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1. Introduction.

In an exterior domain QCR?, n=2, consider the generalized Stokes resolvent
system

Au—Au+Vp=f in Q

divu=g in @ 1.1
u=0 on 092
where f=(f,, -+, fa.) is the prescribed force, g the prescribed divergence and

the resolvent parameter 4<C is contained in the sector
Sc=1{z€C; z+#0, arg z<m—e}, 0<e < /2.

The aim of this paper is to solve (1.1) and estimate the unknown velocity field
wu=(u,, -+, u,) and the pressure p in weighted Sobolev spaces. Since the domain
is unbounded, it is reasonable to solve (1.1) not only in classical Sobolev spaces
but to use radially symmetric weights [x|® or even anisotropic and locally
singular weights to describe the behaviour of the solution (u, p) more precisely.

Radial weights are a widely used tool to investigate Poisson’s equation or
Stokes’ equation (with 4=0) in an exterior domain. The radial symmetry of
the problem which is also reflected by the structure of the fundamental solution

as well as the Poincaré type inequality S!ulz/lxlzdxgziSIVulzdx for u= C3(R®)

lead to weights of the form |x|*. From the numerous papers on these topics
we mention [11, 20] where a lot of further references can be found. But up to
now there seems to be no complete weighted theory of the Stokes resolvent
problem which leads via analytic semigroup theory to the investigation of the
instationary Stokes and Navier-Stokes equations in weighted spaces. To our
knowledge, is the only reference for (1.1) in weighted L%spaces using the
special weights (14| x|)* together with the restriction |A|=0>0; our method is
different. For the Stokes resolvent problem in spaces without weights we refer
to [2, 3,9, 18, 24, 25] when g=divu=0 and to when g+#0. To define the
Stokes operator the construction of the Helmholtz projection is needed; see
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[7, 14, 17, 25] for results in spaces without weights. For the special weights
of the form (1+]|x|)* a description of the Helmholtz decomposition has been
given in even without the restriction on a below.

In this paper we solve the generalized Stokes resolvent problem (1.1) with
g+0 and construct the Helmholtz decomposition in weighted L%spaces for a
large class of weights. A weight function 0<we L}, (R") is said to be of the
Muckenhoupt class A, iff

sgp(WlISQw dx)-(‘Tl?[gow“”q‘”dx)q_l = C< oo

here 1<g< o and QCR" runs through the set of all bounded cubes of R® with
axes parallel to the coordinate axes, and || denotes the Lebesgue measure of
Q. Examples are given by the standard radial weights with fixed x,=R"
defined by

w(x) = |x—x,]% or w(x)=1+[xD)*, —n<a<n(g—1);
also finite positive sums of these terms multiplied by logarithmic terms
log?2+1x|), logf@+|x—=x7"), BER,

are allowed. Even the distance dist(x, M)* of x to a bounded manifold M and
anisotropic functions such as

(1+[x|)a(1+|xl_xl)ﬁ! X :(xh Tty xn)e Rn:

for certain a, =R define A,-weights; see Lemma 2.2, 2.3 and Remark 2.4

below for construction and properties of JA,-weights. The reason to consider

weights of class A, is the fact that the classical multiplier theorem of Hérmander

and Michlin remains true in weighted L%spaces on R™ for an J,-weight.
Given a weight weJ, define the weighted spaces

LYD) = {ue L D); Nl w=luwele=(] lulow dz) <o},

H3%R2) = {(uE Lieo(2) ; u, Vu, V?us LY(2)}
for the velocity, and the homogeneous Sobolev space
Hy%80) = {p€ Lo D); VrE LYY} ;

here 2=R" or 2CR" is an exterior domain. Then the main result on the
Stokes resolvent problem (with g=div u=0) in R" reads as follows:

THEOREM 1.1. Let g=(1, ), n22, wed, and e€(0, n/2). Then for every
A€S, and f€ Ly(R™" the resolvent problem



Weighted LI-theory 253

Au—Au+Vp=f, divu=0 on R"

has a unique solution (u, P HEYRY" X H5 YR, where p is unique only up to
an additive constant. Further

(Au, V2u, VP)llg. w = c(ll fllg w
with a constant c¢(e)>0 independent of A=S..

For further details including the case g=div u#0 we refer to [Theorem 4.5
below. The crucial part of the proof of this theorem and of the construction
of the Helmholtz decomposition of LZ(R™)" is based on the weighted multiplier
theory of Kurtz and Wheeden [13].

For an exterior domain £C R™ with boundary of class C'! we need some
restrictions on the weights near the boundary of £2—see Definition 2.5 for the
weight class A,(2)—and also near infinity to get a uniform resolvent estimate
for all A=S.. The main results on the Stokes resolvent system with g=div u=0
yielding estimates uniformly in A<S. are gathered in the following theorem.
There |-| denotes the function x—|x| on R™,

THEOREM 1.2. Let QCR"* n=2, be an exterior domain with boundary of
class C*1, let g=(l, =), wsA(R2) and e=(0, n/2). Then for every A<S. and
Fe Ly()" the resolvent system

Au—Au+Vp=f, divu=0 in 2, ulspn=0

has a unique solution (u, MNEHLE(D" X HLY Q). Additionally assume that n=3,
xoERM\0Q and

W« —x,| T € AL(L) where ¥ = n(%—i——i——%) =20and s=¢ 1.2)
or
W —xo|Tt € A(R)  where F= n(z—l——l———l—) =>0and s <gq. (1.3)
n o q s
Then
1(Au, V2u, Vp)llgw = c(El fllg. w
or

(Au, —Au+VPllg w < (N fllg w

uniformly in A<S., respectively. In particular, (1.2) is satisfied for the weight
w=|-—2x,|% when
n=3, 2g—n<a<n(g@—1), (1.2

while (1.3) is satisfied for this w when

n=3, —n<a<n(@g—1)—2q. (1.3")
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The same results hold when the term |-—x,| is replaced by 1+]-].

The conditions (1.2), (1.3) are not needed if A=, is restricted by |A|=6>0
and c¢(¢) additionally depends on 8>0, see [Theorem 5.5. However, the independ-
ence of ¢(¢) of 6 is very important for applications, see [10]. [Theorem 5.5 also
treats the case g=div u=0.

To define the Stokes operator we need the Helmholtz decomposition of the
weighted space LL(£2)" for an exterior domain 2CR"; see [Corollary 4.4] for the
Helmholtz decomposition in LL(R™)".

THEOREM 1.3. Let QCR" be an exterior domain with boundary of class C?,
let g=(1, ) and weA82).
(i) Li8)™ has a unique algebraic and topological decomposition

LY = L, (Q)DVHL YD)

where L% () is the closure of C3(2)={ucsCy()";divu=0} with respect to
the norm ||+|lq, w. In particular there exists a unique bounded projection operator

Pow: LY — L, (2)

with null space VH5Y(Q)={Vp; pcH5%Q)} and range L3, ().
(i) (Ppwl*=Py v and (L, LQ)*=LE () where q'=q/(¢—1) and w'=

w-Yaen,
(i) If ucL{@NLEE™ for g, g€, o), w,EAL(R) and wy& Ae (D),
then Py w u=Py, v,u.

Given the Helmbholtz projection P, ., the Stokes operator A, , in LY ,(2) for
an exterior domain & is defined by Ag»=—PF, »,A with domain of definition

D(Ag w) = {usHE(R)"NLY (2); u=0 on 32} ;
for the entire space R"
Aq. w = _”Pq. wl, @(Aq, w) = H%q(Rn)"mL%.G(Rn).

Now and interpolation theory yield the following result on the
resolvent of the Stokes operator A, ., its analytic semigroup {e *4ew;{>0} and
its imaginary powers A#,, teR. ’

THEOREM 1.4. Let g=(1, o) and wed,
(i) The resolvent problem

AutAgpu=f ucs DAy,

in R™ has for every fe Ly, (R™) and 2 S,, 0<e<x/2, a unique solution us D(Aq, w).
This solution satisfies the resolvent estimate



Weighted L3-theory 255

1A%, A wtllg.w = (&)l fllg.w-

(ii) The Stokes operator in R™ generates a bounded analytic semigroup
{e"taw; t>0}.

(iii) The imaginary powers {Ait, ; t=R} define a family of bounded linear
operators in LY (R™) satisfying for every 0>0 the estimate

|A#,] < c(@)e®t, te< R.

THEOREM 1.5. Let QCR™ be an exterior domain with boundary of class
Ct1 let ge(1, ) and weA(82). Then for every A€S., 0<e<n/2, and every
fE LY () the resolvent problem

AutAgou=Ff, u< DNAqw),

has a unique solution uED(Aq, w).
(i) For every 0>0 this solution satisfies the resolvent estimate

(A%, A witdlle. w = ¢(&, Ol fllg. w

where A€ S, restricted by |1]=0.
(ii) Assume for n=3 that there exist wy, w,EA(L) and x,£08Q such that

Wol —%o] ™2 E ALR), Wyl —x|8 E AfR2) and w = wi?w? (1.4)

for some &[0, 1]. Then the constant c(e, 0) is independent of >0 and — Ay, »
generates a bounded analytic semigroup. In particular, condition (1.4) is satisfied
for w=1-—x,|* with —n<a<n(g—1). The same result holds when the term
[+ —x,| #s replaced by 1+]-].

(ili) Aq w 7s a closed operator and (Aq w)*=Aqg, » where ¢'=q/(q—1) and
w! =wYan,

This paper is organized as follows. In Section 2 we introduce—besides
some notations—the Muckenhoupt class A, 1=¢<co, describe the main properties
of weight functions and construct several types of weights which are interesting
in unbounded domains. Weighted Sobolev spaces are introduced in Section 3
where also the fundamental theory of multiplier operators in weighted spaces
is resumed. Further we prove an interpolation theorem and embedding properties
which are based on estimates of integral operators on weighted spaces. In Section
4 we consider the generalized Stokes resolvent problem (1.1) and the Helmholtz
decomposition in L% for the whole space. The same problems are considered in
Section 5 for an exterior domain. Via the localization method the proofs are
based on the results of Section 4. This step in which cut-off functions are
introduced forces us to consider the generalized resolvent system with nonzero
divergence. A further crucial point is the problem to get estimates uniformly
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in 1S, requiring the embedding results proved in Section 3.

