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Introduction.

In this paper we study the structure of a polarized threefold $(Y, L)$ such
that $Y$ is a normal projective threefold with at worst $Q$-factorial terminal
singularities and that its anti-adjoint divisor $-(K_{Y}+L)$ is linearly equivalent to
a non-zero effective Weil divisor. For a polarized variety, the property of its
adjoint divisor has been studied by many algebraic geometers (see e.g., T.
Fujita [F] Chapter II). In principle, the adjoint divisor has positivity properties
(ampleness, spannedness, nefness and so on) except a few cases in which $(Y, L)$

has some special structure (see $e.g.$ , loc. cit.). Our assumption means that the
adjoint bundle is far from being positive, so we expect that the structure of
such polarized threeholds can be investigated well.

The other motivation is to study non-normal Gorenstein Fano threefolds.
M. Reid classified non-normal Gorenstein Del Pezzo surfaces in [R] via the
minimal resolutions of their normalizations. Let $X$ be a non-normal Gorenstein
Del Pezzo surface, $Y$ the normalization of $X$ and $L$ the ample Cartier divisor
corresponding to the inverse image of the anti-dualizing sheaf $\omega_{X}^{-1}$ . By using
the adjunction formula he showed that there exists a non-zero effective Weil
divisor $\Delta$ such that $-K_{Y}\sim L+\Delta$ . After the process above he took the minimal
resolution of the normalization $Y$ , and classified the all possibilities of it.

NOW we consider the case of Gorenstein Fano threefolds. Let $X$ be a
Gorenstein Fano threefold, $Y$ the normalization of $X$ , and $L$ the ample Cartier
divisor on $Y$ such that the invertible sheaf $O_{Y}(L)$ is isomorphic to the inverse image
of the anti-dualizing sheaf $\omega_{X}^{-1}$ . Then there exists a non-zero effective Weil
divisor $\Delta$ such that $-K_{Y}\sim L+\Delta$ by using adjunction theory as before. Now
we want to apply minimal model program. For this purpose we assume that
$Y$ has at worst $Q$-factorial terminal singularities (if $Y$ has worse singularities,
minimal model program is difficult to apply). Such a pair $(Y, L)$ is a sort of
objects which we will study in this paper.

In section 1, we prepare several results on projective surfaces for the later
use. The results and their proofs are very similar to the ones treated by M.
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Reid in [R]. So we only give the outlines of the proofs here.
In section 2, we recall definitions and results in [I], and modify them

slightly. For a polarized threefold $(Y, L)$ in question, we construct a sequence
of contraction morphisms of extremal rays $Y=Y_{0}arrow Y_{1}arrow Y_{2}arrow\cdotsarrow Y.$ — $Z$ where
$Z$ is a variety of dimension less than three, and call $Z$ a basis of $(Y, L)$ (or $Y$ )

as in [I]. In the remainder of this paper, we consider the case of $\dim Z=2$

only. Under this assumption we prove that $Z$ is a nonsingular surface and that
there exists an ample vector bundle $\mathcal{E}$ of rank 2 on $Z$ such that $(Y, L)$ is
isomorphic to $(P_{Z}(e), H)$ where $H$ is the tautological divisor on $P_{Z}(\mathcal{E})$ .

In section 3, we collect examples of pairs $Z$ and $\mathcal{E}$ , where $Z$ is a non-
singular projective surface and $\mathcal{E}$ is an ample vector bundle of rank 2, such
that $(P_{Z}(\mathcal{E}), H)$ give us polarized threefolds with non-zero effective anti-adjoint
divisors.

In the last section, we study the structure of $(Y, L)$ in more detail. As
proved in section 2, such threefold is a $P^{1}$ -bundle over a nonsingular projective
surface $Z$ associated to an ample vector bundle $\mathcal{E}$ of rank 2 on $Z$ . The main
theorem of this paper, Theorem (4.25), says that the examples in section 3 are
the all possibilities for such $Z$ and $\mathcal{E}$ .

