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1. Introduction

Let $C^{n}$ be the $n$-dimensional complex Euclidean space, $\langle$ , $\rangle$ the Euclidean metric
and $J$ the canonical complex structure on $C^{n}$ . The Kaehler two form $\Omega$ is given by
$\Omega(v, w)=\langle v, Jw\rangle$ , for any vectors $v,$ $w$ in $C^{n}$ . We say that an immersion $\psi$ : $Marrow C^{n}$

of an $n$-dimensional manifold $M$ is Lagrangian if $\psi^{*}\Omega\equiv 0$ .
The simplest examples of Lagrangian submanifolds of $C^{n}$ are the totally geodesic

ones, i.e. the Lagrangian subspaces of $C^{n}$ . A second family of examples, known as the
Whitney spheres [17], can be defined as a family of Lagrangian immersions of the unit
sphere $S^{n}$ , centered at the origin of $R^{n+l}$ , in $C^{n}$ given by

$\psi(x_{1}, \ldots, x_{n+1})=\frac{r}{1+x_{n+1}^{2}}(x_{1}, x_{1}x_{n+1}, \ldots, x_{n},x_{n}x_{n+1})+A$

where $r$ is a positive number and $A$ is a vector of $C^{n}$ . We will refer to $r$ and $A$ as the
radius and the center of the Whitney sphere. Up to dilatations of $C^{n}$ all the Whitney
spheres are congruent with the corresponding to $r=1,$ $A=0$ .

These examples have very interesting properties. From a topological point of view,
it is well-known that the sphere cannot be embedded in $C^{n}$ as a Lagrangian submanifold
[8]. The Whitney spheres have the best possible behaviour, because they are embedded
except at the poles of $S^{n}$ where they have a double point.

From the point of view of the second fundamental form, they have the simplest
behaviour, after the totally geodesic ones, because their second fundamental forms $\sigma$

satisfy

$\sigma(v, w)=\frac{n}{n+2}\{\langle v, w\rangle H+\langle Jv, H\rangle Jw+\langle Jw, H\rangle Jv\}$ ,

being $H$ the mean curvature vector of the Whitney sphere. In some sense, these
submanifolds play the role of the umbilical hypersurfaces of the Euclidean space $R^{n+1}$ ,
in the family of Lagrangian submanifolds, and it seems natural that they could be
characterized of several forms, in the same way that the Euclidean spheres. The first
characterization of these spheres that we get is given in Theorem 2 and says that the
totally geodesic Lagrangian submanifolds and the Whitney spheres are the only

* Research partially supported by a DGICYT grant No. $PB91.0731$ .



204 A. Ros and F. URBANO

Lagrangian submanifolds of $C^{n}$ whose second fundamental forms have the above
expression. As a direct consequence of this result, we obtain for Lagrangian sub-
manifolds of $C^{n}$ an inequality involving the scalar curvature of $M$ and $|H|^{2}$ , and
characterize the totally geodesic Lagrangian submanifolds and the Whitney spheres as
the only ones that reach the equality (Corollary 3).

Following with the analogy between Lagrangian submanifolds of $C^{n}$ and hyper-
surfaces of $R^{n+1}$ , the Euclidean spheres are the basic examples of hypersurfaces with
constant mean curvature. The Whitney spheres have not parallel mean curvature
vector, property, which is generally taking, as a version on higher codimension of
the notion of constant mean curvature, but their mean curvature vectors $H$ satisfy that
$JH$ are conformal vector fields on the spheres. So, we will take this property as the
Lagrangian version of the concept of hypersurfaces of constant mean curvature. As the
dual form of $JH$ is the Maslov form of our Lagrangian immersion, we will refer to these
submanifolds as Lagrangian submanifolds with conformal Maslov form.

In paragraph 2, we study a natural family of this kind of immersions: those
Lagrangian submanifolds with conformal Maslov form and such that $JH$ is a principal
direction of $A_{H}$ . In Corollary 2, we classify locally this family, in terms of minimal
Lagrangian submanifolds of the complex projective space $CP^{n-1}$ and a l-parameter
family of plane curves, by a construction method, that generalizes the circle bundles
on the minimal Lagrangian submanifolds of $CP^{n-1}$ induced by the Hopf fibration
$\Pi$ : $S^{2n-1}arrow CP^{n-1}$ (see Definition 1 and Proposition 3). In this contex, the Whitney
sphere corresponds with the example constructs with the totally geodesic Lagrangian
submanifold of $CP^{n-1}$ and the simplest curve.

In paragraph 3, we use this local classification result to obtain remarkable con-
sequences. The first one can be described as follows. A classic Hopf result says that
the Euclidean sphere is the only compact surface of genus zero in $R^{3}$ with constant mean
curvature. We obtain the Lagrangian version of this result, which is one of the most
important global results in this paper:

The Whitney sphere is the only compact Lagrangian submanifold of $C^{n}$ with con-
formal Maslov form and null first Betti number.

Another property of the Whitney spheres is related with their Ricci curvatures. It is
known that there exist no Lagrangian compact submanifolds of $C^{n}$ with positive Ricci
curvature, and the Whitney spheres have positive Ricci curvatures everywhere except
at two points where their Ricci curvatures vanish. In Corollary 5 we prove that the
Whitney sphere is the only compact Lagrangian submanifold of $C^{n}$ with non-parallel

conformal Maslov form such that $Ric(JH)\geq 0$ .
The last important global result in this paper is given in Corollary 6. In it $we$

describe all the compact Lagrangian submanifolds of $C^{n}$ with conformal Maslov form and
whose first Betti number is one.

In [4], I. Castro and the second author studied this family in the particular case
of surfaces. In that paper the authors classified completely the family of compact
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Lagrangian surfaces with conformal Maslov form, obtaining besides the Whitney sphere
a two-parameter family of Lagrangian tori in $C^{2}$ .

Finally, when this paper was finished, the authors have known that in [3] our
Corollary 3 has been proved by using another method.

2. The Gauss map

Following with the analogy between constant mean curvature hypersurfaces of $R^{n+1}$

and Lagrangian submanifolds of $C^{n}$ with conformal Maslov form, we are also going to
characterize our family of submanifolds in terms of their Gauss maps.

Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of an $n$-dimensional manifold
$M$ . The induced metric will be also denoted by $\langle$ , $\rangle$ . Then, $\psi^{*}TC^{n}=TM\oplus T^{\perp}M$,
where $T^{\perp}M$ is the normal bundle of $\psi$ . Let $\overline{V}$ denotes the connection on $\psi^{*}TC^{n}$

induced by the Levy-Civita connection of $C^{n}$ , and $V$ , (respectively $V^{\perp}$ ) denotes the Levi-
Civita connection of the induced metric on $M$ , (respectively the normal connection of $\psi$ ).

The most elementary properties of these kind of immersions are:
i) $J$ defines a bundle-isomorphism from the tangent bundle to the normal bundle

of $\psi$ , such that

$J\circ V=V^{\perp}\circ J$

ii) The second fundamental form $\sigma$ of $\psi$ and the Weingarten endomorphism $A_{\xi}$

associated to a normal vector $\xi$ , are related by

$\sigma(v, w)=JA_{Jv}w$ .

So, $\langle\sigma(v, w),Jz\rangle$ defines a symmetric trilineal form on $TM$ .
iii) If $H$ denotes the mean curvature vector of $\psi$ , then from i), ii) and the Codazzi

equation of $\psi$ , we have that $JH$ is a closed vector field on $M$.

Let $\mathscr{L}=\mathscr{L}(C^{n})$ be the space of Lagrangian $n$-planes in $(C^{n}, \Omega)$ . As usual, the
Riemannian structure on $\mathscr{L}$ is defined by identifying $\mathscr{L}$ with the symmetric space
$U(n)/O(n)$ , where $U(n)$ (respectively $O(n)$ ) is the unitary group (respectively orthogonal
group) of order $n$ . $U(n)/O(n)$ is a symmetric subspace of the Grassmann manifold of
$n$-planes in Euclidean $2n$-space: $O(2n)/O(n)\cross O(n)$ .

Let

$v$ : $M arrow \mathscr{L}\equiv\frac{U(n)}{O(n)}Larrow\frac{O(2n)}{O(n)xO(n)}$

be the Gauss map of the Lagrangian immersion $\psi$ . Following the ideas of Ruh and
Vilms [12], the bundle $v^{*}T\mathscr{L}$ is isometric to the bundle of symmetric tensors of order
two on $M:\mathscr{L}^{2}(TM)$ , and via this identification, the tension field $\tau(v)$ of $v$ is identified
with $VJH$ . So, (see [12], Corollary 1), the Gauss map $v$ is harmonic if and only if $H$

(or $JH$) is a parallel vector field.
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The square of the determinant map

$\det^{2}$ : $\frac{U(n)}{O(n)}arrow S^{1}$

defines a $SU(n)/SO(n)- fiber$ bundle over the circle $S^{1}$ . If $\alpha$ is the volume form on $S^{1}$

and
$f=\det^{2}ov:Marrow S^{1}$ ,

then $\omega-f^{*}(\alpha)$ is the Maslov form on $M$ , and it is well-known (see [10]) that up to a
constant, the Maslov form $\omega$ is the dual form of the vector field $JH$.