2. Weight functions of class .4,.

Given a domain 2C R™ we will use the standard notations L%£2) with norm
(-l (or simply [-|ls if the domain £ is known from the context), L% .(£2) and
L%,.(2) for spaces of measurable functions. Here ue Ly (Q) iff ue Ly (2NB)
for all balls

B = B,(x)={yeR"; |y—x|<r}, r>0,

with @N\B#@. Further H*Y(Q), Hy4Q), HLY2), H*Y(RQ) etc. will denote
standard Sobolev spaces of scalar functions. For vector—or matrix-valued
functions ueLi(£2)™ etc. we also use the symbol ||, for the L%norm ; more
generally

G0, -, e = ( & hul)

for u; € LYQ) or u, L™, i=1, ---, m. Sometimes we simply write L9, H!¢
etc. if 2=R"., Recall the definition of the differential operators V, A and div;
moreover V*u denotes the set of all kth order partial derivatives (0;!:-- 0f™w)
where (k,, -+, kz)E€1{0, -+, k} " runs through the set of all multi-indices of order
k=Fk,+ -+ +k, and where 0,=0/0x,;,, 1=<i<n. For g€[l, o) let ¢'=q/(g—1)
with ¢’=oo for ¢=1; thus LI2)*=L%(£). In general X* denotes the dual
space of a Banach space X. Then the dual pairing of X with X* is denoted by
{.,>. The symbol f~ g means that there are positive constants c¢;<c¢, with
¢ f(x)Sg(x)<c.f(x) for all x in the domain of definition of f, g.

Next we introduce weight functions of the Muckenhoupt class A, 1<g<co.
Let Q always denote a bounded open cube in R" lying parallel to the coordinate
axes, e.g., ;

Qn(x) = (x1—h, x,+h)X -+ X(xp—h, xp+h)

for x=(x,, -, x,)ER™ and Ah>0. For a measurable set ECR" with Lebesgue

measure | £| and a measurable function w=0 on R" let w(E)=SEw(y)dy and

_1 _ wB)
ng—lElng(y)dy— |E| .

DEFINITION 2.1. (i) For a nonnegative Borel measure g on R"

Mp(x) = sup{l—é—ngd#;QCR" cube with er}

is the Hardy-Littlewood maximal operator of p. For a measurable function w=0
defining the measure du(y)=w(y)dy we simply write Hw(x)=Mu(x).
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(i) A function 0Swe Ll (R"), w0, is called a weight of Muckenhoupt
class A;, or simply wed,, iff there exists a constant ¢>0 such that

HMw(x) < cw(x) a.e. in R™, 2.1)

(iii) For g=(, o) a function 0Swe LL (R, w=0, is a weight of Mucken-
houpt class A, or weA,, iff there is a constant C>0 such that

g w(% w’)q_1 < C for all cubes Q C R*; (2.2)
Q Q

here w’:=w V@ H=y @ H=y 0/ The least constant C=Cq(w) in is
called the A,-constant of w.

Obviously the ;-condition is equivalent to the condition
ng <c essQinf w for all cubes Q C R™. (2.3)

Holder’s inequality implies that A,C A, for all 1<g¢<p<oc. Moreover, since
w =0 in Definition 2.1 (ii), (iii), for every measurable set E with |E|>0

0< e_ssEinf w= essEsup w < oo,
Finally for every g&(1, «)
w € A, is equivalent to w’ € A, .
The following properties are less obvious.

LEMMA 2.2. (i) Let pbe a nonnegative Borel measure such that JHp(x)<oo
a.e.. Then (Mp) is an A;-weight for all y&[0, 1). Conversely for every
A-weight w there exist constants h,>h,>0, some function h: R"— [h, h,] and
a function 0= ge LY (R™) such that

w = h(Hg)N
for some y<[0, 1).
(i) A weight w is of class A, 1<q<co, iff there are weighls w,, w,=4,
with
Wy

wi?

(iii) For a weight wed, 1<g<eo,
[ a1 D M w(d s < cw(@) < oo

where Q,=@Q.(0) and ¢ only depends on the Ag-constant of w,
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(iv) Every wed, 1=¢<x, satisfies the reverse Holder inequality RH;
with some 0=0(w)>1, i.e.,

(SQwa)”” = g o for all cubes Q C R™.

(v) For every wed, 1<q<oo, there is an e=¢e(w)>0 such that wed,..
and wted,.

PROOF. (i) See [22, Chapter IX, Proposition 3.3, Theorem 3.4].

(ii) See [22, Chapter IX, Proposition 4.3, Theorem 5.5]. Note that the
assertion w;, wi?ed, for given w, w.€J4, is trivial due to (2.3).

(iii) See [22, Chapter IX, Proposition 4.5].

(iv) See [22, Chapter IX, Theorem 3.5, Proposition 4.5].

(v) See [22, Proposition 4.5]. Both assertions are easy consequences of
(1), (). O

By means of it is easy to construct JA,-weights. The following
lemma yields further techniques to construct A,weights starting from the radial
As-weights |-1%, —n<a=0, on R".

LEMMA 2.3. (i) The minimum, maximum and the sum of a finite set of
A-weights again yield A,-weights.

(i) Let ¢:[0, co]—[0, o] be concave and nondecreasing. Then wed,
vields ¢gowe A, ‘

(iii) For any two weights w,, w.,4, and &[0, 1] also wiwi ’cs,.

(iv) For all ac(—n, 0] and B=0 the functions defined by

|x]%, log #@2+1x!), log@2+|x|™"), x < R"

and products of them are A,-weights. The same holds when |x|* is replaced by
(I+]x])e.

(v) Let 1<q<oo. Then for all —n<a<n(g—1) and for all R the
functions defined by

lxl®, logh2+1x1), loghf2+1x|™"), x e R,

and products of them are JA,weights. The same holds when |x|® is replaced by
A+1x])=.
(vi) Let 1Z2q<o0, k&{l, -+, n—1} and let MCR™ be a k-dimensional com-
pact Lipschitzian manifold. Then the function defined by
dist(x, M)*, —(n—k)<a<(n—k)g—1)

is an Agqweight.
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PROOF. (i) These assertions are trivial by [2.1).
(i) For all cubes QCR™ and x=Q

§ Jw = ¢( g Qw) = Plew(x))

due to Jensen’s inequality and (2.3). Since the concavity of ¢=0 yields ¢(2s)=
2¢(s) for all s=0, the monotonicity of ¢ implies that ¢(cw(x))<2™¢-w(x) when
c=2™, meN.

(iii) is an easy consequence of Holder’s inequality.

(iv) It is easily seen that Md,(x)~ |x| ™ for Dirac’s measures d, with
support {0}. Thus |:-|*€d, for ac(—=n, 0] by Lemma 2.2(i). Further
(I+1-D*~min(, |-|9)ed; by (i). For =0 and N sufficiently large ¢(r)=
log#(N+r) is nondecreasing and concave, since

vy — B -1 _ g1
¢"(r) = Wlogﬂ (N+T)( 1+ 10g(N+r)) =0

for all »=0. Thus logf(N+|x| V%~ log?(2+|x|™") defines an ,-weight by
(ii). Analogously ¢(r)=log #(N+r"") is nondecreasing and concave; hence
log #(N+7'%) ~ log #(2+7r)e4,. Finally (iii) and the fact that 8z0 may be
arbitrarily large imply that also products of the form

|x1%log=#12+ | x 1), | x1%logf22+|x|7Y), log™#12+|x]|)-logh2(2+ | x|)

etc. lead to A;-weights for all as(—n, 0], B, B.=0.
(v) This is a consequence of (iv) and Lemma 2.2 (ii).
(vi) Let p denote the k-dimensional Hausdorff measure

u(E) = d*(ENM) for E C R™ measurable.

Then it is easily seen that Hu(x)~ min(dist(x, M)*~, dist(x, M)™); for x&M
choose the cube @Q.(x), r=2dist(x, M), yielding S dp~min(r*, 1). Taking

Q4 (x)

the maximum of ()" and the A,-weight (1+]-)* ™7, y&[0, 1), Lemma 2.2
(i) and Lemma 2.3 (i), (iv) show that dist(-, M)* ™7 is an A,-weight. Now

Lemma 2.2 (ii) completes the proof. O
REMARK 2.4. (i) [Lemma 2.3 implies that continuous functions w on R"
with a finite number of zeros and singularities x!, ---, x™=R"™ such that in a

neighborhood of x’

w(x) ~ [x—x7%, —n<a;<n(g@—1)
or
w(x) ~ |loglx—x7[1%, B,eR, 1<j<m,

are A,-weights, 1<{g<oo, At infinity
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w(x) ~ x|, —n <a<n@g—-1), or wx)~logflx|, BER,

is allowed. Additionally, for a finite number of compact Lipschitzian manifolds
M’ of dimension k;e{l, -+, n—1}, j=1, -, m,

w(x) ~dist(x, My®, —(n—k;) <a;<(n—k)g—1),
or
w(x) ~ |log dist(x, M;)|%i, B;E€ R,

in a neighborhood of M; is allowed.
(ii) Anisotropic weights in A, of the form

w(x) = A+1x A+ x| —xp)?

when |a+p[<3, |B81<1, are considered in | concerning fluid flow past an
obstacle in R®.

