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0. Introduction.

We shall extend two basic theorems on decomposition of lattices over
orders–‘ Roiter-Jacobinski Divisibility Theorem ’ and ‘ Jacobinski-Swan Cancella-
tion Theorem’–to an arbitary $R$-order $\Lambda$ over an arbitary Dedekind domain $R$ .
The point is that we do not assume the ambient algebra $A=K\Lambda$ to be separable
over the quotient field $K$ of $R$ .

0.0. AS for terminology, we mostly follow that of [1] and [2]. However,
for a maximal ideal $P$ of $R$ , the suffix $P$ like $R_{P}$ always denotes the P-adic
completion rather than the localization.

A left $\Lambda$ -lattice $L’$ will be called a local direct summand of another $\Lambda$ -lattice
$L$ if $L_{P}’$ is a direct summand of $L_{P}$ for any maximal ideal $P$.

Write $KL\gg KL’$ if every $A$ -indecomposable direct summand of $KL’$ occurs
strictly oftener in $KL$ than in $KL’$ .

Write $M\sim L$ if $L_{P}\cong M_{P}$ for any $P$.
THEOREM 1 (Roiter-Jacobinski type Divisibility). Suppose that $L’$ is a local

direct summand of L. Then

(i) $L$ has a direct summand $M’$ such that $M’\sim L’$ .
(ii) If $KL\gg KL’$ , then $L’$ itself is a direct summand of $L$ .
THEOREM 2 (Jacobinski-Swan type Cancellation). Assume that the K-algebra

$B=End_{A}KL$ has the “ strong approximation”. Then the following cancellation
law (c) holds.

(c) If $L’$ is a local direct summand of $nL=L\oplus L\oplus\cdots\oplus L$ ( $n$ -times), then
$L\oplus L’\cong M\oplus L’$ implies $L\cong M$.

0.1. Remark on Theorem 1. (i) is known if $A$ is separable over $K$ (cf.
[1] 31.12.) (ii) is known if $A$ is separable over $K$ and moreover $K$ is a global
field, i.e., $K$ is a finite extension of the rational number field $Q$ or of the
rational function field $F_{q}(T)$ (cf. [1] 31.32, [4], [6].)

The current proof of (i) heavily depends on the existence of maximal
orders, while the proof of (ii) depends on Jordan-Zassenhaus Theorem.
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TO avoid the use of maximal orders, generalizing the elementary subgroup
$E(n, C)$ of $GL(n, C)=M(n, C)^{\cross}$ , we consider the “ elementary subgroup” $E_{\epsilon}(B)$

of $B^{\cross}$ associated to a given finite set $e$ consisting of mutually orthogonal
idempotents of $B$ :

$E_{e}(B):=\langle 1+eBe’ ; e, e’\in e, e\neq e’\rangle$ .

Using an almost obvious fact (1.2.1) that $E_{e}(B)$ is always dense in the
elementary subgroup $E_{e}(B\otimes A)$ of the adelized ring $B\otimes A$ , we can reduce the
proof of Theorem 1 to an almost local problem (2.0) depending only upon $KL$

and $KL’$ rather than $L$ and $L’$ . This problem is easily solved by applying the
well known Lemma of Bass which states: if $C$ is semi-local, then, by the usual
embedding $C^{X}\subset GL(n, C),$ $GL(n, C)=E(n, C)C^{X}$ . In our proof, claims (i) and
(ii) are derived simultaneously.

0.2. Remark on Theorem 2. The theorem is known again under the as-
sumption that $K$ is a global field and $A$ is separable over $K$ (cf. [2] 51.28.)

Beside that, there is a result of Drozd-Swan (cf. [7] 16.7, [3]), which is closely
related to ours and will be recalled at the end of this paragraph. In the known
case, the “ strong approximation” is in the sense of Eichler-Kneser (cf. [5]), for
the norm 1 subgroup $B^{(1)}$ of $B^{x}$ . We shall modify the sense of ” strong approx-
imation “ by replacing $B^{(1)}$ with the group of Vaserstein $\tilde{E}(B)$ defined as

$\tilde{E}(B):=\langle(1+xy)(1+yx)^{-1} ; x, y\in B, 1+xy\in B^{x}\rangle$ .
The group $\tilde{E}(B)$ coincides with $\tilde{E}(1, B, B)$ of [8], and contains $[B^{\cross}, B^{\cross}]$ . If $A$

is separable and $K$ is a global field, $\tilde{E}(B)=B^{(1)}=[B^{\cross}, B^{\cross}]$ .
We say that $B$ has the “ strong approximation” if $\tilde{E}(B)$ is dense in $\tilde{E}(B\otimes A)$ .

