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1. Introduction

A stochastic process of Omstein-Uhlenbeck type (OU type process) $\{X_{t}\}$ was
introduced in one dimension by Wolfe [7] and in multidimension by Sato and Yamazato
[4]. It is a Markov process $(\Omega, \mathscr{F}, \mathscr{F}_{t}, P^{X}, X_{t})$ on the $d$-dimensional Euclidean space $R^{d}$

obtained from a spatially homogeneous Markov process undergoing a linear drift force
determined by a matrix $-Q$ . The purpose of this paper is to give an integral condition
of recurrence and transience for OU type processes. Let $\{Z_{t}\}$ be a L\’evy process on $R^{d}$ ,
that is, a stochastically continuous process with stationary independent increments,
starting at the origin. Let $Q$ be a real $d\cross d$ matrix of which all eigenvalues have
positive real parts. An OU type process $\{X_{t}\}$ on $R^{d}$ is, under the measure $P^{x}$ ,

equivalent to the process $\{\overline{X}_{t}\}$ defined by

(1.1) $\overline{X}_{t}=e^{-tQ}x+\int_{0}^{t}e^{-(t-u)Q}dZ_{u}$ ,

where the stochastic integral with respect to the L\’evy process $\{Z_{t}\}$ is defined by
stochastic convergence from integrals of simple functions. It is the unique solution of
the equation

(1.2) $\overline{X}_{t}=x+Z_{t}-\int_{0}^{t}Q\overline{X}_{u}du$ .

An OU type process is determined by the L\’evy process $\{Z_{t}\}$ and the matrix $Q$ . When
$\{Z_{t}\}$ is a Brownian motion and $Q$ is a positive constant multiple of the unit matrix, it is
a classical Omstein-Uhlenbeck process. Precise definition of an OU type process by its
infinitesimal generator is given in [2] and [4]. The process $\{X_{t}\}$ is called recurrent if
there is $y\in R^{d}$ such that

$P^{X}( \lim_{tarrow\infty}\inf|X_{t}-y|=0)=1$ for every $x\in R^{d}$ .

The process $\{X_{t}\}$ is called transient if

$P^{X}( \lim_{tarrow\infty}|X_{t}|=\infty)=1$ for every $x\in R^{d}$ .

OU type processes are necessarily recurrent if they have limit distributions. Sato and
Yamazato $[3, 4]$ obtain a necessary and sufficient condition for OU type processes to
have limit distributions. Moreover they show in [4], by giving a concrete example, that
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there is a recurrent OU type process which does not have a limit distribution. Later
Shiga [6] gives a recurrence criterion for OU type processes in one dimension and
discusses several symmetric multidimensional cases. He also shows that any OU type
process is either recurrent or transient. However his proof of the recurrence criterion
includes probabilistic argument which is peculiar to one dimension. Sato, Watanabe
and Yamazato [2] discover a purely Fourier analytic method to overcome difficulty in
nonsymmetric multidimensional case and give a recurrence criterion when $Q$ is diag-
onalizable and all eigenvalues of $Q$ are real and positive. Some related remarks are
discussed in Sato and Yamazato [5]. After that, Sato, Watanabe, Yamamuro and
Yamazato [1] give a criterion when $Q$ is a Jordan cell matrix with a positive eigenvalue
and also obtain a criterion which unifies the results when $Q$ is diagonalizable or a
Jordan cell. Conceming recurrence and transience of two-dimensional OU type pro-
cesses, they make comparison of the case where $Q$ is diagonal and the case where $Q$ is
a Jordan cell matrix. Through these studies, it is conjectured by K. Sato that the
unified criterion in [1] should be a general recurrence criterion for the OU type
process. In this paper we shall answer Sato’s conjecture in the affermative. A lemma
(Lemma 1) on boundedness of some integrals involving exponential functions and
trigonometric functions is crucial for the proof. Let $|x|$ and $\langle x,y\rangle$ denote the norm and
the inner product in $R^{d}$ in the usual sense. The characteristic function of $Z_{t}$ is
represented as

$Ee^{i\langle z,Z_{t}\rangle}=e^{t\psi(z)}$

(1.3)
$\psi(z)=i\langle\gamma, z\rangle-2^{-1}\langle z, Bz\rangle+\int_{R^{d}}(e^{i\langle z,x\rangle}-1-i\langle z, x\rangle(1+|x|^{2})^{-1})\rho(dx)$ ,

where $\gamma$ is a constant vector in $R^{d},$ $B$ is a symmetric and nonnegative definite real $d\cross d$

matrix, and $\rho$ is a measure on $R^{d}$ satisfying $\rho(\{0\})=0$ and $\int_{R^{d}}(|x|^{2}\wedge 1)p(dx)<\infty$ .
The measure $\rho$ is called the L\’evy measure of the L\’evy process $\{Z_{t}\}$ . Our main result is
the following theorem.

THEOREM 1 (Sato’s conjecture). Fix $c>0$ . Then the OU type process $\{X_{t}\}$

associated with the L\’evy process $\{Z_{t}\}$ and the matrix $Q$ is recurrent if and only if

(1.4) $\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}(\exp(-|u^{Q}x|)-1)p(dx)]=\infty$ ,

where $u^{Q}=e^{(\log u)Q}$ .

We state the following corollaries, which are pointed out by M. Yamazato. Let
$||x||$ be an arbitrary norm in $R^{d}$ .

