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Introduction.

Let $S$ be a connected and simply connected unimodular solvable Lie group,
$K$ a connected compact group acting on $S$ as automorphisms. We call the pair
$(K;S)$ a Gelfand pair if the $Banach*$ -algebra $L^{1}(K\backslash K\ltimes S/K)$ of all K-biinvariant
integrable functions on $K\ltimes S$ is commutative. The assumption that $(K;S)$ is a
Gelfand pair prescribes the structure of $S$ . For example, if $(K;S)$ is a Gelfand
pair, then $S$ is of type $R$ ([BJR], Corollary 7.4) and thus $S$ has polynomial
growth ([J], Theorem 1.4). In this paper we first show that the nilradical $N$

of $S$ splits in $S$ if $(K;S)$ is a Gelfand pair. Let 6 be the Lie algebra of $S$ .

THEOREM A. If $(K;S)$ is a Gelfand pair, then there exists a K-invariant
abelian subspace $a$ of @ on which $K$ acts tnmally. Moreover putting $A=\exp$ a,
one has $S=A\ltimes N$ and $K\ltimes S=(K\cross A)\ltimes N$.

Suppose that $(K;S)$ is a Gelfand pair. Since $S$ has polynomial growth, the
$Banach*$ -algebra $L^{1}(S)$ is symmetric ([L], Lemma 1). This fact tells us that all
bounded $K$-spherical functions on $S$ are positive definite (cf. [BJR], Lemma 8.2).

Thus to each bounded $K$-spherical function on $S$ there corresponds an irreducible
$K$-spherical representation of $K\ltimes S$ (cf. [H], Chapter IV). Let $\hat{N}$ be the unitary
dual of $N$ and $K_{\pi}$ the stabilizer of $\pi\in\hat{N}$ in $K$. As an immediate consequence of
Theorem $A$ , we see that bounded $K$-spherical functions $\phi$ on $S$ are parametrized
as $\phi_{\pi a}$

$a$ with $(\pi, \alpha, a)\in\hat{N}/K\cross\hat{K}_{\pi}\cross \mathfrak{a}^{*}$ . This parametrization imProves that of
[BJR], Theorem 8.11 a little in the sense that we make an explicit use of the
subgroup $A=\exp \mathfrak{a}$ .

Our second purpose of this paper is to realize the irreducible K-spherical
representations $U_{\pi.\alpha,a}$ of $K\ltimes S$ by induction using the structure of $K\ltimes S=$

$(K\cross A)\ltimes N$, to which the parameters $(\pi, \alpha, a)$ are closely related. Though $S$

need not be of type I, Theorem A makes it possible to get all irreducible unitary
representations of $K\ltimes S$ from those of the nilradical $N$ which is CCR. To carry
out this, we need to know that $N$ is regularly imbedded in $K\ltimes S$ and what is
the structure of the stabilizers like. Our Proposition 3.2 says that the $(K\cross A)-$

orbit space $\hat{N}/(K\cross A)$ is equal to the $K$-orbit space $\hat{N}/K$ as Borel spaces, which
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ensures the regularity of the imbedding of $N$ in $K\ltimes S$ . We denote by $(K\cross A)_{\pi}$

the stabilizer of $\pi\in\hat{N}$ in $K\cross A$ . Making use of the theory of maximally almost
periodic groups, we obtain

PROPOSITION B. There exists a vector group $V$ isomorphic to $A$ such that
$(K\cross A)_{\pi}=K_{\pi}\cross V$ , the direct product of $K_{\pi}$ and $V$ .

With these preparations it is straightforward to construct irreducible
$K$-spherical representations of $K\ltimes S$ . Continuing to suppose that $(K;S)$ is a
Gelfand pair, we know that $(K;N)$ is also a Gelfand pair. Let $\pi\in\hat{N}$. We have
a multiplicity-free decomposition $H_{\pi}=\oplus_{\alpha}V_{\alpha}$ of the representation space $H_{\pi}$ of $\pi$

under the intertwining representation $W_{\pi}$ of $K_{\pi}$ by [C]. For the intertwining
representation $W_{\pi}$ of $(K\cross A)_{\pi}$ , there exists $a.E\mathfrak{a}^{*}$ such that $\tilde{W}_{\pi}(k_{x}, x)|_{v_{a}}$ is a
scalar operator $\chi_{a}(x)$ for every $(k_{x}, x)\in V$ , where $\chi_{a}(\exp X)=e^{\prime-1\langle a,X\rangle}$ for $a\in \mathfrak{a}^{*}$ ,
$X\in \mathfrak{a}$ . Here it should be noted that we may assume $W_{\pi}=\tilde{W}_{\pi}|_{K_{\pi}}$ (Proposition 5.1).

Putting $T_{a}=W_{\pi}|_{V_{\alpha}}$ , we have an irreducible unitary representation $U_{\pi,a,a}(a\in \mathfrak{a}^{*})$

of $(K\cross A)_{\pi}\ltimes N$ given by

$U_{\pi.\alpha,a}(kk_{x}, x, n)=\chi_{a-a_{a}}(x)\overline{T}_{a}(k)\otimes\pi(n)\tilde{W}_{\pi}(kk_{x}, x)$ ,

where $k\in K_{\pi},$ $(k_{x}, x)\in V$ and $n\in N$. Combining the above with parametrization
of $K$-spherical functions on $S$ , we obtain

THEOREM C. The irreducible $K$-sphencal representation of $K\ltimes S$ correspond-

ing to $\phi=\phi_{\pi,\alpha,a}$ is given by $0_{\pi,\alpha,a}=Ind_{(}(\begin{array}{l}K\cross AAK\end{array})$ .

We will make a further observation on the particular case where the follow-
ing condition (C) is satisfied:

(C) there exists a continuous homomorphlsm $\varphi:Aarrow K$ such that $x\cdot n=\varphi(x)\cdot n$

for all $x\in A$ and $n\in N$.
In this case the irreducible $K$-spherical representations $\tilde{U}_{\pi.\alpha,a}$ are canonically
constructed. In fact putting $V_{0}=\{(\varphi(x)^{-1}, x)|x\in A\}$ , we have $K\ltimes S=(K\ltimes N)\cross V_{0}$ .

PROPOSITION D. One has $C7_{\pi,\alpha,a}(k\varphi(x)^{-1}, x, n)=\hat{U}_{\pi,\alpha}(k, n)\otimes\chi_{a}(x)$ , where $0_{\pi,a}$

is the irreducrble K-sphencal rePresentation of $K\ltimes N$ corresponding to the K-spher-
ical function $\phi_{\pi.a,a}|_{N}$ .

We conclude this paper by giving three examples of Gelfand pairs. The
first is the pair $(T^{2} ; S)$ , where $S$ is the Mautner grouP, a simple example of
non-type I solvable Lie group. This pair satisfies the condition (C). The second
is the pair $(U(2);R\ltimes(H_{2}\cross C))$ , where $H_{2}$ is the Heisenberg Lie group homeo-
morphic to $C^{2}\cross R$ . The group $U(2)$ acts on $C^{2}$ naturally and on $C$ by scalar
multiplications of the square of determinants. This pair satisfies the condition
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(C) but the stabilizer of some representation is not connected. The last is the
pair (SU(2); $R\ltimes H_{2}$), where the action of SU(2) on $H_{2}$ is as in the second example.
This pair does not satisfy the condition (C).

1. Preliminaries.

Let $S$ be a connected and simply connected unimodular solvable Lie group
with Haar measure $d\mu$ , and $K$ a connected compact group acting on $S$ as
automorphisms. By taking a factor group if necessary, we may assume that
$K$ is a connected compact Lie group. A bounded continuous function $\phi$ on $S$

is called a $K$-spherical function if

$\int_{K}\phi(x(k\cdot y))dk=\phi(x)\phi(y)$ for $x,$ $y\in S$ ,
(1.1)

$\phi(1_{s})=1$ ,

where $dk$ is the normalized Haar measure on $K$ and ls the unit element of $S$ .
The Banach space $L^{1}(S)$ of integrable functions on $S$ has a structure of Banach
$*$-algebra with convolution and involution defined respectively by

$(f*g)(x):= \int_{s}f(y)g(y^{-1}x)d\mu(y)$ ,

$f^{*}(x):=\overline{f(x^{-1})}$ .
$K$ acts also on $L^{1}(S)$ as automorphisms by $f^{k}(x)=f(k^{-1}\cdot x)$ for $x\in S,$ $k\in K$.
Denote by $L_{K}(S)$ the closed $*$ -subalgebra of $L^{1}(S)$ of all $K$-invariant functions.
For a bounded continuous function g5 on $S$ , we define a linear functional $\lambda_{\phi}$ on
$L^{1}(S)$ by $\lambda_{\varphi}(f)=\int_{s}f(x)\phi(x)d\mu(x)$ . Then $\phi$ is $K$-spherical if and only if $\lambda_{\phi}$ is

multiplicative on $L_{K}^{1}(S)$ , that is, $\lambda_{\phi}(f*g)=\lambda_{\phi}(f)\lambda_{\phi}(g)$ for $f,$ $g\in L1K(S)$ .
Consider the semidirect product group $K\ltimes S$ with product

$(k_{1}, x)(k_{2}, y)$ $:=(k_{1}k_{2}, x(k_{1}\cdot y))$ .