Our Theorem 2 follows directly from a result of Vaserstein ([8] Th. 3.6) which
states: if $C$ is semi-local, then $E(n, C)\cap C^{\cross}=\tilde{E}(C)$ for $n\geqq 2$ . We do not discuss
in this paper, the interesting problem of finding out when “ strong approxima-
tion” holds. Thus our extension in Theorem 2 remains rather formal. However
it still gives us some gain, say, if $B=M(n, C)$ by some $K$-algebra $C$ with $n\geqq 2$ ,
then our “ strong approximation” trivially holds for $B(1.2.2)$ . In particular our
Theorem 2 includes the above mentioned result of Drozd-Swan.

0.3. Restatements of Theorems. Let $\mathcal{G}(L)$ denote the genus of $L$ , namely
$\mathcal{G}(L)$ is the set of all $\Lambda$ -isomorphism classes of $\Lambda$-lattices $M$ such that $M\sim L$ .
Theorem 1 can be restated as:

THEOREM 1’. Suppose $M\in \mathcal{G}(L’\oplus L^{\nu})$ . Then
(i) $M\cong M’\oplus M’’$ by some $M’\in \mathcal{G}(L’)$ and $M"\in \mathcal{G}(L’’)$

(ii) If $KM\gg KL’$ , then $M\cong L’\oplus M’’$ .
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When Theorem 1 (ii) is granted, the cancellation law (c) of Theorem 2 can
be restated as

$(c’)$ The map $X->X\oplus(n-1)L$ induces an injection $\mathcal{G}(L)arrow \mathcal{G}(nL)$ for any
$n\geqq 1$ .

1. Adeles and Ideles.

Let $R$ be a Dedekind domain and $K$ be its quotient field. Let $A$ denote the
(finite) adele ring of $K$, namely, the restricted direct product $\prod’K_{P}$ ($w$.r.t $R_{P}$)

of the topological rings $K_{P}$ with respect to the subrings $R_{P},$ $A=\{a=(a_{P})\in\Pi K_{P}$ ;
$a_{P}\in R_{P}$ for almost all $P$}. As usual we consider $A$ to contain (diagonally
embedded) $K$ and to be a $K$-algebra. Let $B$ be a finite dimensional K-algebra.
The adelization of $B$ is, by definition, the $K$-algebra $B\otimes_{K}A$ , emdowed with the
initial topology for the family of mappings $f\otimes id_{A}$ : $B\otimes Aarrow A,$ $f\in Hom_{K}(B, K)$ ,
or equivalently the topology from the identification $B\otimes A\cong A\oplus A\oplus\cdots\oplus A$ by any
choice of $K$-basis of $B$ . It is a topological ring and contains $B$ through the
embedding $bharrow b\otimes 1$ . The $K$-algebra morphism $\theta$ : $B\otimes Aarrow\Pi B_{P},$ $b\otimes a\vdasharrow(b\otimes a_{P})$

induces an isomorphism of topological rings as well as of bi-B-modules:

$\theta$ : $B\otimes_{K}Aarrow B_{A}$$:=\sim\Pi’B_{P}(w.r.t\Gamma_{P}),$ $xrightarrow(x_{P})$ ,

where $\Gamma$ is any $R$ -order of $B$ . We shall identify $B\otimes A$ with $B_{A}$ and $x$ with
$(x_{P})$ by $\theta$ .

1.1. The idele group $(B\otimes A)^{\cross}=B_{A}^{\cross}$ of $B$ is, by definition, the topological
group $\Pi’(B_{P})^{\cross}$ ($w$.r.t $(\Gamma_{P})^{x}$ ). Explicitly, a fundamental system of neighbourhoods
of $0$ in $B_{A}$ (resP. of 1 in $(B_{A})^{\cross}$ ) is given by

$U^{+}( S, n)=\prod_{P\in S}P^{n}\Gamma_{p}\cross\prod_{P\not\in S}\Gamma_{p}$ (resp. $U^{\cross}(S,$
$n)= \prod_{P\in S}(1+P^{n}\Gamma_{P})\cross\prod_{P\not\in S}(\Gamma_{P})^{\cross}$),

where $S$ runs over all finite set of maximal ideals and $n$ runs over all positive
integers.