COROLLARY 1. Fix $c>0$ . The equation (1.4) is equivalent to

(1.5) $\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}(\exp(-||u^{Q}x||)-1)p(dx)]=\infty$ ,

and hence the OU type process $\{X_{t}\}$ is recurrent if and only if (1.5) holds.
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Let $S=RQR^{-1}$ be the real Jordan canonical form of $Q$ with $R$ being a real
invertible $d\cross d$ matrix. Let $\gamma_{j}=\alpha_{j}+\sqrt{-1}\beta_{j}(1\leq j\leq n)$ be distinct eigenvalues of $Q$ .
We define a matrix $\tilde{S}$ as a matrix substituting $0$ for all $\beta_{j}$ in $S$ and define a matrix $\tilde{Q}$ as
$\tilde{Q}=R^{-1}\tilde{S}R$ .

COROLLARY 2. Let $\{X_{t}\}$ and $\{\tilde{X}_{t}\}$ be OU type processes associated with a common
L\’evy process $\{Z_{t}\}$ and matrices $Q$ and $\tilde{Q}$ , respectively. Then $\{X_{t}\}$ is recurrent $\iota f$ and
only if $\{\tilde{X}_{t}\}$ is recurrent.

After we show a lemma on boundedness of some integrals in Section 2, we prove the
results above in Section 3.

2. Boundedness of some integrals

In this section we prove a key lemma which plays an essential role in the proof of
Theorem 1. Let $R$ be the set of all real numbers. Let $m$ and $n$ be positive integers.
Fix $n$ distinct complex numbers $\gamma_{j}$

$(1 \leq j\leq n)$ such that $\gamma_{j}=\alpha_{j}+\sqrt{-1}\beta_{j}$ with
$0<\alpha_{1}\leq\alpha_{2}\leq\cdots\leq\alpha_{n}$ and $\beta_{j}\in R$ . Let $P_{j}(s)$ and $Q_{j}(s)(1\leq j\leq n)$ be polynomials with
complex coefficients and with degrees being at most $m$ . We assume that if $\gamma_{j}$ is real,
then polynomials $P_{j}(s)$ and $Q_{j}(s)$ have real coefficients and that if $\gamma_{j}$ is not real, then
there exists $k(1\leq k\leq n)$ such that $\gamma_{k}=\overline{\gamma_{j}},$

$P_{k}(s)=\overline{P_{j}(s)}$, and $Q_{k}(s)=\overline{Q_{j}(s)}$ . Here 2
stands for the complex conjugate of a complex number $z$ . Define functions $f(s)$ and
$g(s)$ on $R$ as

(2.1)
$f(s)= \sum_{j=1}e^{\gamma_{j}s}P_{j}(s)$

and $g(s)= \sum_{j=1}^{n}e^{\gamma_{J}s}Q_{j}(s)$ .

Note that $f(s)$ and $g(s)$ are real valued by virtue of our assumption on $P_{j}(s)$ and
$Q_{j}(s)$ . Let $I(x)$ be a real bounded measurable function on $R$ continuous at $x=0$ and
let $J(x)= \int_{0}^{X}I(u)du$ . From now on, denote by $K_{l}(l=1,2, \ldots)$ positive constants
depending only on $m,$ $n$ , and $\{\gamma_{j}\}_{j=1}^{n}$ . We state the following lemma in a version
improved by M. Yamazato.

LEMMA 1. Suppose that

(2.2) $\sup_{X\in R}|I(x)|\leq 1$ and $\sup_{X\in R}|J(x)|\leq 1$ .

(i) We have, for every $N>0$ ,

(2.3) $| \int_{0}^{N}I(f(s))ds|\leq K_{1}+K_{2}\log(\frac{1}{|f(0)|}\vee 1)$ .

(ii) In addition to (2.2), suppose that

(2.4) $\sup\underline{|I(x)|}\leq 1$ .
$x\neq 0$

$|x|$
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Then we have, for every $M$ and $N$ with $M<N$ ,

(2.5) $| \int_{M}^{N}I(f(s))\ | \leq K_{3}$ .

REMARK 1. We change the variable as $s=\log u$ . Setting $I(x)=e^{-|x|}$ and letting
$Narrow\infty$ in (i) of Lemma 1, we get

(2.6) $\int_{1}^{\infty}e^{-|f(\log u)|}\frac{du}{u}\leq K_{1}+K_{2}\log(\frac{1}{|f(0)|}\vee 1)$ .

On the other hand, setting $I(x)=\sin x$ and $2^{-1}(\cos x-e^{-|x|})$ , respectively in (ii) of
Lemma 1, we obtain that, for every $M$ and $N$ with $0<M<N$,

(2.7) $| \int_{M}^{N}\sin(f(\log u))\frac{du}{u}|\leq K_{3}$

and

(2.8) $| \int_{M}^{N}(\cos(f(\log u))-e^{-|f(\log u)|})\frac{du}{u}|\leq Kj$ .

We need several lemmas for the proof of Lemma 1. Denote by $\{\theta_{l}\}_{l=1}^{L_{0}}$ the set of
all zeros of the polynomials $\{Q_{j}(s)\}_{j=1}^{n}$ . Define a set $T_{\eta}$ for $\eta>0$ as

(2.9) $T_{\eta}= \bigcap_{l=1}^{L_{0}}$ { $s\in R$ : s–Re $\theta_{l}|\geq\eta$ },

where $Rez$ stands for the real part of a complex number $z$ . Here we define $T_{\eta}=R$ if
all polynomials $\{Q_{j}(s)\}_{j=1}^{n}$ are constants. For every $\delta_{0}$ with $0<\delta_{0}<\alpha_{1}/4$ , there exists a
sufficiently large $\eta_{0}>n$ depending only on $\delta_{0},$ $m,$ $n$ , and $\{\gamma_{j}\}_{j=1}^{n}$ such that, for any
$s,$ $t\in T_{\eta_{0}}$ satisfying $|s-t|\leq n$ and for $1\leq j\leq n$ and $1\leq k\leq 2n$ ,

(2.10) $|Q_{j}(s)-Q_{j}(t)|\leq\delta_{0}|Q_{j}(s)|$

and

(2.11) $|Q_{j}^{(k)}(t)|\leq\delta_{0}|Q_{j}(s)|$ ,

where $Q_{j}^{(k)}(t)$ stands for the k-th derivative of $Q_{j}(t)$ .