(iii) For later use (see[Corollary 3.7) we mention a further property of the
weight |-|* for all a>—n:

[, o 1yicdy ~ 7" maxa(r, x1) @4
where »>0, xR", :
For the proof we may replace Q.(x) by the ball B.(x). First let r<|x|/2.
Since |y|~]x| for all yeB.,(x),

SBr(I)]yI dy ~¥"|x|% =r*max*(r, |x]|).

If »>|x]/2, we find a bounded sector =2, , around the axis of direction x
and with opening angle 6>0 independent of », x such that

(Bz(r+lxl)/3<0)\B(r+lxl) /2(0))mZCBr<x) c Br+|zl(0> .

Thus
r+ix!
[, o iviedy = el swrnds o e
By (2) 0
and
S [ lad < 2r+lzl)/s a+n—ld +] 2
B, (x) Y y:CS(r-H.rI)/Zs JC"\J(T’ XI) :

Summarizing we obtain [2.4).
In analogy to one has for all a>—n

SQ A+ 3Dedy ~ r(+max(r, | x])" 2.5)
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If »<|x|/2, we use the same argument as before. For »>|x|/2 the integral
is bounded from above by
r+lzl (r_*__lx])n’ r—Hx\ <1
CS (I14+s)%sm tds ~
0 F+ix)"te4+1, r+lx] =1
and from below by
r+lxD)* r+lx| <1

(r+1xD™e, r+lxl = 1.

Sz(rﬂxl)/a

(1+s)%s™ 'ds N{
r+lzl)/2
Summarizing we are led to [(2.5).

For an exterior domain 2C R" with boundary at least in C*! we are inte-
rested in the behavior of the Stokes resolvent problem at infinity rather than

near the boundary. Therefore we introduce a restricted class of A,-weights
on £.

DEFINITION 2.5. Let CR" be an exterior domain. Then for 1=<g<oo

wEJ,; there is a bounded domain G=G(w)C{ and an s>0}

Ho() = { such that {xeQ; dist(x, 02)<e}CG and weC%G), wlg>0

Obviously the bounded domain G can be chosen such that G has the same
regularity as 04.

3. Weighted function spaces.

DEFINITION 3.1. Let 2=R" or let 2CR"™ be an exterior domain with
Lipschitz boundary. For given 1<g<co and wed, (or wEA(R) if 2+R"™)
define

LD = {ue LD il w=({ | u1ow dr) " <eo}

HY4Q) = {ueHEWD); (4, Vu, -, VEu)|q w< oo},

k=1, 2, ---, and

HE4(2) = closure of C3(Q) in H54(Q).
Further let the homogeneous Sobolev space

HE9D) = {ue Li,(2); Vue LL(Q)")
be endowed with the (semi-) norm ||V-]|, , and let

A5%R) = closure of C3(2) in H5%(Q).
Here C3(2)={ulo; usC(R™}. The dual space of F[},;.q'(.Q), where ¢'=q/(g—1)
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and w'=w Y49V ig denoted by
Ayt e(Q) = A% (Q)*
and endowed with the norm

I<F, ]
IVellgrw-

IF) 100 = sup] ; 0+pe AL (@)

for Fe Q).

Let us discuss some properties of the spaces introduced in Definition 3.1.
To show that C3(£) is dense in L%(£2) it suffices to consider a characteristic
function u=Xz where ECf is a measurable set with |E|<o. By
(v) there is an &>0 such that w'**e4,; in particular w'**e Ll (R"). Since
ue L7™(2) where r=q(1+¢)/e>q, Holder’s inequality implies that

Slu—(plqw dx = (Slu-—gol ,dx)Q/T(SwT/(T_q)dx)w-q)/r

for all p=C5(2). Now the density of C3(2) in L7(2) yields the density of
Cy(2) in L%L(2). In particular L%(Q) is separable for all 1<g<oo. Since
obviously

Ly* = LL (D), 1= q< oo,

we conclude that L%(8) is a reflexive Banach space for all ¢g&(1, o) and all
WEAy WEALD).

Since L%(R™) is not translation invariant, it is not straightforward to prove
the standard approximation properties of Friedrichs’ mollifiers on the weighted
space L%L(R"); see Remark 3.4 below. Anticipating this result we get that
C3(R™) is dense in H%?%(R™ and that

He4(D) = {usHEUD); uls0=0 in the sense of traces}

when 2+R" and 0f2 is sufficiently smooth.

In the space HL%£) the term IV-llq w defines a seminorm yielding the same
value for two functions that differ only by an additive constant. Thus the
quotient space H3%R)/C defines a separable and reflexive Banach space since
it can be considered as a closed subspace of L%(£)". For simplicity we write
HL4Q) instead of H5%8)/C having in mind that the elements of HL%) are
equivalence classes; analogously an equivalence class [¥]€H5%Q) is simply

denoted by u. By and Lemma 51 below
H54Q) = A51(Q)

for all 1<g<oo, wWEA, or wEA(D), respectively.
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Moreover, if some g&Llo(2) is given, the linear functional
g D:ip—<g, )= nggo dx, ¢ C3(Q),

is well defined; if it is bounded with respect to [Vole, w, ie., [{g, @I
ClVolly.w with C independent of ¢, then g defines a functional in Hzb Q)
and we simply write g€ H;" Q).

Next we present the main tools for the subsequent sections, namely estimates
of singular integral operators and multiplier operators in LIL(R").

THEOREM 3.2. Let T be a singular integral operator defined by

Tf(x) =lim

£-0 SR"\B,(J;

)f(y)k(x—wdy, f e LiR"),

where k is a singular kernel of the type k(x)=w(x)/|x|" with ws C'R"\{0}),
o(x)=w(x/| 1)), S _@do=0. Then

B, (
T: Liy(R") — Li(R™)
is a continuous linear operator for all g=(1, o) and all weights we,.
PrOOF. See [8, Theorem IV 3.1].

is a special case of the following main theorem on weighted
estimates of multiplier operators. Let S(R™) denote the Schwartz space of rap-
idly decreasing functions and S’(R") its dual, the space of tempered distributions.
Further let =" denote the Fourier transform on R™ and ! the inverse Fourier
transform. Given a bounded (multiplier) function m(¢) in the phase space, the
multiplier operator T is defined by

Tf(x) = F'mf)(x), fe&SER".

Then there holds the following theorem, see [13, Theorem 2] or [8, Theorem
IV 3.9].

THEOREM 3.3. Let for some s&(l, o) the multiplier function me L2(R™)
satisfy the condition

sup Rsk—n

>0 SR<I6|<2R‘Vkm(E)|sd$ <Cp < oo (31)

for k{0, ---, n}. Then/]ior every g<(1, o) and weight wed, the multiplier
operator T defined by Tf=mf is a bounded linear operator from LIL(R™) to
Ly(R™; further the operator norm of T only depends on n, q, C, and the
Ag-constant of w.
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Note that the well-known multiplier condition
|§|klvkm(5)l écm; k':O; 1> ) OiEERn! (3-2>
immediately implies that m also satisfies [3.1).

REMARK 3.4. As a first application of we investigate Fried-
richs’ mollification procedure in L%L(R™). Let 0<¢eC7(R™) with Sgp dx=1 and

let @.(x)=e""p(x/e), e>0. Obviously $.=S(R™), .(&)=¢(e), and m. =@, satisfies
and consequently also with a constant c(m.) independent of &>0.
Thus by [Theorem 3.3 the mollification operators

Je: LY(R™) — C=(R™),

Tl = pox u(x) = {utx—)p0)dy,
map L%(R™) into L% (R™) for all 1<g<oo, wEU, and are uniformly bounded in
¢>0: there is a constant C>0 such that

I Jeullg w = Cllullg, w
for all ueLY(R™), ¢>0. Since CP(R™) is dense in LL(R") we easily conclude that
Jou—u in LLR") as e—0
for every ue LL(R™).
Also the following interpolation result is based on [Theorem 3.3

THEOREM 3.5. Let Q=R" or QCR" be an exterior domain and let 1<g<o,
WEA or WEAL(R), respectively. Then there is a constant c=c(q, w, £)>0 such
that for all ueH%YQ) and all e<(0, 1)

WVl o = (o170 w3l o)- (3.3

ProOOF. First let 2=R" and u=Cy(R"). Then for any ¢>0

N\ e & l"__ AN

V(@) = itn = 7 ey (A —ebu).
Due to the estimates |&]<(1/e+¢|€1%)/2 and e(£)?<1/¢-+¢|&]? the multiplier
functions m;(§)=§,(1/e+¢l&!7Y, /=1, ---, n, satisfy the conditions [3.2) and also
with a bound independent of ¢>0. Thus yields the estimate
for every ueC7(R") and every ¢>0. Since CyF(R") is dense in H%I(R™),

is proved for 2=R".
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For an exterior domain £CR" choose a cut-off function p=Cy(R™; [0, 1])
satisfying ¢=1 in a neighborhood of £ and supp o \2CG, where the bounded
domain G=G(w)C £ is given by Definition 2.5. Further recall the interpolation
inequality

\ 1
IVl < e(elVulioe+<lulme) (3.4)

for ueH*%G) and ¢=(0, 1). Applying to ugp and [3.3) to u(l1—p)=HLY(R")
we get for e=(0, 1) that

IVulzg @ = %(Il upllzae +u(l—@)lg, »)

+ee(IVi(up)ll L2 +IIVA (Ul —@)llg. w) .-

Obviously the term in the first brackets is bounded by |u[zg 2y while the second
term is bounded from above by

clVPullzg @ +cliVull e +cllullzg o -

Now a further application of yields the assertion. O
Besides on singular integrals we need estimates of weakly

singular integral operators. By these estimates we will prove embedding prop-
erties of the spaces HL%f2) and H%4LQ). For 2=R" and us C3(R") the identity

Y Vu(ydy, xe R (3.5)

R x—y|"

u(x) = cng

leads to the estimate |u(x)|<Z<c,l,(IVul|)(x) where I, denotes the fractional
integral operator

L =, 1x—3""g(»)dy. (3.6)

To estimate I, on weighted spaces we refer to [16, Theorem 1 (A)] yielding the
following result.