1.1.1. SuPPose $H$ is a subgrouP of $(B\otimes A)^{\cross}=(B_{A})^{\cross}$ having the following
property:

(b) If $x=(x_{P})\in H$ and $x_{P}\in\Gamma_{P}$, then $x_{P}\in(\Gamma_{P})^{\cross}$ .
Then the induced topology on $H$ from the adele toPology of $B\otimes A$ coincides with
the induced topology on $H$ from the idele topology of $(B\otimes A)^{\cross}$ .

PROOF. (b) implies $H\cap(1+U^{+}(S, n))=H\cap U^{X}(S, n)$ .
1.2. Let $e$ be a finite set of orthogonal idempotents in $B$ . Identifying $e\otimes 1$

with $e$ , along with the elementary subgroup $E.(B)$ of 0.1, we can consider
$E_{\epsilon}(B_{P})=E_{e}(B\otimes K_{P})$ or $E_{e}(B\otimes A)$ . Put
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$\mathcal{E}_{\epsilon}(B):=(B_{A})^{\cross}\cap\Pi E_{e}(B_{P})$ .

$E_{e}(B\otimes A)$ is obviously a subgroup of $e_{e}(B)$ . In some cases it is known that
these two groups coincide, but in general we do not know whetber they coincide
or not. However, since $E_{e}(B\otimes A)$ contains each quasi factor $E_{e}(B_{P})$ , for any
open subgroup $CU$ of $(B_{A})^{\cross}$ , we have

(1) $E_{e}(B\otimes A)^{c}U=\mathcal{E}_{e}(B)q]$ .
1.2.1. LBMMA. $E.(B)$ is dense in $E_{e}(B\otimes A)$ in the idele topology. It is also

dense in $\mathcal{E}_{e}(B)$ .
PROOF. By Chinese Remainder Theorem, $B$ is dense in $B\otimes A$ , and $eBe’$ is

dense in $e(B\otimes A)e’$ . Hence $1+eBe’$ is dense in $1+e(B\otimes A)e’$ in the adele topol-
ogy. Since any element of $e(B\otimes A)e’$ is nilpotent, the group $H=1+e(B\otimes A)e’$

has the property (b) of 1.1.1. Thus $1+eBe’$ is dense in $1+e(B\otimes A)e’$ in the idele
topology. This obviously implies that $E_{e}(B)$ is dense in $E_{e}(B\otimes A)$ . It is also
dense in $\mathcal{E}_{e}(B)$ by (1).

1.2.2. Let $\tilde{E}(B)$ be the group of Vaserstein as in 0.2. Suppose that $B$ is the
total matrix algebra $M(n, C)$ over some $K$-algebra $C$ with $n\geqq 2$ . Then as is easily
seen from [8] Th. 3.6, $\tilde{E}(B)$ (resp. $\tilde{E}(B_{P})$) can be identified with the elementary
subgroup $E(n, C)$ (resp. $E(n,$ $C_{P})$) of $B^{\cross}=GL(n, C)$ (resp. $(B_{P})^{\cross}=GL(n,$ $C_{P}).$ )
Hence, by 1.2.1, $B$ has the “ strong approximation.”

1.3. LEMMA. Let $\mathcal{E}_{P},$ $H_{P}$ be subgroups of $B_{P}^{\cross}$ such that $B_{P}^{\cross}=\mathcal{E}{}_{P}H_{P}$, and $\mathcal{E}=$

$(B_{A})^{\cross}\cap\Pi \mathcal{E}_{P}$. Suppose that $B^{\cross}\cap \mathcal{E}$ is dense in $\mathcal{E}$ . Then, for any open subgroup
$c_{U}$ of $(B_{A})^{\cross}$ , we have:

(i) The double coset space $B^{\cross}\backslash (B_{A})^{\cross}/CU$ admits a set of representatives in
the subgroup $\Pi’H_{P}$ ($w.r$ . t. {1}) of $(B_{A})^{\cross}$ .

