Semiinvariant vectors associated to decompositions of monomial representations of exponential Lie groups

By Junko INOUE

(Received Aug. 22, 1994) (Revised Aug. 7, 1995)

Introduction.

Let G be a connected Lie group of type I, H be a closed subgroup, and \mathfrak{X} be a unitary character of H. Writing Δ_G and Δ_H for the modular functions of G and H, respectively, let $\Delta_{H,G}^{1/2}(h) = (\Delta_H(h)/\Delta_G(h))^{1/2}$ for $h \in H$. For a unitary representation (π, \mathcal{H}_{π}) of G, letting $\mathcal{H}_{\pi}^{\infty}$ be the space of C^{∞} vectors and $\mathcal{H}_{\pi}^{-\infty}$ be its antidual, we extend π to $\mathcal{H}_{\pi}^{-\infty}$ and denote the space of $(H, \mathfrak{X}\Delta_{H,G}^{1/2})$ -semiinvariant vectors by

$$(\mathcal{H}_{\pi}^{-\infty})^{H,\chi}\Delta_{H,G}^{1/2} = \{a \in \mathcal{H}_{\pi}^{-\infty}; \pi(h)a = \chi(h)\Delta_{H,G}^{1/2}(h)a, \forall h \in H\}.$$

We consider a representation $\sigma = \operatorname{ind}_H^G X$ of G induced from X and its direct integral decomposition: $\sigma = \int_{\hat{G}}^{\oplus} m(\pi)\pi d\mu(\pi)$, where \hat{G} is the unitary dual of G with usual Borel structure, $d\mu$ is a Borel measure and m is a multiplicity function defined μ -almost everywhere. Realize σ in a space $\mathcal{H}_{\sigma} = L^2(X, G)$ of functions v on G such that $v(gh) = X(h^{-1})\Delta_{H,G}^{1/2}(h)v(g)$ for all $g \in G$ and $h \in H$, and $\mu_{G,H}(|v|^2) < \infty$, where $\mu_{G,H}$ is the positive G-invariant form on functions ϕ satisfying $\phi(gh) = \Delta_{H,G}(h)\phi(g)$ for all $g \in G$, $h \in H$ (see [2, Ch. V]). In \mathcal{H}_{σ} , $x \in G$ acts by $\sigma(x)v(g) = v(x^{-1}g)$, $g \in G$. By Penney's Plancherel theorem [11], the canonical cyclic vector a_{σ} of σ defined by $\langle a_{\sigma}, v \rangle = \overline{v(e)}$, where $e \in G$ is the unit element, decomposes into the direct integral of $(H, X\Delta_{H,G}^{1/2})$ -semiinvariant vectors. For the Plancherel theorem of this type, see [4], [5], [6], [8], [10], [11]. Here we will treat the following:

PROBLEM. Is dim
$$(\mathcal{H}_{\pi}^{-\infty})^{H, \chi_{\Delta}^{1/2}} c = m(\pi)$$
?

Note that $\dim(\mathcal{H}_{\pi}^{-\infty})^{H \setminus \Lambda} h^{1/2} c \geq m(\pi)$ holds by Theorem (II.6) of Penney [11].

We are concerned with exponential groups G, that is, solvable Lie groups G for which exponential mappings are diffeomorphisms of their Lie algebras \mathfrak{g} to G. For such G, several cases are treated in [1], [4], [5] and [6]. We will find upper bounds of dimensions of semiinvariant vectors for those irreducible representations which satisfy the condition (C) below and which occur in σ with

at most finite multiplicities, and we give an affirmative answer to the above problem.

1. Statement of the result.

Let G be an exponential Lie group and H be a connected subgroup whose Lie algebras are $\mathfrak g$ and $\mathfrak h$, respectively. For a unitary character $\mathfrak X$ of H, we find $f \in \mathfrak g^*$ (the dual vector space of $\mathfrak g$) satisfying $f([\mathfrak h, \mathfrak h]) = \{0\}$ and $\mathfrak X(\exp X) = \mathfrak X_f(\exp X) = e^{\sqrt{-1} f(X)}$ for $X \in \mathfrak h$.

Regarding $\sigma = \operatorname{ind}_H^G \chi_f$, let us recall the description of the direct integral decomposition $\int_{\hat{G}}^{\oplus} m(\pi)\pi d\mu(\pi)$ in terms of the orbit method [3], [6], [9]: Writing $\mathfrak{h}^{\perp} = \{l \in \mathfrak{g}^* \; ; \; l|_{\mathfrak{h}} = 0\}$, we obtain the measure μ as the image of the Lebesgue measure of the affine space $\mathfrak{h}^{\perp} + f$ by the Kirillov-Bernat mapping $\theta_0 \colon \mathfrak{g}^* \to \hat{G}$. The multiplicity $m(\pi)$ is determined as follows: $m(\pi)$ is the number of connected components of $\theta_0^{-1}(\pi) \cap (\mathfrak{h}^{\perp} + f)$ if each component is a single H-orbit, and $m(\pi) = \infty$ if this condition is not satisfied. That is, $m(\pi)$ is the number of H-orbits included in $\theta_0^{-1}(\pi) \cap (\mathfrak{h}^{\perp} + f)$ for μ -almost all π [6].

Let Ω be a coadjoint orbit, and for $l \in \Omega$ let $\mathfrak{g}(l) = \{X \in \mathfrak{g} : l([X, \mathfrak{g}]) = \{0\}\}$. For a connected component C of $\Omega \cap (\mathfrak{h}^{\perp} + f)$, the following (i) and (ii) are equivariant:

- (i) $\mathfrak{h}+\mathfrak{g}(l)$ is a Lagrangian subspace for the bilinear form $(X, Y) \rightarrow l([X, Y])$ for each $l \in C$.
- (ii) C is a single H-orbit.

(See [6].) Let us remark that (i) and (ii) are necessary conditions for the above $m(\pi)$ to be finite, but that they are not sufficient.

We investigate irreducible representations π satisfying the following condition for the corresponding coadjoint orbit Ω .

CONDITION (C). There exists an ideal \mathfrak{p} such that $\Omega + \mathfrak{p}^{\perp} = \Omega$ and $l([\mathfrak{p}, \mathfrak{p}]) = \{0\}$ for $l \in \Omega$.

REMARK 1. Let $\mathfrak{p}_{\mathcal{Q}}$ be the intersection of all subspaces $L \subset \mathfrak{g}$ satisfying $\Omega + L^{\perp} = \Omega$. Then $\Omega + \mathfrak{p}_{\mathcal{Q}}^{\perp} = \Omega$ and $\mathfrak{p}_{\mathcal{Q}}$ is an ideal of \mathfrak{g} . The condition (C) means that $\mathfrak{p}_{\mathcal{Q}}$ satisfies $l([\mathfrak{p}_{\mathcal{Q}}, \mathfrak{p}_{\mathcal{Q}}]) = \{0\}$ for $l \in \Omega$. It can be proved by the standard induction that $\mathfrak{p}_{\mathcal{Q}} \supset \mathfrak{g}(l)$ for all $l \in \Omega$ and if \mathfrak{g} is nilpotent, $\mathfrak{p}_{\mathcal{Q}} = i_{\mathcal{Q}}$: the ideal generated by $\mathfrak{g}(l)$, $l \in \Omega$. But if \mathfrak{g} is general exponential, $\mathfrak{p}_{\mathcal{Q}} \supseteq i_{\mathcal{Q}}$ may happen.

EXAMPLE 1. Suppose g is nilpotent. Then a coadjoint orbit Ω satisfies the condition (C) if and only if $l([i_{\Omega}, i_{\Omega}]) = \{0\}$.

EXAMPLE 2. Let \mathfrak{g} be a normal j-algebra treated in [7] and Ω be an open coadjoint orbit. Then Ω satisfies the condition (C) with $\mathfrak{p}=\mathfrak{g}_1$ with the notation in [7]. (Thus the result of [7] is obtained from our theorem below.)

Now, our result is the following:

THEOREM. Let $G = \exp \mathfrak{g}$ be an exponential Lie group and $H = \exp \mathfrak{p}$ be a connected subgroup, and let $f \in \mathfrak{g}^*$ satisfying $f([\mathfrak{h}, \mathfrak{h}]) = \{0\}$. Define a unitary character χ_f of H by $\chi_f(\exp X) = e^{\sqrt{-1} f(X)}$ for $X \in \mathfrak{h}$.