In this paper we use the standard notation as in [H]. All varieties are
defined over the complex number field $C$ . The Hirzeburch surface of degree $e$

is denoted by $F_{e}$ , its minimal section by $C_{0}$ and a fiber by $f$ as in [H]. By
$F_{a,0},$ $(a>0)$ , we denote the normal projective surface obtained by the contraction
of the minimal section on the Hirzeburch surface $F_{a}$ of degree $a$ . An irreducible
curve on a surface is called $n$ -curve if it is a nonsingular rational curve with
self-intersection number $n$ . The restriction of an object to a closed subvariety
is usually denoted by the subscript of the corresponding letter. For example,
$L_{\Gamma}$ stands for the restriction of a divisor $L$ to a closed subvariety $\Gamma$. Only
one exception is the case of canonical divisor. The symbol $K_{X}$ does not denote
the restriction of $K$ ’ to $X$ but the canonical divisor of $X$ . There are no danger
of confusion in this pape $r$ .

The author would like to express his gratitude to Prof. S. Ishii and Prof.
T. Fujita for their helpful advice.

1. Preliminaries.

(1.1) In this section we prepare several results on some kind of projective
surfaces for the later use. The proofs are almost the same as in [R]. So we
only give the outlines of the proofs.

LEMMA (1.2). Let $S$ be a normal $pro_{J}$ ective surface, which admits birational
morphism $\varphi:Sarrow T$ to a nonsingular surface T. Assume that there exist an ample
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Cartier dimsor $L$ and an effective Weil dimsor $\delta$ on $S$ , such that $-K_{S}\sim L+\delta$ .
Then one of the following holds.

(1.2.1) $\delta=0$ and $S$ is a normal rational Gorenstein $Del$ Pezzo surface.
$(1.2.2-i)$ $\varphi$ is an isomorphism and $S\cong T\cong P^{2}$ . $L\sim kH,$ $\delta\sim(3-k)H,$ $k=1$ ,

or 2, where $H$ is a line in $P^{2}$ , that is, $O(H)\cong O(1)$ .
$(1.2.2-ii)$ $\varphi$ is an $i$ omorphism and $S\cong T\cong F_{e}$ . $L\sim C_{0}+(e+k)f,$ $\delta\sim C_{0}+$

$(2-k)f,$ $k=1$ , or 2.
(1.2.2-iii) $S\cong F_{1},$ $T\cong P^{2}$ and $\varphi:Sarrow T$ is the morphism of blow-down. $L\sim$

$C_{0}+(1+k)f$ and $\delta\sim C_{0}+(2-k)f,$ $k=1$ , or 2.

OUTLINE OF THE PROOF. Let $f:\tilde{S}arrow S$ be the minimal resolution of $S$ . Then
we can easily see the equality

$-K_{\tilde{S}}\sim f^{*}L+\overline{\delta}+E$

where $\overline{\delta}$ is the proper transform of $\delta$ by $f$ and $E$ is an effective integral Weil
divisor whose support is contained in the exceptional locus of $f$. When the
divisor $\overline{\delta}+E$ is not equal to zero, we can prove that the surface $\tilde{S}$ is either $P^{2}$

or a Hirzeburch surface $F_{e},$ $(e\geqq 0)$ by the similar way as in [R]. Moreover we
can compute $f^{*}L$ explicitly. On the other hand, we have a birational morphism
from $\tilde{S}$ to a nonsingular surface $T$ . Therefore $S\cong S\cong T$ unless $S\cong S\cong F_{1}$ and
$T\cong P^{2}$ . These case $s$ correspond to the case $(1.2.2-i),$ $(1.2.2-ii)$ , and (1.2.2-iii).