(ii) Further, if $\mathcal{E}_{P}$ is a normal subgroup of $(B_{P})^{\cross}$ with the abelian quotient
for any $P$, then $B^{\cross}q$] is a normal subgroup containing $\mathcal{E}$ , and $B^{\cross}\backslash (B_{A})^{\cross}/(u$

is in fact the quotient group $(B_{A})^{\cross}/B^{\cross}q]$ .
PROOF. (i) For any $g\in(B_{A})^{\cross}$ , $(B^{\cross}\cap \mathcal{E})g^{c}U=\mathcal{E}gV$ . Hence, $B^{\cross}g^{c}U=$

$B^{\cross}(B^{\cross}\cap \mathcal{E})g^{q}J=B^{\cross}\mathcal{E}g^{qf}$ . (ii) Since $\mathcal{E}$ is normal, $B^{X}e$ and $CU\mathcal{E}$ are subgroups.
Since $(B_{A})^{\cross}/\mathcal{E}$ is abelian, $B^{\cross}\mathcal{E}$ and $\subseteq U\mathcal{E}$ are normal in $(B_{A})^{\cross}$ . By (i), $B^{\cross c}U=$

$B^{\cross}\mathcal{E}^{c}U=B^{\cross}\mathcal{E}q]\mathcal{E}$ is normal, and $B^{\cross}g^{q}J=B^{\cross}\mathcal{E}gv=gB^{\cross}\mathcal{E}qJ=gB^{\cross}q$].

2. Proof of Theorem 1’.

Put $L=L’\oplus L’’,$ $V=KL,$ $V’=KL’,$ $V’’=KL’’,$ $B=End_{A}V,$ $\Gamma=End_{A}L$ . Let $e’$

$(\backslash ^{resp}\cdot e’’)$ be the idempotent of $B$ corresponding to the projection $Varrow V’$ (resp.
$Varrow V’’)$ , and $B’=e’$ Be $\cong End_{A}V’,$ $B’’=e^{\prime\gamma}Be’’\cong End_{A}V’’$ . As is well known (cf.
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[1] 31.18 and 31.35 (iv) $)$ , the map $x=(x_{P})\vdasharrow\cap(x_{P}(L_{p})\cap V)$ induces the bijection
between $B^{\cross}\backslash (B_{A})^{\cross}/q](L)$ and $\mathcal{G}(L)$ , where $c_{U(L)=\Pi(\Gamma_{P})^{\cross}}$ The claim of Theo-
rem 1 is clearly equivalent to

(i) $B^{\cross}\backslash (B_{A})^{\cross}/(u(L)$ admits a set of representatives in the diagonal subgroup
$(B_{4}’)^{\cross}\cross(B_{A}’’)^{\cross}$ .

(ii) If $V\gg V’$ , one can even reduce the representatives in the subgroup
$\{1\}\cross(B_{A}’)^{\cross}$ .

TO prove the above, in view of 1.3 together with 1.2.1, it suffice to prove

2.0. There is a set of orthogonal idempotents $e\sim of$ $B$ such that:

(i) $(B_{P})^{\cross}=E_{\overline{e}}(B_{P})((B_{P}’)^{\cross}\cross(B_{P}’’)^{\cross})$ for any $P$.
(ii) If $V\gg V’,$ $(B_{P})^{\cross}=E_{\tilde{e}}(B_{P})(\{1\}\cross(B_{P}’’)^{\cross})$ for any $P$.
2.1. Let $U_{i}(1\leqq i\leqq n)$ be the distinct $A$ -indecomposable direct summand of

$V$ , and $n_{i}>0,$ $n_{i}’\geqq 0,$ $n_{i}’’\geqq 0$ be the multiplicity of $U_{i}$ in $V,$ $V’$ and $V’’$ , respec-
tively. Note that the condition $V\gg V’$ means $n_{i}’>0\Rightarrow n_{i}’’>0$ . Decompose $e’,$ $e’$

into the orthogonal sum of primitive idempotents $e_{ia}$ , choosing the double index
$(i, \alpha)$ in the following way:

$e_{i\alpha}(V)\cong U_{i}(1\leqq i\leqq n)$ ; $e’=\Sigma e_{i}’$ , $e’’=\Sigma e_{i}’’$ ,

where $e_{i}’$ (resp. $e_{t}’’$) is the sum $\Sigma e_{i\alpha}$ over $1\leqq\alpha\leqq n_{i}’$ (resp. $n_{i}’<\alpha\leqq n_{i}$). Then put
$e_{i}=e_{i}’+e_{i}’’$ , and $e=\{e_{i} ; 1\leqq i\leqq n\}$ .