Suppose that $\pi \in \hat{G}$ corresponds to a coadjoint orbit Ω satisfying the condition (C). Then

1. If $\Omega \cap (\mathfrak{h}^{\perp} + f) = \emptyset$, then

$$(\mathcal{H}_{\pi}^{-\infty})^{H, \chi_{f} \Delta_{H, G}^{1/2}} = \{0\}.$$

2. Suppose that $\Omega \cap (\mathfrak{h}^{\perp} + f) \neq \emptyset$ and each of its connected components is a single H-orbit and the number $m(\Omega)$ of H-orbits included in $\Omega \cap (\mathfrak{h}^{\perp} + f)$ is finite. Then

$$\dim(\mathcal{H}_{\pi}^{-\infty})^{H,\chi_f\Delta_{H,G}^{1/2}} \leq m(\Omega)$$
.

For the decomposition of $\sigma = \operatorname{ind}_H^G \chi_f = \int_{\hat{G}}^{\oplus} m(\pi) \pi d \mu(\pi)$, the above statements give a certain reciprocity. For example, suppose μ -almost all π satisfy the condition (C) with the corresponding orbit. Then the statement 2 and the known inequality: $\dim(\mathcal{H}_{\pi}^{-\infty})^{H, \chi} \Delta_{H, G}^{1/2} \geq m(\pi)$ imply that the dimension is equal to $m(\pi) = m(\Omega)$.

In section 2, we will prove the theorem by realizing π in a space of suitable functions on G. We will use fundamental arguments in [4], [5], [6] to treat distribution vectors.

2. Proof of the theorem.

For an element $l \in \Omega$, we can take a polarization $\mathfrak b$ at l satisfying the Pukanszky condition (i.e. $\mathfrak b^\perp + l = B \cdot l$, where $B = \exp \mathfrak b$) and $\mathfrak p \subset \mathfrak b$ since $\mathfrak p$ is an ideal satisfying $l([\mathfrak p, \mathfrak p]) = \{0\}$ [2, Ch. IV, 4.3]. In the sequel, we realize the irreducible representation π corresponding to Ω as $\operatorname{ind}_B^G \chi_l$, where $\chi_l(\exp X) = e^{\sqrt{-1} \, l \cdot (X)}$ for $X \in \mathfrak b$, in a space $\mathcal H_\pi$ of functions ϕ on G such that $\phi(gb) = \chi_l(b^{-1})\Delta_{B,G}^{1/2}(b)\phi(g)$ for all $b \in B$ and $g \in G$ [2, Ch. V].

PROOF of 1. Let us remark that the assumption $\Omega \cap (\mathfrak{h}^{\perp}+f)=\emptyset$ implies $\Omega \cap ((\mathfrak{h} \cap \mathfrak{p})^{\perp}+f)=\emptyset$. In fact, if there exists $m \in \Omega \cap ((\mathfrak{h} \cap \mathfrak{p})^{\perp}+f)=\Omega \cap (\mathfrak{h}^{\perp}+\mathfrak{p}^{\perp}+f)$, then $m+m_0 \in \mathfrak{h}^{\perp}+f$ for some $m_0 \in \mathfrak{p}^{\perp}$. By the condition (C), $m+m_0 \in \Omega$ holds, too. For $h \in H \cap \exp \mathfrak{p}$, $v \in \mathcal{H}^{\infty}_{\pi}$ and $g \in G$, a semiinvariant vector a satisfies

$$\langle a, ((\chi_f \Delta_{H,G}^{-1/2})(h) - \chi_l(g^{-1}hg))v(g) \rangle = 0$$

since $\pi(h)v(g)=\chi_l(g^{-1}hg)v(g)$. If $\Delta_{H,G}(\exp X)\neq 1$ for an $X\in \mathfrak{h}\cap \mathfrak{p}$, we get a=0 considering the semiinvariance for $\exp RX$. Suppose $\Delta_{H,G}(\exp X)=1$ for all

 $X \in \mathfrak{h} \cap \mathfrak{p}$, then the support of a is

$$\operatorname{supp}(a) \subset \{g \in G ; g \cdot l(X) = f(X) \text{ for all } X \in \mathfrak{h} \cap \mathfrak{p}\} = \emptyset$$

since $G \cdot l \cap ((\mathfrak{h} \cap \mathfrak{p})^{\perp} + f) = \emptyset$, this proves the claim 1.

PROOF of 2. Taking $l \in \Omega$ and realizing $\pi = \operatorname{ind}_B^G \chi_l$ in a suitable function space \mathcal{H}_{π} on G/B as described before, we note that $\mathcal{H}_{\pi}^{\infty}$ includes the space $C_c^{\infty}(G/B)$ of smooth functions of compact support on G/B. Thus it is sufficient to prove that the dimension of the space of $(H, \chi_f \Delta_{H,G}^{1/2})$ -semiinvariant distributions is at most the number of H-orbits in $\Omega \cap (\mathfrak{h}^1 + f)$.

We will prove the claim by induction on dim G. For G=R, it is clearly verified. Let G, H, f, Ω be as in the statement of the theorem, dim G>1, and suppose that the claim is verified for exponential groups of lower dimensions. Let $l \in \Omega \cap (\mathfrak{h}^1 + f)$, and note that $\mathfrak{h}^1 + f = \mathfrak{h}^1 + l$.

CASE 1. l=0 on an abelian ideal $a \neq 0$. Then $A = \exp a \subset \ker \pi$ and the conclusion is deduced from the induction hypothesis for $(G/A, HA/A, \dot{\pi}, \dot{l})$, where $\dot{\pi} \in \widehat{G/A}$ and $\dot{l} \in (g/a)^*$ are obtained from π and l, respectively, by the quotient map $G \to G/A$.

Let us suppose that there are no such ideals as in case 1. Then the dimension of the center 3 of g is at most one.

CASE 2. $\dim_{\delta}=1$, and $\ker l$ includes no non-zero abelian ideals for $l \in \Omega$. If $\mathfrak{p} \neq_{\delta}$, taking a minimal subspace of $\mathfrak{p}/_{\delta}$ which is invariant under the action of $\mathfrak{g}/_{\delta}$, we get an ideal \mathfrak{g}_2 , $\mathfrak{p} \supset \mathfrak{g}_2 \supset_{\delta}$, with $\dim \mathfrak{g}_2/_{\delta}=1$ or 2. If $\mathfrak{p}=_{\delta}$, let \mathfrak{g}_2 be an ideal of \mathfrak{g} , $\mathfrak{g}_2 \supset_{\delta}$, obtained from a minimal ideal of $\mathfrak{g}/_{\delta}$. Then \mathfrak{g}_2 is an abelian ideal satisfying the condition (C), so that we can skip this case by taking \mathfrak{g}_2 anew as \mathfrak{p} . Writing $\mathfrak{g}_2^l = \{X \in \mathfrak{g} : l([X, \mathfrak{g}_2]) = \{0\}\}$, we will separately treat case 2.1: $\mathfrak{h} \subset \mathfrak{g}_2^l$ for all $l \in \Omega \cap (\mathfrak{h}^1 + f)$ and case 2.2: otherwise.

RRMARK 2. (1) By the assumption of case 2, $[g, g_2] \supset_{\bar{\delta}}$ and $g_2 \cap g(l) \neq g_2$. For $X \in g_2$, define $l_X \in g^*$ by $l_X(Y) = l([X, Y])$, $Y \in g$. Then the mapping $X \mapsto l_X$ induces an isomorphism of $g_2/(g_2 \cap g_2(l))$ to $(g/g_2^l)^*$.

- (2) Let $\mathfrak{k}=\mathfrak{g}_2^l$. Since G is an exponential group, the stabilizer of $l|_{\mathfrak{g}_2}$ is $K=\exp\mathfrak{k}$, and $G\cdot l\cap (\mathfrak{g}_2^\perp+l)=K\cdot l$. By the assumption $G\cdot l+\mathfrak{p}^\perp=G\cdot l$ and $\mathfrak{p}\supset \mathfrak{g}_2$, we get $\mathfrak{p}\subset\mathfrak{k}$, $K\cdot l+\mathfrak{p}^\perp=K\cdot l$ and the K-orbit $K\cdot l_0$, where $l_0=l|_{\mathfrak{k}}$, in \mathfrak{k}^* satisfies the condition (C) with \mathfrak{p} .
- (3) Since $\mathfrak{k}(l_0) = \mathfrak{g}(l) + \mathfrak{g}_2$, $\tau = \operatorname{ind}_B^K \chi_l$ corresponds to the orbit $K \cdot l_0$. We can also regard $\pi = \operatorname{ind}_B^G \chi_l$ as induced from τ .
- CASE 2.1. Suppose that $\mathfrak{h} \subset \mathfrak{g}_2^l$ for all $l \in \Omega \cap (\mathfrak{h}^1 + f)$. For $l \in \Omega \cap (\mathfrak{h}^1 + f)$, this means $g^{-1} \cdot \mathfrak{h} \subset \mathfrak{g}_2^l$ for all $g \in G$ such that $g \cdot l \in \mathfrak{h}^1 + l$. We also have its

H-orbit $Hg \cdot l \subset \mathfrak{g}_2^{\perp} + g \cdot l$. Fix $l \in \Omega \cap (\mathfrak{h}^{\perp} + f)$, and let $\mathfrak{t} = \mathfrak{g}_2^l$ and $K = \exp \mathfrak{t}$, and realize π using a polarization \mathfrak{b} at l, $\mathfrak{p} \subset \mathfrak{b}$.