If $V=ker(\det^{2})_{*}$ is the vertical distribution of the fibration $det^{2}$ , it is easy to see
that the vertical component of the tension field $\tau(v)^{V}$ can be identify with the following
cross section of $\mathscr{L}^{2}(TM)$ : $VJH-(divJH/n)I$ , where $divJH$ is the divergence of $JH$

and $I$ is the identity. Now, as $JH$ is a closed vector field, it is easy to check that
$VJH=(divJH/n)I$ if and only if $JH$ is a conformal vector field. So, we have proved
the following result:

PROPOSITION 1. Let $\emptyset$ : $Marrow C^{n}$ be a Lagrangian immersion. Then the Gauss map
$v:Marrow U(n)/O(n)$ is vertically harmonic, $i.e$ . $\tau(v)^{V}\equiv 0,$ $\iota f$ and only if $JH$ is a conformal
vector field.

We remark that the above condition about the tension field of $v$ can be written
in terms of the map $f$ : $Marrow S^{1}$ . In fact, using again the ideas of Ruh and Vilms [12],

we have that $dv_{p}(v)\equiv A_{Jv}$ for any vector $v$ tangent to $M$ at $p$ , obtaining that
$df_{p}(v)=2n\langle H, Jv\rangle if(p)$ . If locally, $f=e^{i\theta(t)}$ then, $JH$ is a conformal vector field if and
only if the Hessian of $\theta:V^{2}\theta$ is proportional to the metric $\langle$ , $\rangle$ .

3. Local study

In this section, we are going to study those Lagrangian submanifolds of $C^{n}$ with
conformal Maslov form such that $JH$ is a principal direction of $A_{H}$ . As many of the
local results we will obtain are true if we consider instead of $JH$ any closed and
conformal vector field $X$ , in this section we will deal with Lagrangian submanifolds of
$C^{n}$ which have a closed and conformal vector field $X$ such that $\sigma(X, X)=\rho JX$ for some
function $\rho$ on the submanifold. Many results are known for manifolds which admit
closed and conformal vector fields (see [1], [11], [13], [14], [15]). In the following result
we summary some well known properties of these manifolds.

LEMMA 1. Let $X$ be a (nontrivial) closed and conformal vector field on an n-
dimensional Riemannian manifold $(M, \langle, \rangle)$ . Then

1. The gradients of $|X|^{2}$ and divergence of $X$ are given by

$V|X|^{2}= \frac{2divX}{n}X$ $|X|^{2}V( divX)=-\frac{nRic(X)}{(n-1)}X$ ,

where $Ric$ denotes the Ricci curvature of $M$.



Lagrangian submanifolds of $C^{n}$ 207

2. The curvature tensor $R$ of $M$ satisfies

$|X|^{2}R(v, w)X= \frac{Ric(X)}{(n-1)}\{\langle w, X\rangle v-\langle v, X\rangle w\}$ .

3. If $n>2,$ $X$ has nonvanishing divergence at its zeroes and they are isolated.
4. If $M’=\{p\in M/X_{p}\neq 0\}$ , then the distribution

$p\in M’arrow \mathscr{B}(p)=\{v\in T_{p}M/\langle v, X\rangle=0\}$

defines an umbilical foliation on $(M’, \langle , \rangle)$ . In particular $|X|^{2}$ and $divX$ are constant on
the connected leaves of 9.

5. If $\Delta^{g}$ is the Laplacian of the metric $g=|X|^{-2}\langle, \rangle$ , then

$\Delta^{g}\log|X|+\frac{Ric(X)}{n-1}=0$ .

6. (Local description) $X$ is a parallel vector field with respect to $g$ , and so $(M’, g)$ is
locally isometric to $(I\cross N, dt^{2}\cross g’)$ , where I is an open interval in $R$ , for any $t\in I,$ $t\cross N$

is a leaf of the foliation 9, and $X=(\partial/\partial t, 0)$ .

PROOF. First of all it is clear that a vector field $X$ on $M$ is closed and conformal if
and only if
(1) $V_{v}X= \frac{divX}{n}v$

for any vector $v$ tangent to $M$ . From (1), $V|X|^{2}$ can be easily computed. Now using
again (1) we obtain that the Hessian of $|X|^{2}$ is given by

(2) $V^{2}|X|^{2}(v, w)=2( divX/n)^{2}\langle v, w\rangle+\frac{2}{n}\langle V(divX), v\rangle\langle X, w\rangle$ .

AS $V^{2}|X|^{2}$ and $\langle$ , $\rangle$ are symmetric tensors, the above expression says that

$|X|^{2}V(divX)=\langle V(divX), X\rangle X$ .

NOW derivating in (1) and using the above formula, we obtain

$|X|^{2}R(v, w)X=- \frac{\langle V(divX),X\rangle}{n}\{\langle w, X\rangle v-\langle v, X\rangle w\}$

and so 1) and 2) follow.
In [11] (Proposition 4.1) it was proved that $X$ has nonvanishing divergence at its

zeroes when $n>2$ . If $p$ is a zero of $X$ (and hence $divX(p)\neq 0$), from (2) it follows
that the Hessian of $|X|^{2}$ at $p$ is positive definite and so $p$ is a isolated zero of $X$ . This
proves 3).

AS $X$ is a closed vector field, then 9 defines a foliation on $M’$ . Also using (1), it is
clear that the second fundamental form $\sigma_{0}$ of a leaf of 9 in $M’$ is given by

(3) $\sigma_{0}(v, w)=-\frac{divX}{n|X|^{2}}\langle v, w\rangle X$ ,

and so the foliation is umbilical.



208 A. Ros and F. URBANO

If $\Delta$ is the Laplacian of the metric $\langle$ , $\rangle$ , them from (2) and 1) it is easy to get

$|X|^{2} \Delta\log|X|^{2}=\frac{2(n-2)(divX)^{2}}{n^{2}}-\frac{2Ric(X)}{n-1}$ .

NOW, using that for any smooth function $h$ on $M$ (see [2], Theorem 1.159)

$\Delta^{g}h=|X|^{2}\Delta h-(n-2)|X|^{2}\langle V\log|X|, Vh\rangle$ ,

the above formula joint with 1) prove 5).

Using the relation between the Levi-Civita connections of the conformal metrics $g$

and $\langle$ , $\rangle$ (see [2], Theorem 1.159) it is clear, using 1) and (1), that $X$ is a parallel vector
field of $(M’, g)$ , and so 6) is proved.

LEMMA 2. Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of an $n$-dimensional manifold
$M$, and let $X$ be a closed and conformal vector field (without zeroes) on $M$ such that
$\sigma(X, X)=\rho JX$ for some function $\rho$ . Then:

1. For any point $p\in M$, the eigenvalues of $A_{JX}$ on $\mathscr{B}(p)$ satisfy the quadratic
equation

$\lambda^{2}-\rho\lambda+\frac{Ric(X)}{n-1}=0$ .

In particular, there are at most two.
2. If $v,$ $w\in \mathscr{B}(p)$ are eigenvectors of $A_{JX}$ corresponding to different eigenvalues, then

$\sigma(v, w)=0$ .
3. The eigenvalues of $A_{JX}$ are constant on the connected leaves of the foliation 9.
4. For any $v,$ $w,$

$z\in \mathscr{B}$ , we have

$\langle(V\sigma)(v, w,z), JX\rangle+\frac{divX}{n}\langle\sigma(v, w),Jz\rangle=0$

where $V\sigma$ denotes the covariant derivative of the second fundamental form $\sigma$ .

PROOF. AS $X_{p}$ is an eigenvector of $A_{JX}$ , then $A_{JX}$ can be diagonalized on $\mathscr{B}(p)$ .
NOW, from Lemma 1,2) and the Gauss equation of $\psi$ it is easy to prove 1) and 2).

From Lemma 1,6), $(M, g)$ is locally isometric to $(I\cross N, dt^{2}\cross g’)$ , and up to that
isometry, $|X|^{2}(t, x)$ is a function of $t$ . Now Lemma 1,5) says that $\Delta^{g}\log|X|$ is also a
function of $t$ and so $Ric(X)$ is constant on the connected leaves of $\mathscr{B}$ .

On the other hand, taking derivative on $\sigma(X, X)=\rho JX$ and using (1) we get

$\langle(V\sigma)(v, X, X), Jw\rangle+\frac{2divX}{n}\langle\sigma(v, X), Jw\rangle$

$= \langle V\rho, v\rangle\langle X, w\rangle+\frac{\rho divX}{n}\langle v, w\rangle$ .

Using the elementary properties of $\psi$ and the Codazzi equation of $\psi$ we obtain that all
the terms on the above equation are symmetric on $v$ and $w$ , except possible
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$\langle Vp, v\rangle\langle X, w\rangle$ . So this one must be also symmetric and this means that

$V \rho=\frac{\langle V\rho,X\rangle}{|X|^{2}}X$ .