Since $K$ is compact and since $S$ is unimodular, the group $K\ltimes S$ is unimodular
and has a Haar measure $dkd\mu$ . We denote by $L^{1}(K\backslash K\ltimes S/K)$ the Banach
$*$-algebra of all $K$-biinvariant integrable functions. We know that $L_{K}^{1}(S)$ is
isometrically isomorphic to $L^{1}(K\backslash KxS/K)$ .

We observe first the case where $S$ is a nilpotent Lie group $N$. To do so,
we recall that any connected nilpotent Lie group $N$ is symmetric in the sense
that the $L^{1}$ -group algebra $L^{1}(N)$ is a symmetric Banach $*$-algebra $([P])$ . Sup-
pose that $(K;N)$ is a Gelfand pair. Then the closed $*$ -subalgebra $L_{K}^{1}(N)$ is a
commutative symmetric Banach $*$ -algebra. So each homomorphism of $L_{K}^{1}(N)$

into $C$ is the restriction of a $*$-representation of $L^{1}(N)$ on a certain one-dimen-
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sional subspace. For an irreducible unitary representation $\pi$ of $N$ on a Hilbert
space $H_{\pi}$ and a unit vector $v$ in $H_{\pi}$, we put

(1.2) $\psi_{\pi v}(n):=\int_{K}\langle\pi(k\cdot n)v, v\rangle dk$ , $n\in N$ .

Then we have the following proposition due to [BJR], Lemma 8.2.

PROPOSITION 1.1 (Benson-Jenkins-Ratcliff). Every bounded $K$-spherical func-
tion $\psi$ on $N$ is of the form $\psi_{\pi.v}$ , so that $\psi$ is positive definite.

Let $\hat{N}$ be the set of all equivalence classes of irreducible unitary represen-
tations of $N$. For $\pi\in\hat{N}$, we set $\pi_{k}(n)=\pi(k\cdot n)(k\in K, n\in N)$ . Then $\pi_{k}\in\hat{N}$.
We denote by $K_{\pi}$ the stabilizer of $\pi$ in $K$. Then $K_{\pi}$ is a closed subgroup of
$K$. For $k\in K_{n}$ there exists a unitary operator $W_{\pi}(k)$ on the representation space
$H_{\pi}$ of $\pi$ such that $\pi_{k}(n)=W_{\pi}(k)\pi(n)W_{\pi}(k)^{-1}$ for $n\in N$. We know that $W_{\pi}$ can be
chosen to be an ordinary (not merely projective) representation of $K_{\pi}$ (cf. for
example [Ki], Section 2). By Theorem 1 of [C], the representation $W_{\pi}$ is
multiplicity-free. Let $(W_{\pi}, H_{\pi})=\oplus_{a}(T_{a}, V_{\alpha})$ be the decomposition into irreduc-
ibles. Then,

PROPOSITION 1.2 [BJR, Theorem 8.7]. (1) $\psi_{\pi.v}$ is $K$-spherical if and only

if $v$ belongs to some component $V_{a}$ .
(2) Suppose $v\in V_{\alpha}$ . Let $\pi’$ be another irreducible unitary representation of $N$

on $H_{\pi’}$ and $v’\in H_{\pi’}$ . Then, $\psi_{\pi.v}=\psi_{\pi’.v’}$ if and only if $\pi’\cong\pi_{k}$ for some $k\in K$ and
$v’\in V_{\alpha’}\cong V_{\alpha}$ .

In view of Proposition 1.2, we shall put $\psi_{\pi,a}=\psi_{\pi v}$ by taking $v\in V$. in what
follows.

2. Gelfand pairs.

Let $S$ be a connected and simply connected unimodular solvable Lie group,
$K$ a connected compact Lie group acting on $S$ as automorphisms. In this section
we give a description of the structure of $S$ and $K\ltimes S$ when $(K;S)$ is a Gelfand
pair. Denote by @=L $e(S)$ the Lie algebra of $S$ and by $\mathfrak{n}$ the nilradical of 9,
that is, the largest nilpotent ideal of $8\wedge\cdot$ By Leptin’s theorem in [BJR], p. 108,
there exists a subspace $a$ of 6 on which $K$ acts trivially, and we have a
vector space direct sum $e=\mathfrak{a}\oplus \mathfrak{n}$ . Let $X\in e$ and $y\in S$ . We define $i_{X}(y)=$

$(\exp X)y(\exp X)^{-1}$ , that is, $i_{X}$ is the inner automorphism of $S$ determined by
$\exp X$ . Denote by $N$ the analytic subgroup of $S$ corresponding to $tt$ . Tbeorem 7.3
of [BJR] says that the pair $(K;S)$ is a Gelfand pair if and only if the following
two conditions are satisfied: (1) $(K;N)$ is a Gelfand pair. (2) For $X\in \mathfrak{a}$ and
$y\in S$ , there exists $k\in K$ such that $i_{X}(y)=k\cdot y$ . We first show that these two
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conditions determine the structure of $S$ and $K\ltimes S$ as split group extensions of
the nilradical $N$ of $S$ .

THEOREM 2.1. Let $\mathfrak{a}$ be as above. Then $a$ is an abelian subspace of B.
Moreover, one has $S=A\ltimes N$ and $K\ltimes S=(K\cross A)\ltimes N$, where $A$ is the analytic
subgroup of $S$ corresponding to $\mathfrak{a}$ .

PROOF. First we show that $\mathfrak{a}$ is an abelian subspace of 9. Theorem 7.3
of [BJR] yields that for $X\in \mathfrak{a}$ , Y\in @ and $t\in R$ , there exists $k_{t}’\in K$ such that
$(\exp X)(\exp tY)(\exp X)^{-1}=k_{t}’\cdot(\exp tY)$ . Put $k_{n}=k_{2^{-n}}’$ for $n=1,2,$ $\cdots$ . Then
$(\exp X)(\exp tY)(\exp X)^{-1}=k_{n}\cdot\exp tY$ for $t=q/2^{n}$ and $q=1,2,$ $\cdots$ $2^{n}$ . Since $K$ is
compact, we may assume that $\{k_{n}\}$ converges to $k\in K$ by taking a subsequence
if necessary. Then for all positive integers $P,$ $q,$ $n$ with $n\geqq p$ , we get

$( \exp X)(\exp\frac{q}{2^{p}}Y)(\exp X)^{-1}=((\exp X)(\exp\frac{qY}{2^{n}})(\exp X)^{-1})^{z^{n-p}}=k_{n}\cdot(\exp\frac{q}{2^{p}}Y)$ .

Letting $narrow\infty$ , we get

(2.1) $(\exp X)(\exp tY)(\exp X)^{-1}=k\cdot\exp tY$

for $t=q/2^{p},$ $p=1,2$ , and $q=1,2,$ $\cdots,$
$2^{p}$ . By continuity we get (2.1) for all

$t\in R$ . In particular, if $Y\in a$ , we have $Ad(\exp X)(Y)=k\cdot Y=Y$ . Hence [X, $Y$]

$=ad(X)(Y)=0$ . Therefore $\mathfrak{a}$ is an abelian subspace of B. Since $S$ is simply
connected, it holds that $S=((\exp RX_{1})\ltimes(\cdots\ltimes((expRX_{m})\ltimes N)\cdots))$ , where $\{X_{1}$ ,

, $X_{m}\}$ is a basis of $\mathfrak{a}$ . The commutativity of $\mathfrak{a}$ gives rise to $S=((\exp RX_{1})$

$\cross$ $\cdot$ $\cross(\exp RX_{m}))\ltimes N=A\ltimes N$. The statement $K\ltimes S=(K\cross A)\ltimes N$ is now clear
because the action of $K$ on $a$ is trivial. $\square$

It should be noted that our solvable Lie group $S$ need not be of type I (see

Example 7.1 below). Nevertheless, since $N$ is CCR, the last assertion of Theo-
rem 2.1 (together with the investigations of sections 3 and 4) enables us to
realize all irreducible unitary representations of $K\ltimes S$ by using the nilradical
$N$ instead of $S$ . This will be done in section 5.