THEOREM 3.6. Let 1<q<r<co, wed, and vEA,. Assume that for some
0>1 there is a constant C>0 such that

10| 1/n+1/r-1/q( S Qv">1/6r( g Q(w')")lmq' <C 3.7

for all cubes QCR™. Then
I: LL(R™) — Ly(R")

is a bounded linear operator.
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COROLLARY 3.7. (i) Let 1<qg<o, wed,, and for r=q let ved,, where
“u(x) = wx)T | x—x,|77T7, x € R?, 3.8

with x,&R" fixed and

— ”(%*'i—_%) >0. 3.9)

Then for all uefl{;q(R") there exists some constant u.=C such that
S |u—u.,,1fudxgc5 V|9 d x (3.10)
R" R"

with a constant ¢>0 independent of u. To be more precise, for every equivalence
class [u]eﬁ:,;q(R") and every representative us[u] there is a unique u.=C
satisfying u—u-< Ly(R™) and (3.10). In this sense we get the embedding

HLYR™) C Li(R").

The same result holds if v=w"?|-—x,|77" is replaced by v=w2(1+4|-])77",

(ii) Let QCR™ be an exterior domain and additionally assume that we A(82),
ved (). Then for every uEI-A[},;q(Q) there exists some constant u-<=C such that
(3.10) holds where the domain of integration is £ instead of R™.

PrROOF. In order to apply let us check the condition [3.7).
Since by assumption wed, and ved,, Lemma 2.2 (iv) yields the existence of
some 0>1 such that w'e, and v satisfy the reverse Hoélder condition (RHj).
Thus the left-hand side J of [3.7) satisfies

J=clQ] l”‘“/”‘11«( g Qv)”"( jj Qw,>1/q' .

Let Q=Qg(x), R>0. Since by assumption y=0, inequality and yield
with e=1+41/¢—1/r*(, 1]

J £ c(max(R, |x—xol)‘7)‘/‘( g Qv)m-( S Qw,>1/q'

“ef ) () ()

Now by Hdélder’s inequality with exponents ¢/¢, ¢/(¢g—¢), the A,-condition for
w and the ,-condition for v yield

J =< c< g Qv‘squr(q—e)))(q—emq( S Qw)”q( § Qv)m( S Qw’)”q,

with a constant C>0 independent of Q.

C

A



Weighted L3-theory 267

Thus applied to yields for arbitrary usCy(R*) the
estimate

lullr.o = ¢lVulig w (3.11)

with a constant ¢>0 independent of u. Let uesHLYR™) and let (u;) in CP(R™)
be a sequence such that [Vu,—Vu|,,—0 as #—co. Since by (ug) is a
Cauchy sequence in Lj(R"), there is a #ieLj(R") such that u,—# in Lj(R™)
as £k — o and also in L1 .(R*). Thus we easily conclude that #€H:(R™) and
Vi=Vu. Hence there exists a u.=C such that u—u.=#<LJ(R"*) and satisfies
(3.10).

If in | x—x,| is replaced by 1+|x|, we use [2.5) instead of to
prove and proceed as before.

To prove (ii) for uef[,ﬁ;q(.@) let meC be defined by the condition SG(u—m)dx

=0 where G=G(w)C & is the bounded domain of Definition 2.5. By a well-
known extension theorem and Poincaré’s inequality there is an extension
#eHYY(R) of u—m such that

Vil ceemo < cli(u—m, Vi) e < cllVulew .

Then the first part of the proof vields a #.=C such that

Thus is proved with U=+ m. T

In the final corollary we consider explicit examples of radial weight func-
tions w=|-|*€d, v=|-|#=4, such that the embedding I?,‘,;"(Q)CLJ(.Q) holds.

”ﬂ—ﬁm”LJ(Rn) < C“Vﬁ “LZ)(Rn) < C”Vu”LZ’(.Q) .

COROLLARY 3.8. Let 1<g<o and g—n<a<n(g—1). Further let r=q satisfy
(3.9) and let BER be defined by

4 BEn _ atn (3.12)
r q

Then, with w(x)=|x—x,|* or w(x)=1-+1x])* and v(x)=|x—x,|? or v(x)=
(14| x1)?, respectively, the embedding HL4(R") . Li(R™) is continuous. A similar
result holds for an exterior domain QCR™ with x,£08.

PROOF. By the assumptions on @ and by Lemma 2.3 (v), w&d, Further
—n<B<(n—)yr—n<n(r—1) yielding vE,. Since [3.12) and [3.9)] yield
proves the assertion. For an exterior domain the condition x,&082
is only needed to guarantee that | —x,|*SA,(Q) and |- —x,|f € 4(Q). O
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4. The whole space problem.
We start with the investigation of the weak Laplacian

—Agw: HyURY) — Hy (B,
4.1

(—Aq wit, @)1= SVu-Vgo dx,

for all ue H5YR™), pc ALY (R") with 1<g<oo, wEA, and w'=w " Ved,.

For simplicity we write IA{;;‘I(R"):I%", Li(R")=LY% etc. and Su instead of

[ au(¥)dx. We will need the following

LEMMA 4.1. (i) For every g=(1, ) and every we& A, the space L is
continuously embedded into the space S’ of tempered distributions.

(i) If ueL} is harmonic, then u=0. The same result holds when ue Ly,
+ L3, where ¢;€(1, ) and w;E A, i=1, 2.

(iii) The space ACY is dense in L3,

PrOOF. (i) Given ueLf and =S

I<u, @>| = lullg wlele. wr

< Nl ol rgar) - Iolt 1 7l

Since w'&,, the integral Sw’(l+l'l)'"q'<oo by [Lemma 2.2 (iii). Furthermore

¢—llel+|-D"le is a seminorm on S. This proves that xS’ and that the
embedding L%CS’ is continuous.
(ii) For we, Lemma 2.2(v) and (iii) applied to w’'&J, yield an &>0

such that S(1+| <)@ 9y’ oo, Then for an harmonic ue Ly the mean value

formula and Hélder’s inequality imply that

ch SBRluldx = ch (SBRIulqw dx)l/q(SBRw'dx)”q‘

C e , 1/q’
< gl o[ a1 D@ ow) ™

lu0)] =

here we used that 14+[x[<2R for all x&Br={y=R"; |y|<R} and R=I.
Letting R — oo yields u(0)=0. An analogous argument is possible for arbitrary
x&R". Thus u=0. If u=u,+u,=Ly+ L3}, the above estimates are applied to

u(0) = |, wdx+
R

c
R _S Rugdx

R™ )B
to show that u=0.
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(iii) Let ue Ly =(LL)* satisfy SuAgo:O for all p=C7. By Weyl’s lemma

u is harmonic; hence u=0 due to part (ii) proved just before. Now Hahn-
Banach’s theorem implies that ACY is dense in Lg. O

THEOREM 4.2. (i) For all g(1, ) and wed, the operator —A=—Ay
ALe— Hzv in (4.1) is an isomorphism. Furthermore —Ay. . coincides with the
adjoint operator (—Aq w)* of —Aq w.

(i) If Feﬁ;}'qlmﬁ,;;'“ for g€, ), widy, i=1, 2, then the weak
solution u of —Au=F satisfies ueﬁ,bflmﬁ,‘,;;”.

PrROOF. Due to the inequality
(g wtt, 93] = | [V Vo | < VUl w0 u-

the operator —A, ., is continuous and ||—A, wll_1.q »<|Ville » for all usHLe,
For the moment take the reversed inequality

IVullg w = cll—Ag witll-1,0.w, uE Hy?, 4.2)

for granted. This implies that —A, . is injective and has a closed range. By
symmetry (—Ag »)*¥*=—A, » and —A, - satisfies an inequality analogous to
(4.2). Thus also —Ag, . is injective with closed range. Consequently —A, ,
is an isomorphism by the closed range theorem.

To prove (4.2) recall that in terms of Fourier transforms

a a . -1 o _ EIE}
for ¢=C%, ¢, 7=1, ---, n. Then [Theorem 33 yields a constant ¢>0 such that

vaﬂonq’,w’ = CHASDHq’,w’ for all v e Cy.

Hence for all 0#¢&Cf, i=1, -+, n,

Kty i 1 |[Pente]

V0ol v = ¢ 1AQllgr.wr’

Since by [Lemma 4.1(iii) AC? is dense in L%, we conclude that [[0;ully <
|| —Aq wil-1.q.». This proves [4.2).

(ii) Given FeHzru\Hgk% there are solutions u,€H5%, i=1, 2, of —Au,
=F. Then A(u,—u;)=0 in the weak sense, and u,—u, as well as Vu,—Vu,=
(Ly)*+(L2)" are harmonic. Consequently Vu,—Vu,=0 by Lemma 4.1 (ii) yield-
ing a unique solution u=u,=u,c H5uNHL% of —Au=F. O

[—Ag wkt] 1.0 0w =

COROLLARY 4.3. For all g=(1, ) and we A, the space C7 is dense in H,ﬁ;q;
thus I-AI,‘,;‘I:H,‘,;".
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PROOF. Given ucHY define the functional FeH;!¢ by <F, go)zSVu-Vgo
for goeC;’,"CI-AI,‘,;ﬂ'. By [Theorem 4.2 there exists a unique #<H4? such that
SVﬁ-thzSVu-Vgo for all ¢=Cy. Thus u—# and also Vu—Vie(Li)" are
harmonic. Then Cemma 4.1 (ii) yields Vu=V# proving that HL%=FH}e. |

COROLLARY 4.4, (i) Letge(l, o) and weA, Then (LL)™ has an algebraic
and topological decomposition

(LY = LY, BVHYY, LY, = Co By ¥,

where Cy,(R")={ucsCy(R*)*; divu=0}. In particular there exists a bounded
projection operator Py . : (LL)"— L%, with kernel VAL and range L ..