As in the proof of 1, it is sufficient to consider cases of $\Delta_{H,G}(\exp X)=1$ for all $X \in \mathfrak{h} \cap \mathfrak{p}$. A semiinvariant vector a satisfies

$$\langle a, (\chi_l(\exp X) - \chi_l(g^{-1}\exp Xg))v(g) \rangle = 0$$

for $X \in \mathfrak{h} \cap \mathfrak{p}$, $v \in C_c^{\infty}(G/B)$ and $g \in G$, and

$$\operatorname{supp}(a) \subset \{g \in G : g \cdot l(X) - l(X) = 0, \text{ for all } X \in \mathfrak{h} \cap \mathfrak{p}\}.$$

By the condition (C), we have $G \cdot l \cap ((\mathfrak{h} \cap \mathfrak{p})^{\perp} + l) = G \cdot l \cap (\mathfrak{h}^{\perp} + l) + \mathfrak{p}^{\perp}$. Thus, for $g \cdot l \in ((\mathfrak{h} \cap \mathfrak{p})^{\perp} + l) \cap G \cdot l$, its connected component $C(g \cdot l)$ including $g \cdot l$ satisfies $C(g \cdot l) \subset \mathfrak{g}_{2}^{\perp} + g \cdot l$, and $\{x \in G ; x \cdot l \in C(g \cdot l)\} \subset (\exp \mathfrak{g}_{2}^{g \cdot l})g = gK$. It follows that the number of cosets gK satisfying $gK \cdot l \cap ((\mathfrak{h} \cap \mathfrak{p})^{\perp} + l) \neq \emptyset$ is bounded by the number of connected components of $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$.

By remark 2(1), $\dim \mathfrak{g}/\mathfrak{k}=1$ or 2. We first treat the case of $\dim \mathfrak{g}/\mathfrak{k}=1$. Taking a suitable vector $S \in \mathfrak{g}$, we get $G = (\exp RS)K$ and identify G with $R \times K$. We write $U = \{g \in G ; g \cdot l \in ((\mathfrak{h} \cap \mathfrak{p})^{\perp} + l)\}$, $S = \{s \in R ; \exp(sS)K \cdot l \cap ((\mathfrak{h} \cap \mathfrak{p})^{\perp} + l) \neq \emptyset\}$.

Then a is described as a linear combination of distributions $\{a_s; \operatorname{supp}(a_s) \subset U \cap \exp(sS)K, s \in S\}$. For $\phi \otimes w \in C_c^{\infty}(R) \otimes C_c^{\infty}(K/B)$, each a_s $(s \in S)$ is of the form

$$\langle a_s, \phi \otimes w \rangle = \sum_{i \geq 0} \frac{\overline{d^i \phi}}{dx^i} \langle s \rangle \langle a_K^i, w \rangle$$
,

where a_K^i is a distribution on K/B. Now, let j be the maximum index such that $a_K^j \neq 0$. Suppose $j \geq 1$, and choose test functions $\phi \in C_c^{\infty}(R)$ such that $\phi^{(i)}(s)=0$ for $1 \leq i \leq j-2$. Then the semiinvariance

$$\langle a, (\chi_{\exp(xS)k\cdot l}(\exp Y) - \chi_l(\exp Y))\phi(x)w(k)\rangle = 0$$

for $w \in C_c^{\infty}(K/B)$ and $Y \in \mathfrak{h} \cap \mathfrak{p}$ implies that

$$j\langle a_K^j, \sqrt{-1} \exp(sS)k \cdot l([Y, S]) \chi_{\exp(sS)k,l}(\exp Y)w(k)\rangle$$

$$= -\langle a_K^{j-1}, (\chi_{\exp(rS)k,l}(\exp Y) - \chi_l(\exp Y))w(k)\rangle.$$

Let $k_0 \in K$ such that $g_s = \exp(sS)k_0 \in U$. Then $g_s \cdot l + m \in G \cdot l \cap (\mathfrak{h}^{\perp} + l)$ with some $m \in \mathfrak{p}^{\perp}$, and $\mathfrak{h} + \mathfrak{g}(g_s \cdot l + m)$ is a polarization at $g_s \cdot l + m$. We note that $\mathfrak{g}(g_s \cdot l) = \mathfrak{g}(g_s \cdot l + m)$ since $\mathfrak{g}(l) \subset \mathfrak{p}$ and $\mathfrak{p}^{\perp} + G \cdot l = G \cdot l$. By remark 2(1), there exists $X \in \mathfrak{g}_2$ satisfying $g_s \cdot l([X, S]) \neq 0$ and noting that $\mathfrak{h} \subset \mathfrak{g}_2^{g_s \cdot l}$, we find $Y = X + g_s \cdot V \in \mathfrak{h}$ with $V \in \mathfrak{g}(l)$. Considering test functions w supported in a neighborhood U_{k_0} of k_0 such that $\exp(sS)k \cdot l([Y, S])e^{\exp(sS)k \cdot l(Y)} \neq 0$ for $k \in U_{k_0}$ and the above semi-invariance obtained by RY, we get $(a_K^j, w) = 0$. It follows that a_s is a linear combination of

$$\overline{\delta(s)} \otimes a_K$$
,

where a_K satisfies $\langle a_K, (\tau \Delta_{K,G}^{-1/2})(\exp(-sS)h \exp(sS))w \rangle = \langle a_K, (\lambda_l \Delta_{H,G}^{-1/2})(h)w \rangle$ for all $h \in H$. Noting that $\Delta_{H,G}(h) = \Delta_{\exp(-sS)H \exp(sS),G}(\exp(-sS)h \exp(sS))$, we get

$$\langle a_K, \tau(h_s)w \rangle = \langle a_K, \chi_{\exp(-sS) \cdot l}(h_s) \Delta_{H_{s,K}}^{-1/2}(h_s)w \rangle$$

for all $h_s \in H_s = \exp(-sS)H \exp sS$.

Each *H*-orbit of $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$ is included in a subset $\exp(sS)K \cdot l \cap (\mathfrak{h}^{\perp} + l)$, $s \in S$, and $m(\Omega)$ equals $\sum_{s \in S} \#(H_s \text{-orbits in } K \cdot l \cap (\exp(-sS) \cdot \mathfrak{h}^{\perp} + \exp(-sS) \cdot l)) = \sum_{s \in S} \#(H_s \text{-orbits in } K \cdot l_0 \cap (\exp(-sS) \cdot \mathfrak{h}^{\perp} + l_s))$ in \mathfrak{t}^* , where $l_s = \exp(-sS) \cdot l \mid \mathfrak{t}$. By the induction hypothesis for (K, H_s, τ, l_s) , $s \in S$, the dimension of semiinvariant vectors is bounded by $m(\Omega)$.

We can similarly treat the case of dim $\mathfrak{g}/\mathfrak{k}=2$. Taking vectors S_1 , $S_2\in\mathfrak{g}$ such that $G=(\exp RS_1)(\exp RS_2)K$, we identify G with $R^2\times K$. Let U be as in the previous case and $S=\{s=(s_1,\ s_2)\in R^2\ ; \exp(s_1S_1)\exp(s_2S_2)K\cdot l\cap((\mathfrak{h}\cap\mathfrak{p})^1+l)\neq\emptyset\}$. Then a semiinvariant distribution a is a linear combination of $\{a_s; s=(s_1,\ s_2)\in S\}$, where a_s is a distribution with $\sup(a_s)\subset U\cap\exp(s_1S_1)\exp(s_2S_2)K$, and is of the form

$$\langle a_s, \phi \otimes w \rangle = \sum_{(i_1, i_2) \in I} \left\langle a_K^{(i_1, i_2)}, \overline{\frac{\partial^{i_1 + i_2} \phi}{\partial x_1^{i_1} \partial x_2^{i_2}} (s_1, s_2)} w \right\rangle,$$

where $a_{K^{1,j_2}}^{(i_1,i_2)}$ is a distribution on K/B with an index set I. Let I be ordered lexicographically, that is, $(i_1,i_2)<(j_1,j_2)$ if $i_1< j_1$ or both $i_1=j_1$ and $i_2< j_2$ are satisfied, and let (j_1,j_2) be the maximum element of I, and suppose $j_2>0$. Taking test functions $\phi=\phi_1\otimes\phi_2\in C_c^\infty(R)\otimes C_c^\infty(R)$ satisfying $\phi_1^{(i)}(s_1)=0$ for $0< i< j_1$ and $\phi_2^{(i)}(s_2)=0$ for $0< i< j_2-1$, we get $a_{K^{1,j_2}}^{(j_1,j_2)}=0$ as in the previous case. Thus a_3 is of the form

$$a_s = \overline{\delta(s_1, s_2)} \otimes a_K$$

and we can also verify the claim of the dimension of the space of semiinvariant distributions.