We conclude this section by describing bounded $K$-spherical functions on
$S=A\ltimes N$ using those on the nilradical $N$. Although such a description is given
in Theorem 8.11 in [BJR], our emphasis here is a parametrization given by an
explicit use of the subgroup $A=\exp \mathfrak{a}$ , which their parametrization lacks. Let
$\phi$ be a K-spherical function on $S$ . For $(x, n)\in A\ltimes N$, we have

$\emptyset(x, n)=\phi((O, n)(x, 1_{N}))=\int_{K}\phi((0, n)(k\cdot(x, 1_{N})))dk$

$=\phi(0, n)\phi(x, 1_{N})$ ,

where $1_{N}$ is the unit element of $N$. The function $\phi(0, n)$ is a K-spherical
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function on $N$ by (1.1). On the other hand, one has

$\phi(xy, 1_{N})=\phi((x, 1_{N})(y, 1_{N}))=\int_{K}\phi((x, 1_{N})(k\cdot(y, 1_{N})))dk$

$=\phi(x, 1_{N})\phi(y, 1_{N})$ .

Since $\emptyset$) is bounded, there exists $a\in \mathfrak{a}^{*}$ such that $\phi(x, 1_{N})=x_{a}(x)$ , where
$\chi_{a}(\exp X)=e^{\sqrt{}\overline{-1}\langle a.X\rangle}(X\in \mathfrak{a})$ . Thus we have

PROPOSITION 2.2. Suppose that $(K;S)$ is a Gelfand pair. Then every bounded
$K$-sphencal function on $S$ is of the form $\phi_{\pi,a,\alpha}(x, n)=x_{a}(x)\psi_{\pi,\alpha}(n)$ for some $a\in \mathfrak{a}^{*}$ ,

where $\psi_{\pi,\alpha}$ is the function defined by (1.2).

3. Orbit spaces.

From now on we suppose that $(K;S)$ is a Gelfand pair. In this section we
investigate the smoothness of $(K\cross A)$-orbits space in $1\hat{V}$. Denote by $n^{*}$ the dual
space of $\mathfrak{n}$ . The automorphism group Aut(n) of $\mathfrak{n}$ acts on $n^{*}$ from the right by
$(l\cdot\varphi)(X)=l(\varphi(X))$ , where $l\in n^{*},$ $\varphi\in Aut(n),$ $X\in n$ . Take a $K$-invariant real inner
product $\langle\cdot, \cdot\rangle$ on $\mathfrak{n}$ . Theorem 7.3 in [BJR] says that for $x\in A,$ $X\in n$, there
exists $k\in K$ such that $x\cdot X=k\cdot X$ . We have $||x\cdot X||=||k\cdot X||=||X||$ , so that $\langle\cdot, \cdot\rangle$

is $(K\cross A)$-invariant.

LEMMA 3.1. Let $l\in n^{*}$ . Then the $K$-orbit $l\cdot K$ is equal to the $(K\cross A)$-orbit
$l\cdot(K\cross A)$ as sets.

PROOF. It suffices to show that $l\cdot A\subset l\cdot K$. Using the inner product $\langle\cdot, \rangle$ ,
we identify $\mathfrak{n}$ with $\mathfrak{n}^{*}$ by $l_{X}(Y)=\langle X, Y\rangle$ for $X,$ $Y\in n$ . Let $x\in A$ . Then

$(l_{X}\cdot x)(Y)-l_{X}(x\cdot Y)=\langle X, x\cdot Y\rangle=\langle x^{-1}\cdot X, Y\rangle$ .
By Theorem 7.3 in [BJR] there exists $k\in K$ such that $x^{-1}\cdot X=k^{-1}\cdot X$ . So

$\langle x^{-1}\cdot X, Y\rangle=\langle k^{-1}\cdot X, Y\rangle=\langle X, k\cdot Y\rangle=l_{X}(k\cdot Y)=(l_{X}\cdot k)(Y)$ .
Hence we arrive at $l_{X}\cdot x=l_{X}\cdot k\in l_{X}\cdot K$. $\square$

Noting that $Aut(N)=Aut(\mathfrak{n})$ acts on $\hat{N}$ from the right by $(\pi\cdot\varphi)(n)=\pi(\varphi(n))$ ,
where $\pi\in\hat{N},$ $\varphi\in Aut(N),$ $n\in N$, we have

PROPOSITION 3.2. Let $\pi\in\hat{N}$. Then the $K$-orbit $\pi\cdot K$ is equal to the $(K\cross A)-$

orbit $\pi\cdot(K\cross A)$ , so that $\hat{N}/K$ can be identified with $\hat{N}/(K\cross A)$ as Borel spaces.

PROOF. Take $l\in \mathfrak{n}^{*}$ for whicb $\pi$ is equivalent to $\pi_{l}$ via Kirillov’s theory.
For $x\in N$ and $\varphi\in Aut(n)$ , we have
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$Ad^{*}(x)(l\cdot\varphi)(X)=(l\cdot\varphi)(Ad(x^{-1})X)=l(Ad(\varphi(x^{-1}))\varphi(X))$

$=(Ad^{*}(\varphi(x))l)(\varphi(X))$ , $X\in n$ .

Thus $Ad^{*}(N)(l\cdot\varphi)=(Ad^{*}(N)l)\cdot\varphi$ . Since $l\cdot K=l\cdot(K\cross A)$ by Lemma 3.1, we get
$\pi\cdot K=\pi\cdot(K\cross A)$ by virtue of Kirillov’s theory. $\square$

Since $N$ is CCR and since $K$ is compact, the Borel space $\hat{N}/K$ is smooth.
Hence $\hat{N}/(K\cross A)$ is also smootb ([G1], Theorem 2 and [G2], Theorem 1).

Therefore all irreducible unitary representations of $K\ltimes S=(K\cross A)\ltimes N$ are
obtainable by the Mackey machine.

4. Stabilizers.

In order to study the structure of the stabilizers with which the Mackey
machine works, we need the theory of maximally almost periodic groups. Let
us summarize it here briefly. Our reference is the book [D], ChaPter 16, where
the term “injectable in a compact group“ is used instead. Let $G$ be a topolog-
ical group, $C_{b}(G)$ the Banach space of all bounded continuous functions on $G$

with uniform convergence topology. For $x\in G$ , we set $f^{x}(y)=f(x^{-1}y)$ for $y\in G$ .
The function $f\in C_{b}(G)$ is said to be almost periodic if $\{f^{x}|x\in G\}$ is relatively
compact in $C_{b}(G)$ . We call $G$ a maximally almost periodic group if for distinct
$x,$ $y\in G$ , there exists an almost periodic function $f$ such that $f(x)\neq f(y)$ . This
condition is equivalent to the condition that there exist a compact group $K$ and
a continuous injective homomorphism $\varphi:Garrow K$ .

We know by [D], Theorem 16.4.6 that

(4.1) a connected locally compact group $G$ is maximally almost penodic if and
only if it is the direct product of a compact group $K$ and a vector group $V$ .

We note that (4.1) is no longer true if $G$ is not connected. But under a
certain compactness condition, the structure of $G$ is still knowable.

PROPOSITION 4.1 [Ku, Lemma 2]. Let $G$ be a maximally almost Penodic Lie
group and $G_{0}$ the connected component of unit element. If $G/G_{0}$ is comPact, there
exist a compact group $K$ and a vector group $V$ such that $G=K\ltimes V$ and $G_{0}=K_{0}\cross V$ ,
where $K_{0}$ is the connected component of unit element.

