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Introduction.

Let G be a connected Lie group of type I, H be a closed subgroup, and X
be a unitary character of H. Writing A and Ay for the modular functions of
G and H, respectively, let A¥%:(h)=(Ax(h)/As(h))** for heH. For a unitary
representation (x, 4,) of G, letting 4% be the space of C* vectors and 4 ;= be
its antidual, we extend © to 4 ;> and denote the space of (H, XA}{*s)-semiinvariant
vectors by

(I 7)1 = {acsd7=; n(h)a=X(h)AYs(h)a, "heH}.

We consider a representation ¢=ind%X of G induced from X and its direct
3] PN
integral decomposition : a:Sém(z)zd (), where G is the unitary dual of G with

usual Borel structure, dp is a Borel measure and m is a multiplicity function
defined p-almost everywhere. Realize ¢ in a space 4(,=L*X, G) of functions v
on G such that v(gh)=X(h~)A¥%:(h)(g) for all g&G and heH, and yg, x(|v|?)
< oo, where pg p is the positive G-invariant form on functions ¢ satisfying
Pd(gh)=Ag c(h))(g) for all g&G, heH (see [2, Ch. V]). In 4, x=G acts by
ao(x)v(g)=v(x"'g), g=G. By Penney’s Plancherel theorem [I1], the canonical
cyclic vector a, of ¢ defined by <a,, v>=v(e), where e=G is the unit element,
decomposes into the direct integral of (H, XA}?s)-semiinvariant vectors. For the

Plancherel theorem of this type, see [4], [5], [6], [8], [10], [11]. Here we will

treat the following:
PROBLEM. Is dim(4 ;) ¥8i’e=m(x)?

Note that dim(4;=)#*sH#’¢=m(x) holds by Theorem (II.6) of Penney [11].

We are concerned with exponential groups G, that is, solvable Lie groups
G for which exponential mappings are diffeomorphisms of their Lie algebras g
to G. For such G, several cases are treated in [1], [4], and [6]. We will
find upper bounds of dimensions of semiinvariant vectors for those irreducible
representations which satisfy the condition (C) below and which occur in ¢ with
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at most finite multiplicities, and we give an affirmative answer to the above
problem.

1. Statement of the result.

Let G be an exponential Lie group and H be a connected subgroup whose
Lie algebras are g and %), respectively. For a unitary character X of H, we
find feg* (the dual vector space of g) satisfying f([f, §1)= {0} and X(exp X)=
X (exp X)=evV-1/ & for Xe).

Regarding o=ind%X;, let us recall the description of the direct integral
decomposition SZm(n)nd () in terms of the orbit method [3], [6], [9]: Writing
ht={leg*;l]y=0}, we obtain the measure g as the image of the Lebesgue
measure of the affine space h)*+f by the Kirillov-Bernat mapping 8,: g* — G.
The multiplicity m(x) is determined as follows: m(x) is the number of connected
components of 8; (x)N\(H*+ f) if each component is a single H-orbit, and m(z)=co
if this condition is not satisfied. That is, m(x) is the number of H-orbits included
in 851 (m)NO*+f) for p-almost all = [6].

Let 2 be a coadjoint orbit, and for (€@ let g()={X<g; ([X, ¢])={0}}. For
a connected component C of 2"\ (h*+ f), the following (i) and (ii) are equivariant :

(i) H-+g() is a Lagrangian subspace for the bilinear form (X, V)—([X, Y])

for each /eC.

(ii) C is a single H-orbit.

(See [6].) Let us remark that (i) and (ii) are necessary conditions for the above
m(z) to be finite, but that they are not sufficient.

We investigate irreducible representations 7z satisfying the following condi-
tion for the corresponding coadjoint orbit £2.

CoNDITION (C). There exists an ideal p such that 2+p*=2 and [([p, p])
={0} for [=Q.

REMARK 1. Let po be the intersection of all subspaces LCg satisfying
R+ L+=0. Then 2+ps=8 and pg is an ideal of g. The condition (C) means
that po satisfies /([po, po])=1{0} for /=£. It can be proved by the standard
induction that peDg(l) for all /=R and if g is nilpotent, po=ig: the ideal
generated by g(/), /=£. But if g is general exponential, po2i, may happen.

EXAMPLE 1. Suppose g is nilpotent. Then a coadjoint orbit 2 satisfies the
condition (C) if and only if /([7g, i0])={0}.