In particular $\rho$ is constant on the leaves of 9. Moreover, as $Ric(X)$ is also constant on
the leaves of 9, the other eigenvalues (solutions of the equation given in 1) $)$ are also
constant on the leaves of 9, which proves 3).

Finally we prove 4). Let

$M’=$ {$p\in M/A_{JX}$ has two different eigenvalues on $\mathscr{B}(p)$ }.

Then $M’$ is an open subset of $M$ , and if these eigenvalues are denoted by $\rho_{i},$ $i=1,2$ and
their multiplicities by $n_{i},$ $i=1,2$ , then $n\langle H,JX\rangle=\rho+n_{1}\rho_{1}+n_{2}\rho_{2}$ . From Lemma 2,1),

$\rho_{i},$ $i=1,2$ are continuous functions, and hence $n_{i},$ $i=1,2$ are constant on each con-
nected component of $M’$ . So,

$\mathscr{B}_{i}(p)=\{v\in \mathscr{B}_{p}/A_{JX}v=\rho_{i}v\}$ , $i=1,2$

define distributions on the connected components of $M’$ such that $\mathscr{B}(p)=\mathscr{B}_{1}(p)\oplus$

$\mathscr{B}_{2}(p)$ , for any $p\in M’$ . If $V,$ $W$ are vector fields of $\mathscr{B}_{i},$ $i=1,2$ , then

$\langle\sigma(V, W), JX\rangle=\rho_{i}\langle V, W\rangle$ .

Using 3) and taking derivative with respect to a vector field $Z$ on 9 in the above
expression, we get

$\langle(V\sigma)(Z, V, W), JX\rangle+\frac{divX}{n}\langle\sigma(V, W), JZ\rangle=0$ .

The property 4) on $M’$ follows from this equation, by using the symmetry of $\sigma$ and $V\sigma$,
3) and the decomposition $\mathscr{B}=\mathscr{B}_{1}\oplus \mathscr{B}_{2}$ .

If $M’$ is dense on $M$ we finish. If not, $M-M’$ has nonempty interior and in it
$A_{JX}$ has only one eigenvalue. In this case, and using an easier version of the above
reasoning, we prove 4) on $M-M’$ , which finish the proof of Lemma 2.

NOW, we are going to describe locally our family of Lagrangian submanifolds. We
start with the easiest case, when the vector field $X$ is parallel.

PROPOSITION 2. Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of an n-dimensional
manifold M. Then, there exists a parallel vector field $X$ on $M$ such that $\sigma(X, X)=pJX$

for certain function $\rho$ if and only if locally $M$ is the Riemannian product $M_{1}^{n_{1}}\cross M_{2}^{n_{2}}$ with
$n_{1}\geq 1,$ $\psi$ is the product of the Lagrangian immersions $\psi_{i}$ : $M_{i}^{n_{i}}arrow C^{n_{i}},$ $i=1,2$ , being $\psi_{1}$

any regular curve of $C$ if $n_{1}=1$ , and being $\psi_{1}$ an spherical immersion ( $i.e$. the image of
$\psi_{1}$ lies in a hypersphere of $C^{n_{1}}$ ) $\iota fn_{1}\geq 2$ . Moreover, in the first case, $X\equiv(\partial/\partial t, 0)$

being $t$ the arc length parameter of $\psi_{1}$ , and in the latter, $X\equiv(J(\psi_{1}-B), 0)$ being $B$ the
center of the sphere where $\psi_{1}$ lies.

PROOF. Assume that $X$ is a parallel vector field such that $\sigma(X, X)=\rho JX$ . If $\rho$ is
identically zero, from Lemma 2,1) and as $Ric(X)=0$ , it follows that $A_{JX}\equiv 0$ and then
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$\psi_{*}(X)$ defines a parallel vector field $v$ in $C^{n}$ . So $\psi(M)$ lies in a hyperplane of $C^{n}$ with
normal vector $Jv$ and we get a particular case of the case $n_{1}=1$ where the curve $\psi_{1}$ is a
straight line.

If $\rho$ is not identically zero, we consider the nonempty open subset

$M’=\{p\in M/\rho(p)\neq 0\}$ .

Again, from Lemma 2,1), and as $Ric(X)=0$ , it follows that $A_{JX}$ has at most two
different eigenvalues: $\rho$ and $0$ at the points of $M’$ . So, if $n_{1}$ is the multiplicity of $p$ as
eigenvalue of $A_{JX}$ we have that $n\langle H, JX\rangle=n_{1}p$ , and hence $n_{1}$ is constant on each
connected component of $M’$ .

On the other hand, taking derivative in $\sigma(X, X)=\rho JX$ and using that $X$ is parallel,
we get

$\langle Vp, X\rangle=\sum_{i=1}^{n}\langle(V\sigma)(e_{i}, X, X), Je_{i})\rangle$

$=n\langle V\langle H, JX\rangle, X\rangle=n_{1}\langle V\rho, X\rangle$ .

So, using Lemma 2,3), on $M’$ we have that

$(n_{1}-1)Vp=0$

and then on each connected component of $M’$ , either $n_{1}=1$ or $n_{1}\geq 2$ and $\rho$ is a non-
null constant. As on the boundary of $M$‘

$\rho$ is zero, if there exists a connected component
of $M’$ with $n_{1}\geq 2$ , then $M’=M$ and $\rho$ is a non-null constant. In other case, if $n_{1}=1$

in all $M’$ , then it is also true in all $M$ , by considering the case $A_{JX}\equiv 0$ as a particular
case of the case $n_{1}=1$ with $p=0$ . So we have only two posibilities for $A_{JX}$ :

$(^{\rho}$

$\rho$

$0$

$0]$ $(\begin{array}{lll}p 0 0\end{array})$

where $\rho$ is respectively a non-null constant or a function.
In the first case, let $\mathscr{B}_{i},$ $i=1,2$ be the distributions on $M$ defined by

$\mathscr{B}_{1}(p)=\{v\in T_{p}M/A_{JX}v=\rho v\}$ $\mathscr{B}_{2}(p)=\{v\in T_{p}M/A_{J}xv=0\}$ .

of dimensions $n_{1}$ and $n-n_{1}$ with $n_{1}\geq 2$ .
We are going to prove that $\mathscr{B}_{i},$ $i=1,2$ define totally geodesic foliations on $M$ . To

see it, it is sufficient to prove that if $V$ is a vector field on $\mathscr{B}_{2}$ and $W$ is any vector field
on $M$ , then $V_{W}V$ is a vector field on $\mathscr{B}_{2}$ . As $V$ is a vector field on $\mathscr{B}_{2},$ $\sigma(X, V)=0$ ,
and then

$(V\sigma)(W, X, V)+\sigma(X, V_{W}V)=0$ .

So $V_{W}V$ will be a vector field on $\mathscr{B}_{2}$ if and only if $(V\sigma)(W, X, V)=0$ .
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In other to prove that $(V\sigma)(W, X, V)=0$ , we derivate $\sigma(X, X)=\rho JX$ with respect
to $V$ which is a vector field on 9. As $X$ is parallel, and $\rho$ is constant on the leaves of
9, we have $(V\sigma)(V, X, X)=0$ . Now, if $W=\lambda X+W^{9}$ , where $W^{9}$ is the component
of $W$ on 9, we obtain that $(V\sigma)(W, X, V)=(V\sigma)(W^{9}, X, V)=\mu JX$ by using Lemma
2,4) and the fact that $divX=0$ . Finally using the symmetries of $V\sigma$ we obtain that

$\mu|X|^{2}=\langle(V\sigma)(X, X, V),JW^{9}\rangle=0$ ,

and so $(V\sigma)(W, X, V)=0$ . Hence $\mathscr{B}_{i},$ $i=1,2$ define totally geodesic foliations on $M$ .
AS consequence, $M$ is locally isometric to $M_{1}^{n_{1}}\cross M_{2}^{n_{2}}$ . Moreover, as the eigen-

values of $A_{JX}$ are $\rho$ and $0$ , from Lemma 2,2) it follows that $\sigma(V_{1}, V_{2})=0$ for $V_{i}$ tangent
to $M_{i},$ $i=1,2$ . Now using a result of Moore [9] we conclude that $\psi$ is the product
of two Lagrangian immersions $\psi_{i}$ : $M_{i}arrow C^{n_{\dot{i}}},$ $i=1,2$ . Finally, as $X$ is a vector field
tangent to $M_{1}$ , if $A_{JX}^{1}$ is the Weingarten endomorphism of $\psi_{1}$ , then $A_{JX}=pI$ with $\rho$ a
non-null constant. Then, it is clear that $\psi_{1}+(1/\rho)JX$ is a parallel vector field $B$ in $C^{n_{1}}$

along $\psi_{1}$ , and then $\psi_{1}$ lies in a sphere centered at $B$ .
In the second case, and as $X$ is parallel, it is clear that $\mathscr{B}$ is a totally geodesic

foliation. Moreover, as $\sigma(X, V)=0$ for any vector field of 9, a similar reasoning to
the above one concludes the proof.

The converse is straightforward.
NOW, we will study the general case.