LEMMA 2. There exists $\rho_{0}\in(0,1)$ and $\eta_{0}>n$ depending only on $m,$ $n$ , and $\{\gamma_{j}\}_{j=1}^{n}$

such that if $p\in(O,\rho_{0}]$ and $s0\in T_{\eta_{0^{+}}n}$ satisfy

(2.12) $|g(s_{0})|< \rho^{n}\sum_{j=1}^{n}e^{\alpha_{j^{S}0}}|Q_{j}(s_{0})|$ ,

then, for some $l$ with $0\leq l\leq n-1$ , there is a real zero $\zeta_{l}$ of $g^{(l)}(s)$ satisfying
$|s_{0}-\zeta_{l}|<np$ .
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PROOF. Fix $\rho_{0}\in(0,1)$ and $\eta_{0}>n$ temporarily and let $\rho\in(0,\rho_{0}]$ and $s_{0}\in T_{\eta_{0}+n}$

satisfy (2.12). Denote

(2.13) $I_{0}= \sum_{j=1}^{n}e^{\alpha_{j^{S}0}}|Q_{j}(s_{0})|$ .

Suppose that, for any $l$ with $0\leq l\leq n-1,$ $g^{(l)}(s)$ is non-zero for any $s$ satisfying
$|s_{0}-s|<np$ . We show the following assertion $(a)$ .

$(a)$ For every $l$ with $0\leq l\leq n-1$ , there exists $s_{l}$ satisfying

(2.14) $|s_{l}-s_{0}|\leq l\rho$ and $|g^{(l)}(s_{l})|\leq\rho^{n-l}I_{0}$ .

If we let $l=0$ in (2.14), it is obviously true. Suppose that, for some $k$ with
$0\leq k\leq n-2$ , and for some $s_{k}$ ,

(2.15) $|s_{k}-s_{0}|\leq kp$ and $|g^{(k)}(s_{k})|\leq\rho^{n-k}I_{0}$ ,

and, for every $s$ satisfying $|s-s_{0}|\leq(k+1)\rho$,

(2.16) $|g^{(k+l)}(s)|>p^{n-k-1}I_{0}$ .

By virtue of the mean value theorem, we find from (2.15) and (2.16) that there are two
numbers $c_{\pm}$ satisfying $|c_{\pm}-s_{k}|\leq p$ and

(2.17) $|g^{(k)}(s_{k}\pm\rho)-g^{(k)}(s_{k})|=\rho|g^{(k+1)}(c_{\pm})|>p^{n-k}I_{0}$ .

Since $g^{(k+l)}(s)$ cannot change its sign on $(s_{k}-\rho, s_{k}+\rho)\subset(s_{0}-(k+1)\rho, s_{0}+(k+1)\rho)$ ,
it follows from (2.15) that either $g^{(k)}(s_{k}+p)$ or $g^{(k)}(s_{k}-\rho)$ has the opposite sign with
$g^{(k)}(s_{k})$ . Hence there exists a real zero $\zeta_{k}$ of $g^{(k)}(s)$ satisfying $|\zeta_{k}-s_{k}|\leq p$ , which
contradicts our assumption. This proves the assertion $(a)$ . Now define an $n\cross n$

matrix $\Gamma$ as

(2.18) $\Gamma=(\begin{array}{llll}1 1 \cdots 1\gamma_{1} \gamma_{2} \cdots \gamma_{n}\cdots \cdots \cdots \cdots\gamma_{l}^{n-1} \gamma_{2}^{n-l} \cdots \gamma_{n}^{n-]}\end{array})$

Note that $\det\Gamma\neq 0$ , since it is Vandermonde’s determinant. Let $\Gamma^{-1}=(\gamma_{ij})$

$(1\leq i, j\leq n)$ and let $\max_{1\leq i,j\leq n}|\gamma_{ij}|=K_{5}$ . If we choose $\rho_{0}$ small enough and $\eta_{0}$ large
enough beforehand, then, by virtue of (2.10) and (2.11), for some $\delta_{1}>0$ and for each $l$

with $0\leq l\leq n-1$ ,

(2.19)
$g^{(l)}(s_{l})= \sum_{j=1}^{n}(\gamma_{j})^{l}e^{\gamma_{j}s_{0}}Q_{j}(s_{0})+R_{l}$ ,

$|R_{l}|\leq\delta_{1}I_{0}$ , and $n^{2}(\delta_{1}+p_{0})K_{5}<1$ .

The smallness of $p_{0}$ and the largeness of $\eta_{0}$ depend only on $m,$ $n$ , and $\{\gamma_{j}\}_{j=1}^{n}$ . We
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define complex numbers $x_{j}(0\leq j\leq n-1)$ and $y_{l}(0\leq l\leq n-1)$ as

(2.20) $x_{j}=e^{\gamma_{j+1}s_{0}}Q_{j+1}(s_{0})$

and

(2.21) $y_{l}=g^{(l)}(s_{l})-R_{l}$ .