EXAMPLE 2. Let g be a normal j-algebra treated in and £ be an open
coadjoint orbit. Then {2 satisfies the condition (C) with p=g, with the notation
in [7]. (Thus the result of is obtained from our theorem below.)
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Now, our result is the following :

THEOREM. Let G=expg be an exponential Lie group and H=expp be a
connected subgroup, and let feg* satisfying f([h, Y1)={0}. Define a unitary
character X; of H by Xs(exp X)=evV~ 7% for X&),

Suppose that #<G corresponds to a coadjoint orbit Q satisfying the condition
(C).  Then

1. If QN0+ f)=@, then

(7= 2r8i e = {0},

2. Suppose that QNG*+ )+ @ and each of its connected components is a
single H-orbit and the number m(2) of H-orbits included in QNH*+f) is finite.
Then

dim(H)F 2rhite < m(Q).

©
For the decomposition of a:ind?,xf:gém(n)nd u(m), the above statements

give a certain reciprocity. For example, suppose p-almost all z satisfy the
condition (C) with the corresponding orbit. Then the statement 2 and the
known inequality : dim(47°)¥ ¥AH’6=m(x) imply that the dimension is equal to
m(m)=m(Q).

In section 2, we will prove the theorem by realizing =« in a space of suitable
functions on G. We will use fundamental arguments in [4], [5], [6] to treat
distribution vectors.

2. Proof of the theorem.

For an element /=2, we can take a polarization b at [ satisfying the
Pukanszky condition (i.e. b*+/=B-I/, where B=expb) and pCb since p is an
ideal satisfying I([p, p])=1{0} [2, Ch.IV, 4.3]. In the sequel, we realize the
irreducible representation z corresponding to £ as ind$X;,, where X, (exp X)=
eV 1t for Xeb, in a space 4, of functions ¢ on G such that ¢(gh)=
X(b~HAY%(b)¢(g) for all beB and geG [2, Ch. V].

PrROOF OF 1. Let us remark that the assumption 2N\(H*+ f)=@ implies
RN+ f)=@. In fact, if there exists me2N(ONP)*+)=2NG*+p*+ 1),
then m+m,sh*4f for some moc=p*. By the condition (C), m4-m,= R holds, too.

For heHNexpp, vedy and g&G, a semiinvariant vector a satisfies

a, (XAFBR)—X(ghg)v(g) =0

since m(h)(g)=X,(g thgv(g). If Ap s(exp X)#1 for an X&hNp, we get a=0
considering the semiinvariance for exp RX. Suppose Ay ¢(exp X)=1 for all
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XehNyp, then the support of a is
supp(a) C {g=G; g-i(X)=f(X) for all Xehnp} = @
since G-INHNp)*+f)=, this proves the claim 1.

PrOOF OF 2. Taking /€ and realizing #=ind§X;, in a suitable function
space 4, on G/B as described before, we note that 4% includes the space
C*(G/B) of smooth functions of compact support on G/B. Thus it is sufficient
to prove that the dimension of the space of (H, X;A}%;)-semiinvariant distribu-
tions is at most the number of H-orbits in 2N(H*+ f).

We will prove the claim by induction on dimG. For G=R, it is clearly
verified. Let G, H, f, 2 be as in the statement of the theorem, dim G>1, and
suppose that the claim is verified for exponential groups of lower dimensions.
Let Q2N +f), and note that §h*+ f=h*+/.

CASE 1. [=0 on an abelian ideal a+0. Then A=exp aCker = and the con-
clusion is deduced from the induction hypothesis for (G/A, HA/A, #, i), where
7'1'66/71 and [=(g/a)* are obtained from = and [, respectively, by the quotient
map G—G/A.

Let us suppose that there are no such ideals as in case 1. Then the
dimension of the center 3 of g is at most one.

CASE 2. dimg=1, and ker ! includes no non-zero abelian ideals for I=Q. 1If
p+#3, taking a minimal subspace of p/3 which is invariant under the action of
g/3, we get an ideal g,, pDg,D3, with dim g,/3=1 or 2. If p=j3, let g, be an ideal
of g, g,D3, obtained from a minimal ideal of g/;. Then g, is an abelian ideal
satisfying the condition (C), so that we can skip this case by taking g, anew
as p. Writing gi={Xeg; I([X, ¢.1)=1{0}}, we will separately treat case 2.1:
hCgl for all Ie2N(H*+f) and case 2.2: otherwise.

RRMARK 2. (1) By the assumption of case 2, [g, .13 and g,N\g(/)#g,.
For X&g,, define [yeg* by (x(Y)=I([X, Y]), Y=g. Then the mapping X—Iy
induces an isomorphism of g,/(g.\g:({)) to (g/gd)*.