(ii) (Pow)*=PFy,w and (L}, )*=L% ..

(i) If ueLP)"NLE)" for g€, o), w;Edy, i=1,2, then Py, u=
Py, wyut.

We omit the proof of [Corollary 4.4 since it is based on [Theorem 4.2 and
parallels the proof of about the Helmholtz decomposition in an
exterior domain, see Section 5.

Now we pass to the generalized Stokes resolvent problem

Au—Au+Vp=f, divu=g on R* 4.3)

in LY, 1<g<oco, wed, where f(LL)*. Assuming us(H%9)" and peﬁ,ﬂ;q,
we get that geHL% Furthermore the estimate

<8 931 = |={u-Vo| < lulo olVgle.wr, ¢ C3,

implies that necessarily g€ H3"? and |lg]_ ¢ v <ltlq w-

THEOREM 4.5. (i) Let g&(1, «), wed, and ¢<=(0, ©/2). Then for every
fe(Ly)r, geH&;qﬂﬁ;"q and A<S. problem (4.3) has a unique solution (u, p)<
(HE9"x Y9, This solution satisfies the a priori estimates

1Au, V*u, VH)llgw = C(If, VOl w+1128] 1.0, 0), (4.4)

1Au, —Au+VP)llg v = Celll fllg, w1481 -1.0.w) (4.5)

with a constant C.>0 independent of f, g, A, u and p.
(i) If additionally fe(L%)* and geHYNHG"? for some Ge(l, «) and
WEA;, then also ue(HEH and peHL.

ProoF. (i) Since geﬁ;}’q, yields a unique P=H%4? such
that A, wP=g and |VP|, v=<c|lgl_1.¢.w. To see that VP=(H%%" when g H4¢
NHzv 9, let P,=HY4 be the solution of AP,=—0d,g, i=1, ---, n; note that 0,g<
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Az and 2:g)l-1.q w=lglle.w. Thus for all p=Cs
SPiA<p = —SVPi-VgD = —{og o= Sgaiso
_ SV P-Vaup = SaiP-Ago.

Since by Lemma 4.1 (iii) ACy is dense in L%, we conclude that P,=d;P=L3,
Vo, P=VP,e(L%)" and finally |V?P|, w=c|lglle. w. Analogously V*P=(L%)** and
IV2P|lq w=clIVgllq w. Thus u,:=VPe(HEH", divu,=g and

lugllew = cllgll-raw, [IVUellgw = clVgllg w.

Next [Theorem 4.2 yields a unique solution p=H%? of the equation —Ap=
—div f+(A—A)ge Az ¢ satisfying

IVhllg.w = el flle wtAgH-1.0. 0+ 1VEllg )

since [|div fll_1.q w=|flle.» etc..
Finally we solve the problem

A—Aw =F with F= f—Q—Au,—Vp & (LEH)". (4.6)

Using Fourier transform and considering only F in the dense subspace S(R*)*
of (LL)®, we get that

0 =m@®F, VIAop=m@F, 80,0 =mu@)F

with the multiplier functions

_ 2 _ VAL =G
m(s)-— 2+|$\2 y m](&)"_‘ /2‘*“5]2’ m]k(§>_ 2+|$‘2)
1<4, k<n. To apply note that these multiplier functions are in

L=(R*) and in C=(R®\{0}). Concerning the condition for mj;, say, let
w=A4/|A], &=&/|4]. Since largw|<mw—e¢ and |w|=1, there is a constant ¢.>0
such that 14 [&|?<Zc.|w+[&’|%| for all &’=R*. Thus
ma®] = L < 0@, ce Ry,

with a constant C(¢)>0 independent of A&S.. Analogously is proved for
derivatives of m;,. Hence the conditions and also are satisfied with
constants on the right-hand side which are independent of A=S,. Now
3.3 yields a solution ve(H%9)™ of satisfying |(Av, V'[2|Vv, V20)|¢ w =< C.|| Fllg, w,
if FeS(R*)™. Since S is dense in LY, this result is easily extended to arbitrary
Fe(Ly)", and we conclude that
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1w, V121V, V)lg v = Cell(f, Vo wt 1281 -1.0.0).

Further an investigation of the equation (1—A)h=div F=0 with A=divvel}
in S’ implies that divv=0.

Summarizing we see that (u=v+u,, p)eHi9"xHL? is a solution of
satisfying the estimate (4.4). To prove uniqueness let (u, p) be a solution of
(A—A)u+Vp=0 and div u=0. Since u, Vp=S’(R™*)" Fourier analysis and Lemmal
4.1 immediately yield u=Vp=0.

To prove the estimate [4.5) let f'e(L%)"=((L%)™)* and let (u’, p)=(HZY)"
w HL%¢ be the solution of (A—A)u’'+Vp'=f’, divu’=0 satisfying an estimate
analogous to (4.4). Since C% is dense in H%?, H%Y and in ﬁ;;‘l, ﬁ},;yq’, integra-
tion by parts yields

u, f'>=<u, Au'—Auw'+Vp'> ={f, u'>—<g, p".
Thus
[<u, fOl S [ fllawllwllew+18l-1.0wlVDller, w
C
< ﬁ(”f“q, wt A8l -1 q. Wl f/llgr, wr
Since f’ was arbitrary, we are led to [4.5).

(i) Assuming fe(Ly)*N(LL)" and geHyNHS NAZ *NAZ"? there are
solutions (u, p)e(H3Y)* x H5? and (&, p)=(HLH)»x H3% Consequently v=u—a
eS’(R™»" and Vp—VpeS'(R")" solve the homogeneous equation (A—A)v-+
(Vp—Vp)=0, divo=0. Again Fourier analysis and Lemma 4.1 yield v=Vp—Vp

=0. Now is completely proved. O
Obviously is a particular case of [Theorem 415. Analogously

Theorem 1.4/(i) and (ii) are easy consequences. For results on analytic semi-
groups see [6].

PROOF OF THEOREM 1.4 (iii). For zeC, |Rez|<1, the fractional power A?
of the Stokes operator A=A, . is a closed operator defined by

1 1

2z I Sin Tz 1 z+1 -1 . _L o
Af= T (SOX A+A)"gda z+1 g+ z f z—1 A7
—ST&"ZA(H—A)‘IA f d2) .7
for f[=AgeD(ANAD(A) and g D(A). Furthermore
Aef = STz S‘:zz-l(HA)—lA Fda (4.8)

for feD(A), 0<Rez<1; see [10, 12]. By all integrals converge absolutely
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in L ,. Let feACy ,CD(ANAD(A) which is dense in L% ,. Using Fourier
transform in S we get for 0<Rez<1 that A*f=F'(mf) where

m§) = mz; § = LI [ El i

Since [4.7), are analytic in z we conclude that
Attf = F(|E*f(§)
for fed(A)NAD(A), t=R. Now the estimate

IEIFIVEIE] < es(+12D)* for 06 R tER, R EN,

and [Theorem 3.3 yield | A*f|lg w<c(1+|t])*||f]. In particular A is a bounded
operator on L% , satisfying |A*||<ce’t! for every >0 with a constant c¢=c(d)
>0. O

5. The exterior domain problem.

Let QCR™ be an exterior domain with at least C%!-boundary 0£2. From
Sections 2 and 3 recall the Definitions 2.1, of weights wed, or weA,(2),
1<¢<, and of the weighted spaces L%(£) with norm |- ||g », H%%2), H:3(0),
H5%Q), A%%Q) and H,"%(Q) with norm |-||_..q.» In this section the integral

Sgu(x)dx is also written in the form Su

LEMMA 5.1. Let 1<g<oo and we Q). Then H;U(Q)=H5L%RQ), i.c., C3(2)
is dense in HLY8).

PROOF. Let ueHLYQ), ie., ucLi (9) and VucsLy(@)". Since w>0 on
some suitable bounded domain G, see Definition 2.5, and consequently v Hu'4G),

there is an extension #&H5%R™ of u. Then yields a sequence
(us) in CP(R™) such that u, — & in H3%R"™. Now the sequence (4, |g) in C3(2)
implies that ue HL42). 0

To construct the Helmholtz decomposition in weighted spaces on the exterior
domain 2CR™ we first investigate the weak Neumann problem.

THEOREM 5.2. (i) Let 1<q<o and we A, (82). Then for every FeHz ()
the weak Neumann problem

[Vp-Vodr =<F o, ¢l @), 6.1

has a unique solution p=Hy%(Q). Furthermore

IVollaw < €l Fll-1.qw (5.2)
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with a constant c=c(L2, q, w)>0.
(i) If FEAZ9(DNHZ Q) for weights w,ehy,(Q), ¢;.€(, =), i=L, 2,
then the weak solution u of (5.1) satisfies usHyl(Q2)NH(8).

PROOF. Given FeH;*4Q) and peﬁ;;q(ﬂ) satisfying we first prove
the preliminary estimate

Vol w = clFll-1.q wt 1Pl e) ®.3)

where G=G(w) is the bounded domain associated with the weight weJ,(f2).

Choose cut-off functions ¢, ¢y C=(R™; [0, 1]) such that ¢;+¢.=1 and
(x) {1 in a neighborhood f{gm(Rn\G)
x) = in a neighborhood o .

# 0 RM\Q

Thus supp V¢,CG, i=1, 2, is compact. Consider a test function o= C7(R"™) and
define ¢g=¢— |G|‘1S6<p dx. Note that Poincaré’s inequality yields |[@llqe=
cllVellq,c. Since obviously pgblelflt‘,;q(R") and

WACTARYE
- Sng-V(¢l¢)dx~SQVp-¢V¢1dx+ggpv¢l-v¢ dx
= SQV » -V(cﬁ@)dx—i—SG » div(gngbl)dx-}-gG PV Vodx, (5.4)

the inequality yields
IVpd)llg w.r? < ¢(IFll-1.q, w+1Plle6)-

Analogously holds with ¢, replaced by ¢, and SRnV(Wl)‘V‘P dx replaced
by SGV(pgbz)-Vga dx for all p= C=(G). Then a well-known variational inequal-
ity on H*%G), see [17], yields

IVpdlla.c = cIFll-1.q w+lDla6).