Denote $x={}^{t}(x_{0}, \ldots, x_{n-1})$ and $y={}^{t}(y_{0}, \ldots,y_{n-1})$ . Then we see from (2.19) that

(2.22) $x=\Gamma^{-1}y$ .

Hence we obtain from the assertion $(a)$ and (2.19) that

(2.23) $I_{0}= \sum_{j=0}^{n-1}|x_{j}|\leq n^{2}(\delta_{1}+\rho_{0})K_{5}I_{0}<I_{0}$ ,

which is a contradiction. This proves Lemma 2.

LEMMA 3. There exists sufficiently farge $\eta_{0}>n$ and small $\delta_{2}\in(0,1)$ each depending
only on $m,$ $n$ , and $\{\gamma_{j}\}_{j=1}^{n}$ such that, for every $t\in R$ and every $l$ with $0\leq l\leq n-1,$ $g^{(l)}(s)$

has at most $n-1$ real zeros on $[t, t+\delta_{2}]\cap T_{\eta_{0}}$ .

PROOF. We use again $I_{0}$ defined in (2.13). We see from (2.10) and (2.11) that, for
every $\epsilon>0$ , there exist sufficiently large $\eta_{0}>n$ and small $\delta_{2}>0$ depending only on
$\epsilon,$ $m,$ $n$ , and $\{\gamma_{j}\}_{j=1}^{n}$ such that, for any $s_{0},$ $s\in T_{\eta_{0}}$ satisfying $|s_{0}-s|\leq\delta_{2}$ and for
$0\leq j\leq 2n$ ,

(2.24) $|g^{(l)}(s)-g^{(l)}(s_{0})|\leq\epsilon I_{0}$ .

Suppose that, for some $l$ with $0\leq l\leq n-1$ and for some $t$ , there are at least $n$ distinct
real zeros of $g^{(l)}(s)$ on $[t, t+\delta_{2}]\cap T_{\eta_{0}}$ . Then we find from Rolle’s theorem that, for
$0\leq j\leq n-1,$ $g^{(l+j)}(s)$ has at least $n-j$ distinct real zeros on $[t, t+\delta_{2}]\cap T_{\eta_{0}}$ . Choosing
$s_{0}\in[t, t+\delta_{2}]\cap T_{\eta_{0}}$ , we see that, for $0\leq j\leq n-1$ , there exists a real zero $\zeta_{l+j}$ of $g^{(l+j)}(s)$

satisfying $|\zeta_{l+j}-s_{0}|\leq\delta_{2}$ . Hence, from (2.24),

(2.25) $|g^{(l+j)}(s_{0})|\leq\epsilon I_{0}$ for $0\leq j\leq n-1$ ,

which leads to a contradiction by argument similar to the proof of Lemma 2. The
proof of Lemma 3 is complete.

Let $\alpha>0$ and let $P(s)$ be a polynomial with complex coefficients and with the
degree being at most $m$ . Let $\lambda_{j}(1\leq j\leq l)$ be all zeros of $P(s)$ . Define a set $T$ as

(2.26) $T= \bigcap_{j=1}^{l}\{s\in R:|s-Re\lambda_{j}|\geq 1\}$ .

Here we define $T=R$ if $P(s)$ is a constant.

LEMMA 4. There exists a positive constant $K$ depending only on $\alpha$ and $m$ such that

(2.27) $e^{\alpha s}|P(s)|\geq K|P(0)|$ for all $s\geq 0$ with $s\in T$ .
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PROOF. If $P(O)=0$ or $P(s)$ is a constant, then the lemma is obviously true. Hence
we can and do assume that $P(O)\neq 0$ and $l\geq 1$ . Define a function $R(s)$ on $R$ as

(2.28) $R(s)= \frac{e^{\alpha s}|P(s)|}{|P(0)|}$ .

We may assume the zeros are repeated according to their multiplicity. Then $R(s)$ is
expressed as

(2.29) $R(s)=e^{\alpha s} \prod_{j=l}^{l}\frac{|s-\lambda_{j}|}{|\lambda_{j}|}$ .

Without loss of generality, we can and do assume that $0<|\lambda_{1}|\leq|\lambda_{2}|\leq\cdots\leq|\lambda_{l}|$ . We
shall prove (2.27) considering the following three possible cases:

Case (i). If $2^{-1}|\lambda_{l}|\leq s$, then we have

(2.30) $R(s) \geq\frac{e^{\alpha|\lambda_{l}|/2}}{|\lambda_{l}|^{l}}$

Case (ii). If $2^{-1}|\lambda_{j}|\leq s<2^{-1}|\lambda_{j+1}|$ for some $j$ with $1\leq j\leq l-1$ , then we get

(2.31) $R(s) \geq\frac{2^{j-l}e^{\alpha|\lambda|/2};}{|\lambda_{j}|^{j}}$ .

Case (iii). If $0<s<2^{-1}|\lambda_{1}|$ , then we find that

(2.32) $R(s)\geq 2^{-l}$ .

Let $C= \inf_{1\leq l\leq m}\inf_{x>0x^{-l}e^{\alpha x/2}}$ and let $K=2^{-m}(C\wedge 1)$ . Then (2.27) is evident from
(2.30), (2.31), and (2.32).

PROOF OF LEMMA 1. The assertion is trivial if $f(s)$ identically vanishes. Hence we
assume that, for some $j,$ $P_{j}(s)$ does not vanish identically. We first prove (i). Denote
$\{\tilde{\theta}_{l}\}_{l=1}^{L_{1}}$ be all zeros of the polynomials $\{P_{j}(s)\}_{j=1}^{n}$ . Define a set $S_{\eta}$ for $\eta>0$ as

(2.33) $S_{\eta}= \bigcap_{l=1}^{L_{1}}\{s\in R:|s-Re\tilde{\theta}_{l}|\geq\eta\}$ .