(2) Let t=gi. Since G is an exponential group, the stabilizer of / lg, 1S
K=expt, and G-IN(gs+{)=K-I. By the assumption G-l/+p*=G-/ and pDg,,
we get pCf, K-l4+p*=K-l and the K-orbit K-l,, where l,=[|;, in t* satisfies
the condition (C) with p.

(3) Since ¥(ls)=g()+g: T=ind£X, corresponds to the orbit K-/,, We can
also regard m=ind$X, as induced from <.

Case 2.1. Suppose that HCgi for all [€eQ2N(@H*+f). For [€2N(H*+f),
this means g~ '-HCgi for all g=G such that g-l€h*+I. We also have its
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H-orbit Hg-lCgi+g-l. Fix [€Q2N®*+f), and let f=g} and K=expf, and
realize w using a polarization b at [, pCh.

As in the proof of 1, it is sufficient to consider cases of Ay q(exp X)=1 for
all Xehnp. A semiinvariant vector a satisfies

<a, Ai(exp X)X, (g7 exp Xg)w(g)> =0
for Xehnyp, veCP(G/B) and g=G, and
supp(a) C {g€G; g I(X)—I(X)=0, for all X&hp}.

By the condition (C), we have G-IN(WNp)*+)=G-INGH*+D+p*. Thus, for
gle(@®Np)*+HNG-L, its connected component C(g-l) including g-/ satisfies
Clg-)Cgsr+g-l, and {xeG; x-leC(g-))} C(expgé Hg=gK. It follows that the
number of cosets gK satisfying gK-IN((hNp)*+{)+# @ is bounded by the number
of connected components of G-INH*+1).

By remark 2(1), dimg/f=1 or 2. We first treat the case of dimg/f=1.
Taking a suitable vector S=g, we get G=(exp RS)K and identify G with
RxK. We write U={geG; g-le((9np)*+D}, S={s€R; exp(sS)K-IN((HNp)*
+0+@}.

Then a is described as a linear combination of distributions {a;; supp(a,)C
Unexp(sS)K, sS}. For ¢QuweCP(R)QCT(K/B), each a; (s&8) is of the form

_ <49 :
{as, pRQW) = E}a?(sxam wy,
where a% is a distribution on K/B. Now, let s be the maximum index such
that a%++0. Suppose s=1, and choose test functions ¢=CP(R) such that
¢ (s)=0 for 1=:<;—2. Then the semiinvariance

{a, Qexpzsrr-1(€XpY)—X(exp Y))d(x)w(k)> =0
for weCy(K/B) and Y ehnp implies that

7la%, v —1exp(sS)k-ULY, SHexpes &-1(exp YIw(k))
= —<G§<_1, Xexpzs) k-1(€XD Y)—X,(exp Y )hw(k)).

Let k,=K such that g,=exp(sS)k,=U. Then g;-l+meG-INGh*+I) with some
mep*, and h+g(g,-[+m) is a polarization at g,-/+m. We note that g(g, /)=
'8(gs+l+m) since g(/)Cp and p*+G-I=G-l. By remark 2 (1), there exists Xeg,
satisfying g,-I/([X, S1)#0 and noting that HCgé+'!, we find Y=X+g,-V&h) with
Veg(l). Considering test functions w supported in a neighborhood ., of &,
such that exp(sS)k-I([Y, S])es*PeH* 1M x( for k&U,, and the above semi-
invariance obtained by RY, we get {a%, w)>=0. It follows that a, is a linear
combination of



652 J. INoUE

@@am

where ayx satisfies {ag, (rA}{’é)(exp(—sS)h exp(sS))w>:<a &, (X,A;,}{’é)(h)w> for
all heH. Noting that AH,G(h):Aexp(_gs)Hexp(ss),(;(exp(—SS)h exp(sS)), we get

{ag, T(hs)w> ={ag, Xexp(-sS)-l(hs)AzYls/,ZK(hs)w>

for all hye Hi=exp(—sS)H expsS.

Each H-orbit of G-IN(§*+1) is included in a subset exp(sS)K-IN(h*-+1),
se8, and m(2) equals 3es#(H-orbits in K-IN(exp(—sS)-h*+exp(—sS) )=
Deest(Hs-orbits in K-[;N\(exp(—sS)-H*+1)) in t*, where [;=exp(—sS)-[|f. By
the induction hypothesis for (K, Hj, 7, I;), s&S, the dimension of semiinvariant
vectors is bounded by m(£).