CASE 2.2. Suppose that there exists an element $l \in \Omega \cap (\mathfrak{h}^{\perp} + f)$ such that $\mathfrak{h} \not\subset \mathfrak{g}_{2}^{l}$. Take such l to realize π , and let $\mathfrak{k} = \mathfrak{g}_{2}^{l}$.

For the case of dim $g_2=2$, we take a basis $\{X_1, X_2\}$ of g_2 satisfying $X_1\in \mathfrak{z}$, $l(X_1)=1$ and $l(X_2)=0$, and describe the action of \mathfrak{g} as follows. For $X\in \mathfrak{g}$,

$$[X, X_2] = \lambda(X)X_2 + \gamma(X)X_1,$$

where λ , $\gamma \in \mathfrak{g}^*$, $\gamma \neq 0$ (by the assumption of case 2). For the case of dim $\mathfrak{g}_2=3$, noting that \mathfrak{g} is exponential [2, Ch. I], we take a basis $\{X_1, X_2, Y_2\}$ of \mathfrak{g}_2 , where X_1 is as above and $l(X_2)=l(Y_2)=0$, and for $X \in \mathfrak{g}$,

$$[X, X_2] = \lambda(X)(X_2 - \alpha Y_2) + \gamma_1(X)X_1,$$

$$[X, Y_2] = \lambda(X)(\alpha X_2 + Y_2) + \gamma_2(X)X_1,$$

where $\alpha \in R - \{0\}$, λ , γ_1 , $\gamma_2 \in \mathfrak{g}^*$, $\lambda \neq 0$, $rank(\gamma_1, \gamma_2) \neq 0$ (by the assumption of case 2).

Denote the centralizer of g_2 by f_0 , and let $K_0 = \exp f_0$. Then dim $g_2 = 2$ or 3, and $1 \le \dim g/f_0 \le \dim g_2$.

(1) dim $\mathfrak{g}/\mathfrak{f}_0=1$ and dim $\mathfrak{g}_2=2$ or 3. In this case, $\mathfrak{f}_0=\mathfrak{f}=\mathfrak{g}_2^m$ for all $m\in G\cdot l$. Taking $T\in\mathfrak{h}\setminus(\mathfrak{h}\cap\mathfrak{f})$, we identify $G=(\exp RT)K$ with $R\times K$.

For $v = \phi \otimes w \in C_c^{\infty}(R) \otimes C_c^{\infty}(K/B)$, the action of H is described as follows: for all $(x, k) \in R \times K/B$, $t \in R$ and $y \in H \cap K$,

$$\pi(\exp tT)\phi(x)w(\dot{k}) = \phi(x-t)w(\dot{k}),$$

$$\pi(h)\phi(x)w(\dot{k}) = \phi(x)\tau(\exp(-xT)\dot{h}\exp(xT))w(\dot{k}).$$

Thus the semiinvariant vector a satisfies

$$\langle a, (\pi(\exp tT) - (\chi_l \Delta_{H,G}^{-1/2})(\exp tT))\phi(x)w(\dot{k})\rangle$$

= $\langle a, (\phi(x-t) - (\chi_l \Delta_{H,G}^{-1/2})(\exp tT)\phi(x))w(\dot{k})\rangle = 0$

for all $t \in \mathbb{R}$. Using the uniqueness of the Haar measure for \mathbb{R} , we get

$$\langle a, \phi(x)w(k)\rangle = \int_{R} \langle \bar{x}_{l} \Delta_{H,G}^{-1/2} \rangle (\exp xT) \overline{\phi(x)} \langle a_{K}, w \rangle dx$$

where a_K is a distribution on K/B satisfying

$$\int_{\mathbf{R}} (\bar{\chi}_l \Delta_{H,G}^{-1/2}) (\exp x T) \overline{\phi(x)} \langle a_K, (\tau(\exp(-xT)h \exp(xT)) - (\chi_l \Delta_{H,G}^{-1/2})(h)) w \rangle dx = 0$$

for all $\phi \in C_c^{\infty}(\mathbf{R})$ and $h \in H \cap K$. By the continuity of the representation (especially for the variable x), the above condition deduces that

$$\langle a_K, (\tau(h) - (\chi_l \Delta_{H,G}^{-1/2})(h)) w \rangle = 0$$

for all $h \in \exp(\mathfrak{h} \cap \mathfrak{k})$. Noting that $\exp RX_2 \subset \ker \tau$ and $\Delta_{H,G}(h) = \Delta_{H \cap K,K}(h)$ for $h \in H \cap K$, we get

$$\langle a_K, (\tau(h) - (\chi_l \Delta_{H \cap K, K}^{-1/2})(h)) w \rangle = 0$$

for all $h \in H \cap K$.

For an *H*-orbit C in $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$, let $C_0 = C \cap (\mathfrak{g}_{2}^{\perp} + l)$. Then, considering the action of $\exp RT \subset H$, we get that C_0 is an $H \cap K$ -orbit, and the mapping $C \mapsto C_0$ from the set of *H*-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$ to the set of $H \cap K$ -orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap (\mathfrak{g}_{2}^{\perp} + l) = K \cdot l \cap (\mathfrak{h}^{\perp} + l)$ is bijective. Since $K \cdot l + \mathfrak{f}^{\perp} = K \cdot l$, the number of H-orbits of $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$ coincides with that of $H \cap K$ -orbits in $K \cdot l_0 \cap ((\mathfrak{h} \cap \mathfrak{f})^{\perp} + l_0)$.

Therefore, using the induction hypothesis for $(K, H \cap K, \tau, l_0)$, we verify the claim.

- (2) dim $\mathfrak{g}/\mathfrak{f}_0=2$ and dim $\mathfrak{g}_2=2$. In this case, choose $S, T\in\mathfrak{g}$ such that $[S, X_2]=\beta_S X_1$, $[T, X_2]=\beta_T X_2$, $(\beta_S, \beta_T\neq 0)$. Then $\mathfrak{g}=RS+\mathfrak{f}$, $\mathfrak{f}=RT+\mathfrak{f}_0$, and by the Jacobi identity, $[[T, S], X_2]=-\beta_S\beta_T X_1$, that is, $[T, S]\in -\beta_TS+\mathfrak{f}_0$. Thus we get $G=(\exp RS)K$, and we identify G with $R\times K$.
- (i) If $\mathfrak{h}+\mathfrak{f}_0=\mathfrak{g}$, or $\mathfrak{h}\subset\ker\lambda$, we can take the above S so that $S\in\mathfrak{h}$. As subcase (1), a semiinvariant vector a is described as follows. For $v=\phi\otimes w\in C^\infty_c(R)\otimes C^\infty_c(K/B)$,

$$\langle a, v \rangle = \int_{R} (\bar{\chi}_{l} \Delta_{H,G}^{-1/2}) (\exp x S) \overline{\phi(x)} \langle a_{K}, w \rangle dx$$

where a_K is a distribution on K/B. For $h \in H \cap K$ and $x \in R$, let $k_h(x) = \exp(-\Delta_{K,G}^{-1}(h)xS)h^{-1}\exp(xS)$. Then $k_h(x) \in K$ and

$$\begin{split} &\langle a,\ \pi(h)v\rangle \\ &= \int_{R} (\overline{\chi}_{l}\Delta_{H,G}^{-1/2})(\exp\ xS)\overline{\phi(\Delta_{K,G}^{-1}(h)x)}\langle a_{K},\ (\tau^{-1}\Delta_{K,G}^{1/2})(k_{h}(x))w\rangle dx \\ &= \Delta_{K,G}(h)\int_{R} (\overline{\chi}_{l}\Delta_{H,G}^{-1/2})(\exp(\Delta_{K,G}(h)xS))\overline{\phi(x)}\langle a_{K},\ (\tau^{-1}\Delta_{K,G}^{1/2})(k_{h}(\Delta_{K,G}(h)x))w\rangle dx \\ &= \langle a,\ (\chi_{l}\Delta_{H,G}^{-1/2})(h)v\rangle = \int_{R} (\overline{\chi}_{l}\Delta_{H,G}^{-1/2})(\exp\ xS)\overline{\phi(x)}\langle a_{K},\ (\chi_{l}\Delta_{H,G}^{-1/2})(h)w\rangle dx \,. \end{split}$$