This proves [5.3).

Assume that [5.2) is not true. Then there is a sequence (p;) in HL%2)
with [Vpallg w=1, but |Fxl_1qw—0 as k—co; here F; is defined by [5.I)
Since }A{;;Q(,Q) is separable and reflexive, we may assume without loss of
generality that (p,) converges weakly in ﬁ,‘,;q(.Q) to some peﬁ,‘v'q(.Q). Obviously

SQVpVgo dx =0 for all p € A54(Q). (5.5)

Below we will show that p=0 is the unique solution of [5.5) in AL,
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Taking this result for granted we are led to a contradiction as follows.
Since the functions p, are uniquely determined only up to constants we may
assume that Sgpkdx:O for all k=N and SGp dx=0. Thus due to Poincaré’s
inequality (p,) is a bounded sequence in H'%(G), and owing to the compact
embedding H*%G)C L%G) we may assume that p,— p=0 in L%G). Then [5.3]
yields the contradiction 1=<c| pll,.¢=0. This proves [(5.2).

It remains to prove that yields p=0. Since —Ap=0 in the sence of
distributions and N-Vpls,e=0 where N denotes the normal vector on 0%,
peH*7(G) for all 1<r<co due to the local regularity theory. Further for all
ps CF(R™) and 1<r<eo

Vg0 Vodx| = | pdivigVgidr+| sV, Vo dx

< c(r, DIVl rn;

whence —A, ,(pg)€ A" "(R™), and [Theorem 4.2 (ii) yields pg, < H**(R"). Thus
peH"*Q), and inserting p=p in implies that Vp=0. Hence up to a
constant p=0.

So far we proved the a priori estimate [5.2). This means that the weak
Neumann operator

Now: A5 — A49RQ), (Npwh, o) = SVD-Vso

is injective and has a closed range. Due to symmetry we easily see that
(Ngw)*=Ng . Then the closed range theorem implies that N, , is an
isomorphism.

The assertion (ii) is an easy consequence of [Theorem 412 (ii) and the local
regularity theory. O

PROOF OF THEOREM 1.3. Let 1<¢g<co, we(2) and let usLi()™ be
given. By [Theorem 52 there is a unique peHL%2) such that

XVp-Vgo ={uvp for all p = A5 @)

Then the Helmholtz projection P, ,u of u is defined by
Py wu =u—Vp & LLD)".

Obviously P, w1 LL()" — LL()™ is a linear continuous projection with range

Ry w = (P ) = e LYD"; Sv~v¢=o for all pe M (@)
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and kernel VHL%). Further yields the estimate

IVl < e {0, < clula.

Let us prove that (R, w)*=Rg, w. Since Ry, C(Rq w)* is trivial, choose
any ¢&(Rg »)*. By Hahn-Banach’s theorem ¢ has an extension to a continuous
linear functional on L%(£)". Thus there is a u=L% ()™ such that (¢, v)=
Sgu-vdx for all ve®R, ». Using the Helmholtz decomposition u=2~F, ., u+Vp

with peHLY(2) we get that
P, vy = Squ,w:u-v—l—SVp-v = qu,wu-v

for all vER, . Thus ¢ may be identified with Py » uERq, .
The assertion (P, ,)*=P, »  follows immediately from the identity

Sv-(Pq‘w)*u = S(Pq, wv)-u:SPq, w0 Py wrth = Sv-Pq:,w,u

for all ve LL(Q)*, us Ly ().
To show that C3,(£2) is dense in R, » let PE Ry, w =(Rq »)* vanish on
Cy (D), ie.,

Sgb-gp —0 for all p € C3.(2).
By de Rham’s well known argument we conclude that there is some

peﬁ,ﬁ;fl'(Q) such that ¢=Vp. For an elementary proof see [17, Lemma 2.1].
Thus

Sgb-u :SV;‘ru =0 forall u e Ry .

Hence Cy,(2) is dense in R v, i.€., Ry w=L% (D).
The assertion (ii) is an easy consequence of [Theorem 5.2 (ii). O

The next lemma yields a regularity property of the Helmholtz decomposi-
tion which is needed later on.

LEMMA 5.3. Let 1<qg<oo, weEA(R) and feLyYE)™ satisfying Vdiv fe
LiD™ and N-f=0 on 02 ; here N denotes the exterior normal vector on 0%.
Further let f=f,+Vp with focLy (Q), p€HLYR) be the Helmholtz decomposi-
tion of f. Then V*p= Ly and f€ Ly(Q).

ProOOF. Due to the proof of [Theorem 1.3 we know that p is the weak
solution of the Neumann problem
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Ap =divfe Hp9(2), N-Vp =0 on 92,

Since Vdiv feLi(2)" and we(2), div f€LYG) and the boundary condition
N-Vp=N-f=0 is well defined in the weak sense. Thus elliptic regularity
theory yields pe H2Y(G\UdR); see [5] for details when the boundary is only of
class C"'. Recall the cut-off function ¢,C=(R"; [0, 1]) from the proof of
Theorem 52 satisfying ¢,=0 in R"\Q and suppV¢{,CG. Then u=V(p¢d)e
LI(R™™ satisfies

Au = ¢,V div f+(V¢,) div f+V(2V, - Vp+ pAd,)
on R* By assumption and the previous results Aue L%(R™™ Next consider
the resolvent problem
(I—Ayw = u—Au = LY, (R™)",
Using multiplier theory in the same way as in Section 4 for the corresponding
Stokes resolvent we get that this equation has a unique solution ve H%LY(R™)",
Since Fourier analysis shows that the equation (/—A)w=0 has only the trivial

solution w=0 in LL(R™CS'(R"), we conclude that u=veH%4(R™)". In partic-
ular V?pe= LL(2)"* and consequently div fe LL(Q). O

As for the whole space problem we consider the generalized Stokes resolvent
problem where g=div ¥ may be non-zero. Again ucHLZYQ)"NH,L(L)" yields
gEHLDNHQ) and |2]-1.q v =<lullq. w. )

For a bounded domain G we define the space H*%(G)=H"%G)/C as quotient
space with norm |V-||;, and we let

F[—Lq(G) = (ﬁlq(G))*; (]' - ?jqji—;

be the dual space. If geH"%(G) with Sog d x=0, then the mapping ¢ — Saggo dx,
goeﬁ"q'(G), defines an element of ﬁ“"’(G); we simply write geH "4G) for
this functional. Thus {geH"YG); Sag dx———O}C]'A[_“q(G) and even

HY(G)NA%G) = {geH (6); Sag dx=0}.

LEMMA 5.4. (i) Let GCR" be a bounded domain with boundary of class
Ctland let 1<g<oo, 0<e<m/2. Then for every f LYG)", gEH"‘l(G)f\ﬁ“‘*q(G)
and AES, the Stokes resolvent problem

Au—Au+Vp=f, divu=gin G, u=0 on oG
has a unique solution (u, p)EHz'q(G)"Xﬁ""(G). Further

1w, V2u, Vp)lg.¢ = Cell(f, VOlo+IAg] a-100))
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with a constant C.>0 independent of f, g, A and u, p.
(ii) If additionally f€LY%G)" and gEH“‘?(G)f\FI‘I"?(G) for some g(1, o)
then even ueH*YG)"H*>YG)" and p=HY(GC)NH"Y(G).

ProoF. For (i) see [5, Theorem 1.2]. If in (ii) §<g, then the solution
(u, p) coincides with the unique solution in H*YG)"XH'%G) since G is
bounded.

THEOREM 5.5. Let QCR™ be an exterior domain with boundary of class
Cll, let 1<qg<oo and weA(2).

(i) For every feLy®), gcHL (NNH Q) and A€S., 0<e<n/2, the
generalized Stokes resolvent problem

Au—Au+Vp=f, divu=gin 2, u=0 on o (5.6)

has a unique solution (u, p)eHﬁ;q(Q)"xﬁ,ﬂ;q(Q). Furthermore (u, p) satisfies the
a priori estimates

14w, V*u, Vp)llg, w = CUIS, Vg wt148]-1.0. ) 6.7
1Au, —Au+Vplg w = CU fllgw+148H-1.0 w) (5.8)

with a constant C=C(8, q, w, ¢, 6)>0 when A<S. is restricted by |21 =0 with
given 0>0,

(i) The constant C in is independent of 0>0 under the following con-
ditions: n=3 and there exists some s=q such that y:=n(2/n+1/s—1/¢q)=0 and

WS — x| T E A, xo £ 02, or w1+ |-|)T e A(Q). (5.9)
This condition is satisfied for n=3 if
w=|+—x|% xoE 02, or w=(>A4]-D* (5.10)

with
20—n < a < n(g—1). (5.11)

(ili) The constant C in is independent of 0>0 under the following con-
ditions: n=3 and there exists some s&(1, q] such that 7:=n2/n+1/9g—1/5)=0
and

W — x| & (D), xo £ 0R, or w(I+|-)* e Q). (5.12)

This condition is satisfied for n=3 if w=/|-—1x,|%, x,&08Q, or w=(14+|-1)* with

n=3 and —n<a<n@g—1l)—2q. (6.13)

REMARK 5.6. The weight w in both cases of and of (5.12) may be
multiplied by the logarithmic terms
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logf2+1-1) and logf@2+|-—x,|™") with x, & 0@, Be R

We divide the proof of in several parts and in a sequence of
lemmata.

