy)$

belongs to $L^{p}(\Omega)$ , for $p<n/(n-2+2\theta)$ , which terminates the proof. $\square$

3. Applications.

Given a Borel function $q$ belonging to the Kato class and such that the gauge
function

(19) $g(x)=E^{X}[e^{\int_{0}^{\tau}q(X_{s})\ }]$

is bounded. (For a detailed account on the subject consider the book by Chung and
Zhao [4] $)$ . Then, the Schr\"odinger potential $K$ , defined by

(20) $Kf(x)=E^{X}[ \int_{0}^{\tau}e^{\int_{0}^{l}q(X_{s})ds}f(X_{t})dt]$ ,
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satisfies the equation
(21) $Kf=Gf+G(qKf)$ .

By applying Theorem 2 in this situation, one gets several interesting results.

COROLLARY 1. If $s=Kf$, where $f\geq 0$ and $f\in L^{1}(\Omega)$ , then, for every $p<$

$n/(n-2+2\theta),s\in B_{pp}^{2\theta}(\Omega)$ .

PROOF. Since $Kf$ satisfies (21), it suffices to show that $Gf$ and $G(qKf)$ belong to the
Besov space $B_{pp}^{2\theta}(\Omega)$ . Since $f\geq 0$ and $f\in L^{1}(\Omega)$ , Theorem 2 implies immediately that
$Gf\in B_{pp}^{2\theta}(\Omega)$ . TO show the rest, one has to show that $qKf\in L^{1}(\Omega)$ , and then to
consider its positive and negative parts. Knowing that $K$ is a symmetric operator, one
obtains the inequality

$\int_{\Omega}|qKf|(x)dx\leq\int_{\Omega}|f(x)|(K|q|)(x)dx$ ,

wherefrom the conclusion follows, since $f\in L^{1}(\Omega)$ and $K|q|$ is bounded.

NOW, by taking positive and negative parts of $f$ , one concludes that $Kf$ belongs to
the Besov space $B_{pp}^{2\theta}(\Omega)$ , for every $f\in L^{1}(\Omega)$ . Recall that, since $\Omega$ is bounded and $q$ is in
the Kato class, $q$ is in $L^{1}(\Omega)$ .

The gauge function $g$ is the solution of the Schr\"odinger equation

(22) $( \frac{\triangle}{2}+q)u=0$

with the boundary condition

(23) $u|_{\partial\Omega}=1$ .

Since $g=1+K(q)$ , one gets the following

COROLLARY 2. The gauge function $g$ belongs to the Besov space $B_{pp}^{2\theta}(\Omega)$ , for every
$p<n/(n-2+2\theta)$ .

Consider even a more general situation. Let $f\in L^{1}(\Omega)$ and $u$ be a bounded
solution of the non-homogenous Schr\"odinger equation

(24) $( \frac{\triangle}{2}+q)u=-f$ .

Let $\{\Omega_{n}, n\in N\}$ be an increasing sequence of relatively compact subdomains of $\Omega$ , (so

that the closure of $\Omega_{n},$ $n\in N$ is contained in $\Omega$ ), and such that $\bigcup_{n}\Omega_{n}=\Omega$ . Let
$\tau_{n},$ $n=1,2,$ $\ldots$ , be the exit time from $\Omega_{n},$ $n=1,2,$ $\ldots$ . By taking a subsequence if
necessary, one gets a harmonic function $h$ (with respect to the Laplacian), as the limit

(25) $h(x)= \lim_{narrow+\infty}E^{X}[u(X_{\tau_{n}});\tau_{n}\nearrow\tau]$ .

Then, $u$ satisfies equation
(26) $u(x)=Kf(x)+v(x)$ ,
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where $v$ is given by

(27) $v(x)=h(x)+E^{X}[J0e^{\int q(xS)dS}(qh)(X_{t})dt$ .

After applying the result of Corollary 1 to (26) and (27), (since $f,$ $qh\in L^{1}(\Omega)$ ), one gets
the following concluding result of this paper.

COROLLARY 3. Every bounded solution $uf$ the Schrodinger equation (24) satisfies
(28) $u=h+w$ ,

where $h$ is a bounded harmonic function, and $w$ belongs to $B_{pp}^{2\theta}(\Omega)$ , with $p<$

$n/(n-2+2\theta)$ . In particular, $u\in B_{pp}^{2\theta}(\Omega’)$ , for every compact subdomain $\Omega’$ of $\Omega$ .
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