THEOREM 1. Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of an n-dimensional

manifold M. Then $X$ is a closed and nonparallel conformal vector field (without zeroes)

on $M$ such that $\sigma(X, X)=\rho JX$ for some function $\rho\iota f$ and only if the immersion is given
by $\psi=FJX+A$ , where $F:Marrow C^{*}$ is a non-real complex function of constant length
and $A$ a vector of $C^{n}$ .

We start by proving the following result.

LEMMA 3. If $x$ is a point of $M$ such that $(divX)(x)\neq 0$ , then $A_{JX}$ has only one
eigenvalue on $\mathscr{B}(x)$ .

PROOF. Recall that from Lemma 2,1), $A_{JX}$ has at most two eigenvalues on
$\mathscr{B}(x)$ . Suppose that $A_{JX}$ has two different eigenvalues $\rho_{1}$ and $\rho_{2}$ on $\mathscr{B}(x)$ . Let $N$ be a
connected leaf of 9 with $x\in N$ . From Lemma 2,3), $\rho_{1}$ and $\rho_{2}$ are the eigenvalues of
$A_{JX}$ on $\mathscr{B}(y)=T_{y}N$ at any point $y$ of $N$ . Let $\mathscr{F}_{i},$ $i=1,2$ be the distributions on $N$

defined by
$y\in Narrow \mathscr{F}_{i}(y)=\{v\in T_{y}N/A_{JX}v=\rho_{i}v\}$ .

We are going to prove that $\mathscr{F}_{i}$ are totally geodesic foliations on $N$. If $V^{0}$ is the Levi-
Civita connection of the induced metric on $N$, the Gauss formula of $N$ in $M$ joint with
(3) says that

(4) $V_{V}^{0}W=V_{V}W+ \frac{divX}{n|X|^{2}}\langle V, W\rangle X$
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for any vector fields $V$ and $W$ tangent to $N$ . If $W$ is a vector field on $\mathscr{F}_{i},$ $i=1,2$ , then
$\sigma(X, W)=\rho_{i}JW$ . Derivating with respect to the vector field $V$ tangent to $M$ we obtain

$(V \sigma)(V, X, W)+\frac{divX}{n}\sigma(V, W)+\sigma(X, V_{V}W)=\rho_{i}JV_{V}W$ .

Multiplying this equation by $JZ$ with $Z$ any vector field on $N$ , and using Lemma 2,4),
(4) and that $\sigma(X, X)=\rho JX$ we obtain

$\sigma(X, V_{V}^{0}W)=\rho_{i}JV_{V}^{0}W$

which proves that $\mathscr{F}_{i},$ $i=1,2$ are totally geodesic foliations on $N$ .
So, locally $N$ is the Riemannian product $N_{1}^{n_{1}}\cross N_{2}^{n_{2}}$ with $n_{1}+n_{2}=n-1$ , and

$x=(p_{0}, q_{0})$ . If $\sigma’$ denotes the second fundamental form of the immersion $\psi$ : $Narrow C^{n}$ ,
then $\sigma’=\sigma+\sigma_{0}$ , and then Lemma 1,5) and Lemma 2,2) say that $\sigma’(v_{1}, v_{2})=0$ for
vectors $v_{i}$ tangent to $N_{i},$ $i=1,2$ . Now, using again a result proved in [9], we obtain
that the immersion $\psi$ : $N_{1}\cross N_{2}arrow C^{n}$ is given by

(5) $\psi(p, q)=(\psi_{1}(p), \psi_{2}(q),$ $a)$

where $\psi_{i}$ are immersions of $N_{i}$ in Euclidean subspaces of $C^{n}$ , and $a$ is a vector of
$C^{n}$ . We can assume that $N_{i}$ are connected, $i=1,2$ . For each $q\in N_{2}$ , let

$\psi_{q}$ : $N_{1}arrow C^{n}$

be the immersion given by $\psi_{q}(p)=\psi(p, q)$ . Then, $\Lambda^{\gamma}$ defined by

$p\in N_{1}arrow\Lambda’(p)=\mathscr{F}_{2}(p, q)\oplus J\mathscr{F}_{2}(p, q)$

defines a subbundle of the normal bundle of $\psi_{q}$ , and it is straightforward to prove that
$Jr$ is a totally geodesic subbundle and parallel with respect to the normal connection of
$\psi_{q}$ . Using a very well known result of [6], there exists a subspace $C^{n_{1}}(q)$ of $C^{n}$ such
that

$\psi_{q}$ : $N_{1}arrow C^{n_{1}}(q)\subset C^{n}$ .

But from (5), we have for any $q_{1},$ $q_{2}\in$ 2 that

$\psi_{q_{1}}=\psi_{q_{2}}+(0, \psi_{2}(q_{1})-\psi_{2}(q_{2}),$ $0)$

and then the subspaces $\{C^{n_{1}}(q)/q\in N_{2}\}$ are parallel in $C^{n}$ . So, if $C^{n_{1}}$ is the corre-
sponding linear subspace and $V(p, q)=span\{X(p, q), JX(p, q)\}$ , then

$C^{n_{1}}=\mathscr{F}_{1}(p, q)\oplus J\mathscr{F}_{1}(p, q)\oplus V(p, q)$ .

Changing the roles of $N_{1}$ and $N_{2}$ , there exists a linear subspace $C^{n_{2}}$ of $C^{n}$ such that

$C^{n_{2}}=\mathscr{F}_{2}(p, q)\oplus J\mathscr{F}_{2}(p, q)\oplus V(p, q)$ .

AS the immersion is Lagrangian, we obtain that

$C^{n_{1}}\cap C^{n_{2}}=V(p, q)$ , for any $(p, q)\in N_{1}\cross N_{2}$ .
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and then, $V(p, q)$ is independent of the point $(p, q)$ . Now, as $X$ is a vector field in this
complex line, we have that $X=fc+gJc$ where $c$ is a vector in this line and $f,$ $g$ are
functions on $N_{1}\cross N_{2}$ . Derivating the last expression with respect to any vector $v$

tangent to $N$ at $x$, we obtain

$\frac{divX}{n}v=\langle Vf, v\rangle c+\langle Vg, v\rangle Jc$

and as $v$ is perpendicular to $span\{X., JX.\}Espan\{c, Jc\}$ we get that $divX(x)=0$ which
contradicts our assumption.

PROOF OF THE THEOREM. Suppose that $\psi=FJX+A$ with $F=a+ib$ . Then
$a^{2}+b^{2}=l\in R^{*}$ and $\psi-A=aJX-bX$ . Derivating this expression with respect to a
vector $v$ , taking tangent and normal components to $\psi$ and using the elementary
properties of $\psi$ we obtain

$-v=\langle Vb, v\rangle X+bV_{v}X+aA_{JX}v$

$0=-bA_{JX}v+\langle Va, v\rangle X+aV_{v}X$ .

From this equation it is easy to obtain

$V_{v}X=-(b/l)v$

$A_{JX}v=-(a/l)v+(1/l)\langle-aVb+bVa, v\rangle X$ .

So, $X$ is a closed and conformal vector field such that $\sigma(X, X)=\rho JX$ with $\rho=$

$(1/l)\langle-aVb+bVa, X\rangle-(a/l)$ . Moreover, as $b$ is no identically zero, then $X$ is not a
parallel vector field.

Conversely, suppose that $X$ is a closed and conformal vector field such that
$\sigma(X, X)=\rho JX$ . AS $X$ is nonparallel, then

$M’=\{p\in M/(divX)(p)\neq 0\}$

is a nonempty open subset in $M$ . From Lemma 3 we know that $A_{JX}$ has only one
eigenvalue on $\mathscr{B}(p)$ . So we have a fuction $\hat{\rho}$ on $M’$ such that $\sigma(X, V)=\hat{\rho}JV$ for any
vector field $V$ on 9. Now we compute the gradient of $\hat{\rho}$ . To do it we compute
divergences in the equality $\rho X=A_{JX}X$ , obtaining

$(V\rho, X\rangle+\rho divX=div(A_{JX}X)$

$= \sum_{i=1}^{n}\langle(V\sigma)(e_{i}, X, X),Je_{i}\rangle+\sum_{i=1}^{n}\frac{2divX}{n}\langle\sigma(e_{i}, X),Je_{i}\rangle$

$=n\langle V_{X}^{\perp}H, JX\rangle+2\langle H, JX\rangle divX$ .

But $X\langle H, JX\rangle=\langle V_{X}^{\perp}H, JX\rangle+(1/n)\langle H, JX\rangle divX$ , and then it follows that

(6) $\langle V(n\langle H,JX\rangle-\rho), X\rangle=\rho divX-\langle H, JX\rangle divX$ .
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AS $n\langle H, JX\rangle=\rho+(n-1)\hat{\rho}$ , we obtain that

(7) $n\langle V\hat{\rho}, X\rangle=(\rho-\hat{\rho})divX$ .

Let $h:M’arrow R$ be the function defined by

$h=( \frac{divX}{n})^{2}+\hat{\rho}^{2}$ .