NOW we will apply Proposition 4.1 to the case where $G$ is the stabilizer
$(K\cross A)_{\pi}$ of $\pi\in\hat{N}$ in $K\cross A$ and reveal its structure. Obviously the groups $K$

and $A$ are maximally almost periodic and $(K\cross A)_{\pi}$ is closed in $K\cross A$ . So
$(K\cross A)_{\pi}$ is also maximally almost periodic. Denote by $(K_{\pi})_{0}$ and $((K\cross A)_{\pi})_{0}$ the
connected component of $K_{\pi}$ and $(K\cross A)_{\pi}$ respectively. Then $((K\cross A)_{\pi})_{0}$ is
maximally almost periodic and $(K_{\pi})_{0}$ is a compact subgroup of $((K\cross A)_{\pi})_{0}$ . Let
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$p_{A}$ : $K\cross Aarrow A$ be the canonical projection. Clearly $(K\cross A)_{\pi}\cap(kerp_{A})=(K\cross A)_{\pi}$

$\cap K=K_{\pi}$ . Since $\pi\cdot(K\cross A)=\pi\cdot K$ by Proposition 3.2, we have $p_{A}((K\cross A)_{\pi})=A$ .
LEMMA 4.2. $((K\cross A)_{\pi})_{0}=(K_{\pi})_{0}\cross V’$ , where $V’$ is a vector grouP isomorphic

to $A$ .
PROOF. By (4.1), there exist a connected compact group $K’$ and a vector

group $V’$ such that $((K\cross A)_{\pi})_{0}=K’xV’$ . Since $(K\cross A)_{\pi}$ is second countable,
there exists a complete system of representatives $\{y_{i}\}_{i=0}^{\infty}$ in $(K\cross A)_{\pi}$ such that
$(K\cross A)_{\pi}=U_{i=0}^{\infty}y_{i}((K\cross A)_{\pi})_{0}$ and $y_{0}$ is the unit element of $K\cross A$ . Hence

$A=p_{A}((K \cross A)_{\pi})=\bigcup_{i=0}^{\infty}\overline{p_{A}(y_{i}((K\cross A)_{\pi})_{0})}$ .

NOW Baire’s category theorem ensures one of $\overline{p_{A}(y_{i}((K\cross A)_{\pi})_{0})}$ has an interior
point. By translation we see that the unit element of $A$ is an interior point of
$p_{A}(((K\cross A)_{\pi})_{0})$ . Hence $p_{A}(((K\cross A)_{\pi})_{0})$ is dense in $A$ . On the other hand,
since $K’$ is compact, $p_{A}(K’)$ is trivial. Hence $p_{A}(((K\cross A)_{\pi})_{0})=p_{A}(V’)$ , a Lie
subgroup of $A$ . Therefore $p_{A}(V’)$ coincides with $A$ . Moreover the subgroup
$V’\cap(kerp_{A})=V’\cap K$ of $V’$ is compact. Hence $V’\cap K$ is trivial, so that $V’\cong A$ .
Thus it remains to show $K’=(K_{\pi})_{0}$ . Since $(K_{\pi})_{0}$ is a compact subgroup of
$((K\cross A)_{\pi})_{0}$ , we have $(K_{\pi})_{0}\subset K’$ . On the other hand $K’$ is connected, compact
and included in $(K\cross A)_{\pi}$ . Hence $K’$ is included in the connected component of
$(K\cross A).AK=K.$ , that is, in the subgroup $(K_{n})_{0}$ . Therefore $K’=(K_{\pi})_{0}$ , which
completes the proof. $\square$

LEMMA 4.3. There $exists$ a vector group $V$ isomorPhic to $A$ such that
(1) $(K\cross A)_{\pi}$ normalizes $V$ ,
(2) $(kk_{x}, x)=(k_{x}k, x)$ for any $k\in(K_{\pi})_{0}$ and $(k_{x}, x)\in V$ ,
(3) $(K\cross A)_{\pi}=K_{\pi}\ltimes V$ .

PROOF. Let $(k, x)\in(K\cross A).$ . Then there exists $k’\in K$ such that $(k’, x)\in$

$((K\cross A)_{\pi})_{0}$ . So $(k’, x)^{-1}(k, x)\in(K\cross A)_{\pi}$ . Hence $(k’)^{-1}k\in K_{\pi}$ , which says that
$((K\cross A)_{\pi})_{0}\backslash (K\cross A)_{\pi}$ is homeomorphic to $(K_{\pi})_{0}\backslash K_{\pi}$ and is compact. By Proposition
4.1, there exist a compact subgroup $\tilde{K}$ of $(K\cross A)_{\pi}$ with the connected compo-
nent $(\tilde{K})_{0}$ equal to $(K_{\pi})_{0}$ and a vector group $V$ such that $(K\cross A)_{\pi}=\tilde{K}\ltimes V$ and
$((K\cross A)_{\pi})_{0}=(\tilde{K})_{0}\cross V$ . By an argument similar to the case of $V’$ in Lemma 4.2,
we see that $V$ is isomorphic to $A$ . Since $\tilde{K}$ is a compact subgroup of $(K\cross A)_{\pi}$ ,
we have $\tilde{K}\subset(K\cross A)_{\pi}\cap K=K_{\pi}$ . Comparing the numbers of connected

$\coprod^{components}$we get lilf$=K_{\pi}$ . Hence $(K\cross A)_{\pi}=K_{\pi}\ltimes V$ .

PROPOSITION 4.4. $(K\cross A)_{\pi}=K_{\pi}\cross V$ , the direct product of $K_{\pi}$ and $V$.
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PROOF. Let $(k_{x}, x)\in V$ and $k\in K_{\pi}$ . Then $(k, 0)(k_{x}, x)(k, 0)^{-1}=(kk_{x}k^{-1}, x)$

$\in V$ . Since $p_{A}$ is injective on $V$ , we have $kk_{x}k^{-1}=k_{x}\in K_{\pi}$ . Hence $(k, 0)(k_{x}, x)$

$=(k_{x}, x)(k, 0)$ . $\square$

5. $K$-spherical representations.

With the $pre$parations made in the previous sections we now construct all
irreducible $K$-spherical representations of $K\ltimes S=(K\cross A)\ltimes N$ . Let $l\in n^{*}(l\neq 0)$

and $\pi=\pi_{l}$ the irreducible unitary representation of $N$ corresponding to $l$ . Since
$(K;N)$ is a Gelfand pair, $N$ is at most 2-step $([BJR])$ . Denote by $B_{l}$ the
alternating form on $\mathfrak{n}$ defined by $B_{l}(X, Y)=l([X, Y])(X, Y\in n)$ and by $n(l)$ the
radical of $B_{l}$ . Put $b(l)=n(l)\cap(kerl)$ . Then $b(l)$ is an ideal of $\mathfrak{n}$ . We put
Aut(n). $=\{\varphi\in Aut(n)|\pi\circ\varphi\cong\pi\}$ . Recall the $K$-invariant $re$al inner product $\langle\cdot, \cdot\rangle$

on $n$ taken in section 3. If $(k, x)\in(K\cross A).$ , the action of $(k, x)$ on $\mathfrak{n}$ is in
$Aut(\mathfrak{n})_{\pi}\cap O(\langle\cdot, \cdot\rangle)$ , where $O(\langle\cdot, \cdot\rangle)$ is the orthogonal group for $\langle\cdot, \cdot\rangle$ .

PROPOSITION 5.1. The intertwining representations $W_{\pi}$ and $\varpi_{\pi}$ of $K_{\pi}$ and
$(K\cross A)_{\pi}$ respectively can be taken in such a way that $W_{\pi}=\tilde{W}_{\pi}|_{K_{\pi}}$ .