LEMMA 5.7. For a given solution (u, p)EH?,;"(.Q)”Xﬁ,‘,;"(Q) of (5.6) it holds
the preliminary a priori estimate

1QAu, V2u, Vplllgw = CUIS, Vo w1281 1.0 0
+l(u, Vu, plge+lAullate w*) (5.14)

with a constant C=C(2, G, w, q, ¢)>0 independent of A=S.. Here G is the
bounded domain associated with the weight weA,(2) in Definition 2.5, and
HYY(G)* is the dual space of H“V(G).

PROOF. Recall the cut-off functions ¢, ¢.=1—¢; from the proof of Theo-
rem 5.2, Then for ¢p=¢, consider (Qu, ¢p) as an element of HL4(R™)" X H;%R™)
solving in R” the system

(A=A)(Puw)+V(gp) = F(¢), div(gu) = G(¢) (5.15)
where

F() = ¢f —2V)-Vu—(Ad)u+pVe
G(p) = pg+u-Ve.
Since supp V¢ G and g=div u,
I(F (@), VG@Dlg,w.rn = c(I(f, Vg, w0+ (w, Vi, D)lg.c). (5.17)

To estimate G(gb)EI:I,;l‘q(R") let pCy(R™ and ¢=¢—IGI’IS(}€D dx. Then the
identity

(5.16)

G, 9y =—| upVodr = | uV@pdr+| @-vPgdx

and Poincaré’s inequality ||@llq.e<c|Vels ¢ vield

KG(@), o1 = clligll-1.q wtlullzrne @®lVelly, w. rr. (6.18)
Thus
[AG@Dlazheawn = (|4l -1.q wH AU 10 @2%). (5.19)

Analogously for ¢=¢, we consider (¢u, ¢pp)H*UG)* X H"4G) as a solution of
in the bounded domain G satisfying the boundary condition ¢u=0 on 0G.
As before we see that [|[(F(¢), VG()llq. ¢ and [[AG ()| a-1.9> are bounded by the
right-hand sides of [5.17), [5.19), respectively. Summarizing these estimates, (4.4)
and the a priori estimate is proved. O
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LEMMA 5.8. Define the operator Sqw(2) from HEU(Q)"XHL%Q) to LLQ)"
X Hy+4(Q) by
D(Sq, w(A) = (H?éq(g)nﬂl‘]é;%,(g)n)xﬁ]}dq(g)
and
Sq, w(D)(u, p) = (A—A)u+Vp, divu).

Then S, () is injective and its range R(Sq »(A)) is dense in Ly x Hz9(Q)
for all 2<S..

PrOOF. To prove the injectivity let (u, p)eHﬁq(Q)”xﬁ}éq(.Q) be a solution
of

(A—Au+Vp=0, divu=01in 2, u=0 on 092.

If g=2 and w=1, take the scalar product in L*2)" of A—A)u+Vp=0 with u
and use integration by parts to see that 25{u|2+Squ|2=O. Thus ©=0 and

Vp=0. Now let ¢=2 and weA,(Q) arbitrary. Using the cut-off function ¢=
¢, ¢» from the previous proofs, (Qu, ¢p) is a solution of with f=0, g=0
in R* or in G together with u|;=0, respectively. Since supp V¢, CG and
wEA,(2) we easily get that F(¢,)= LLY(R™)"NLYR™", G(p)eHz(R)NH"*(R™).
and, see (5.18), [5.19), that G(¢)eH"«R"NH*%R"). Then [Theorem 4.5 (ii)
vields ¢,uesHLZI(R")"NH**R")" and gblpeﬁ,‘,;q(R”)mﬁ”(R"). Analogously
QucH**(G)" and ¢,peH"*G) by Thus (u, p)eHZ'Z(.Q)”xﬁ”(.Q)
and u=0, Vp=0 as before. Finally let 1<¢<2 and we&d,(2). By Sobolev’'s
embedding theorem H'4G)C L%(G) where s,>q is defined by 1/n+1/s,=1/q.
Hence it is easily seen that F(¢,)e LL(R")"NL(R")", G(p)eHyz(RHNH" 1{(R™)
and G(gbl)eﬁ;"q(R")f\ﬁ"'SI(R"). Thus ¢,usH**1(R*)"* and gblpeﬁ”l(R") by
[Theorem 4.5 (ii). Analogously ¢,ueH?*(G)", ¢,p=H"*(G) by If
s;<<2 this procedure is repeated a finite number of times to get exponents
g<s;< - <s, with s,>2 such that (u, p)eHZ*xk(.Q)"xf{”k(.Q). Thus the
problem is reduced to the case ¢=2, and the injectivity of S, ,(4) is proved.
To show the density of the range of S, ,(4) we first restrict ourselves to

‘solenoidal vector fields, i.e., we introduce the operator
Sg, w (U, p) = (A—A)u+Vp,
. (5.20)
D(SY »(A) = {(u, p)ED(S, w(A); div u=0}

with range in L%(Q).
First let ¢=2 and w=1. Applying the lemma of Lax-Milgram in the space
V={ucH*Q)"; divu=0} to the variational problem

Zgu-z7+SVu-Vl‘) - Sf-a for all v e V
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we find for every f&L¥$2)" a unique solution u<V. Then de Rham’s theorem
yields a pe L% (2) such that (u, p) is a weak solution of S} ,(A)(u, p)=f. Since
fe L¥2)", local regularity theory implies that (u, p)cH%¥Q)"x H:%(2). Finally
writing (u¢,, p¢,) as a solution of the inhomogeneous Stokes system with
right-hand side in L*R™)" X H"*R"), the Calderén-Zygmund inequality implies
that (u¢,, pd)eH> 2(R")“><I-?'1’2(R”). This proves (u, p)=D(S? (1)) and R(S3,,(2))

If g#2 and weA,(L) is arbitrary, let feC(2)". By the previous step
there is a unique (u, p)ED(SS ,(4)) such that S3,(A)(u, p)=f. Repeating the
regularity arguments of the proof of the injectivity assertion, we conclude that
even (u, p)ED(SY, w(A). Thus

R(S§, w(4) is dense in L&) (5.21)

To complete the proof let (f’, g’)equ’,(Q)"xF],i;,q’(Q), the dual space of
L%,(Q)"Xﬁ,;"q([)), and suppose that

{Sq w((u, p), (f'g)> =0 for all (u, p) € D(Sq w(2)),

ie., gg(lu—Au+Vp)-f’dx+<g’, divu>=0. Restricting to (u, p)€D(S], »(4)),
5.21) yields f'=0. Thus

0=<g’, divu) = Mgpu-Vg’

for all ueC(2)*. Since CF(£2) is dense in L%L(£2) we conclude that Vg'=0, or
g'=0 in H3%(2). Now Hahn-Banach’s theorem completes the proof of
5.8. ]

PROOF OF INEQUALITY AND OF THEOREM 5.5 (ii). We start with the
case where A<S, is restricted by |4|=d for some positive §. Assuming that
is false there are sequences (u;, p;) in HZU"x HL9(2) and (1) in S.,
|1x 1 =0, satisfying [5.6) with (f,) in LL()", (g.) in HL(QNHZ Q) such that

NAeur, Vusr, Vo)llgw=1 for all ke N

(5.22)
I(F e VeR)lla wt 488l -1.0.0 >0 as k— oo

Without loss of generality we may suppose that Sgpkdx:O, k=N, and that (1)

converges to some AES, or to co as k—oo. In both cases the interpolation
inequality implies that (u,) in HZ%42)" is bounded. Since L%(£2) and
H Le() are separable and reflexive we may assume—by suppressing the notation
of subsequences—that
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Uy —u in HZYQD"NHy ()"
Arup =V in L™, Vp, —Vp in LL)"

(5.23)

for k—co; here — denotes weak convergence, u€HZ42)", u=0 on 0L,
Vely@)®, pelyy®) and SGp dx=0. Further by (5.22)

V—Au+Vp =0, divu=divV =0 in @

(5.24)
u=0o0n0df2, V-N=0 on 0f2.

If 2, —2<S., |2/=0, then (5.23) yields V=Au. Thus (u, p) solves the homo-
geneous Stokes resolvent system and consequently u=0, p=0 by
Then the compact embeddings H*YG)CH"YG), H*YG)CLY¥G) and LYG)C
H"“%(G)*, the assumption w|g>0 and (5.23) yield ||(us, Vug, pr)llec—0 and
NAsuall e @*—0 as k—oco. By (5.22) this leads to a contradiction. If
|| — o0 as k— oo, then u=0 and (5.24) reduces to the Helmholtz decomposition
0=V+Vp in LLA)*. Hence by V=0, p=0. Using the above
compact embeddings we are again led to a contradiction. This proves (5.7)
when |4|=0.
Next we consider for |A| —0 under the assumption (5.9). Set

v=w" . —x,|77 or v=w"(1+]|-])77,
respectively. Before constructing a contradiction as above let us prove the

embeddings
HR(Q)C Hy"(2) < Li8) (5.25)

where
1 1,1 1
5 — (11/28,,1/28)T (==
w = (w7 and " 2(q+s)'

Obviously ¢g=r<s and by (56.9) y/@n)=1/n+1/r—1/¢g=1/n-+1/s—1/r=0. Further
e (D), since for every cube QC R

(5.8 ()"
<G G (o)™

due to Holder’s inequality and the assumptions weA,(2) and ved(£2). Thus
yields the continuous embeddings Hy%()C LL(2) and Hy™(2)C
Li(). Note that the constant u.=C in vanishes when e.g., ue Ly(Q)
and u~umELé(Q) is known; in this case u..<L{(R")+LL(R") is harmonic, and
Lemma 4.1 (ii) shows that u.=0. Thus is proved.

IA

C
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Now let (us, ps, fr, & Az) be a sequence satisfying (5.22) and lim,_. 4, =0.
By (Vu,) is bounded in L%(.Q)"2 and (u,) is bounded in L{(£2)". Thus—
by suppressing the notation of subsequences—we may assume the following
weak convergences:

Uy — U in L¥2), Vu,—Vu in LX8)
Viu, —=Viu in LY2), Vpsy—Vp in LLD).