By the semiinvariance for $h \in H \cap K$,

$$\langle a_K, \tau(h)w \rangle = \langle a_K, \chi_l(h)\Delta_{H,G}^{-1/2}(h)\Delta_{K,G}^{-1/2}(h)w \rangle$$

for all $h \in H \cap K$. We note that this holds for $h \in \exp RX_2$, and writing $\mathfrak{h}_1 = (\mathfrak{h} \cap \mathfrak{k}) + RX_2$ and $H_1 = \exp \mathfrak{h}_1$, we get $\Delta_{H,G}(h)\Delta_{K,G}(h) = \Delta_{H \cap K,K}(h)\Delta_{K,G}(h) = \Delta_{H_1,K}(h)$ for $h \in H_1$ by simple calculations. Thus the equality

$$\langle a_K, \tau(h)w \rangle = \langle a_K, \chi_l(h)\Delta_{H_1,K}^{-1/2}(h)w \rangle$$

holds for $h \in H_1$.

For an *H*-orbit C in $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$, $C_1 = C \cap RX_2^{\perp}$ is a $H \cap K$ -orbit since $\exp sS \cdot X_2 = X_2 - sX_1$, and the mapping $C \mapsto C_1$ from the set of *H*-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$ to that of $H \cap K$ -orbits in $G \cdot l \cap RX_2^{\perp} \cap (\mathfrak{h}^{\perp} + l) = K \cdot l \cap (\mathfrak{h}^{\perp} + l)$ is bijective. Thus the number of *H*-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$ coincides with that of $H \cap K$ -orbits in $K \cdot l_0 \cap (\mathfrak{h}_1^{\perp} + l_0)$. We can use the induction hypothesis for (K, H_1, τ, l_0) , and verify the claim.

(ii) If $\mathfrak{h}+\mathfrak{k}_0\neq\mathfrak{g}$ and $\mathfrak{h}\not\subset\ker\lambda$, we get $U\in\mathfrak{h}$ such that $\mathfrak{h}=RU+(\mathfrak{h}\cap\mathfrak{k}_0)$, and $[U,X_2]=X_2+\beta X_1$, $\beta\in R\setminus\{0\}$. Take T, S such that U=T+S, $[T,X_2]=X_2$, $[S,X_2]=\beta X_1$. Then $[T,S]\in -S+\mathfrak{k}_0$ and $G=(\exp RS)K$. Since $\exp uU=\exp((1-e^{-u})S)\exp(uT)k_0$, where $k_0\in K_0$,

$$HK = (\exp RU)K = \{\exp(sS)k ; s < 1, k \in K\},$$

$$H(\exp 2S)K = (\exp \mathbf{R}U)(\exp 2S)K = \{\exp(sS)k ; s>1, k \in K\}.$$

We first consider functions v such that $\operatorname{supp}(v) \subset HK$. Identifying $HK = (\exp RU)K$ with $R \times K$, let $v = \phi \otimes w \in C_c^{\infty}(R) \otimes C_c^{\infty}(K/B)$. For $(x, \dot{k}) \in R \times K/B$, $t \in R$ and $h \in H \cap K = H \cap K_0$, we have

$$\pi(\exp tU)\phi(x)w(\dot{k}) = \phi(x-t)w(\dot{k}),$$

$$\pi(h)\phi(x)w(\dot{k}) = \phi(x)\tau(\exp(-xU)h\exp(xU))w(\dot{k}).$$

As subcase (1), a semiinvariant vector a of $supp(a) \subset HK$ is of the form

$$\langle a, \phi \otimes w \rangle = \int_{\mathbf{R}} (\overline{\lambda}_l \Delta_{H,G}^{-1/2}) (\exp xU) \overline{\phi(x)} \langle a_K, w \rangle dx,$$

where a_K is a distribution on K/B satisfying

$$\langle a_K, (\tau(h) - (\chi_l \Delta_{H \cap K, K}^{-1/2})(h)) w \rangle = 0$$

for all $h \in H \cap K$. (Note that $\Delta_{H,G}(h) = \Delta_{H \cap K,K}(h)$ for $h \in H \cap K \subset K_0$.)

Next, we treat functions v of $\operatorname{supp}(v) \subset H(\exp 2S)K = (\exp RU)(\exp 2S)K$, which we identify with $R \times K$. Let $v = \phi \otimes w \in C_c^{\infty}(R) \otimes C_c^{\infty}(K/B)$. For $(x, \dot{k}) \in R \times K/B$, $t \in R$ and $h \in H \cap K$, we have

$$\pi(\exp tU)\phi(x)w(\dot{k}) = \phi(x-t)w(\dot{k}),$$

$$\pi(h)\phi(x)w(\dot{k}) = \phi(x)\tau(\exp(-2S)\exp(-xU)h\exp(xU)\exp(2S))w(\dot{k}).$$

Thus a semiinvariant distribution a of $supp(a) \subset H(exp 2S)K$ is of the form (*), where a_K is a distribution on K/B satisfying

$$\langle a_K, (\tau(\exp(-2S)h\exp(2S)) - (\chi_l \Delta_{H \cap K, G}^{-1/2})(h))w \rangle = 0,$$

for all $h \in H \cap K$. In other words, letting $l_2 = (\exp(-2S) \cdot l)|_{\mathfrak{t}}$, $\mathfrak{h}_2 = \exp(-2S) \cdot \mathfrak{h} \cap \mathfrak{t}_0$ and $H_2 = \exp \mathfrak{h}_2$, we have

$$\langle a_K, (\tau(y)-(\chi_{l_2}\Delta_{H_2,K}^{-1/2})(y)w\rangle=0$$

for all $y \in H_2$ noting that $\Delta_{H \cap K, G}(h) = \Delta_{H_2, K}(\exp(-2S)h \exp(2S))$ for $h \in H \cap K$.

Here let us observe coadjoint orbits. Since $\exp(uU) \cdot m(X_2) = e^{-u}(m(X_2) + \beta) - \beta$ for $m \in G \cdot l$, an H-orbit in $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$ is included in one of the following: $\{m \in \mathfrak{g}^* \; ; \; m(X_2) > -\beta \}$, $\{m \in \mathfrak{g}^* \; ; \; m(X_2) = -\beta \}$. For every H-orbit C in $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap \{m \; ; \; m(X_2) > -\beta \}$, $C_1 = C \cap RX_2^{\perp} \neq \emptyset$ is a $H \cap K$ -orbit and the mapping $C \mapsto C_1$ from the set of H-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap \{m \; ; \; m(X_2) > -\beta \}$ to that of $H \cap K$ -orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap \{RX_2^{\perp} = K \cdot l \cap (\mathfrak{h}^{\perp} + l) \text{ is bijective. Since } K \cdot l + \mathfrak{f}^{\perp} = K \cdot l$, the number of H-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap \{m \; ; \; m(X_2) > -\beta \}$ coincides with that of $H \cap K$ -orbits in $K \cdot l_0 \cap ((\mathfrak{h} \cap \mathfrak{f}_0)^{\perp} + l_0)$.

For $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap \{m \; ; \; m(X_2) < -\beta \}$, the set of H-orbits corresponds to the set of $H \cap K$ -orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap \{m \; ; \; m(X_2) = -2\beta \} = \exp(2S) \cdot (K \cdot l \cap \exp(-2S) \cdot (\mathfrak{h}^{\perp} + l))$. And it follows that the number of H-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap \{m \; ; \; m(X_2) < -\beta \}$ coincides with that of H_2 -orbits in $K \cdot l_0 \cap (\mathfrak{h}^{\perp} + l_2)$.

For treating *H*-orbits included in $\{m : m(X_2) = -\beta\}$, remark that $\exp(-S) \cdot \mathfrak{h} \subset \mathfrak{k}$ and $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap \{m : m(X_2) = -\beta\} = (\exp S)K \cdot l \cap (\mathfrak{h}^{\perp} + l) = \exp S \cdot (K \cdot l \cap \exp(-S) \cdot \mathfrak{h}) + (\mathfrak{h}^{\perp} + l)$. Thus the number of *H*-orbits equals that of $\exp(\exp(-S) \cdot \mathfrak{h})$ -orbits in $K \cdot l_0 \cap (\exp(-S) \cdot \mathfrak{h}^{\perp} + \exp(-S) \cdot l)|_{\mathfrak{t}}$.