PROOF. If $\dim n/b(l)=1$ , the proposition is trivial. Suppose that $\dim n/b(l)$

$>1$ . Put $G=Aut(n)_{\pi}\cap O(\langle\cdot, \cdot\rangle)$ for simplicity. Since $G$ is compact, there exists
a $G$ -invariant subspace $V$ of $n/b(l)$ complementary to $n(l)/b(l)$ , the center of
$n/b(l)$ . Moreover a complex inner product $(\cdot, )$ on $V$ can be defined so that $G$

is included in $U(V, (\cdot, ))$ , the unitary group for $(\cdot, )$ (see for example [Ki],

Section 2). The representation $\pi$ is stable in 1V under $U(V, (\cdot, ))$ , and the
intertwining $repre$sentation $W$ of $U(V, (\cdot, ))$ is a unitary. Thus it suffices to
take $W_{\pi}=W|_{K_{\pi}}$ and $\tilde{W}_{\pi}=W|_{(K\cross A)_{\pi}}$ . $\square$

Recall that we have $(KxA)_{n}=K.\cross V$ for some vector group $V$ isomorphic
to $A$ by Proposition 4.4. We regard $(K\cross A)_{\pi}^{\wedge}$ as $K_{n}\cross \mathfrak{a}^{*}$ by

(5.1) $(T, b)(kk_{x}, x)=\chi_{b}(x)T(k)$ ,

where $\tau\in K_{\pi},$ $b’=\mathfrak{a}^{*},$ $k\in K_{\pi},$ $(k_{x}, x)\in V\cong A$ . We denote by $U_{(T.b\rangle}n$ the irreduc-
ible unitary representation of $(K\cross A)_{\pi}\ltimes N$ defined by

(5.2) $U_{(T,b),\pi}(kk_{x}, x, n)=(\overline{(T,b)}\otimes\pi ffl_{\zeta})(kk_{x}, x, n)$

$=\overline{\chi_{b}(x)}\overline{T}(k)\otimes\pi(n)\tilde{W}_{\pi}(kk_{x}, x)$ .

Then the induced representation $\tilde{U}_{(T}b$

) $\pi^{=Ind_{(K\cross A)_{\pi}\ltimes N^{U_{(\tau.b)}}}^{(K\cross A)\ltimes N}}\pi$ is an irreducible
unitary $repre$sentation of $K\ltimes S$ .

THEOREM 5.2. Let $T\in\hat{K}_{\pi}$ . If the intertwining number $c(T, W.)$ equals 1,
the irreducible representation $O_{(T,b),\pi}$ is a K-spherical representation of $K\ltimes S$ .
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PROOF. We denote by $1_{K}$ the trivial representation of $K$. Then we have

$c(1_{K}, (Ind_{(K\cross A)_{\pi}\ltimes N^{(\overline{(T,b)}\otimes\pi\tilde{W}_{\pi}))}}^{(K\cross A)\ltimes N}|_{K})=c(1_{K}, Ind_{K_{\pi}}^{K}((\overline{(T,b)}\otimes\pi\tilde{W}_{\pi})|_{K_{\pi}}))$

$=c(1_{K}, Ind_{K_{\pi}}^{K}(\overline{T}\otimes W_{\pi}))=c(T, W_{\pi})$ .

Since $(K;N)$ is a Gelfand pair, we have $c$ ( $T$ , W.)$l $([C])$ . If $c(T, W_{\pi})=1$ , we
have $c(1_{K},\tilde{U}_{(T,b),\pi})=1$ , so that $O_{(T,b)}ff$ is K-spherical. $\square$

We denote by $B(l)$ the analytic subgroup of $N$ corresponding to $b(l)$ and by
$p_{\iota}$ : $Narrow B(l)\backslash N$ the canonical projection. Define $\Phi_{\pi}$ : $(KxA)_{\pi}arrow Aut(B(l)\backslash N)$ by
$\Phi_{\pi}(kk_{x}, x)p_{\iota}(n)=p_{l}((kk_{x}, x)\cdot n)$ for $(kk_{x}, x)\in(K\cross A)_{\pi},$ $n\in N$. Let $H_{\pi}=\oplus_{a}V_{\alpha}$ be
the multiplicity-free decomposition of $W_{\pi}$ . Since elements of $\Phi_{\pi}(K_{\pi})$ commute
with elements of $\Phi_{\pi}(V)$ and since $(K;N)$ is a Gelfand pair, there exists $a_{\alpha}\in \mathfrak{a}^{*}$

for each $\alpha$ such that

(5.3) $ffi_{\pi}(k_{x}, x)v=x_{a_{a}}(x)v$ , $(k_{x}, x)\in V,$ $v\in V_{\alpha}$ .
Put $T_{\alpha}=W_{\pi}|_{V_{a}}$ and define

$\tilde{U}_{\pi,\alpha.a}=\hat{U}_{(T_{\alpha},a_{\alpha}-a),\pi}=Ind_{(K\cross A)_{\pi}\ltimes N}^{(KxA)\ltimes N}(\overline{(T_{\alpha},a_{\alpha}-a)}\otimes\pi\tilde{W}_{\pi})$ .

By Theorem 5.2, $U_{\pi,\alpha,a}$ is a $K$-spherical representation of $K\ltimes S=(K\cross A)\ltimes N$ .
We recall tbat $e$very bounded $K$-spherical function $\phi$ is expressed as $\phi=\phi_{\pi,\alpha,a}$ .

THEOREM 5.3. The irreducible representation $O_{\pi,\alpha.a}$ is the $K$-sphencal repre-
sentation of $K\ltimes S$ corresponding to $\phi_{\pi,\alpha.a}$ .

PROOF. Let $\{v_{1}, \cdots, v_{l}\}$ be an orthonormal basis for $V_{\alpha}$ . Put $v=$

$(1/\sqrt{}\overline{l})\Sigma_{i}\overline{v}_{i}\otimes v_{i}\in\overline{V}_{\alpha}\otimes H_{\pi}$ . We define $U_{\pi,a,a}$ by

(5.4) $U_{\pi.\alpha,a}(kk_{x}, x, n)=\chi_{a-a_{a}}(x)\overline{T}_{\alpha}(k)\otimes\pi(n)\tilde{W}_{\pi}(kk_{x}, x)$ ,

where $k\in K_{\pi},$ $(k_{x}, x)\in V,$ $n\in N$. Then it holds that

(5.5) $U_{\pi,\alpha,a}(k)v=v$ for all $k\in K_{\pi}$ .
Set

$f(k, x, n)=x_{a}(x)(1\otimes\pi(n))v$ , $(k, x, n)\in(KxA)\ltimes N$ .
Then we have for $k’\in K_{\pi},$ $(k_{x’}, x’)\in V$ ,

(5.6) $f((k’k_{x’}, x’, n’)(k, x, n))=f(k’k_{x’}k, x’x, n’((k’k_{x’}, x’)\cdot n))$

$=x_{a}(x’x)(1\otimes\pi(n’)\pi((k’k_{x’}, x’)\cdot n))v$ .
On the other hand one has
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$U_{\pi.a.a}(k’k_{x’}, x’, n’)f(k, x, n)$

$=U_{\pi.a.a}(k’k_{x’}, x’, n’)(\chi_{a}(x)(1\otimes\pi(n))v)$

$=x_{a}(xx’)^{\chi_{a_{a}}}\overline{(x’)}(\overline{T}_{a}(k’)\otimes\pi(n’)^{ffl_{\pi}}(k’k_{x’}, x’)\pi(n))v$

$=x_{a}(xx’)\overline{x_{a_{\alpha}}(x’)}(1\otimes\pi(n’)\pi((k’k_{x’}, x’)\cdot n))(\overline{T}_{a}(k’)\otimes\tilde{W}_{\pi}(k’k_{x’}, x’))v$ .
Here the formulas $(5.3)\sim(5.5)$ lead us to $\overline{\chi_{a_{a}}(x’}$) $(\overline{T}_{a}(k’)\otimes\tilde{W}_{\pi}(k’k_{x’}, x’))v=v$ ,

which in tum implies

$U_{\pi.\alpha.a}(k’k_{x’}, x’, n’)f(k, x, n)=\chi_{a}(xx’)(1\otimes\pi(n’)\pi((k’k_{x’}, x’)\cdot n))v$ .
This together with (5.6) says that $f$ is an element of the representation space
$H\sigma_{\pi.a.a}$ of $O_{\pi.a.a}$ .

The function $f$ is $K$-invariant. In fact we have for $k\in K$

$U_{\pi.\alpha.a}(k, 0,1_{N})f(k’, x’, n’)=f(k’k, x’, n’)=\chi_{a}(x’)(1\otimes\pi(n’))v$

$=f(k’, x’, n’)$ ,

where $1_{N}$ is the unit element of $N$.
We now calculate $\langle\tilde{U}_{\pi,a.a}(1_{K}, x, n)f, f\rangle$ , where $1_{K}$ is the unit element of $K$.

First we have

$O_{\pi.a.a}(1_{K}, x, n)f(k’, x’, n’)=f((k’, x’, n’)(1_{K}, x, n))=f(k’, x’x, n’((k’, x’)\cdot n))$

$=\chi_{a}(x’x)(1\otimes\pi(n’)\pi((k’, x’)\cdot n))v$ .