Further A,u,—V=2Au=0 in L%(£2) and «=0 on 0£2. Hence (u, p) solves the
Stokes system

—Au+Vp=0, diveu=in 2, u=0on dQ, (5.26)
or using again the cut-off functions ¢=¢,, ¢,=C=(R"; [0, 1]),

—AUd)+V(pP) = —2Vu-Vd—uld+ pVe

(5.27)
div(ud) = u-V¢.

For ¢=¢, consider (5.27) as a Stokes system on R". Since W&, (£), r<s and
supp V¢, G, the right-hand side is contained in L"(R™)"xH"7"(R") and has a
compact support in G. Using Fourier analysis we can write down an explicit
solution (%, ) of (5.27) which satisfies (V22)eL"(R")™, VH=L"(R™" due to
Then Lemma 411 (ii) implies that § coincides with p¢, up to a
constant and # coincides with u¢, up to a linear polynomial, see [5] for details.
For ¢)=¢. we consider (5.27) as a Stokes system on G together with the boundary
condition u¢,=0 on 0G. Here classical L7-theory yields u¢,eH?>"(G)" and
p¢=H""(G). Combining both results and using standard embedding theorems
we see that the right-hand side of (5.27) is even contained in L‘(R™)X H"*(R")
for all te(l, o) if r=n and for all te(l, rn/(n—r)) if »<n. Repeating the
previous arguments, if necessary a finite number of times, we arrive at the
regularity assertion

|(V2, Vo)lle < o0 for all ¢ & (L, oo).

Further the embedding ﬁ"t(Q)CL’(Q) with 1/t=1/t—1/n for t<n yields, since
Vue LZ2)"* and ue LYQ)",

n

h> .

IVl ey < oo for all &> ",

Since n=3, Vues L¥()"* and, by the same embedding theorem, p—me LA(Q) for

a suitable constant m<C. Now an approximation argument and integration by
parts shows that

0= S(-—Au—{-Vp)ﬁ - SIVuIz—S(p—m)div "
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Since divu=0, we get Vu=0 and even u=0, for u=0 on 0. Furthermore
Vp=0. This will lead to the same contradiction to [5.14), (5.22) as before.

It remains to consider the case [5.10), [5.1I). Choose any s=g¢ such that
r=n@/n+1/s—1/¢)=0. Then, if e.g.,, w(x)=|x|% we get v(x)=|x|**/*7.
But ved(f2), since the inequality 2¢—n<a<n(g—1) yields the inequality
—n<as/q—ys<n(s—1). By Lemma 2.3(v) the same arguments hold when w
is multiplied by a logarithmic factor.

Now and [Theorem 5.5/(ii) are completely proved. O

PROOF OF INEQUALITY AND OF THEOREM 5.5 (iii). Set
v=w-—x,|" or v=w(l+]-])7,

respectively. The proof rests on an elementary duality argument; cf. the proof
of [45). However it is important to recall that the range R(SY,.:(4)) is dense

in LL ()", see[5.21). Thus yields [5.8). To prove (iii) let x,=0 and note
that the assumptions on weA,(2) yvield w' €Ay (2), s'=q’, y'=F=n2/n-+1/s’
—1/¢")=0 and

p =y ¥ = w—s’/qt . ]"T’s' — (w/>s'/q' | . I-T's' = Js:(g).

Hence w’ satisfies (5.9), and holds for ¢/, w’ with a constant C independ-
ent of . Then the duality argument yields for ¢, w with C independent
of 4. If e.g., wx)=I|x]*, —n<a<n(g—1)—2q, then w'(x)=|x|"%?/? and 2¢’'—
n<—alg’/q)<n(g’—1). Thus is satisfied for ¢’, w’. This completes the
proof of [Theorem 5.5/(iii).

PROOF OF SURJECTIVITY OF S, ,(4). For fixed A&S. the range of the op-

erator S§ (1) is dense in LL()", see (5.20), [5.21) Furthermore implies
that R(Sg »(4) is closed in Ly, Thus R(SY ,(A)=LL(™.
Next consider the operator S, ,,(4) and define the space

Dy w = {divu; ueHEY(", u=0 on 0RQ}.

To prove that R(S,, w(A)=LLD)" XDy » let (f, ) LLY2)"X D, ». By definition
there is some u,= H%%(2)" with u,=0 on 02 and g=div u,. By the above results
there is a unique (u,;, p)EHZY2)* X H;42) satisfying

(A—=A)u,+Vp = f—QA—Au,y, divu,=01in 2, u,=0 on 0Q.

Then (up+uy, P)ED(Sy, w(A) and S w(D(uetu;, p)=(f, 2).
Thus it suffices to prove that

Dy.w = H59(Q)NH;*9Q). (5.28)
By definition and D, is a closed subset of H4(NHz"1(2) with respect
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to the norm [|Vgllg w+llgl-1.¢.w. To show that the inclusion is also dense with
respect to this norm we identify D, , with

Eqw=1{Vdivu, u); usH34)", u=0 on 082}

equipped with the norm ||V div u{; »w+]|#]lq, ». To introduce an analogous identifi-
cation for H,‘l;q(Q)f\ﬁ,;l‘q(Q) consider geﬁ;“q(!)). Since HL(Q) is isomorphic
to a closed subspace of L% (£2)", Hahn-Banach’s theorem yields some ue L%(£2)"
with JJulgw=llgl_-1.¢» satisfying g=divu, ie., {g, (p)z—ng(p for all p&=
AL Q). 1f additionally g H4%(2) and consequently g=divueL%G), Gauss’
integral theorem vyields u-N=0 on 02 where N denotes the normal vector
on 02. Then implies that even divueL%(2) and consequently
geHLYD). Thus the density of Dy, in HLU)NH*YL) is equivalent to
the assertion that

Eqw is dense in Yy, = {(Vdivuy, ) e LY X LLE)™; N-ul0=0}  (5.29)

with respect to [|*llgwI"la. w-
To prove that assertion consider any functional (F, H)E L%, (2)*"=(L%(2)*")*
vanishing on E, ., i.e.,

SF-V div u+SH-u =0 for all u € H3Y(D)", ulz0=0.

Choosing u<Cy(2)" implies that Vdiv F=s—He L%, (£)" in the sense of distri-
butions. In particular div FEL?(G). Next note that by [Lemma 54 divu|s
takes on all values glao, g€C¥(G\U0L), when u runs through all of HZY(Q)»
with zero boundary values. Thus Gauss’ integral theorem implies that F-N=0
on 092. Hence div FEL%(2) by To finish the proof it suffices to
show that the functional (F, H) vanishes on Y,.. Let usLi(f)" satisfy
VdivueLy(@)", u-N=0 on 92, and note that divuecL%(2) by Lemma 5.3.
Then a standard approximation argument justifies the following integration by
parts:

SF-V div u—}—SH-u — nSdiv Fdiv u—t—SH-u - S(Vdiv F+-H)eu =0,

Thus Hahn-Banch’s theorem completes the proof of (5.29) and also of [5.28). [

We note that the proof of and in particular of is
complete.

PrOOF OF THEOREM 1.5. The a priori estimate with A=1 yields that
the Stokes operator A, ., is a closed operator on 9D(A, ,)C LY, 4(82) for every
weA(2), 1<g<oo. Further for every A&C\R_ the inverse (A+ A, )" exists
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and is continuous. To show that (Ay »)*=Ag, . it suffices to prove [(1+ Ay ») 11*
=1+A4y.w) . Let fely (Q), f'eLy (2) and let (u, p)€D(SS, »(1)), (u’, p")
ED(SY, w(1))—see (5.20)—be defined by u—Au+Vp=f, u'—Au’+Vp'=f’. Then
integration by parts yields

(A+Agw)f, )=, )=, w)=(f, A+A¢,w)7 f).

Thus (Ag w)*=Ag¢. w-
To prove (ii) we define the linear operator

Ty w(d): L™ — LL@)*, Towf = (A+Aqw) ' Ppwl,

ie., u=T, »(A)f is part of the solution (u, p) of the resolvent problem (A—A)u
+Vp=Ff, divu=0 in 2, ul=0. By

1Tq A = ]Ll, c=1¢0), for AisS, || =d>0. (5.30)
Moreover under the assumption the constant ¢ in (5.30) is independent of
0>0 for T, w,(A) and T ,,(4). Then the complex interpolation in the spaces
L%, (£) and L3, (82), see [1, Theorem 5.5.3, Corollary 5.5.4], yields (5.30) for
T, () with ¢ independent of § where w=w} %wi.

Concerning the weights |x]%, (1+|x|)* etc. let —n<a<n(g—1). Then
there are 6<[0, 1] and ay=@2¢g—n, n{g—1)), ays(—n, n(g—1)—2¢) such that
a=(1—0)a,+6a,. Now the same interpolation argument as before yields (5.30)
for Ty »(4), w(x)=|x|* etc., with ¢ independent of 4.

For the results on the semigroup {¢"‘4e.w»; t>0} we refer to [6]. The proof

of is complete. O

REMARK 5.9. Obviously complex interpolation theory for the spaces Li2(2)
and L?,}I(.Q) with ¢,#¢,, see [1], yields a more general result on the boundedness
of the semigroup {e *“ew; t=0}. Let n=3, 1<qq, q1<00, WoEy (), w,E A, (D)
and let

1 1-6 6

— = +—, w= W Pyfue g < 1).
q qo q:

Further assume that there exist s,=¢, and 1<s;<¢, with

2 1 1 -

ro= (Gt o) 20wl xl T € (@),
2 1 1

p=n(t o) 20, Wil xlih € Ay(@),

where x,¢02. Then A, ., satisfies a resolvent estimate uniformly for A2&S.
and {e"*ew; t=0} is a bounded analytic semigroup. The same result holds
when the term |-—x,| is replaced by 1+4]-].
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