We can similarly treat the case of dimg/f=2. Taking vectors S;, S,=g
such that G=(exp RS))(exp RS,)K, we identify G with R*XK. Let U be as in
the previous case and S={s=(s,, s5)ER?; exp(s:S:) exp(s:S:)K-IN((HNp)*+1)
#@}. Then a semiinvariant distribution a is a linear combination of {a,; s=
(s, S2)=S}, where a; is a distribution with supp(a,)C UNexp(s;S;)exp(s:S2)K,
and is of the form

¢ — Gip 01T

a5, QW) = <i1-§>el<axl ’ axflax%'z(s“ sg)w>’

where a$r?® is a distribution on K/B with an index set I. Let I be ordered
lexicographically, that is, (7, 4,)<(ji, f») if 7,<<J; or both 7,=j, and #,<j, are
satisfied, and let (j,, j») be the maximum element of I, and suppose j.>0.
Taking test functions ¢=¢,RQ¢@.= CF(R)QCT(R) satisfying ¢{¥(s;)=0 for 0<i<y,;
and ¢5P(sy)=0 for 0<i<j,—1, we get afr’/2=0 as in the previous case. Thus
a, is of the form

as = 0(s;, s9)Qax,

and we can also verify the claim of the dimension of the space of semiinvariant
distributions.

CASE 2.2. Suppose that there exists an element [€Q2N(H*+f) such that
hgs. Take such [ to realize =, and let t=gi.

For the case of dim g,=2, we take a basis {X,, X,;} of g, satisfying X,;3,
{(X))=1 and I(X,)=0, and describe the action of g as follows. For X<g,

[X: X2:I = Z(X)XZ—‘"T(X)XI’

where 2, y€g*, y+0 (by the assumption of case 2). For the case of dim g,=3,
noting that g is exponential [2, Ch. I], we take a basis {X,, X,, Y,} of g,, where
X, is as above and [(X,)=I(Y,)=0, and for X<g,
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[X, X.] = Z(X)(Xz_ayz)+Tl(X)X1,
[X,Y.]= X(X)(aXz"%‘Yz)"f‘Tz(X)Xl,

where ac R— {0}, 4, 7., r.€¢%, 40, rank(y,, 72)#0 (by the assumption of case 2).
Denote the centralizer of g, by ¥, and let K,=exp¥f,. Then dimg¢,=2 or 3,
and 1<dim g/f,<dim g,.
(1) dimg/f,=1 and dimg,=2 or 3. In this case, I,=t=g* for all meG-I..
Taking Teh\(hN¥f), we identify G=(exp RT)K with RXK.
For v=¢Q@we CT(RYQC7(K/B), the action of H is described as follows:
for all (x, k)YeRXK/B, teR and yeHNK,
a(exp tT)(x)w(k) = ¢lx—w(k),
7t(h)¢(x)w(k) = ¢(x)r(exp(—xT)h exp(x THw(k).

Thus the semiinvariant vector a satisfies

<a, (n(exp tT)—(LAF R (exp tT))P(x)w(k)>
= <a, (@(x —1)—LAFB)(exp tT)@(x)w(k)y =0

for all t=R. Using the uniqueness of the Haar measure for R, we get
<@, gy = | @AzEexp xDFF ax, widx,
where ax is a distribution on K/B satisfying
[ AR B exp *TIFT ax, (stexp(—xTh exp(x TH—UAZE(A)wdx = 0

for all g=C2(R) and he HNK. By the continuity of the representation (espe-
cially for the variable x), the above condition deduces that

{ag, (z(h)—LAFSR)Hw) =0

for all heexp(hNf). Noting that exp RX,Ckerz and Ay o(h)=Ap.x. x(h) for
he HNK, we get

{ag, (t(h)—ArA%, k)(h)w)> = 0

for all he HNK.

For an H-orbit C in G-IN(M*+0), let C,=CnN(gs+1I). Then, considering
the action of exp RTCH, we get that C, is an HN\K-orbit, and the mapping
C+— C; from the set of H-orbits in G-IN(h*+!) to the set of HNK-orbits in
G- ING*+DN(gs +D)=K-INH*+1) is bijective. Since K-[+¥=K-[, the number
of H-orbits of G-IN(*+/) coincides with that of HNK-orbits in K-[,N\({(HNH*
+1o).
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Therefore, using the induction hypothesis for (K, HN\K, t, {,), we verify the
claim.

(2) dimg/t,=2 and dimg,=2. In this case, choose S, T'eg such that
[S, X;1=BsX,, [T, X,]=BrXs (Bs, Br#0). Then g=RS-+%, I=RT+1%, and by
the Jacobi identity, [[7T, S1, X.]=—BsBrX:, that is, [T, SJ&—BrS+*%. Thus
we get G=(exp RS)K, and we identify G with RXK.