Here we define $S_{\eta}=R$ if all polynomials $\{P_{j}(s)\}_{j=1}^{n}$ are constants. There exists suffi-
ciently large $\eta_{1}>1$ depending only on $m$ and $\alpha_{1}$ such that, for any $s\in S_{\eta_{1}}$ and for
$1\leq j\leq n$ ,

(2.34) $|P_{j}(s)|\leq 4^{-1}\alpha_{1}|P_{j}(s)|$ .

NOW we choose $Q_{j}(s)=\gamma_{j}P_{j}(s)+P_{j}(s)$ . Then $g(s)=f’(s)$ . Choose sufficiently large
$\eta_{0}>n$ and small $\rho_{0},\delta_{2}\in(0,1)$ as in Lemmas 2 and 3. Denote

(2.35) $U=T_{\eta_{0}+n} \cap S_{\eta_{1}}=\bigcup_{l=0}^{L_{2}}[a_{l}, b_{l}]$ and $V=U^{c}\cap R$ ,
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where $0\leq L_{2}\leq 2mn+1$ and $a_{0}=-\infty$ and $b_{L_{2}}=+\infty$ . Then we have

(2.36) $\int_{V}|I(f(s))|\ \leq 2(\eta_{0}+n)mn+2\eta_{1}mn=K_{6}$ .

Define functions $f_{0}(s),$ $g_{0}(s)$ , and $g_{1}(s)$ on $R$ as

(2.37) $f_{0}(s)= \sum_{j=1}^{n}e^{\alpha_{/}s}|P_{j}(s)|$ ,

(2.38) $g_{0}(s)= \sum_{j=1}^{n}e^{\alpha_{/}s}|Q_{j}(s)|$ ,

and

(2.39) $g_{1}(s)=e^{-\alpha_{1}s/2}g_{0}(s)$ .

Hereafter we fix an arbitrary integer $l$ in $0\leq l\leq L_{2}$ . We see from (2.11) that

(2.40) $g_{1}’(s)\geq 4^{-1}\alpha_{1}g_{1}(s)>0$ on $[a_{l}, b_{l}]$ .

Since $Q_{j}(s)=\gamma_{j}P_{j}(s)+P_{j}(s)$ , it follows from (2.34) that

(2.41) $f_{0}(s)\leq K_{7g_{0}}(s)$ on $[a_{l}, b_{l}]$ .

Note from (2.40) that $g_{0}’(s)>0$ on $[a_{l}, b_{l}]$ . We define $c_{l}\in[a_{l}, b_{l}]$ considering the
following three possible cases:

(i) If there exists $s_{l}\in[a_{l}, b_{l}]$ such that $g_{0}(s_{l})=1$ , then we set $c_{l}=s_{l}$ .
(ii) If $g_{0}(a_{l})>1$ , then we set $c_{l}=a_{l}$ .
(iii) If $g_{0}(b_{l})<1$ , then we set $c_{l}=b_{l}$ .

We shall show that if $c_{l}<b_{l}$ , then

(2.42) $| \int_{c_{l}}^{N}I(f(s))\ | \leq K_{8}$ for every $N\in[c_{l}, b_{l}]$ .

$Let\epsilon beapositivenumber$ . $Denote\rho_{k}=\rho_{0}\epsilon^{k}forintegersk\geq 0and\lambda=\epsilon^{2n}e^{\alpha_{1}\delta_{2}/2}$ . We
choose $\epsilon$ depending only on $m,$ $n$ , and $\{\gamma_{j}\}_{j=1}^{n}$ so that $0<\epsilon<1$ and $\lambda>1$ . Let $\{\zeta_{j}\}_{j=1}^{L_{3}}$

be all real zeros of the functions $\{g^{(k)}(s)\}_{k=0}^{n-1}$ ( $L_{3}$ may be infinity). For $k\geq 0$ define sets
$W_{k},$ $U_{k}$ , and $V_{k}$ as

(2.43) $W_{k}= \bigcap_{j=1}^{L_{3}}\{s\in R:|s-\zeta_{j}|\geq n\rho_{k}\}$ ,

(2.44) $U_{k}=[c_{l}, N]\cap[c_{l}+k\delta_{2}, c_{l}+(k+1)\delta_{2}]\cap W_{k}$ ,

and

(2.45) $V_{k}=[c_{l}, N]\cap[c_{l}+k\delta_{2}, c_{l}+(k+1)\delta_{2}]\cap W_{k}^{c}$ .

Here we define $W_{k}=R$ if there are no real zeros of the functions $\{g^{(k)}(s)\}_{k=0}^{n-1}$ . We
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represent $U_{k}$ as

(2.46) $U_{k}= \bigcup_{j=1}^{L_{4}}[d_{2j}, d_{2j+1}]$ .

Note from Lemma 3 that $L_{4}\leq n^{2}+1$ and that

(2.47) $\int_{V_{k}}|I(f(s))|k\leq n^{2}2n\rho_{k}=2n^{3}\rho_{0}\epsilon^{k}$ .

Fix an arbitrary integer $j$ in $1\leq j\leq L_{4}$ . We see from Lemma 2 that

(2.48) $|g(s)|\geq f_{k}g_{0}(s)$ on $[d_{2j}, d_{2j+1}]$ .