Then using Lemma 1,1), Lemma $2,1$ ), $3$ ) and (7) its gradient satisfies

$Vh= \frac{-2divX}{n|X|^{2}}(\hat{\rho}^{2}-\rho\hat{\rho}+\frac{Ric(X)}{n-1})X=0$ ,

and so $h$ is constant on each connected component of $M’$ .
If $M’$ is dense in $M$ , then $h$ is constant on $M$ . If not, $M-M’$ has nonempty

interior, and in it $X$ is parallel. So, by continuity, on Int$(M-M’)$ , Proposition 2 says
that $A_{JX}$ on 9 is either $A_{JX}=\rho I$ or $A_{JX}=0$ , and then the function $h$ is also defined on
Int$(M-M’)$ . In the second case, on the boundary of $M’,$ $h=0$ which is impossible
because $h$ is a non-null constant on each connected component of $M’$ . So it happens
the first one, and hence $A_{JX}=\rho I$ on Int$(M-M’)$ . As consequence, and using again
Proposition 2, our function $h$ , is also constant on each connected component of
Int$(M-M’)$ , which implies that $h$ is constant on $M$ , i.e. $h=\mu^{2}$ with $\mu>0$ .

NOW, we consider the vectorial function

$T= \mu^{2}\psi-\frac{divX}{n}X+\hat{\rho}JX$ : $Marrow C^{n}$ .

If $v$ is any vector of 9, using Lemma 1,1), and (7) we have

$\overline{V}_{v}T=(\mu^{2}-(divX/n)^{2})v-\frac{divX}{n}\sigma(X, v)-\hat{p}A_{JX}v+\hat{\rho}\frac{divX}{n}Jv$

$=(\mu^{2}-(divX/n)^{2}-\hat{\rho}^{2})v=0$ .

Derivating with respect to $X$ , and using again Lemma 1,1) and (7) we obtain

$\overline{V}_{X}T=(\mu^{2}+\frac{Ric(X)}{n-1}-(\frac{divX}{n})^{2}-\rho\hat{\rho})X=(\mu^{2}-h)X=0$ .

So we obtain that $T$ is a constant vector $B$ in $C^{n}$ . Now, if we define

(8) $F=(-1/\mu^{2})(\hat{p}+idivX/n)$ and $A=B/\mu^{2}$

we finish the proof. Observe that $F$ is not a real function because $divX$ is not
identically zero.

NOW, using Theorem 1 we will describe locally our family of Lagrangian
immersions. To do it, we start introducing a family of examples.

Let $CF^{-1}$ be the $(n-1)$ -dimensional complex projective space with the canonical
Kaehler structure of constant holomorphic sectional curvature 4, and $\Pi:S^{2n-1}arrow CP^{n-1}$
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the Hopf fibration. If $\phi:Narrow CF^{-1}$ is a Lagrangian immersion of an $(n-1)-$

dimensional simply-connected manifold $N$ , then it is well-known that $\emptyset$ has a horizontal
lift (with respect to the Hopf fibration) to $S^{2n-1}$ , and that, up to rotations on $S^{2n-1}$ , it is
unique. We will denote by $\tilde{\phi}:Narrow S^{2n-1}$ this horizontal lift. Then, the horizontality
means that $\langle\tilde{\phi}_{*}(v), J\tilde{\phi}\rangle=0$ for any tangent vector $v$ to $N$ . We remark that only the
Lagrangian immersions in $CP^{n-1}$ have locally horizontal lifts.

DEFINITION 1. Let $\gamma:Iarrow C^{*}$ be a regular curve and $\phi:Narrow CF^{-1}$ a Lagrangian
immersion of an $(n-1)$ -dimensional simply-connected manifold N. We define

$\gamma*\phi:I\cross Narrow C^{n}$

by $(\gamma*\phi)(t, x)=\gamma(t)\tilde{\phi}(x)$ where $\tilde{\emptyset}$ is a horizontal lift of $\emptyset$ .

We describe the properties of these kind of immersions without proof, because it is
straightforward.

PROPOSITION 3. Let $\gamma:Iarrow C^{*}$ be a regular curve and $\phi:(N, g’)arrow CF^{-1}a$

Lagrangian isometric immersion of an $(n-1)$ -dimensional simply-connected manifold
N. Then

1. $\gamma*\emptyset$ : $(I\cross N, |\sqrt{}|^{2}dt^{2}\cross|\gamma|^{2}g’)arrow C^{n}$ is a Lagrangian isometric immersion which
is well defined up to rotations in $C^{n}$ .

2. $X=(|\gamma(t)|/|\sqrt{}(t)|)(\partial/\partial t, 0)$ is a closed and conformal vector field on $I\cross N$ such
that $\sigma(X, X)=\rho JX$ with $p=(|\gamma|/|\sqrt{}|^{3})\langle\gamma^{\prime/}, J\gamma’\rangle$ .

3. The second fundamental form $\sigma$ of $\gamma*\emptyset$ satisfies

$\sigma((0, v),$ $(0, w))= \frac{\langle\sqrt{},J\gamma\rangle}{|\gamma||\gamma’|}g’(v, w)JX+\gamma*\sigma_{\phi}(v, w)^{*}$

where $\sigma_{\phi}$ is the secondfundamental form of $\emptyset$ , *denotes horizontal lift and $v,$ $w$ are vectors
tangent to $N$.

4. The mean curvature vector $H$ of $\gamma*\emptyset$ is given by

$nH=a(t)JX+ \frac{(n-1)}{|\gamma|^{2}}\gamma*H_{\phi}^{*}$

where $H_{\phi}$ is the mean curvature vector of $\emptyset$ and

$a= \frac{\langle\gamma’’,J\gamma’\rangle}{|\gamma||\gamma’|^{3}}+(n-1)\frac{\langle\sqrt{},J\gamma\rangle}{|\gamma|^{3}|\gamma|}$ .

5. The divergence of $X$ is given by

$divX=n\frac{\langle\gamma(t),\sqrt{}(t)\rangle}{|\gamma(t)||\gamma’(t)|}$ .

So $X$ is parallel if and only if $\gamma$ is a reparametrization of a circle. In this case, $\gamma*\emptyset$ is the
circle bundle over $N$ induced, via $\emptyset$ , by the Hopf fibration $\Pi$ : $S^{2n-1}arrow CP^{n-1}$ .
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COROLLARY 1. Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of an n-dimensional
manifold $M$ and $X$ a closed and nonparallel conformal vector field (without zeroes) on $M$

such that $\sigma(X, X)=\rho JX$ for some function $\rho$ . Then locally $\psi$ is congruent ‘to one of the
examples described in Proposition 3.

PROOF. Let $X$ be a closed and nonparallel conformal vector field (without zeroes)

on $M$ such that $\sigma(X, X)=\rho JX$ . From Lemma 1,6), $M$ is locally isometric to
$(I\cross N, |X|^{2}(dt^{2}\cross g’))$ where $I$ is an open interval with $O\in I$ and $N$ is a simply-
connected manifold. From Theorem 1, we have that $\psi=FJX+A$ . We can take
$A=0$ . Let $\psi_{0}$ : $Narrow C^{n}$ be the immersion given by $\psi_{0}(x)=\psi(0, x)$ . Then $\psi_{0}(x)=$

$F(O, x)JX_{(0,x)}$ and as $X$ has constant length on the connected leaves of $\mathscr{B}$ , we have $|\psi_{0}|$

is a constant 1. Moreover, if $v$ is any vector tangent to $N$ , then
$\langle(\psi_{0})_{*}(v), J\psi_{0}\rangle=-F\langle\psi_{*}(0, v), X\rangle=0$

because $X=(\partial/\partial t, 0)$ . Hence $(1/l)\psi_{0}$ defines an horizontal immersion of $N$ in $S^{2n-1}$ .
We define $\emptyset=\Pi_{\circ}(1/l)\psi_{0}$ , being $\Pi$ : $S^{2n-1}arrow CF^{-1}$ the Hopf fibration. It is clear
that $\emptyset$ is a Lagrangian isometric immersion of $(N,\mu^{2}g’)$ in $CF^{-1}$ and that $(1/l)\psi_{0}$ is the
horizontal lift of $\emptyset$ , where $\mu^{2}=(divX/n)^{2}+\hat{\rho}^{2}$ . (see (8)).

NOW, let $x$ a point of $N$ and consider the curve $\alpha$ : $Iarrow C^{n}$ defined by $\alpha(t)=$

$\psi(t, x)$ . AS from Lemma 1,6), $X$ is given by $(\partial/\partial t, 0)$ , then $\alpha(t)=iF(t,x)\alpha’(t)$ . Using
(8), Lemma 1,1) and Lemma 2,3), we have that

(9) $\alpha’(t)=f(t)\alpha(t)$ with $f(t)=divX/n+i\hat{\rho}$

being $\hat{\rho}$ the eigenvalue of $A_{JX}$ on 9. Integrating the above equation, we get

$\alpha(t)=e^{\int_{0}^{t}f(s)ds}\alpha(0)$ ,

which means that
$\psi(t, x)=e^{\int_{0}^{t}f(s)ds}\psi(0, x)$ .