So denoting by the same symbol $d\nu$ the quasi-invariant measures on $(K\cross A)_{\pi}\ltimes$

$N\backslash (K\cross A)\ltimes N,$ $(K\cross A)_{\pi}\backslash KxA$ and $K_{\pi}\backslash K$, we get

$\langle\tilde{U}_{\pi.\alpha,a}(1_{K}, x, n)f, f\rangle$

$= \int_{(K\cross A)_{\pi^{\cross N\backslash (KxA)\ltimes N}}}\langle\tilde{U}_{\pi,a.a}(1_{K}, x, n)f(k’, x’, n’), f(k’, x’, n’)\rangle d\nu(k’, x’, n’)$

$=x_{a}(x) \int_{(K\cross A)_{\pi}\backslash K\cross A}\langle(1\otimes\pi(n’)\pi((k’, x’)\cdot n))v, (1\otimes\pi(n’))v\rangle d\nu(k’, x’)$

$=x_{a}(x) \int_{(K}$ . $A)_{\pi}\backslash KxA\langle(1\otimes\pi((k’, x’)\cdot n))v, v\rangle d\nu(k’, x’)$ .

Here in the last integrand, we substitute the definition $v=(1/\sqrt{l})\Sigma_{i}\overline{v}_{i}\otimes v_{i}$ to
obtain

$\langle(1\otimes\pi((k’, x’)\cdot n))v, v\rangle=\frac{1}{l}\sum_{i}\langle\pi((k’, x’)\cdot n)v_{\ell}, v_{i}\rangle$ .

In particular if $(k’, x’)\in(K\cross A)_{\pi}$, we have
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$\sum_{:}\langle\pi((k’, x’)\cdot n)v_{i}, v_{i}\rangle=\sum_{i}\langle\tilde{W}_{\pi}(k’, x’)\pi(n)\tilde{W}_{\pi}(k’, x’)^{-1}v_{t}, v_{t}\rangle$

$= \sum_{l}\langle\pi(n)v_{i}, v_{\ell}\rangle$ .

Hence we arrive at

$\langle 0_{\pi.a,a}(1_{K}, x, n)f, f\rangle=\frac{\chi_{a}(x)}{l}\sum_{i}\int_{K_{\pi}\backslash K}\langle\pi(k’\cdot n)v_{i}, v_{i}\rangle d\nu(k’)$ ,

$= \frac{\chi_{a}(x)}{l}\sum_{i}\psi,f.\emptyset_{i}(n)=x_{a}(x)\psi_{\pi.w}(n)$ ,

where $w=(1/\sqrt{l})\Sigma_{i}v_{i}\in V_{a}$ . Therefore $\langle\tilde{U}_{\pi.\alpha.a}(1_{K}, x, n)f, f\rangle=x_{a}(x)\psi_{\iota.a}(n)$ . $\square$

6. Special cases.

In this section, we use the notation in section 2 and suppose that $(K;S)$ is
a Gelfand pair. As we remarked before, the condition (2) in section 2 does not
necessarily imply that the action of $A$ on $N$ can be described through a homo-
morphism of $A$ into $K$. This being so, we take here a closer look at the
particular case where the following condition (C) is satisPed:

(C) there exists a continuous homomorphism $\varphi:Aarrow K$ such that $x\cdot n=\varphi(x)\cdot n$

for all $x\in A$ and $n\in N$.
Under the condltion (C), we can take a specific group as $V$ in Proposition

4.4, namely we put $V_{0}=\{(\varphi(x)^{-1}, x)|x\in A\}$ . Then we have

LEMMA 6.1. Suppose that $K$ acts on $N$ effectively. Then

(1) The image of $\varphi$ is in the center of $K$.
(2) One has $K\cross A=K\cross V_{0}$ , so that $K\ltimes S=(K\ltimes N)\cross V_{0}$ .

PROOF. (1) For $x\in A,$ $k\in K,$ $n\in N$, we have

$(k\varphi(x))\cdot n=k\cdot(x\cdot n)=x\cdot(k\cdot n)=(\varphi(x)k)\cdot n$ ,

whence $k\varphi(x)=\varphi(x)k$ , because of the effectiveness of the $K$-action on $N$.
(2) The former is obvious, and for the latter note that $V_{0}$ acts on $N$

trivially. $\square$

LEMMA 6.2. Let $\pi=\pi_{l}$ be the irreducible unitary rePresentation of $N$ corre-
sponding to $l\in \mathfrak{n}^{*}$ . Then

(1) $l\cdot V_{0}=l$ , so that $l\cdot(K\cross A)=l\cdot K$,
(2) $(K\cross A)_{\pi}=K_{\pi}xV_{0}$ .

PROOF. (1) For $x\in A,$ $X\in n$, we have $(l\cdot(\varphi(x)^{-1}, x))(X)=l((\varphi(x)^{-1}, x)\cdot X)=$

$l(X)$ . Hence $l\cdot V_{0}=l$ . The second assertion follows from Lemma 6.1 (2).
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(2) For $x\in A,$ $n\in N$, one has $\pi_{(\varphi^{(x)},x)}-1(n)=\pi((\varphi(x)^{-1}, x)\cdot n)=\pi(n)$ . There-
fore we get $(K\cross A)_{n}=(K\cross V_{0})_{\pi}=K_{\pi}\cross V_{0}$ . $\square$

NOW we construct irreducible $K$-spherical representations of $K\ltimes S$ . By
Lemma 6.1, $K\ltimes S$ is the direct product of $K\ltimes N$ and a vector group $V_{0}$ . Hence
each irreducible $K$-spherical representation of $K\ltimes S$ is the tensor product of the
representations of $K\ltimes N$ and $V_{0}$ .

PRoPOSrrION 6.3. The irreducible K-sphencal representation of $K\ltimes S$

corresponding to the $K$-sphencal function $\phi_{\pi.a,a}$ is given by $\tilde{U}_{\pi,\alpha.a}=$

$Ind\{_{K_{ff}\ltimes N)\cross V_{0}^{0}}^{K\ltimes N)\cross V}U_{\pi.\sigma.a}$ , where

(6.1) $U_{\pi,\alpha,a}(k\varphi(x)^{-1}, x, n)=x_{a}(x)\overline{T}_{\alpha}(k)\otimes\pi(n)W_{n}(k)$

for $k\in K_{\pi},$ $x\in A,$ $n\in N$. In Particular, any irreducible K-sphencal representation

of $K\ltimes S$ is the tensor Product of an irreducible K-spherical representation of $K\ltimes N$

and a unitary character of $V_{0}$ .

PROOF. Comparing (6.1) with (5.4), we have only to show that $a_{a}=0$ in
(5.3), where $(k_{x}, x)\in V$ is now replaced by $(\varphi(x)^{-1}, x)\in V_{0}$ . Take $1\in \mathfrak{n}^{*}$ such
that the corresponding irreducible unitary representation $\pi_{l}$ is equivalent to $\pi$ .
With the same notation as in section 5, we have for $x\in A$ and $n\in N$

$\Phi_{\pi}(\varphi(x)^{-1}, x)(p_{\iota}(n))=p_{l}((\varphi(x)^{-1}, x)\cdot n)=p_{\iota}(n)$ .

This means that $\Phi_{\pi}(V_{0})$ is trivial. Hence $a_{\alpha}=0$ for any $\alpha$ . $\square$

REMARK. Of course $a_{a}$ depends on $V$ in Proposition 4.4 and the represent-
ative $W_{\pi}$ of intertwining representation. For example, if $K_{\pi}=K$, we can take
$A$ as $V$ in Proposition 4.4. In this case, we see that $a_{\alpha}\neq 0$ in general.

7. Examples.

EXAMPLE 1. Mautner group. The Mautner group $S$ is by definition the
semidirect product of $R$ and $C^{2}$ with the product

(7.1) $(x, Z_{1}, z_{2})(x’, z_{1}’, z_{2}’):=(x+x’, z_{1}+e^{\sqrt{}\overline{-1}\alpha_{1}x_{Z_{1}^{J}}}, z_{2}+e^{\sqrt{}\overline{-1}\alpha_{2}x}z_{2}’)$ ,

where $\alpha_{1},$
$\alpha_{2}\in R$ linearly independent over $Q$ . It is well known that the solvable

Lie group $S$ is not of type I. The nilradical $n$ of the Lie algebra 9 of $S$ is equal
to $C^{2}$ . We denote by $N$ the analytic subgroup of $S$ corresponding to $n$ . We
identify $N$ with $C^{2}$ . Let $K=T^{2}$ the 2-dimensional torus act on $S$ by

$(u_{1}, u_{2})\cdot(x, z_{1}, z_{2}):=(x, u_{1}z_{1}, u_{2}z_{2})$ , ( $u_{i}\in C,$ $|u_{i}|=1$ for $i=1,2$).