On the other hand, we find from (2.40) that, for $s\in[d_{2j}, d_{2j+1}]$ ,

(2.49) g0 $(s)\geq e^{\alpha_{1}s/2}g_{1}(c_{l})\geq e^{k\alpha_{1}\delta_{2}/2}$ .

Here note from $c_{l}<b_{l}$ that $g_{0}(c_{l})\geq 1$ . Hence we obtain from (2.48) that

(2.50) $|g(d_{2j})|\geq\rho_{k}^{n}g_{0}(d_{2j})\geq\rho_{0}^{n}\lambda^{k}$

and likewise

(2.51) $|g(d_{2j+1})|\geq\rho_{0}^{n}\lambda^{k}$ .

We see from (2.11) that

(2.52) $|g’(s)|\leq K_{9g_{0}}(s)$ on $[d_{2j}, d_{2j+1}]$ .

Hence we get by (2.40), (2.48), and (2.49) that

$\int_{d_{2j}}^{d_{2j+1}}\frac{|g’(s)|}{g(s)^{2}}\ \leq\frac{K_{9}}{\rho_{k}^{2n}}\int_{d_{2j}}^{d_{2j+1}}\frac{ds}{g_{0}(s)}$

(2.53)
$\leq\frac{K_{9}}{\rho_{k}^{2n}g_{1}(d_{2j})}\int_{d_{2j}}^{d_{2j+1}}e^{-\alpha_{1}s/2}$ &\leq $\frac{2K_{9}}{\alpha_{1}\rho_{k}^{2n}g_{0}(d_{2j})}\leq K_{10}\lambda^{-k}$ .

By using integration by parts, we obtain from (2.50), (2.51), and (2.53) that

(2.54)
$| \int_{d_{2j}}^{d_{2j+1}}I(f(s))\ | \leq|[\frac{J(f(s))}{g(s)}]_{d_{y}}^{d_{2j+1}}|+|\rfloor_{d_{2j}}^{d_{2j+1}}\frac{J(f(s))g’(s)}{g(s)^{2}}\ |$

$\leq 2\rho_{0}^{-n}\lambda^{-k}+K_{10}\lambda^{-k}=K_{11}\lambda^{-k}$ .

It follows that, for every $N\in[c_{l}, b_{l}]$ ,

(2.55) $| \int_{c_{l}}^{N}I(f(s))ds|\leq.\sum_{k=0}^{\infty}\{(n^{2}+1)K_{11}\lambda^{-k}+2n^{3}\rho_{0}\epsilon^{k}\}=K_{8}$ .

Thus we have proved (2.42). Next we shall prove that if $a_{l}<c_{l}$ and $0<c_{l}$ , then

(2.56) $\int_{a_{l}v0}^{c_{l}}|I(f(s))|\ \leq K_{12}+K_{13}\log(\frac{1}{|f(0)|}\vee 1)$ .
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Note from $a_{l}<c_{l}$ that $g_{0}(c_{l})\leq 1$ . Hence we have

(2.57) $c_{l}\leq-2\alpha_{1}^{-1}\log g_{1}(c_{l})$ .

By using Lemma 4 with $\alpha=\alpha_{j}-\alpha_{1}/2,$ $s=c_{l}$ , and $P(s)=P_{j}(s)$ for $1\leq j\leq n$ , we find
from (2.41) that

(2.58) $|f(0)|\leq K_{14}e^{-\alpha_{1}c_{l}/2}f_{0}(c_{l})\leq K_{15g_{1}}(c_{l})$ .

Hence we get (2.56) by (2.57). It follows that, for every $N>0$ ,

$| \int_{0}^{N}I(f(s))\ | \leq h+(2mn+1)(2K_{8}+K_{12}+K_{13}\log(\frac{1}{|f(0)|}\vee 1))$

(2.59)
$=K_{1}+K_{2} \log(\frac{1}{|f(0)|}v1)$ .

Thus we have established (i). Secondly we prove (ii). We see from (2.40) and (2.41)

that if $a_{l}<c_{l}$ , then

$\int_{a_{l}}^{c_{l}}|I(f(s))|\ \leq K_{7}\int_{a_{l}}^{c_{l}}go(s)\$

(2.60)
$\leq K_{7g_{1}}(c_{l})\int_{a_{l}}^{c_{l}}e^{s\alpha_{1}/2}\ \leq 2K_{7}\alpha_{1}^{-1}go(c_{l})\leq K_{16}$ ,

where we use the inequality $g_{0}(c_{l})\leq 1$ . Recalling (2.42), we conclude that, for every $M$

and $N$ with $M<N$,

(2.61) $| \int_{M}^{N}I(f(s))ds|\leq K_{6}+(2mn+1)(2K_{8}+K_{16})=K_{3}$ .

The proof of Lemma 1 is complete.

3. Proof of results

In this section we prove the results which are stated in Section 1. Our argument
used in the proof of Theorem 1 is similar to the proof of Theorem A of [1] and so the
same part of the proof is omitted.

$PR\infty F$ OF THEOREM 1. Denote by $\gamma_{j}=\alpha_{j}+\sqrt{-1}\beta_{j}(1\leq j\leq n)$ distinct eigenvalues
of $Q$ with $0<\alpha_{1}\leq\alpha_{2}\leq\cdots\leq\alpha_{n}$ and $\beta_{j}\in R$ . Suppose that $\{X_{t}\}$ is transient. Then,
by using (2.7) of Remark 1, we find as in the proof of Theorem A of [1] that there is
$z\in R^{d}$ with $0<|z|\leq 1$ such that

(3.1) $\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}(\cos\langle z, u^{Q}x\rangle-1)\rho(dx)]<\infty$ .