AS $\tilde{\phi}(x)=(1/l)\psi(0, x)$ and $|X|^{2}=|\sqrt{}|^{2}$ , defining

(10) $\gamma:Iarrow C^{*}$ by $\gamma(t)=le^{\int_{0}^{t}f(s)ds}$

we obtain that $\gamma*\emptyset$ is congruent to our immersion $\psi$ .

NOW, we apply the above results to the case in which $X=JH$ . In this case, as $JH$

is always a closed vector field, we only have to assume that $JH$ is a conformal vector
field. As we indicated at the introduction, we will refer to these submanifolds as
Lagrangian submanifolds with conformal Maslov form.

COROLLARY 2. Let $u:Rarrow R$ be a solution of the O.D. $E$.

$u’’(t)+ \frac{2n^{2}}{(n+2)^{2}}e^{4u(t)}-n\lambda^{2}e^{-2nu(t)}-\frac{n(n-2)\lambda}{n+2}e^{(2-n)u(t)}=0$ ,

(11) $e^{u(0)}=a$ , $u’(O)=0$ , $\lambda=0,1,$ $-1$ ,
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and $\emptyset$ : $Narrow C$
$-1$ a minimal Lagrangian immersion of a simply connected $(n-1)-$

dimensional mamfold N. Then

$\gamma_{u}*\phi$ : $R\cross Narrow C^{n}$

where $\gamma_{u}$ : $Rarrow C$ is the curve

$\gamma_{u}(t)=\frac{e^{u(t)}}{\mu}e^{-i\int_{0}^{t}(arrow^{2u(s)}+\lambda e^{-u(s)})ds}n+2$
$\mu=\frac{n}{n+2}a^{2}+\lambda a^{-n}$

is a Lagrangian immersion with conformal Maslov form such that $JH\equiv(\partial/\partial t, 0)$ is a
principal direction of $A_{H}$ .

Conversely, any Lagrangian immersion of an $n$-dimensional manifold in $C^{n}$ with
nonparallel conformal Maslov form such that $JH$ is a principal direction of $A_{H}$ is, around
each point where $H$ does not vanish and up to dilatations of $C^{n}$ , congment to one of the
above examples.

REMARK 1. The equation (11) has two constant solutions when $\lambda=1$ and $\lambda=-1$

given respectively by

$e^{u(t)}=( \frac{n+2}{2})^{1/n+2}$ $e^{u(t)}=( \frac{n+2}{n})^{1/n+2}$

In the first case, the curve $\gamma_{u}$ is a reparametrization of a circle of radius $(2/n+2)^{1/n+2}$ and
$\gamma_{u}*\emptyset$ is the circle bundle over $N$ induced, via $\emptyset$ , by the Hopffibration. The latter is a
degenerate case, because is the only example in Corollary 2 with $\mu=0$ . It is not difficult
to see that in this case $\hat{\rho}=0$ and the corresponding immersion is not described in
Proposition 3, but $\gamma_{u}*\emptyset$ corresponds with one of the examples described in Proposition 2.

These examples are the only ones described in Corollary 2 where $H$ is parallel.

PROOF. In order to prove the properties of $\gamma_{u}*\emptyset$ , we only have to check that the
vector field $X$ given in Proposition 3 is $JH$. As $\emptyset$ is a minimal immersion, then $H\equiv 0$ ,
and then Proposition 3,3) says that $X=JH$ if and only if $a(t)=-n$ . Now, from the
definition of $\gamma_{u}$ is straightforward to check that $a(t)=-n$ .

Conversely, suppose that $JH$ is a conformal vector field such that $A_{H}(JH)=-\rho JH$

(we use the same notation than in section 3). Then, from (6) and Lemma 1,1) it follows
that

$V\rho=-(3divJH-\rho|H|^{-2}divJH)JH$ ,

and using again Lemma 1,1) we have

$V( \rho+\frac{3n}{n+2}|H|^{2})=-(|H|^{-2}divJH)(\rho+\frac{3n}{n+2}|H|^{2})$ .

From this equation and using one more time Lemma 1,1) we get

$V( \rho|H|^{n}+\frac{3n}{n+2}|H|^{n+2})=0$ ,
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and so this function is a constant that will be denoted by $(n-1)\lambda$ . Hence, we have
computed explicitely the function $\rho$ obtaining

$\rho=-\frac{3n}{n+2}|H|^{2}+(n-1)\lambda|H|^{-n}$

where $\lambda$ is a constant. Also, as $-n|H|^{2}=\rho+(n-1)\hat{\rho}$ we also obtain that

$\hat{\rho}=-\frac{n}{n+2}|H|^{2}-\lambda|H|^{-n}$ .

From these expressions, Lemma 1,5) and Lemma 2,1) we have that $|H|$ satisfies the
following differential equation:

(12) $\Delta^{g}\log|H|+\frac{2n^{2}}{(n+2)^{2}}|H|^{4}-n\lambda^{2}|H|^{-2n}-\frac{n(n-2)\lambda}{n+2}|H|^{2-n}=0$ .

Following the proof of Corollary 1, our immersion $\psi$ is locally congruent to
$\gamma*\phi:I\cross Narrow C^{n}$ , where $\emptyset$ is a totally real immersion of a simply-connected manifold
$N$ in $CP^{n-1}$ and $\gamma$ : $Iarrow C^{*}$ is given by

$\gamma(t)=le^{\int_{0}^{t}f(s)ds}$ ,

where $f=divJH/n+i\hat{\rho}$ . In this case, from Proposition 3,3) it follows that $H_{\phi}=0$ and
so $\emptyset$ is a minimal immersion.

AS $|H|$ is constant on the leaves of 9, then for each point $x$ at $N$

$u(t)=\log|H|(t, x)$

defines a real function on $I$ , and from (12) it satisfies the following o.d. $e$ .

$u’’(t)+ \frac{2n^{2}}{(n+2)^{2}}e^{4u(t)}-n\lambda^{2}e^{-2nu(t)}-\frac{n(n-2)\lambda}{n+2}e^{(2-n)u(t)}=0$ .

NOW, from Lemma 1,1) and the above expression of $\hat{\rho}$ it is easy to see that

$divJH(t, x)=nu’(t)$ $\hat{\rho}(t,x)=-(\frac{n}{n+2}e^{2u(t)}+\lambda e^{-nu(t)})$

and so the function $f$ is given by

$f(t)=u’(t)-i( \frac{n}{n+2}e^{2u(t)}+\lambda e^{-nu(t)})$ .

AS the constant $l$ given in Corollary 1 is $a\mu^{-1}$ , we get the result. The only detail that
we have to prove is that it is sufficient to take $\lambda=0,1,$ $-1$ . To see it, we suppose that
$u(t)$ is a solution of equation (11) with $\lambda>0$ . Then it is easy to see that

$v(t)-u(\lambda^{-2/n+2}t)-(1/n+2)\log$ A

is a solution of equation (11) with $\lambda=1$ and the function $f_{v}$ defined in (9) is given by

$f_{v}=\lambda^{-2/n+2}f_{u}$ .
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So the curve $\gamma_{v}$ is homothetic to $\gamma_{u}$ . A similar reasoning can be used when $\lambda<0$ . This
finishes the proof.

We are going to describe some of the curves $\gamma_{u}$ given in Corollary 2.

LEMMA 4. Up to dilatations of $C^{*}$ , the curves $\gamma_{u}$ : $Rarrow C^{*}$ associated to the solutions

of equation (11) with $\lambda=0$ are linear reparametrizations of the curve

$\gamma(t)=\frac{1}{\cosh 2t}(\cosh t+i\sinh t)$ .

PROOF. The general solution of equation (11) with $\lambda=0$ is given by

$e^{2u(t)}= \frac{a^{2}}{\cosh(\frac{2na^{2}}{n+2}t)}$
.

NOW, using the expression of the curve $\gamma_{u}$ given in Corollary 2, it is straightforward to
see that

$\gamma_{u}(t)=\frac{n+2}{an\cosh(\frac{2na^{2}}{n+2}t)}(\cosh(\frac{na^{2}}{n+2}t)+i\sinh(\frac{na^{2}}{n+2}t))$

and 1) follows.

REMARK 2. When $\lambda\neq 0$ , the solutions of equation (11) are certain kind of
hyperelliptic functions (elliptic functions when $n=2$ , see [4]), and it is not difficult to see
that they are periodic. The corresponding curves $\gamma_{u}$ are closed and embedded when
$n=2([4])$ , but the authors do not know what happens with these curves when
$n\geq 3$ . They believe that the curves are also closed and embedded.

4. Compact case. The Whitney sphere

We start this section giving a local characterization of the Whitney sphere in terms
of the second fundamental form.

THEOREM 2. Let $\psi$ : $Marrow C^{n}$ a Lagrangian immersion of an $n$-dimensional manif $ld$

M. The second fundamental form $\sigma$ of $\psi$ is given by

(13) $\sigma(v, w)=\frac{n}{n+2}\{\langle v, w\rangle H+\langle Jv, H\rangle Jw+\langle Jw, H\rangle Jv\}$

for any vectors $v$ and $w$ tangent to $M$ if and only if either $\psi$ is totally geodesic or $\psi(M)$ is
an open set of the Whitney sphere.