2.1.1. First, we look at the set of idempotents $e$ , and put $B_{ij}=e_{i}Be_{j}$ ,
$B_{i}=B_{ii}$ . Then each element $b\in B$ is uniquely written as $b= \sum b_{ij}$ with $b_{ij}=$

$e_{i}be_{j}\in B_{ij}$ . The multiplication with $b’= \sum b_{tj}’$ is given as $bb’= \sum c_{ij}$ with $c_{ij}=$

$\Sigma_{k}b_{t\iota}b_{kj}’$ . Suggestively said, the correspondence $b->(b_{ij})$ gives $B$ the structure
of $n$ by $n$ matrix algebra with entries in $B_{tj}$ . In particular, if the pair $(B, e)$

has the property

(a) $b= \sum b_{ij}\in B^{\cross}\Rightarrow b_{ii}\in B_{i}^{\cross}$ ,

then $B^{x}$ can be diagonalized by $E_{e}(B),$ $B^{\cross}=E_{e}(B)\Pi B_{i}^{\cross}$ .
2.1.2. LEMMA. $(B, e)$ of 2.1 has the property(a).

PROOF. It obviously suffice to see:
$(a’)$ If $i\neq k,$ $B_{ik}B_{ki}\subset radB_{i}=e_{i}(radB)e_{i}$ .

TO see this, we first observe:

(1) $e_{i\alpha}Be_{k\beta}Be_{i\alpha}\subset rad(e_{ia}Be_{i\alpha})=e_{ia}(radB)e_{i\alpha}$ .
Indeed, if $x\in e_{i\alpha}Be_{k\beta},$ $x’\in e_{Z\beta}Be_{ia}$ and $xx’\not\in rad(e_{i\alpha}Be_{i\alpha})$ , then since $e_{i\alpha}Be_{i\alpha}\cong$

$End_{A}U_{i}$ is a local ring, $xx’\in(e_{i\alpha}Be_{i\alpha})^{x}\cong Aut_{A}U_{i}$ . Hence the A-injection
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$x’$ : $e_{i\alpha}(V)arrow e_{k\beta}(V)$ splits, contradicting $U_{i}$ -zl $U_{k}$ . Since $e_{i\gamma}(V)\cong e_{i\alpha}(V)\cong U_{i}$ , there
is some $y\in B^{\cross}$ such that $ye_{i\gamma}B=e_{i\alpha}B$ . Multiplying (1) by $y$ , we have
$e_{i\gamma}Be_{k\beta}Be_{i\alpha}\subset e_{i\gamma}(radB)e_{i\alpha}$ for any $\gamma$ . This implies $(a’)$ .

2.1.3. $(B_{p})^{\cross}=E_{e}(B_{p})\cdot\Pi(B_{i,P})^{\cross}$ .

PROOF. $B_{P}^{\cross}$ is open in $B_{P}$, and $B$ is dense in $B_{P}$. Since $(B, e)$ has the
property (a), $(B_{P}, e)$ also has the property (a).

2.2. Put $e_{i}=\{e_{i\alpha} ; 1\leqq\alpha\leqq n_{i}\},$ $e \sim=\bigcup_{i}e_{i}$ . We shall further reduce $\Pi(B_{i.P})^{\cross}$

by $E_{\overline{e}}(B_{P})$ to the form of 2.0. Fixing one arbitrarily chosen $P$, we simplify the
notation by dropping the suffix $P$, so we mean $B_{P}$ by $B$ . Put $B_{t}’=e_{i}’Be_{i}’=e_{i}’B_{i}e_{i}’$ ,
$B_{i}’’=e_{i}’’Be_{i}’’$ , one of which may be $\{0\}$ . Put $C_{i}=End_{A}U_{i}$ .