Here $c$ is an arbitrary positive constant. Setting $f(\log u)=\langle z, u^{Q}x\rangle$ , we see from (2.8)
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of Remark 1 that

(3.2) $| \int_{v}^{1}(\cos\langle z, u^{Q}x\rangle-e^{-|\langle z,u^{Q}x\rangle|})\frac{du}{u}|\leq Kj$ ,

and hence

$\int_{v}^{1}(\cos\langle z, u^{Q}x\rangle-1)\frac{du}{u}$

(3.3) $= \int_{v}^{1}[(\cos\langle z, u^{Q}x\rangle-e^{-|\langle z,u^{Q}x\rangle|})+(e^{-|\langle z,u^{Q}x\rangle|}-e^{-|u^{Q}x|)+}(e^{-|u^{Q}x|}-1)]\frac{du}{u}$

$\geq-K_{4}+\int_{v}^{1}(e^{-|u^{Q}x|}-1)\frac{du}{u}$ .

Here we note that $e^{-|\langle z,u^{Q}x\rangle|}-e^{-|u^{Q}x|}\geq 0$ . Hence we obtain from (3.1) that

(3.4) $\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}(\exp(-|u^{Q}x|)-1)\rho(dx)]<\infty$ .

Conversely, suppose that (3.4) is true for each $c>0$ . We shall prove that $\{X_{t}\}$ is
transient. Again, as in the proof of Theorem A of [1], it is enough to prove that, for
some $c>0$ ,

(3.5) $\int_{|z|\leq 1}dz\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq 0}(\cos\langle z, u^{Q}x\rangle-1)\rho(dx)]<\infty$ .

In general there are positive constants $C_{j}(1\leq j\leq 4)$ depending only on $Q$ such that, for
$x\in R^{d}$ ,

(3.6) $C_{4^{\mathcal{U}^{C_{2}}}}|x|\leq|u^{Q}x|\leq C_{3^{\mathcal{U}^{C_{1}}}}|x|$ for $u\in(O, 1]$ ,

and

(3.7) $C_{3}^{-1}u^{C_{1}}|x|\leq|u^{Q}x|\leq C_{4}^{-1}u^{C_{2}}|x|$ for $u\in[1, \infty)$ .

For $c>0$ denote by $\rho_{c}$ the ristriction of the L\’evy measure $p$ to the set
$\{x\in R^{d} : |x|\geq c\}$ . Denote by $S^{d-1}$ the $d-1$ dimensional unit sphere. Define a set $S_{Q}$

as

(3.8) $S_{Q}=$ { $\xi\in S^{d-1}$ : $|u^{Q}\xi|>1$ for $u>1$ }.

We define a probability measure $\sigma$ on $S_{Q}$ and measures $\tau_{\xi}(\xi\in S^{d-1})$ on $(0, \infty)$ such that
$\tau_{\xi}(B)$ is measurable in $\xi$ for any Borel set $B$ in $(0, \infty),$ $\tau_{\xi}((0, \infty))=\rho_{c}(R^{d})$ , and, for each
Borel set $E$ in $R^{d}$ ,

(3.9) $\rho_{c}(E)=\int_{S_{Q}}\sigma(d\xi)\int_{0}^{\infty}1_{E}(r^{Q}\xi)\tau_{\xi}(dr)$ .
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We get by (3.6) that, for $\xi\in S_{Q}$ and for $z\in R^{d}$ with $|z|\leq 1$ ,

(3.10) $\int_{0}^{1}(e^{-|\langle z,w^{Q}\xi\rangle|}-e^{-|w^{Q}\xi|})\frac{dw}{w}\leq\int_{0}^{1}|w^{Q}\xi|\frac{dw}{w}\leq C_{1}^{-l}C_{3}$ .

Setting $f(\log w)=\langle z, w^{Q}\xi\rangle$ , we find from (2.6) of Remark 1 that

(3.11) $\int_{1}^{\infty}(e^{-|\langle z,w^{Q}\xi\rangle|}-e^{-|w^{Q}\xi|})\frac{dw}{w}\leq\int_{1}^{\infty}e^{-|\langle z,w^{Q}\xi\rangle|}\frac{dw}{w}\leq K_{1}+K_{2}\log\frac{1}{|\langle z,\xi\rangle|}$

We see from Lemma 2.2 of [2] that, for sufficiently large $c>0$ ,

(3.12) $\int_{|z|\leq 1}dz\exp[\rho_{c}(R^{d})K_{2}\int_{S_{Q}}\log\frac{1}{|\langle z,\xi\rangle|}\sigma(d\xi)]<\infty$ .

Letting $m=w$ , we obtain from (3.10), (3.11), and (3.12) that, for sufficiently large $c>0$ ,

$\int_{|z|\leq 1}dz\exp[\int_{0}^{1}\frac{du}{u}\int_{|x|\geq c}(e^{-|\langle z,u^{Q}x\rangle|}-e^{-|u^{Q}x|})\rho(dx)]$

(3.13) $\leq\int_{|z|\leq 1}dz\exp[p_{c}(R^{d})\int_{S_{Q}}\sigma(d\xi)\int_{0}^{\infty}(e^{-|\langle z,w^{Q}\xi\rangle|}-e^{-|w^{Q}\xi|})\frac{dw}{w}]$

$\leq const\cdot\int_{|z|\leq 1}dz\exp[\rho_{c}(R^{d})K_{2}\int_{S_{Q}}\log\frac{1}{|\langle z,\xi\rangle|}\sigma(d\xi)]<\infty$ .