(i) If Hp+1f,=g, or hCker A, we can take the above S so that Se). As

subcase (1), a semiinvariant vector a is described as follows. For v=¢Que
CZ(RQQCT(K/B),

{a, v> = S (AR ) (exp xS)g(x)Xak, wydx,

where ay is a distribution on K/B. For heHNK and xR, let ki(x)=
exp(—A%x ¢(h)xS)h*exp(xS). Then k,(x)eK and

<a, n(h)

= SR(ZLA w'é)exp xS)Pp(AR c(h)x)ak, (zT'A¥ c)(kn(x)wddx
= AK,a(h)SR(LA 73 (expAg. (M) xSNP(x)ak, (t AR ) kn(Ak, c(h)x)wddx

= <a, AR (hvy = SR(ZzA &) exp xS)g(x)<ax, MAFE(Mw)dx.

By the semiinvariance for he HNK,
Cag, T(hyw) = <ag, Li(WAFE AR G(R)w)

for all he HNK. We note that this holds for h€exp RX., and writing %=
(ONH+RX, and H,=expY),, we get Ap c(h)Ak, ¢(h)=Annk. k(WA ¢(h)=Ag, x(h)
for heH, by simple calculations. Thus the equality

{ag, t(h)w) = {ak, Xz(h)AHI(ZK(h)W>
holds for heH,.

For an H-orbit C in G-IN(h*+)), C,=CNRXy is a HNK-orbit since
exp sS-X,=X,—sX,, and the mapping C—~ C,; from the set of H-orbits in
G-ING*+I) to that of HNK-orbits in G- INRX:NG*+)=K-INH*+1) is bijec-
tive. Thus the number of H-orbits in G-IN®H*-+0) coincides with that of
HN\K-orbits in K-l,N\(ht+L,). We can use the induction hypothesis for
(K, H,, 7, l,), and verify the claim.

(i) If p+¥%,+g and HZker 4, we get U<l such that H)=RU-+(HhNY,), and
U, X;1=X,+BX,, p=R\{0}. Take T, S such that U=T+S, [T, X,]=X,,
[S, X;]=BX,. Then [T, S]le—S+t, and G=(expRS)K. Since expulU=
exp((l—e “)S)exp(uT)k, where k,=K,,
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HK = (exp RU)K = {exp(sS)k; s<1, keK},
H(exp 2S)K = (exp RU)(exp 2S)K = {exp(sS)k ; s>1, keK}.

We first consider functions v such that supp(v)C HK. Identifying HK=(exp RU)K
with RxK, let v=¢QuweC(R)QC(K/B). For (x, k)ERXK/B, teR and
he HNK=HNK,, we have

m(exp tU)g(x)w(k) = ¢(x—w(k),
r(h)¢(x)w(k) = ¢(x)r(exp(—xU)h exp(xU))w(k).

As subcase (1), a semiinvariant vector a of supp(a)CTHK is of the form

() <a, 9@ = | (LAREexp xUFTEKax, whdx,

where ax is a distribution on K/B satisfying
Cag, (t(h)— XA %, K)(R)w)> =0

for all he HNK. (Note that Ay ¢(h)=Ap~x, x(h) for he HNKCK,.)

Next, we treat functions v of supp(v)C H(exp 2S)K=(exp RU)(exp 25)K, which
we identify with RXK. Let v=¢QuweC7(R)RQCF(K/B). For (x, EYeRxK/B,
teR and heHNK, we have

n(exp tU)g(x)w(k) = ¢(x —tyw(k),
7r(h)¢(x)w(lé) = ¢(x)r(exp(—2S)exp(—xU)h exp(xU) exp2S)w(k).

Thus a semiinvariant distribution a of supp(a)C H(exp 2S)K is of the form (x),
where ax is a distribution on K/B satisfying

ag, (z(exp(—2S)h exp(2S)) — LAk, e )(M)w)> =0,

for all heHNK. In other words, letting l,=(exp(—2S):1)1|¢, hr=exp(—25)-HN¥,
and H,=expl,, we have

{ag, ((y)— XA ) ()w) =0,

for all y€H, noting that Agnx,e¢(h)=An, x(exp(—2S)h exp(2S)) for he HNK.

Here let us observe coadjoint orbits. Since exp(ul)-m(Xy)=e *(m(X,)+B)—p
for meG-l, an H-orbit in G:-IN({H*+{) is included in one of the following:
fmeg*; m(Xy)>—6}, {meg*; mX,)<—g}, {meg*; mX,)=—8}. For every
H-orbit C in G-ING*+DN{m; m(X)>—B}, C.=CN\RX;+@ is a HNK-orbit
and the mapping C — C; from the set of H-orbits in G -IN®G* 4+ {m ; m(Xe)>— B}
to that of HN\K-orbits in G-ING*+DNRX3=K-INH*+I) is bijective. Since
K-I+t¥=K-I, the number of H-orbits in G-IN(H* 4+ {m; m(X;)>—B} coincides
with that of HNK-orbits in K-l[;\((HNE)*+1o).