Since $B_{i}\cong End_{A}e_{i}(V)\cong End_{A}(n_{i}U_{i})\cong M(n_{i}, C_{i})$ , there is an isomorphism $f_{i}$ :
$B_{i}arrow M(n_{i}, C_{i})$ mapping $e_{ia}$ to $\epsilon_{\alpha}$ , the matrix with the $\alpha$-th diagonal entry 1
and other entries $0$ . Then $f_{i}$ maps the diagonal subalgebra $B_{i}’\oplus B_{i}’’$ onto the
diagonal subalgebra $M(n_{i}’, C_{i})\oplus M$( $n_{i}’’$ , C..), $B_{i}^{\cross}$ to $GL(n_{i}, C_{i})$ and $E_{e_{i}}(B_{i})$ to
$E(n_{i}, C_{i})$ . Since $C_{i}$ is semi-local, applying the lemma of Bass in 0.1 to $GL(n_{i}, C_{i})$ ,

then pulling the result back by $f_{i}$ , we have

(2) $B_{i}^{\cross}=\{$

$E_{e_{i}}(B_{i})((B_{i}’)^{\cross}\cross(B_{i}’’)^{\cross})$

$E_{\epsilon_{i}}(B_{i})(\{1\}\cross(B_{i}’’)^{\cross})$ if $n_{i}’’>0$ .

Since $E_{\overline{e}}(B)\supset E_{e_{i}}(B)$ and we are identifying as $E_{e_{i}}(B_{i})=E_{e_{i}}(B)\subset B^{x},$ (2) implies
that each $B_{i}^{\cross}$ (considered as a subgroup of $B^{\cross}$ ) is contained in $E_{\overline{e}}(B)((B_{i}’)^{\cross}\cross(B_{i}’’)^{\cross})$ .
Regrouping $(B_{i}’)^{x}s$ to $(B’)^{\cross}$ and recovering the suffix $P$, we have established 2.0.

3. Proof of Theorem 2.

Let $V=KL$ and $B=End_{A}V$ . By the obvious identification $End_{A}(nV)\cong M(n, B)$ ,
the property $(c’)$ in 0.3 is equivalent to:

$(c’)$ Tbe map

$x-(\begin{array}{ll}x 00 1_{n- 1}\end{array})$

induces an injection from $B^{\cross}\backslash (B\otimes A)^{\cross}/c_{U(L)}$ into $GL(n, B)\backslash GL(n,$ $B\otimes$

$A)/CU(nL)$ .
By the assumption that $B$ has the “ strong approximation”, $\tilde{E}(B)$ is dense in
$\tilde{E}(B\otimes A)$ , hence it is also dense in $(B\otimes A)^{\cross}\cap\Pi\tilde{E}(B_{P})$ . While $E(n, B)$ is always
dense in $GL(n, B \otimes A)\cap\prod E(n, B_{P})$ by 1.2.1. In view of 1.2(ii), what we shall
prove is:

$(c’’’)$ $(B\otimes A)^{\cross}\cap GL(n, B)^{c}U(nL)=B^{\cross c}U(L)$ .
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The left hand side of $(c’’’)$ obviously contains the right hand side of it. Since
$\Gamma_{P}$ is semi-local, by the lemma of Bass, $GL(n, \Gamma_{p})=E(n, \Gamma_{P})(\Gamma_{P})^{\cross}$ and $q$]$(nL)$

$=\Pi GL(n, \Gamma_{p})=(\Pi E(n, \Gamma_{P}))\Pi(\Gamma_{P})^{\cross}\subset(\Pi E(n, B_{P}))^{c}U(L)$ . Since $B$ is also semi-
local, $GL(n, B)=B^{\cross}E(n, B)\subset B^{\cross}\Pi E(n, B_{P})$ . Hence left hand side of $(c’’’)$ is
contained in

$(B\otimes A)^{\cross}\cap B^{\cross}(\Pi E(n, B_{P}))^{c}U(L)=B^{\cross}((B\otimes A)^{\cross}\cap\Pi E(n, B_{p}))V(L)$ .
NOW, by the theorem of Vaserstein in 0.2, $(B\otimes K_{p})^{\cross}\cap E(n, B_{P})=\tilde{E}(B_{P})$ and
$(B \otimes A)^{\cross}\cap\prod E(n, B_{P})\subset(B\otimes A)^{\cross}\cap\prod\tilde{E}(B_{P})$ . The last group is contained in
$B^{\cross}V(L)$ by 1.3 (ii). This showed that the left hand side of $(c’’’)$ is contained in
$B^{\cross c}u(L)$ , completing the proof of Theorem 2.
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