Putting $A=R$ , we bave $S=A\ltimes N$ and this agrees with the notation that we
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have used until now. Obviously $(T^{2} ; N)$ is a Gelfand pair. Moreover, defining
a continuous homomorphism $\varphi:Rarrow T^{2}$ by $\varphi(x)=(e^{\sqrt{}\overline{-1}\alpha_{1}x}, e^{\sqrt{}\overline{-1}\alpha_{2}x})$ , we see easily
by (7.1) that the pair $(K;S)$ satisfies the condition (C).

The unitary dual $\hat{N}$ of $N$ is identified with $R^{4}$ by

$\pi_{(a_{1}.b_{1}.a_{2}.b_{2})}(x+\sqrt{-1}y_{1}, x_{2}+\sqrt{-1}y_{2}):=e^{\sqrt{}\overline{-1}\Sigma_{i=1^{(a_{i^{x}t^{+b_{i^{y}i)}}}}}^{2}}$ .
Then the elements of $\hat{N}/T^{2}=\hat{N}/(T^{2}\cross R)$ are of the form

$O_{r_{1}.r_{8}}:=$ { $\pi_{(a_{1}.b_{1}.a_{2}.b_{2})}|a_{i}^{2}+b_{t}^{2}=r_{i}^{2}$ for $i=1,2$}, $r_{1},$ $r_{2}\geqq 0$ .
Thus putting $\pi_{r_{1}.r_{2}}=\pi_{tr_{1}.(1.r_{2},0)}$ for simplicity, we take a system of representa-
tives by { $\pi_{r_{1}.r_{2}}|r_{i}\geqq 0$ for $i=1,2$}.

The $T^{2}$-spherical function $\phi_{r_{1}.r_{2}.a}$ on $S$ are given by

$\phi_{r_{1}.r_{2},a}(x, z_{1}, z_{2})=e^{\sqrt{-1}}ax\int_{T^{2}}\pi_{r_{1}.r_{2}}((u_{1}, u_{2})\cdot(z_{1}, z_{2}))du_{1}du_{2}$ , $(a\in R)$ ,

where $du_{i}$ is the normalized Haar measure on $T$ for $i=1,2$ . To realize the
corresponding irreducible $T^{2}$-spherical representation of $T^{2}\ltimes S$ , we take first the

irreducible unitary representation $\tilde{U}_{r}$ $:=Ind$
$C$

$\chi_{r}(r>0)$ of the euclidean motion
$T\ltimes C$

group $T\ltimes C$ on the plane, where $\chi_{r}(x+\sqrt{-1}y)=e^{\sqrt{-1}rx}$ . When $r=0$, we take
$\tilde{U}_{0}$ to be the trivial one-dimensional representation. Then the irreducible $T^{2}-$

spherical representation $\tilde{U}_{r_{1}.r_{2}}$ of $T^{2}\ltimes C^{2}=(T\ltimes C)^{2}$ is $\tilde{U}_{r_{1}}\otimes\tilde{U}_{r_{2}}$ . Therefore the
irreducible $T^{2}$-spherical representation of $T^{2}\ltimes S$ corresponding to $\phi_{r_{1},r_{2}.a}$ is

$\tilde{U}_{r_{1}.r_{2},a}(u_{1}e^{-\sqrt{-1}\alpha_{1}x}, u_{2}e^{-\sqrt{-1}}a_{2}xx, z_{1}, z_{l})=e^{\sqrt{-1}ax}\tilde{U}_{r_{1}}(u_{1}, z_{1})\otimes\tilde{U}_{r_{2}}(u_{2}, z_{2})$ .

EXAMPLE 2. We next given an example in which the stabilizer of some
representation is not connected. Let $H_{2}$ be the 5-dimensional Heisenberg Lie
group with Lie algebra $\mathfrak{h}_{2}$ . We shall identify the underlying manifold of $H_{2}$

witb $C^{2}\cross R$ . We put $A\simeq R$ and make $A$ act on $H_{2}xC$ by

$x\cdot((z_{1}, z_{2}),$ $t,$ $z_{3}):=((e^{\sqrt{-1}x}z_{1}, e^{\sqrt{}\overline{-1}x}z_{2}),$ $t,$ $e^{4}\sqrt{-1}xz_{3})$ ,

where $z_{i}\in C(i=1,2,3)$ and $x,$ $t\in R$ . With this action we form the semidirect
product $S=A\ltimes(H_{2}\cross C)$ . Denote by 9 the Lie algebra of $S$ . The nilradical $\mathfrak{n}$

of 9 is $\mathfrak{h}_{2}XC$ . The corresponding analytic subgroup of $S$ will be denoted by
$N$. Let the action of $K=U(2)$ on $S$ be

$k\cdot(x, (z_{1}, z_{2}), t, z_{3}):=(x, k\cdot(z_{1}, z_{2}), i, (\det k)^{2}z_{3})$ ,

where $k\cdot(z_{1}, z_{2})$ stands for the usual linear action of $U(2)$ on $C^{2}$ .
PROPOSITION 7.1. The pair $(K;S)$ is a Gelfand pair.
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PROOF. First of all we show that $(K;N)$ is a Gelfand pair. Let $\mathfrak{n}^{*}$ be the
dual space of $n$ . For a non-zero real number $\alpha$ and $r>0$, we define the element
$l_{a,r}\in n^{*}$ by $l_{a,r}((z_{1}, z_{2}),$ $t,$ $z_{8})=\alpha t+r({\rm Re} z_{3})$ . Then we see that the union of the
family of orbits {Ad*(N)l\alpha , $’\cdot K|\alpha\neq 0,$ $r>0$} is dense in $\mathfrak{n}^{*}$ . The radical $\mathfrak{n}(1_{\alpha,r})$

of the alternating form $l_{\alpha,r}([\cdot, ])$ is $(O\cross R)\cross C$ . Put $b(l_{\alpha,r})=\mathfrak{n}(l_{\alpha.r})\cap(kerl_{\alpha,r})$

and denote by $B(l_{\alpha,r})$ the analytic subgroup of $N$ corresponding to $b(l.,.)$ . Then
$B(l.,.)$ is a normal subgroup of $N$ and $B(l.,r)\backslash N$ is isomorphic to the 5-dimen-
sional Heisenberg Lie group $H_{2}$ . Let us denote by $\pi_{\alpha,f}$ the irreducible unitary
$repre$sentation of $N$ corresponding to $l_{\alpha.t}$ . Then we have $\pi_{\alpha.r}=U\circ p_{a.r}$, where
$p_{\alpha,r}$ : $Narrow B(l_{\alpha.r})\backslash N$ is the canonical projection and $U$ an infinite-dimensional
irreducible unitary representation of $B(l_{a.r})\backslash N\cong H_{2}$ . Let $K_{\alpha,t}$ be the stabilizer
of $\pi_{\alpha,r}$ in $K$. Using Lemma 2.4 in [Ki], we have

$K_{\alpha,r}=$ { $k\in U(2)|l_{ex.r}(k\cdot X)=l_{a.r}(X)$ for all $X\in \mathfrak{n}(l_{\alpha,r})$ }

$=\{k\in U(2)|\det k=\pm 1\}$ .

We define a map $\Phi_{\kappa_{\alpha.t}}$ : $K_{\alpha,r}arrow Aut(B(l_{a.r})\backslash N)$ by $\Phi_{\pi_{a,r}}(k)(p_{\alpha.r}(n))=p_{\alpha.r}(k\cdot n)$ .
Then $\Phi_{\pi}\ldots(K_{a,r})$ is isomorphic to $K_{\alpha,f}$ . Since (SU(2); $H_{2}$) is a Gelfand pair, so
is $(\Phi_{\pi_{\alpha,r}}(K_{a.r});B(l_{a,r})\backslash N)$ , too. Theorem 2.6 of [Ki] then yields that $(K;N)$ is
a Gelfand pair.

We now define a continuous homomorphism $\varphi:Rarrow U(2)$ by

$\varphi(x)\cdot=(^{e_{0}^{\sqrt{-1}x}}e^{\prime_{-1x}I}0$ .