656 J. INoUE

For G-iNn* 4+ {m ; m(X,)< — B}, the set of H-orbits corresponds to the set of
HNK-orbits in G-ING*+DN{m ; m(X,)=—28}=exp(2S)-(K-/Nexp(—2S)-(h*+1)).
And it follows that the number of H-orbits in G-IN®G*4DN {m; m(X,)<— B}
coincides with that of H,-orbits in K-l,N\(h5+Ly).

For treating H-orbits included in {m ; m(X;)=—f}, remark that exp(—>S)-hCt
and G-ING*+DN {m; m(X,)=—p} =(exp K- INH*+)=exp S-(K-INexp(—S)-
(5*+74)). Thus the number of H-orbits equals that of exp(exp(—S)-§)-orbits in
K-lyN(exp(—S)-h*+exp(—S)-Dle.

Now, let a be a semiinvariant distribution of supp(a)C(exp S)K. Identify-
ing G=(exp RS)K with Rx K, for functions v=¢RQw e CT(R)QCT(K/B), we can
describe a as follows:

DD
<a, v>—§dxi(1)<ax, w).

Let hs=exp(—S)-Y, Hs=explhs, [s=(exp(—S)-I)|.. We first treat the case of
(exp S)K-IN(h*+1)=¢@. Let ; be the maximum index with a% #0, and suppose
o= C7(R) satisfies ¢*(1)=0 for 1<i/<j—1 and ¢(1)#0. Then for he HNK=
HmKO;

{a, m(h)vy = {a, ¢(x)(tAKG)(exp(—xS)h exp(xS)w)
= gD (1K ak, (tAx ”2)(eXp( S)h exp S)w)

+3D 5 (ak, (AR BNexp(—xS)h exp(xS)w D))

= <a, KAFZ (>

= ¢P(I)a%k, AFDhw)+ed)<ak, LARE(R)w) .
Taking a test function ¢ satisfying ¢“’(1)=0, from the semiinvariance, we get
iziak, (d/dx¥(rARE)(exp(—xS)h exp(x S)w)(1)> —<ak, XA E(h)w>=0 for all
weCP(K/B). Thus

<ak, (rARé)(exp(—S)hexp Sw) = {ak, LARG(M)w).

This means

{ak, tlhs)w) = {ak, M Auyi)(hs)w)

for all hs=explexp(—S)-(hN))Dexphs\p). Since K-IN(hs+ls)=@, we find
that K-IN((GsN\p)*+Is)=@ by the condition (C), and a%=0, and thus a=0.

We next suppose (exp S)K-IN(G*+1)=@. Then we can treat it as in the
case 2.1, and get

= m@alf;

where ax satisfies
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{ag, (vA%,5)exp(—S)hexp SHw) = {ax, LARG(Hw)

for all A H, in other words,

{ag, tth)w)y = Lag, X AR ) (hs)w)

for all hy= Hs.

Using the induction hypothesis for (K, HNK, 7, l,), (K, H,, 7, 1,), (K, Hs, 7, Ls),
we verify the claim.

(3) dimg,/3=2 and dim g/t,=2, i.e., rank(a, 7., y2)=2. Then rank(y,, 1.)=1,
that is ¥, <fSg. (The case A+#0, a#0 and rank(y, y.)=2, i.e., L, =1 cannot
happen. In fact, suppose A=py,+qys, where p, geR, p*4-¢*+0 and S;=g,
7/(S:)=0y; ¢, j=1, 2. Then by the Jacobi identity, [[S:, S.], Xo:]=(g+ap)X,,
(LS, S.], Y]=(qa—p)X,, and [S,, S:]=(@+ap)S;+(ga—p)S.+t. But A([S,, S:])
=A(g+ap)Si+(ga—p)S.)=(g+ap)p+(ga—plg=a(p*+¢*)+#0, which is a con-
tradiction.)

We may assume rank(4, y,)=2, and let y,=cy, c€R. Take S, T'eg such
that y,(S)=1, A(S)=0, y.(T)=0, A(T)=1. Then by the Jacobi identity, [[T, S], X]
=(—14ca)X,, [[T, S], Y,]=(—a—c)X,, and we get —a—c=c(—14a), which
implies @«=0. Thus this case cannot happen.