Now, let a be a semiinvariant distribution of $\operatorname{supp}(a) \subset (\exp S)K$. Identifying $G = (\exp RS)K$ with $R \times K$, for functions $v = \phi \otimes w \in C^{\infty}_{c}(R) \otimes C^{\infty}_{c}(K/B)$, we can describe a as follows:

$$\langle a, v \rangle = \sum_{i \geq 0} \frac{\overline{d^i \phi}}{dx^i} (1) \langle a_K^i, w \rangle.$$

Let $\mathfrak{h}_S = \exp(-S) \cdot \mathfrak{h}$, $H_S = \exp \mathfrak{h}_S$, $l_S = (\exp(-S) \cdot l)|_{\mathfrak{t}}$. We first treat the case of $(\exp S)K \cdot l \cap (\mathfrak{h}^{\perp} + l) = \emptyset$. Let j be the maximum index with $a_K^i \neq 0$, and suppose $\phi \in C_c^{\infty}(\mathbf{R})$ satisfies $\phi^{(i)}(1) = 0$ for $1 \leq i \leq j-1$ and $\phi(1) \neq 0$. Then for $h \in H \cap K = H \cap K_0$,

$$\begin{split} \langle a, \, \pi(h)v \rangle &= \langle a, \, \phi(x)(\tau \Delta_{K,G}^{-1/2})(\exp(-xS)h \exp(xS))w \rangle \\ &= \overline{\phi^{(f)}(1)} \langle a_K^j, \, (\tau \Delta_{K,G}^{-1/2})(\exp(-S)h \exp S)w \rangle \\ &+ \overline{\phi(1)} \sum_{i=0}^{i=j} \left\langle a_K^i, \, \left(\frac{d^i}{dx^i}(\tau \Delta_{K,G}^{-1/2})(\exp(-xS)h \exp(xS))w\right)(1) \right\rangle \\ &= \langle a, \, (\mathfrak{X}_l \Delta_{H,G}^{-1/2})(h)v \rangle \\ &= \overline{\phi^{(f)}(1)} \langle a_K^j, \, (\mathfrak{X}_l \Delta_{H,G}^{-1/2})(h)w \rangle + \overline{\phi(1)} \langle a_K^0, \, (\mathfrak{X}_l \Delta_{H,G}^{-1/2})(h)w \rangle \,. \end{split}$$

Taking a test function ϕ satisfying $\phi^{(j)}(1)=0$, from the semiinvariance, we get $\sum_{i=0}^{i=j} \langle a_K^i, (d^i/dx^i(\tau\Delta_{K,G}^{-1/2})(\exp(-xS)h\exp(xS))w)(1)\rangle - \langle a_K^0, (\chi_i\Delta_{H,G}^{-1/2})(h)w\rangle = 0$ for all $w \in C_c^\infty(K/B)$. Thus

$$\langle a_K^j, (\tau \Delta_{K,G}^{-1/2})(\exp(-S)h \exp S)w \rangle = \langle a_K^j, (\chi_l \Delta_{H,G}^{-1/2})(h)w \rangle.$$

This means

$$\langle a_K^j, \tau(h_S)w \rangle = \langle a_K^j, (\chi_{l_s}\Delta_{H_{s},K}^{-1/2})(h_S)w \rangle$$

for all $h_s \in \exp(\exp(-S) \cdot (\mathfrak{h} \cap \mathfrak{k})) \supset \exp(\mathfrak{h}_s \cap \mathfrak{p})$. Since $K \cdot l \cap (\mathfrak{h}_s^{\perp} + l_s) = \emptyset$, we find that $K \cdot l \cap ((\mathfrak{h}_s \cap \mathfrak{p})^{\perp} + l_s) = \emptyset$ by the condition (C), and $a_k^{\perp} = 0$, and thus a = 0.

We next suppose $(\exp S)K \cdot l \cap (\mathfrak{h}^{\perp} + l) \neq \emptyset$. Then we can treat it as in the case 2.1, and get

$$a = \overline{\delta(1)} \otimes a_K$$
,

where a_K satisfies

$$\langle a_K, (\tau \Delta_{K,G}^{-1/2})(\exp(-S)h \exp S)w \rangle = \langle a_K, (\chi_l \Delta_{H,G}^{-1/2})(h)w \rangle$$

for all $h \in H$, in other words,

$$\langle a_K, \tau(h_S)w \rangle = \langle a_K, (\chi_{l_s} \Delta_{H_{s,K}}^{-1/2})(h_S)w \rangle$$

for all $h_s \in H_s$.

Using the induction hypothesis for $(K, H \cap K, \tau, l_0)$, (K, H_2, τ, l_2) , (K, H_S, τ, l_S) , we verify the claim.

(3) $\dim \mathfrak{g}_2/\delta=2$ and $\dim \mathfrak{g}/\mathfrak{f}_0=2$, i.e., $rank(\lambda,\,\gamma_1,\,\gamma_2)=2$. Then $rank(\gamma_1,\,\gamma_2)=1$, that is $\mathfrak{f}_0\subsetneq\mathfrak{f}\subsetneq\mathfrak{g}$. (The case $\lambda\neq0$, $\alpha\neq0$ and $rank(\gamma_1,\,\gamma_2)=2$, i.e., $\mathfrak{f}_0=\mathfrak{f}$ cannot happen. In fact, suppose $\lambda=p\gamma_1+q\gamma_2$, where $p,\,q\in R,\,p^2+q^2\neq0$ and $S_i\in\mathfrak{g},\,\gamma_j(S_i)=\delta_{ij},\,i,\,j=1,\,2$. Then by the Jacobi identity, $[[S_1,\,S_2],\,X_2]=(q+\alpha p)X_1,\,[[S_1,\,S_2],\,Y_2]=(q\alpha-p)X_1,\,$ and $[S_1,\,S_2]\in(q+\alpha p)S_1+(q\alpha-p)S_2+\mathfrak{f}.$ But $\lambda([S_1,\,S_2])=\lambda((q+\alpha p)S_1+(q\alpha-p)S_2)=(q+\alpha p)p+(q\alpha-p)q=\alpha(p^2+q^2)\neq0$, which is a contradiction.)

We may assume $rank(\lambda, \gamma_1)=2$, and let $\gamma_2=c\gamma_1$, $c\in R$. Take S, $T\in \mathfrak{g}$ such that $\gamma_1(S)=1$, $\lambda(S)=0$, $\gamma_1(T)=0$, $\lambda(T)=1$. Then by the Jacobi identity, $[[T,S],X_2]=(-1+c\alpha)X_1$, $[[T,S],Y_2]=(-\alpha-c)X_1$, and we get $-\alpha-c=c(-1+\alpha)$, which implies $\alpha=0$. Thus this case cannot happen.

(4) dim $\mathfrak{g}_2/\mathfrak{z}=2$ and dim $\mathfrak{g}/\mathfrak{k}_0=3$, i.e., $rank(\lambda, \gamma_1, \gamma_2)=3$. Let S_1 , $S_2\in\mathfrak{g}\setminus\mathfrak{k}$ and $T\in\mathfrak{k}\setminus\mathfrak{k}_0$ such that $\gamma_i(S_j)=\delta_{ij}$, $\lambda(S_i)=0$, $\gamma_i(T)=0$, $\lambda(T)=1$, i,j=1,2. Then by the Jacobi identity,

$$[T, S_1] \in -S_1 - \alpha S_2 + \mathfrak{t}_0,$$

$$[T, S_2] \in \alpha S_1 - S_2 + \mathfrak{t}_0,$$

$$[S_1, S_2] \in \mathfrak{t}_0$$

and thus f acts irreducibly on g/f.