PROOF. It is straightforward to check that the totally geodesic immersion and the
Whitney sphere satisfied (13).

Conversely, taking in (13) $v=w$ with $|v|=1$ and derivating with respect to an
orthogonal vector $z$ we have that

$(V \sigma)(z, v, v)=\frac{n}{n+2}(V_{z}^{\perp}H+2\langle V_{Z}^{\perp}H, Jv\rangle Jv)$ .
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NOW using the Codazzi equation, the above equation says that

$V_{z}^{\perp}H=-\langle V_{z}^{\perp}H,Jv\rangle Jv+\langle V_{v}^{\perp}H, Jv\rangle Jz$ .

AS $z$ and $v$ are perpendicular, the fact that $JH$ is a closed vector field implies that
$\langle V_{Z}^{\perp}H, Jv\rangle=0$ and so

$V_{z}^{\perp}H=\langle V_{v}^{\perp}H,Jv\rangle Jz$

which means that $JH$ is a conformal vector field on $M$ .
If $H\equiv 0$ , then from (13) the immersion $\psi$ is totally geodesic. If $H$ is nontrivial,

Lemma 1,3) says that the zeroes of $H$ are isolated when $n>2$ . If $n=2$ it is a very
well-known that on each complex neighbourhood of the surface a conformal vector field
is a holomorphic vector field and its zeroes are also isolated. Hence $M’$ defined by

$M’=\{x\in M/H_{x}\neq 0\}$

is a connected dense open subset of $M$ . We will work in it.
From (13) it follows that

$\sigma(JH,JH)=\frac{3n}{n+2}|H|^{2}H$ , $\sigma(v, w)=\frac{n}{n+2}\langle v, w\rangle H$

for vectors $v,$ $w$ perpendicular to $JH$. So, from Lemma 2,1) it is clear that $JH$ is
nonparallel, and hence we obtain from Corollary 2 that our immersion is locally
congruent to $\gamma_{u}*\emptyset$ where $u$ is a solution of equation (11) with $\lambda=0$ , and, by using
Proposition 3,3), $\emptyset$ is a totally geodesic.

NOW, we describe the examples given in Corollary 2, when $u$ is a solution of (11)

with $\lambda=0$ and $\emptyset$ is totally geodesic. Let $\emptyset$ : $S^{n-1}arrow CF^{-1}$ be the Lagrangian totally
geodesic immersion of the sphere of radius 1. As the horizontal lift $\tilde{\phi}:S^{n-1}arrow S^{2n-1}$ of
$\emptyset$ is given by

$\tilde{\phi}(v_{1}, \ldots, v_{n})=(v_{1},0, \ldots, v_{n}, 0)$ ,

then using Lemma 4 we obtain that up to dilatations and translations of $C^{n}$

$\gamma_{u}*\phi$ : $R\cross S^{n-1}arrow C^{n}$

is given by

$( \gamma_{u}*\phi)(t, v_{1}, \ldots, v_{n})=(\frac{1}{\cosh 2t})(v_{1}\cosh t, v_{1}\sinh t, \ldots, v_{n}\cosh t, v_{n}\sinh t)$ .

If we identify $R^{n}-\{0\}$ with $R\cross S^{n-1}$ via the conformal transformation $warrow$

$(log|w|, w/|w|)$ , then our Lagrangian immersion $\gamma_{u}*\emptyset$ defines a Lagrangian immersion
$\psi$ : $R^{n}-\{0\}arrow C^{n}$ which can be written as

$\psi(w)=\frac{1}{1+|w|^{4}}((1+|w|^{2})w_{1}, (|w|^{2}-1)w_{1},$ $\ldots,$
$(1+|w|^{2})w_{n},$ $(|w|^{2}-1)w_{n})$ ,

being $w=(w_{1}, \ldots, w_{n})$ .
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It is clear that $\psi$ extends regularly to $0$ and co and via the stereographic projection it
defines a Lagrangian immersion, which will be also denoted by $\psi$ : $S^{n}arrow C^{n}$ which is
defined by

$\psi(x_{1}, \ldots, x_{n+1})=\frac{1}{1+x_{n+1}^{2}}(x_{1}, x_{1}x_{n+1}, \ldots, x_{n},x_{n}x_{n+1})$

which is the Whitney immersion.
So, following the above reasoning, if $x$ is a point of $M’$ , then there exists a

neighbourhood $U$ of $x$ such that $\psi(U)$ is contained in a Whitney sphere $\Sigma$ . As $M’$ is
connected and dense in $M$ , a standard argument proves that $\psi(M)$ is contained in $\Sigma$ .

COROLLARY 3. Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of an n-dimensional
manifold M. If $\tau$ is the scalar curvature of $\psi$ , then

$\tau\leq\frac{n^{2}(n-1)}{n+2}|H|^{2}$

and the equality holds if and only if either $\psi$ is totally geodesic or $\psi(M)$ is the Whitney
sphere.

PROOF. We consider, on the unit tangent bundle to $M$ , the inequality

(14) $| \sigma(v, v)-\frac{n}{n+2}(H+2\langle H, Jv\rangle Jv)|^{2}\geq 0$ .

Interpolating in (14), it is not difficult to get that the inequality in (14) implies that

$\tau\leq\frac{n^{2}(n-1)}{n+2}|H|^{2}$

and that the equality holds in the last inequality if and only if the equality holds in
(14). But the equality in (14) $meansthatthesecondfundamentalformof\psi isgivenby$

(13). NOW, our result follows from Theorem 2.

From now on, we are going to assume that our Lagrangian submanifold $M$ is
compact. We start proving the following result.

THEOREM 3. Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of an n-dimensional
compact manifold $M$ with conformal Maslov form. If $H$ has zeroes on $M$, then $\psi$ is
congruent to the Whitney sphere.

PROOF. It is clear that $H$ does not vanish identically, because there are not compact
minimal submanifolds in the Euclidean space. As $JH$ is a closed and conformal vector
field with at least a zero, then from [13] (Theorem 3), $M$ is diffeomorph to a sphere.

We consider on $M$ the vector field $Z$ defined by

$Z=J \sigma(JH, JH)-\frac{3n}{n+2}|H|^{2}JH$ .
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Using Lemma 1, it is easy to get that

$\langle V_{v}Z, w\rangle=\langle(V\sigma)(JH, v, w), H\rangle+\frac{2divJH}{n}\langle\sigma(v, w), H\rangle$

$- \frac{3divJH}{n+2}\{|H|^{2}\langle v, w\rangle+2\langle JH, v\rangle\langle JH, w\rangle\}$ .

From here it is clear that $Z$ is a closed vector field and that $divZ=0$ . So $Z$ is a
harmonic vector field on $M$ . As there are not harmonic vector fields on a sphere, $Z$

vanishes identically, and then we have that

(15) $\sigma(JH,JH)=\frac{3n}{n+2}|H|^{2}H$ .

On the other hand, as $JH$ is a closed vector field on a sphere, there exists a function
$f$ : $Marrow R$ such that $JH=Vf$ . Now, the conformality of $JH$ implies that the Hessian
of $f$ satisfies the following equation

$V^{2}f-(divJH/n)$ $\langle$ , $\rangle$ .

From a result in [15] we get that $M$ is conformally equivalent to a round sphere. As
the umbilicity is invariant under conformal transformations (see [5], p. 18), and in a
round sphere the umbilical hypersurfaces are spheres, we obtain that the leaves of the
umbilical foliation 9 are spheres. Following the proof of Corollary 1, if $N$ is one of
the leaves of the foliation 9, then $N$ admits a minimal Lagrangian immersion $\emptyset$ in
$CF^{-1}$ When $n=2$ , then trivially $\emptyset$ is totally geodesic. If $n-3$ , using a result in [18],

$\emptyset$ is totally geodesic, because $\emptyset$ is a minimal Lagrangian immersion of a surface of genus
zero in $CP^{2}$ . If $n\geq 4$ , Lemma 5 below says that the leaves of 9 have constant
curvature and as they are spheres these constants are positives. So, using a result in [7]
our minimal Lagrangian immersion $\emptyset$ is also totally geodesic.

In any case, $\emptyset$ is totally geodesic, and from Proposition 3,3),

$\sigma(v, w)=\hat{\rho}\langle v, w\rangle H$

for any $v,$ $w$ orthogonal to $JH$, and then (15) implies that $\hat{\rho}=(n/(n+2))|H|^{2}$ . This
fact joint with (15) imply that the second fundamental form $\sigma$ of $\psi$ is given by (13) at
any point where $H$ does not vanish. By continuity, $\sigma$ is given by (13) on the whole
$M$ . NOW our result follows from Theorem 2.

LEMMA 5. Let $(M, \langle, \rangle)$ an $n$-dimensional $(n\geq 4)$ conformally flat Riemannian
manifold admitting a closed a conformal vector field X. Then the leaves of the foliation
9 (see Lemma 1) with the induced metric have constant curvature.