(4) dimg,/3=2 and dim g/t,=3, i.e., rank(4, 71, y2)=3. Let S, S,=g\f and
Tef\l, such that 7,(S,)=0;;, A(S;)=0, y«(T)=0, AT)=1, ¢, j=1,2. Then by
the Jacobi identity,

[T, SI:I = _Sl—'aSZ—l—fO)
[T, Sg] = a51—52+f0,
[Si, S:] €t

and thus ¥ acts irreducibly on g/f.

(i) H+t=g. In this case, either h+¥,=g or Hker 4 holds since T'=g\ker A
acts irreducibly on ker A/f,., We can take the above S,, S, so that S, S,
h\ker . Then G=(exp RS))(exp RS,)K and we identify G with R*xXK. As
case 2.2(2) (i), a semiinvariant distribution a is described as follows: For v=
oRuweCP(RHQCF(K/B), we have

{a, vy = SSRQ(ZIAFI{/é)(exp(xJSJ eXp(x252))P(x1, X:)ak, Wrdx,dx,,

where ax is a distribution on K/B, and we find
{ag, t(h)— A7) (hw> =0 for all heH,, weC¥(K/B),
Where Ih:bﬂf"}‘RXz‘l—Rng and leexp‘f)l.
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The number of H-orbits in G-iN(H*+{) equals that of HNK-orbits in G-IN
O*4+DNRX,+RY 5)'=K-IN(H*+1), and thus coincides with that of H,-orbits in
K-l,N(t+1,). We can verify the claim of the theorem applying the induction
hypothesis for (K, H,, t, [,).

(i) IEt+hHSg and hTker 4. Let Seh\(hNf), X=I([S, Y .1)X:—I([S, X:])Y
and Y=I[S, X.)X.+I([S, Y)Y, Then I([h, X])={0} and I[S, Y])#0. Thus
g:N\O+ag()=RX+; [H, X]={0} and for each meG-/, its H-orbit satisfies
H-mcC(RX+3)*+m. Taking S’eker i such that G=(exp RS)(exp RS)K, we
identify G with R*XK. Let S'={seR; exp(sS)K-INH*+{)+ P}, whose number
is bounded by the number of H-orbits in G-/N(h*+1). Then by the semiinvariance
for exp RS and exp RX’, where X'e(X+g())N\h, a is described by a linear
combination of a,, s&¥’, defined as follows: for v=9pRwe C(RHRCT(K/B),

s, v> = | (AT OExp 1. S)FT0, SHdicar, w,

where ax is a distribution on K/B satisfying
{ag, t(exp(—sS")hexp(sS)NHw) = {ax, L AF k. c)(h)w>

for he HNK=HNK,. In other words, writing h);=exp(—sS’)-(h"\¥,), H;=exph,
and [;=(exp(—sS’)-0)|¢, we have

Kag, tlhwy = {ax, LAue)he)>

for all h,eH,.

By the above observation, the number of H-orbits in G-/N(H*+1) equals
Slsesr (number of HN\K-orbits in exp(sS")K-IN(h*+1). For each s=8’, the
number of HNK-orbits equals the number of Hg-orbits in K-/,"\(hs+I). Thus
we can verify this case using the induction hypothesis for (K, H,, t, I;).

(iii) ¥ES1+9Sg and Hker A, Let H\GON)D2U=xT +&,5,+&,S,, where S,
Ss, and T are as at the beginning of (4), «, &, &R, £+0, &+&=1. Then
Y=RU+OBNH=RU+OHNL). Take B, d<[0, 2x) such that e 'F=§& ++/—1§,,
Vi+tate-1%=1—+/—1a. Then we get exp ull =exp(u,S;+u,S,)exp(ucT)k(u),
where k,(u)eK, and

(=2 Co (@)

1 (cos([-3+5)~e“’“‘ cos(*um—kﬁ—ké))

" kvVI+a?\sin(8+8)—e ** sin(—uka+p+8)/"

Letting
cos s+cos(B+0) sin s+ sin(8-+0)
s1<s>:-»~-k-71—+a‘82 ' ss) = SRIESEED,
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we get

exp(uU) exp(s;(s)S1+52(s)S2) = exp(s.(u, s)S1+ss(u, 5)Sz)exp(uT)k(u, ),

where k(u, s)eK, and
1 Cuk
s,(u, s) = m(COS(‘B-FB)-{-e cos(—u:ca-l—s))

Sa(u, s) =

kﬁ(sin(ﬁ—i—&)—ke‘“sin(—um+s)).