Then for $n\in N$, we have

$x\cdot((z_{1}, z_{2}),$ $t,$ $z_{3})=((e^{\sqrt{}\overline{-1}x}z_{1}, e^{\sqrt{-1}x_{Z_{2})}}, t, e^{4\sqrt{}\overline{-1}x}z_{3})$

$=(\varphi(x)\cdot(z_{1}, z_{2}),$ $t,$ $(\det\varphi(x))^{2}z_{3})=\varphi(x)\cdot((z_{1}, z_{2}),$ $t,$ $z_{S})$ .
Thus $(K;S)$ satisfies the condition (C) in section 6. Since $U(2)$ acts on $A$

trivially, we conclude that $(K;S)$ is a Gelfand pair by using Theorem 7.3 in
[BJR]. $\square$

Put $V_{0}=\{(\varphi(x)^{-1}, x)|x\in R\}\subset K\cross A$ as in Lemma 6.1. For the stabilizer
$(K\cross A)_{\alpha,r}=(K\cross A)_{\pi_{\mathcal{O}.t}}$ of $\pi_{a.t}$ in $K\cross A$ , we have

$(K\cross A)_{a,r}=$ { $(k,$ $x)|l_{a.r}((k,$ $x)\cdot X)=l_{\alpha,r}(X)$ for all $X\in n(l_{a,r})$}

$=\{(k, x)|(detk)e^{2\sqrt{-1}x}=\pm 1\}=\{(k\varphi(x)^{-1}, x)|\det k=\pm 1\}$

$=K_{\alpha,r}\cross V_{0}$ .
Hence $(K\cross A)_{\alpha,r}$ is a non-connected maximally almost periodic group which is
the direct product of a compact group and a vector group.
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EXAMPLE 3. Finally we give an example in which the condition (C) is not
satisfied. Put $A=R$ and let $S$ be the semidirect product of $A$ and the 5-dimen-
sional Heisenberg Lie group $H_{2}$ with the action

$x\cdot((z_{1}, z_{2}),$ $t):=((e^{\prime-1x}z_{1}, e^{\sqrt{}\overline{-1}x}z_{2}),$ $t)$ .
Let $K=SU(2)$ and the action of $K$ be given by

$k\cdot(x, (z_{1}, z_{g}), t):=(x, k\cdot(z_{1}, z_{2}), t)$ .
The pair (SU(2); $H_{2}$) is a Gelfand pair (for example [BJR], Theorem 4.6). For
$(0, O)\neq z=(z_{1}, z_{2})\in C^{2}$ and $x\in R$, we define $k_{z},$ $k_{x}\in SU(2)$ by

$k_{z}$ $:=(\begin{array}{ll}\frac{z_{1}}{\sqrt{|z_{1}|^{2}+|z_{2}|^{2}}} \frac{-\overline{z}_{2}}{\sqrt{|z_{1}|^{2}+|z_{2}|^{2}}}\frac{z_{2}}{\sqrt{}|\overline{z_{1}|}^{2}\overline{+|z_{2}|}^{2}} \frac{\overline{z}_{1}}{\sqrt{}|z_{1}|^{2}\neg+z_{2}|^{2}}\end{array})$ , $k_{x}:=(^{e_{0}^{\sqrt{}\overline{-1}x}}e^{-\sqrt{-1}x}0)$ .

Then we see that

$k_{z}k_{x}k_{z}^{-1}\cdot(z_{1}, z_{2})=k_{z}k_{x}\cdot(\sqrt{|z_{1}|^{2}+|z_{2}|^{2}},0)=k_{z}\cdot(e^{\sqrt{}\overline{-1}x}\sqrt{}|\overline{z_{1}|^{2}+|z_{2}|^{2}},0)$

$=(e^{\prime-1x_{Z_{1}}}, e^{\sqrt{-1}}xz_{2})=x\cdot(z_{1}, z_{2})$ .
Hence $(K;S)$ is a Gelfand pair by triviality of the action of SU(2) on $A$ and
Theorem 7.3 in [BJR].

The pair $(K;S)$ does not satisfy the condition (C). In fact if there exists
a continuous homomorphism $\varphi:Rarrow SU(2)$ such that $x\cdot z=\varphi(x)\cdot z$ for any $x\in R$

and $z\in C^{2}$ , we see that $\varphi(R)$ is included in the center of SU(2) by Lemma 6.1.
Since $R$ is connected, $\varphi(R)$ is necessarily trivial, a contradiction.

Denote by 9 the Lie algebra of S. Then the nilradical $\mathfrak{n}$ of 9 is the
5-dimensional Heisenberg Lie algebra $\mathfrak{h}_{2}$ . Denote by $\mathfrak{n}^{*}$ the dual space of $n$ .
The analytic subgrouP $N$ of $S$ corresponding to $\mathfrak{n}$ is the Heisenberg Lie group
$H_{2}$ . The $(Ad^{*}(H_{2}), SU(2))$-orbits in $n^{*}$ are described as follows:

$O_{0,0}:=\{0\}$ ,

$\mathcal{O}_{r,0}:=\{l_{a_{1}.b_{1},a_{i},b_{2}}|\sum_{i\Rightarrow 1}^{2}(a_{\ell}^{2}+b_{p}^{2})=r^{2\}}$ , $r>0$,

$l_{a_{1}.b_{1},a_{g’ b_{2}}}((x_{1}+’-1y_{1}, x_{2}+\sqrt{-1}y_{2}),$ $t):= \sum_{i=1}^{2}(a_{t}x_{i}+b_{i}y_{i})$ ,

$O_{s}:=Ad^{*}(H_{2})l_{S}SU(2)$ , $s\neq 0$ , $l_{S}((z_{1}, z_{2}),$ $t):=st$ .

We only treat here the orbit $O_{1}$ for simplicity. Let $1\in \mathfrak{n}^{*}$ be defined by
$l((z_{1}, z_{2}),$ $t)=t$ . In this case we have

$n(l)=0\cross R$ , $K_{\pi}\iota=K$ , $(K\cross A)_{\pi_{l}}=K\cross A$ .
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The irreducible $re$presentation $\pi_{l}$ corresponding to $l$ is realized on the Hilbert
space ev of entire functions $f$ on $C^{2}$ satisfying

$||f||^{2}:= \int_{C^{2}}|f(w_{1}, w_{2})|^{2}e^{-(|w_{1}|^{2}+|w_{2}|^{2})/2}dw_{1}dw_{2}<\infty$ .

The representation operators are given by

$\pi_{\iota}((z_{1}, z_{2}),$ $t)f(w_{1}, w_{2}):= \exp(\sqrt{-1}t-\frac{1}{2}(w_{1}\overline{z}_{1}+w_{2}\overline{z}_{2})-\frac{1}{4}(|z_{1}|^{2}+|z_{2}|^{2}))$

$\cross f(w_{1}+z_{1}, w_{2}+z_{2})$ .
The intertwining representation $\tilde{W}_{\pi_{l}}$ of $(K\cross A).l$ is defined by

$\tilde{W}_{\pi_{l}}(k, x)f(w_{1}, w_{2}):=f(k^{-1}e^{-\sqrt{-1}x}1_{K}\cdot(w_{1}, w_{2}))$ ,

where $1_{K}$ is the $(2\cross 2)$-identity matrix. Then $\tilde{W}_{\pi_{l}}$ splits into the irreducibles
$\mathfrak{F}=\oplus {}_{m}P_{m}$ , where $P_{m}$ is the space of homogeneous polynomials of degree $m$ .
Since the restriction of $\tilde{W}_{\pi_{l}}(1_{K}, x)$ to $P_{m}$ is the scalar multiplication by $e^{-\sqrt{}\overline{-1}mx}$ ,

we see that the irreducible $SU(2)$-spherical $repre$sentation $\tilde{U}_{\pi_{l}.m,a}$ of $SU(2)\ltimes S$

corresponding to $\phi_{\pi_{l},m,a}$ is given by

$O_{\pi_{l},m,a}(k, x, (z_{1}, z_{2}), t):=e^{\sqrt{}\overline{-1}(\mathfrak{a}+m)x}T_{m}(k)\otimes\pi_{l}((z_{1}, z_{2}),$ $t)\tilde{W}_{\pi_{l}}(k, x)$ ,

where $T_{m}$ is the $(m+1)$-dimensional irreducible representation of SU(2).
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