Recalling (3.2), we get that, for sufficiently large $c>0$ ,

$\int_{|z|\leq l}dz\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}(\cos\langle z, u^{Q}x\rangle-1)\rho(dx)]$

$= \int_{|z|\leq 1}dz\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}\{(\cos\langle z, u^{Q}x\rangle-e^{-|\langle z,u^{Q}x\rangle|})$

(3.14)
$+(e^{-|\langle z,u^{Q}x\rangle|}-e^{-|u^{Q}x|})+(e^{-|u^{Q}x|}-1)\}\rho(dx)]$

$\leq const\cdot\int_{0}^{1}\frac{dv}{v}\exp[\int_{v}^{1}\frac{du}{u}\int_{|x|\geq c}(\exp(-|u^{Q}x|)-1)\rho(dx)]<\infty$ .

Thus we have established (3.5). The proof of Theorem 1 is complete.

PROOF OF COROLLARY 1. In the proof of Corollaries 1 and 2, we continue to use
the notations above. Obviously there are positive constants $C_{5}$ and $C_{6}$ such that

(3.15) $C_{5}|x|\leq||x||\leq C_{6}|x|$ for $x\in R^{d}$ .

Let $a$ and $b$ be constants satisfying $0<a<b$ . We see from (3.6) and (3.7) that, for
$\xi\in S_{Q}$ ,

(3.16) $\int_{0}^{1}(e^{-a|w^{Q}\xi|}-e^{-b|w^{Q}\xi|})\frac{dw}{w}\leq(b-a)\int_{0}^{1}|w^{Q}\xi|\frac{dw}{w}\leq(b-a)C_{1}^{-1}C_{3}$ ,
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and

(3.17) $\int_{1}^{\infty}(e^{-a|w^{Q}\xi|}-e^{-b|w^{Q}\xi|})\frac{dw}{w}\leq\int_{1}^{\infty}e^{-a|w^{Q}\xi|_{\frac{dw}{w}}}\leq a^{-1}C_{1}^{-1}C_{3}$ .

Letting $ur=w$ , we obtain from (3.16) and (3.17) that

$\int_{|x|\geq c}p(dx)\int_{0}^{1}(e^{-a|u^{Q}x|}-e^{-b|u^{Q}x|})\frac{du}{u}$

(3.18)
$\leq p_{c}(R^{d})\int_{S_{Q}}\sigma(d\xi)\int_{0}^{\infty}(e^{-a|w^{Q}\xi|}-e^{-b|w^{Q}\xi|})\frac{dw}{w}<\infty$ .

It follows that

$\int_{|x|\geq c}\rho(dx)\int_{0}^{1}|e^{-||u^{Q}x||}-e^{-|u^{Q}x|}|\frac{du}{u}$

(3.19)
$\leq\int_{|x|\geq c}\rho(dx)\int_{0}^{1}\{(e^{-C_{5}|u^{Q}x|}-e^{-c_{\epsilon|u^{Q}x|)+|e^{-C_{6}|u^{Q}x|}-e^{-|u^{Q}x|}|\}\frac{du}{u}<\infty}}$ .

Hence Corollary 1 is evident from Theorem 1.

PROOF OF COROLLARY 2. Let $u>0$ . Denote

(3.20) $E_{2}=(\begin{array}{ll}1 00 1\end{array})$ and $D_{2}=(\begin{array}{ll}\alpha -\beta\beta \alpha\end{array})$

with $\alpha,\beta\in R$ . Obviously we have

(3.21) $|u^{D_{2}}x|=u^{\alpha}|x|$ for $x\in R^{2}$ .

Let $A_{j}(1\leq j\leq l)$ be real $2\cross 2$ matrices. We define real $2l\cross 2l$ matrix $M(A_{1}$ ,
$A_{2},$

$\ldots,$
$A_{l})$ as

(3.22) $M(A_{1},A_{2}, \ldots, A_{l})=(\begin{array}{lllll}A_{l} A_{2} A_{3} A_{l} A_{l} A_{2} A_{l-1}\cdots \cdots \cdots \cdots \cdots A_{l} A_{2}0 A_{1}\end{array})$

Denote $J_{l}=M(D_{2}, E_{2},0, \ldots, 0)$ and $\tilde{J}_{l}=M(\alpha E_{2}, E_{2},0, \ldots, 0)$ . Then we find that

$u^{J_{l}}=M(u^{D_{2}},$ $(\log u)u^{D_{2}},$ $\ldots,\frac{(\log u)^{l-1}}{(l-1)!}u^{D_{2}})$

(3.23)

$=M(u^{D_{2}},0, \ldots, O)M(E_{2},$ $(\log u)E_{2},$ $\ldots,\frac{(\log u)^{l-1}}{(l-1)!}E_{2})$

and

(3.24) $u^{\overline{J_{l}}}=M(u^{\alpha}E_{2},0, \ldots, O)M(E_{2},$ $(\log u)E_{2},$ $\ldots,\frac{(\log u)^{l-1}}{(l-1)!}E_{2})$ .
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Hence we obtain from (3.21) that

(3.25) $|u^{J_{l}}x|=|u^{\overline{J_{l}}}x|$ for $x\in R^{2l}$ .

It follows that

(3.26) $|u^{S}x|=|u^{\overline{S}}x|$ for $x\in R^{d}$ .

Define the norm $||x||=|Rx|$ . Note from (3.26) that

(3.27) $||u^{Q}x||=|u^{S}Rx|=|u^{\tilde{S}}Rx|=||u^{\overline{Q}}x||$ .

Therefore, Corollary 2 is evident from Corollary 1.
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