Thus we obtain a bijection

cos(§+3)
kvV1+a?
by ¥(u, s, k)=exp(ul)exp(s,(s)S;+s:(s)S;)k, and we also obtain a bijection

—cos(B+0)X¥—sin(S+0)Y ¥
£vV1+a®

where {X¥, Y¥, X¥ is the dual basis of {X,, Y,, Xi}, by ¥*(u, s)=¥(u, s, €)-l|,,.

Writing p=exp(l/sv/1+a?(cos(8+8)S:+sin(8+3)S;), we can treat distribu-
tions a of supp(a)CG,=G\pK and supp(a)CpK separately. Let us consider
functions v of supp(v)CG,. Identifying G, with RX[0, 2x) XK through ¥, let
v=6:Q¢.Quw e CT(R)YRQCZ([0, 27)QCT(K/B). Then

n(exp tU)dy(x)a(s)w (k) = ¢i(x —1)Po(s)w(k),
a(R)Pu(x)go(S)w (k) = W (u, s, ) AT (u, s, ))P.(x)Pa(s)w(k),

for t, xR, s[0, 2n), k=K/B, heHNK, Writing g(s)=exp(s(u, s)S;-+
so(u, 5)S,), let S={s<[0, 27); g(s)K-IN((ONt)*+)+#@}. Then #S<#(H-orbits
in G-ING*+D). For s&8, let Y=Y ,=g(s)-I([U, Y. NX.—g(s)-I([U, X,])Y,,
which satisfies g(s)-{([h, Y])=1{0}, and take Y’=g(g(s)-{) such that Y +Y’&).
Then

sin(8+3)
£vV1+a®

T:RX[0, 20)XK —> G, = G\exp( S,+ SZ)K

U+ : RX[0, 27) —> RXH+RY £+X8\( +Xt),

j; 1s(Xi(g(s)" exp(Y +Y")g(s)) —Xu(exp(Y +Y7)))

. 1 . ) )
=+/—1 g(s)-l([Y—{—Y’, k7m2(_sm sS,+cos sSl)])Xl(g(s) lexp(Y +Y")g(s)),
and
’ . 1
g(8)- I([Y+Y’, —sin sS,+cos sS;]) = ~Jita " 0.

As case 2.1, we can obtain that a semiinvariant distribution a of supp(a)CG,
is a linear combination of a;, s&8, such that
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(@, $:@pDw> = | LAz Hexp xBTS e, wrdx,

where ay is a distribution on K/B satisfying

ax, (z(g(s)"hg(s) — LA k. k(R))Hwy = 0

for all he HNK,.

As in case 2.2 (2) (ii), noting that p~*-HC¥f, we can treat distributions a of
supp(a)pK. And from the above observations, we can verify the claim for
this whole case similarly as case 2.2 (2) (ii).

CASE 3. 3=1{0}, and ker! includes no non-zero abelian ideals for (8. Let
g, be a minimal ideal of g satisfying ¢,Cp. Then dimg,=1 or 2. By the
assumption, /|y, #0 for all /€, and g} is the centralizer of g,. Fix (€2N0*+1)
and let ¥=g! for realizing =.

When dim g,=1, we take X,=g, satisfying /(X;)=1, and for X&g,

[X, X,] = AX)X,,

where 1=g*\{0}. When dim g,=2, we take a base {X,, },} such that {(X,)=1,
{(Y)=0 and for Xe&g,

X, X,]= X(X)(Xl—'a}/l)
[X; Yl] - Z(X)(CYX1+Y1),

where a= R\ {0}, A=g*\ {0} since g is exponential.

If dimg,=1, we have g,Ng()={0}, and if dimg,=2, we have g, N\g()=
R(aX,—Y,). It also holds that pCt, K-l,+p*=K-[,, where [,=[|;, and ¥(/,)=
g()+g,. We realize m= as mentioned at the beginning of the proof using a
polarization b at [ satisfying the Pukanszky condition and pCb, so that ==
ind$X,=ind%z, where r=K corresponds to the coadjoint orbit K-/,.

Then the case hCt can be treated as case 2.1. Next, suppose §+f=g.
Then g, = {0}, G=(exp RT)K taking T<=h\(h¥f), and the number of H-orbits
in G-IN(h*+/!) coincides with the number of HNK-orbits in G-IN{GH*+DHM
m; m(X)=1=K-IN((h+g,)*+I). Noting that K-/[+t*=K-/, we find that the
number equals the number of H,-orbits in K-[,N\(9i+{,), where §h, =¥ +g;
and H,=expb),. As in the case 2.2(1), using the induction hypothesis for
(K, Hy, 7, l,), we verify the claim for this case. O
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