PROOF. AS $M$ is conformally flat, the Weyl tensor of $M$ vanishes, and then the
curvature of $M$ is given by (see [2], Definition 1.117)
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(16) $R(v, w, x,z)=- \frac{r}{(n-1)(n-2)}R_{0}(v, w, x,z)+\frac{1}{n-2}\{\langle v, z\rangle S(w,x)$

$-\langle v,x\rangle S(w,z)+\langle w, x\rangle S(v,z)-\langle w,z\rangle S(v,x)\}$ ,

where $S$ is the Ricci tensor, $r$ is the scalar curvature of $(M, \langle, \rangle)$ and

$R_{0}(v, w, x,z)=\langle v,z\rangle\langle w, x\rangle-\langle v, x\rangle\langle w,z\rangle$ .

Taking $w=x=X,$ $v,$ $z$ perpendicular to $X$ in the above expression and using
Lemma 1,2) we obtain

$S(v, z)= \frac{r-|X|^{-2}Ric(X)}{n-1}\langle v, z\rangle$ .

NOW, using this expression in (16) we obtain that

$R(v, w, x,z)= \frac{r-2|X|^{-2}Ric(X)}{(n-1)(n-2)}R_{0}(v, w, x,z)$ ,

where $v,$ $w,$ $x,$ $z$ are perpendicular to $X$ .
If $N$ is a leaf of the foliation 9 and $R’$ the Riemannian curvature of the induced

metric on $N$ , then the above expression, the Gauss equation of $N$ in $M$ and (3) imply
that

$R’(v, w, x, z)= \{(\frac{divX}{n|X|})^{2}+\frac{r-2|X|^{-2}Ric(X)}{(n-1)(n-2)}\}R_{0}(v, w, x,z)$ ,

for any vectors $v,$ $w,$ $x,z$ tangent to $N$ . So, as $\dim N\geq 3,$ $N$ has constant curvature.

COROLLARY 4. Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of a compact n-
dimensional manifold $M$ with conformal Maslov form. If the first Betti number of $M$

vanishes, then $\psi$ is congruent to the Whitney sphere.

REMARK 3. In [4], Corollaries 3 and 4 were proved when $n=2$ .

PROOF. AS $JH$ is a closed vector field and the first Betti number of $M$ is zero, then
there exists a function $f$ : $Marrow R$ such that $Vf=JH$ . So $H$ has zeroes at the critical
points of $f$ and the Corollary follows from Theorem 3.

Suppose that $\psi$ : $Marrow C^{n}$ is a Lagrangian immersion of a compact n-dimensional
manifold $M$ , and that the Ricci curvature of $M$ is positive: $Ric>0$ . Then the Gauss
equation of $\psi$ says that

$n \langle\sigma(v, v), H\rangle>\sum_{i=1}^{n}|\sigma(v, e_{i})|^{2}\geq 0$ .

In particular, $|H|^{2}>0$ . As $Ric>0$ , then $H_{dR}^{1}(M)=0$ , and then our closed vector field
$JH$ is the gradient of a function $f$ : $Marrow R$ . As $M$ is compact, $f$ has a critical point,
which contradicts that $|H|>0$ . So there exists no compact Lagrangian submanifolds of
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$C^{n}$ with $Ric>0$ . If one consider the Whitney sphere, then it is easy to see from (13)

that its Ricci curvature is given by

$Ric(v)=\frac{n^{2}}{(n+2)^{2}}(n|H|^{2}|v|^{2}+(n-2)\langle H, Jv\rangle^{2})$

which proves that $Ric$ is positive at any point except at the two zeroes of $H$, where $Ric$

is zero. In the next result we characterize the Whitney sphere in terms of the Ricci
curvature.

COROLLARY 5. Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of a compact n-
dimensional manifold $M$ with conformal Maslov form. Then

$Ric(JH)\geq 0$

if and only if either $\psi$ has parallel mean curvature vector or $\psi$ is congment to the Whitney
sphere.

REMARK 4. In [16] Urbano classified the Lagrangian compact submanifolds of
$C^{n}$ with parallel mean curvature vector, proving that they are product of Lagrangian
compact submanifolds of complex Euclidean spaces which are minimal in certain
hyperspheres.

PROOF. It is clear that any compact Lagrangian submanifold with parallel mean
curvature vector and the Whitney sphere satisfy that $Ric(JH)\geq 0$ .

Conversely, suppose that $Ric(JH)\geq 0$ . If $H$ has a zero, Theorem 3 says that $\psi$ is
congruent to the Whitney sphere. In other case, $H$ has not zeroes, and then the metric
$g=|H|^{-2}\langle, \rangle$ is defined on the whole $M$ . Integrating the expression given in Lemma
1,5) with respect to the measure $dv_{g}$ of the metric $g$ we have

$0= \int_{M}(\Delta^{g}\log|H|+\frac{Ric(JH)}{n-1})dv_{g}$ .

AS $Ric(JH)\geq 0$ , we have that $Ric(JH)=0$ and so Lemma 1,5) implies that $|H|$ is
constant. Using Lemma 1,1) and (1) we obtain that $H$ is parallel, and we finish the
proof.

We finish this paper by proving the following global result.

COROLLARY 6. Let $\psi$ : $Marrow C^{n}$ be a Lagrangian immersion of an orientable
compact $n$-dimensional manifold $M$ with nonparallel conformal Maslov form such that
the first Betti number of $M$ is one. Then the universal covering $(\tilde{M},\tilde{\psi})$ of $(M, \psi)$ is
congruent to $(R\cross N, \gamma_{u}*\phi)$ , where $u$ is a solution of (11) with $\lambda=1,$ $-1$ and $\emptyset$ : $Narrow$

$CP^{n-1}$ is a minimal Lagrangian immersion of a simply-connected complete manifold $N$.

REMARK 5. In [4] Lagrangian tori in $C^{2}$ with conformal Maslov form and such
that $JH$ is not a principal direction of $A_{H}$ have been constructed. Hence it is not true
that, compact Lagrangian submanifolds with conformal Maslov form whose first Betti
number is greater than one, have $JH$ as a principal direction of $A_{H}$ .
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PROOF. From Theorem 3, $H$ has no zeroes on $M$ . So the vector field $|H|^{-n}JH$ is
defined on the whole $M$ . Using Lemma 1, it is easy to see that the above vector field is
closed and that its divergence vanishes. So it is a harmonic vector field on $M$ . Using
a similar reasoning as in Theorem 3, we have that the vector field $Z$ defined by
$Z=J\sigma(JH, JH)-(3n/(n+2))|H|^{2}JH$ is also a harmonic vector field, and as the first
Betti number of $M$ is one, then there exists a constant $(n-1)\lambda$ such that $Z=$

$(n-1)\lambda|H|^{-n}JH$ . This means that

$\sigma(JH,JH)=(\frac{3n}{n+2}|H|^{2}+(n-1)\lambda|H|^{-n})H$ .

AS consequence, if $\tilde{H}$ is the mean curvature vector of $\tilde{\psi}$ , then $J\tilde{H}$ is also a
conformal vector field without zeroes on $\tilde{M}$ and

$\tilde{\sigma}(J\tilde{H},J\tilde{H})=\frac{3n}{n+2}(|\tilde{H}|^{2}+(n-1)\lambda|\tilde{H}|^{-n})\tilde{H}$ ,

being $\tilde{\sigma}$ the second fundamental form of $\tilde{\psi}$ . If the induced metric on $\tilde{M}$ by $\tilde{\psi}$ is also
denoted by $\langle$ , $\rangle$ , then the metric $g=|\tilde{H}|^{-2}\langle, \rangle$ (see Lemma 1) is globally defined, and
it is complete because it is the covering metric of the metric $|H|^{-2}\langle, \rangle$ on $M$ . As $\tilde{M}$ is
simply-connected, there exists a function $h:\tilde{M}arrow R$ such that $V^{g}h=J\tilde{H}$, where $V^{g}$

denotes the gradient of the metric $g$ . Hence, as by Lemma 1,6) $J\tilde{H}$ is a parallel vector
field, the Hessian of $h$ vanishes. So $(\tilde{M}, g)$ is isometric to $(R\cross N, dt^{2}\cross g’)$ , where $g’$ is
a complete metric. As $\tilde{M}$ is simply-connected, $N$ is also simply-connected. Moreover,
Corollary 2 says that $\tilde{\psi}$ is congruent to $\gamma_{u}*\emptyset$ where $u$ is a solution of (11) with
$\lambda=0,1,$ $-1$ and $\emptyset$ is a minimal isometric immersion of the complete Riemannian
manifold $(N,\mu^{2}g’)$ in $CF^{-1}$ . To finish the proof, we will see that $\lambda=0$ cannot be
possible. As $H$ has no zeroes, $M$ is compact and $|H|=|\tilde{H}|$ , we have that
$|\tilde{H}|^{2}\geq\epsilon>0$ . Also and from Proposition 3 it follows that $|\tilde{H}|^{2}(t, x)=|\gamma_{u}(t)|^{2}$ . If
$\lambda=0$ , then Lemma 4 says that $|\gamma_{u}(t)|^{2}=1/\cosh 2t$ and hence $\lim_{tarrow\infty}|\tilde{H}|^{2}(t, x)=0$ which
contradicts the above assertion about the length of $\tilde{H}$ .
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