(i) $\mathfrak{h}+\mathfrak{k}=\mathfrak{g}$. In this case, either $\mathfrak{h}+\mathfrak{k}_0=\mathfrak{g}$ or $\mathfrak{h}\subset\ker\lambda$ holds since $T\in\mathfrak{g}\setminus\ker\lambda$ acts irreducibly on $\ker\lambda/\mathfrak{k}_0$. We can take the above S_1 , S_2 so that S_1 , $S_2\in\mathfrak{h}\cap\ker\lambda$. Then $G=(\exp RS_1)(\exp RS_2)K$ and we identify G with $R^2\times K$. As case 2.2(2)(i), a semiinvariant distribution a is described as follows: For $v=\phi\otimes w\in C^\infty_c(R^2)\otimes C^\infty_c(K/B)$, we have

$$\langle a, v \rangle = \iint_{\mathbf{R}^2} \langle \bar{x}_l \Delta_{H, G}^{-1/2} \rangle (\exp(x_1 S_1) \exp(x_2 S_2)) \overline{\phi(x_1, x_2)} \langle a_K, w \rangle dx_1 dx_2,$$

where a_K is a distribution on K/B, and we find

$$\langle a_K, \tau(h) - (\chi_l \Delta_{H_1,K}^{-1/2})(h)w \rangle = 0$$
 for all $h \in H_1$, $w \in C_c^{\infty}(K/B)$,

where $\mathfrak{h}_1 = \mathfrak{h} \cap \mathfrak{f} + RX_2 + RY_2$ and $H_1 = \exp \mathfrak{h}_1$.

The number of *H*-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$ equals that of $H \cap K$ -orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l) \cap (RX_2 + RY_2)^{\perp} = K \cdot l \cap (\mathfrak{h}^{\perp} + l)$, and thus coincides with that of H_1 -orbits in $K \cdot l_0 \cap (\mathfrak{h}_1^{\perp} + l_0)$. We can verify the claim of the theorem applying the induction hypothesis for (K, H_1, τ, l_0) .

(ii) $\mathfrak{t} \subseteq \mathfrak{t} + \mathfrak{h} \subseteq \mathfrak{g}$ and $\mathfrak{h} \subset \ker \lambda$. Let $S \in \mathfrak{h} \setminus (\mathfrak{h} \cap \mathfrak{t})$, $X = l([S, Y_2])X_2 - l([S, X_2])Y_2$ and $Y = l([S, X_2])X_2 + l([S, Y_2])Y_2$. Then $l([\mathfrak{h}, X]) = \{0\}$ and $l([S, Y]) \neq 0$. Thus $\mathfrak{g}_2 \cap (\mathfrak{h} + \mathfrak{g}(l)) = RX + \mathfrak{g}$, $[\mathfrak{h}, X] = \{0\}$ and for each $m \in G \cdot l$, its H-orbit satisfies $H \cdot m \subset (RX + \mathfrak{g})^{\perp} + m$. Taking $S' \in \ker \lambda$ such that $G = (\exp RS)(\exp RS')K$, we identify G with $R^2 \times K$. Let $S' = \{s \in R : \exp(sS')K \cdot l \cap (\mathfrak{h}^{\perp} + l) \neq \emptyset\}$, whose number is bounded by the number of H-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$. Then by the semiinvariance for $\exp RS$ and $\exp RX'$, where $X' \in (X + \mathfrak{g}(l)) \cap \mathfrak{h}$, a is described by a linear combination of a_s , $s \in S'$, defined as follows: for $v = \phi \otimes w \in C_c^\infty(R^2) \otimes C_c^\infty(K/B)$,

$$\langle a_s, v \rangle = \int_{\mathcal{R}} (\bar{\chi}_l \Delta_{H,G}^{-1/2}) (\exp x_1 S) \overline{\phi(x_1, s)} dx_1 \langle a_K, w \rangle,$$

where a_K is a distribution on K/B satisfying

$$\langle a_K, \tau(\exp(-sS')h\exp(sS'))w\rangle = \langle a_K, (\chi_l \Delta_{H \cap K, G}^{-1/2})(h)w\rangle$$

for $h \in H \cap K = H \cap K_0$. In other words, writing $\mathfrak{h}_s = \exp(-sS') \cdot (\mathfrak{h} \cap \mathfrak{k}_0)$, $H_s = \exp \mathfrak{h}_s$ and $l_s = (\exp(-sS') \cdot l)|_{\mathfrak{k}}$, we have

$$\langle a_K, \tau(h_s)w \rangle = \langle a_K, (\chi_l \Delta_{H_s,G}^{-1/2})(h_s) \rangle$$

for all $h_s \in H_s$.

By the above observation, the number of H-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp} + l)$ equals $\sum_{s \in S'}$ (number of $H \cap K$ -orbits in $\exp(sS')K \cdot l \cap (\mathfrak{h}^{\perp} + l)$). For each $s \in S'$, the number of $H \cap K$ -orbits equals the number of H_s -orbits in $K \cdot l_0 \cap (\mathfrak{h}_s^{\perp} + l_s)$. Thus we can verify this case using the induction hypothesis for (K, H_s, τ, l_s) .

(iii) $\mathfrak{t} \subseteq \mathfrak{t} + \mathfrak{h} \subseteq \mathfrak{g}$ and $\mathfrak{h} \not\subset \ker \lambda$. Let $\mathfrak{h} \setminus (\mathfrak{h} \cap \mathfrak{t}) \ni U = \kappa T + \xi_1 S_1 + \xi_2 S_2$, where S_1 , S_2 , and T are as at the beginning of (4), κ , ξ_1 , $\xi_2 \in \mathbf{R}$, $\kappa \neq 0$, $\xi_1^2 + \xi_2^2 = 1$. Then $\mathfrak{h} = \mathbf{R}U + (\mathfrak{h} \cap \mathfrak{t}) = \mathbf{R}U + (\mathfrak{h} \cap \mathfrak{t}_0)$. Take β , $\delta \in [0, 2\pi)$ such that $e^{\sqrt{-1}\beta} = \xi_1 + \sqrt{-1}\xi_2$, $\sqrt{1 + \alpha^2} e^{\sqrt{-1}\delta} = 1 - \sqrt{-1}\alpha$. Then we get $\exp uU = \exp(u_1 S_1 + u_2 S_2) \exp(u\kappa T) k_0(u)$, where $k_0(u) \in K_0$ and

Letting

$$s_1(s) = \frac{\cos s + \cos(\beta + \delta)}{\kappa \sqrt{1 + \alpha^2}}$$
 , $s_2(s) = \frac{\sin s + \sin(\beta + \delta)}{\kappa \sqrt{1 + \alpha^2}}$,

we get

$$\exp(uU)\exp(s_1(s)S_1+s_2(s)S_2) = \exp(s_1(u,\ s)S_1+s_2(u,\ s)S_2)\exp(uT)k_0(u,\ s)\,,$$
 where $k_0(u,\ s){\in}K_0$ and

$$s_1(u, s) = \frac{1}{\kappa\sqrt{1+\alpha^2}}(\cos(\beta+\delta)+e^{-u\kappa}\cos(-u\kappa\alpha+s))$$

$$s_2(u, s) = \frac{1}{\kappa \sqrt{1+\alpha^2}} (\sin(\beta+\delta) + e^{-u\kappa} \sin(-u\kappa\alpha + s)).$$

Thus we obtain a bijection

$$\Psi: \mathbf{R} \times [0, 2\pi) \times K \longrightarrow G_1 = G \setminus \exp\left(\frac{\cos(\beta+\delta)}{\kappa\sqrt{1+\alpha^2}}S_1 + \frac{\sin(\beta+\delta)}{\kappa\sqrt{1+\alpha^2}}S_2\right)K$$

by $\Psi(u, s, k) = \exp(uU) \exp(s_1(s)S_1 + s_2(s)S_2)k$, and we also obtain a bijection

$$\Psi^*: \mathbf{R} \times [0, 2\pi) \longrightarrow \mathbf{R} X_2^* + \mathbf{R} Y_2^* + X_1^* \setminus \left(\frac{-\cos(\beta + \delta) X_2^* - \sin(\beta + \delta) Y_2^*}{\kappa \sqrt{1 + \alpha^2}} + X_1^* \right),$$

where $\{X_2^*, Y_2^*, X_1^*\}$ is the dual basis of $\{X_2, Y_2, X_1\}$, by $\Psi^*(u, s) = \Psi(u, s, e) \cdot l|_{\mathfrak{g}_2}$.

Writing $p = \exp(1/\kappa\sqrt{1+\alpha^2})(\cos(\beta+\delta)S_1+\sin(\beta+\delta)S_2)$, we can treat distributions a of $\operatorname{supp}(a) \subset G_1 = G \setminus pK$ and $\operatorname{supp}(a) \subset pK$ separately. Let us consider functions v of $\operatorname{supp}(v) \subset G_1$. Identifying G_1 with $\mathbf{R} \times [0, 2\pi) \times K$ through \mathbf{V} , let $v = \phi_1 \otimes \phi_2 \otimes w \in C^\infty_c(\mathbf{R}) \otimes C^\infty_c([0, 2\pi)) \otimes C^\infty_c(K/B)$. Then

$$\pi(\exp tU)\phi_1(x)\phi_2(s)w(\dot{k}) = \phi_1(x-t)\phi_2(s)w(\dot{k}),$$

$$\pi(h)\phi_1(x)\phi_2(s)w(\dot{k}) = \tau(\Psi(u, s, e)^{-1}h\Psi(u, s, e))\phi_1(x)\phi_2(s)w(\dot{k}),$$

for $t, x \in \mathbb{R}$, $s \in [0, 2\pi)$, $k \in K/B$, $h \in H \cap K_0$. Writing $g(s) = \exp(s_1(u, s)S_1 + s_2(u, s)S_2)$, let $S = \{s \in [0, 2\pi); g(s)K \cdot l \cap ((\mathfrak{h} \cap \mathfrak{f}_0)^1 + l) \neq \emptyset\}$. Then $\#S \leq \#(H\text{-orbits})$ in $G \cdot l \cap (\mathfrak{h}^1 + l)$. For $s \in S$, let $Y = Y_s = g(s) \cdot l([U, Y_2])X_2 - g(s) \cdot l([U, X_2])Y_2$, which satisfies $g(s) \cdot l([\mathfrak{h}, Y]) = \{0\}$, and take $Y' \in \mathfrak{g}(g(s) \cdot l)$ such that $Y + Y' \in \mathfrak{h}$. Then

$$\begin{split} & \frac{d}{ds}|_{s}(\chi_{l}(g(s)^{-1}\exp(Y+Y')g(s))-\chi_{l}(\exp(Y+Y'))) \\ & = \sqrt{-1}\,g(s)\cdot l\Big(\Big[Y+Y',\,\frac{1}{\kappa\sqrt{1+\alpha^{2}}}(-\sin\,sS_{1}+\cos\,sS_{1})\Big]\Big)\chi_{l}(g(s)^{-1}\exp(Y+Y')g(s))\,, \end{split}$$

and

$$g(s) \cdot l([Y+Y', -\sin sS_1 + \cos sS_2]) = -\frac{1}{\sqrt{1+\alpha^2}} \neq 0.$$

As case 2.1, we can obtain that a semiinvariant distribution a of $supp(a) \subset G_1$ is a linear combination of a_s , $s \in S$, such that

$$\langle a_s, \phi_1 \otimes \phi_2 \otimes w \rangle = \int_{\mathbb{R}} (\overline{\chi}_l \Delta_{H,G}^{-1/2}) (\exp xU) \overline{\phi_1(x)\phi_2(s)} \langle a_K, w \rangle dx,$$

where a_K is a distribution on K/B satisfying

$$\langle a_K, (\tau(g(s)^{-1}hg(s)) - (\chi_l \Delta_{H \cap K, K}^{-1/2}(h)))w \rangle = 0$$

for all $h \in H \cap K_0$.

As in case 2.2(2)(ii), noting that $p^{-1} \cdot \mathfrak{h} \subset \mathfrak{f}$, we can treat distributions a of $\operatorname{supp}(a) \subset pK$. And from the above observations, we can verify the claim for this whole case similarly as case 2.2(2)(ii).

CASE 3. $\mathfrak{z}=\{0\}$, and ker l includes no non-zero abelian ideals for $l\in\Omega$. Let \mathfrak{g}_1 be a minimal ideal of \mathfrak{g} satisfying $\mathfrak{g}_1\subset\mathfrak{p}$. Then $\dim\mathfrak{g}_1=1$ or 2. By the assumption, $l|_{\mathfrak{g}_1}\neq 0$ for all $l\in\Omega$, and \mathfrak{g}_1^l is the centralizer of \mathfrak{g}_1 . Fix $l\in\Omega\cap(\mathfrak{h}^1+f)$ and let $\mathfrak{t}=\mathfrak{g}_1^l$ for realizing π .

When dim $g_1=1$, we take $X_1 \in g_1$ satisfying $l(X_1)=1$, and for $X \in g$,

$$[X, X_1] = \lambda(X)X_1$$

where $\lambda \in \mathfrak{g}^* \setminus \{0\}$. When dim $\mathfrak{g}_1 = 2$, we take a base $\{X_1, Y_1\}$ such that $l(X_1) = 1$, $l(Y_1) = 0$ and for $X \in \mathfrak{g}$,

$$[X, X_1] = \lambda(X)(X_1 - \alpha Y_1)$$

$$[X, Y_1] = \lambda(X)(\alpha X_1 + Y_1),$$

where $\alpha \in \mathbb{R} \setminus \{0\}$, $\lambda \in \mathfrak{g}^* \setminus \{0\}$ since g is exponential.

If dim $\mathfrak{g}_1=1$, we have $\mathfrak{g}_1\cap\mathfrak{g}(l)=\{0\}$, and if dim $\mathfrak{g}_1=2$, we have $\mathfrak{g}_1\cap\mathfrak{g}(l)=R(\alpha X_1-Y_1)$. It also holds that $\mathfrak{p}\subset\mathfrak{f}$, $K\cdot l_0+\mathfrak{p}^\perp=K\cdot l_0$, where $l_0=l\mid_\mathfrak{t}$, and $\mathfrak{f}(l_0)=\mathfrak{g}(l)+\mathfrak{g}_1$. We realize π as mentioned at the beginning of the proof using a polarization \mathfrak{b} at l satisfying the Pukanszky condition and $\mathfrak{p}\subset\mathfrak{b}$, so that $\pi=\mathrm{ind}_B^\alpha\chi_l=\mathrm{ind}_K^\alpha\tau$, where $\tau\in\hat{K}$ corresponds to the coadjoint orbit $K\cdot l_0$.

Then the case $\mathfrak{h} \subset \mathfrak{k}$ can be treated as case 2.1. Next, suppose $\mathfrak{h}+\mathfrak{k}=\mathfrak{g}$. Then $\mathfrak{h} \cap \mathfrak{g}_1 = \{0\}$, $G = (\exp RT)K$ taking $T \in \mathfrak{h} \setminus (\mathfrak{h} \cap \mathfrak{k})$, and the number of H-orbits in $G \cdot l \cap (\mathfrak{h}^{\perp}+l)$ coincides with the number of $H \cap K$ -orbits in $G \cdot l \cap (\mathfrak{h}^{\perp}+l) \cap \{m : m(X_1)=1\} = K \cdot l \cap ((\mathfrak{h}+\mathfrak{g}_1)^{\perp}+l)$. Noting that $K \cdot l + \mathfrak{k}^{\perp} = K \cdot l$, we find that the number equals the number of H_1 -orbits in $K \cdot l_0 \cap (\mathfrak{h}_1^{\perp}+l_0)$, where $\mathfrak{h}_1 = (\mathfrak{h} \cap \mathfrak{k}) + \mathfrak{g}_1$ and $H_1 = \exp \mathfrak{h}_1$. As in the case 2.2(1), using the induction hypothesis for (K, H_1, τ, l_0) , we verify the claim for this case.

References

- [1] Y. Benoist, Multiplicité un pour les espaces symétriques exponentiels, Mem. Soc. Math. France, 15 (1984), 1-37.
- [2] P. Bernat et al., Représentations des groupes de Lie résolubles, Dunod, 1972.

- [3] L. Corwin, F.P. Greenleaf and G. Grélaud, Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc., 304 (1987), 549-583.
- [4] H. Fujiwara, Représentation monomiales des groupes de Lie nilpotents, Pacific J. Math., 127 (1987), 329-352.
- [5] H. Fujiwara and S. Yamagami, Certaines représentations monomiales d'un groupe de Lie résoluble exponentiel, Adv. Stud. Pure Math., 14 (1988), 153-190.
- [6] H. Fujiwara, Représentations Monomiales de Groupes de Lie Résolubles Exponentiels, The Orbit Method in Representation Theory, Birkhäuser, 1990, pp. 61-84.
- [7] J. Inoue, Monomial representations of certain exponential Lie groups, J. Funkt. Anal., 83 (1989), 121-149.
- [8] R. Lipsman, The Penney-Fujiwara Plancherel Formula for Symmetric Spaces, The Orbit Method in Representation Theory, Birkhäuser, 1990, pp. 135-145.
- [9] R. Lipsman, Induced representations of completely solvable Lie groups, Ann. Scuola Norm. Sup. Pisa, 17 (1990), 127-164.
- [10] R. Lipsman, The Penney-Fujiwara Plancherel formula for abelian symmetric spaces and completely solvable homogeneous spaces, Pacific J. Math., 151 (1991), 265-294.
- [11] R. Penney, Abstract Plancherel Theorems and a Frobenius Reciprocity Theorem, J. Funct. Anal., 18 (1975), 177-190.

Junko INOUE
Graduate School of Mathematics
Kyushu University
33, Fukuoka 812
Japan