The equality $O+E=0$ implies that $\delta=0$ and $f^{*}K_{S}\sim K_{\tilde{S}}$ . Therefore the normal
surface $S$ is a rational Gorenstein De1 Pezzo surface by [HW]. This is the
case of (1.2.1). $\square$

COROLLARY (1.3). Let $S$ be a Gorenstein projective surface, which admits a
birational morphism $\varphi:Sarrow T$ to a nonsingular surface $T$ , and $\pi:Varrow S$ the
normalization of $S$ (in the case that $S$ is normal we put $V=S$). Assume that there
exist an ample Cartier dimsor $L$ on $S$ and an effective dimsor $\delta$ on $T$ such that
$\omega_{\overline{S}}‘\cong O_{S}(L)\otimes\varphi^{*}O_{T}(\delta)$ . Then one of the following holds.

(1.3.1) $\delta=0$ and $S$ is a normal rational Gorenstein $Del$ Pezzo surface.
$(1.3.2-i)$ $\varphi$ is an isomorphism and $S\cong T\cong P^{2}$ . $L\cong kH,$ $\delta\sim(3-k)H,$ $k=1$ ,

or 2.
$(1.3.2-ii)$ $\varphi$ is an isomorphism and $S\cong T\cong F_{e}$ . $L\sim C_{0}+(e+k)f,$ $\delta\sim C_{0}+$

$(2-k)f,$ $k=1$ , or 2.
(1.3.2-iii) $S\cong F_{1},$ $T\cong P^{2}$ and $\varphi:Sarrow T$ is the morphism of blow-down. $L\sim$

$C_{0}+2f$, and $\delta\sim H$.
(1.3.3) $S$ is a $nm$-normal Gorenstein $Del$ Pezzo surface, $V\cong F_{1}T\cong P^{2}$ , and

$\varphi\cdot\pi:Varrow T$ is the $morph2sm$ of blow-down. Furthermore we have $\pi^{*}L\sim C_{0}+3f$

and $\delta=0$ .
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OUTLINE OF THE PROOF. By the adjunction formula there exists an effective
divisor $\Delta$ on $V$ such that $O_{V}(K_{V}+\Delta)\cong\pi^{*}\omega_{S}$ . Notice that $\Delta=0$ if and only if $S$

is normal. Therefore we have $-K_{V}\sim\pi^{*}L+\pi^{*}\varphi^{*}\delta+\Delta$ . Now we can apply the
lemma above to the normal surface $V$ . From the cases (1.2.1), $(1.2.2-i)$ and
$(1.2.2-ii)$ we obtain the cases (1.3.1), $(1.3.2-i)$ and $(1.3.2-ii)$ . For the case (1.2.2-iii),

we have $V\cong F_{1},$ $T\cong P^{2}$ , and $\pi^{*}\varphi^{*}\delta+\Delta\sim C_{0}+(2-k)f,$ $k=1$ or 2. If the divisor
$\delta$ is not equal to zero, then we have $k=1$ and $\pi^{*}\varphi^{*}\delta+\Delta\sim C_{0}+f$ . Then $\Delta=0$

and $S$ is normal, that is, $\pi$ : $Varrow S$ is isomorphism. This is the case of (1.3.2-iii).

Because $\varphi\cdot\pi$ is isomorphic outside of $C_{0}$ , non-normal locus of $S$ is contained
in the image of $C_{0}$ by $\pi$ . Therefore we have the case (1.3.3) if $\delta$ is equal to
zero. $\square$

2. Contraction morphism associated to an ample decomposition.

(2.1) In this section we recall several results in [I] and apply them to our
case.

DEFINITION (2.2) ([I], Definition 1.2). Let $Y$ be a normal projective variety
with at worst $Q$-factorial terminal singularities, and $D$ a Weil divisor on $Y$ . A
good decomposition of $D$ is the following data:

$( i )$ $L$ is a nef Cartier divisor on $Y$

(ii) $\Delta>0$ is a non-zero effective divisor
(iii) $D$ is linearly equivalent to $L+\Delta$ , and
(iv) $L\cdot C>0$ for any irreducible curve $C$ on $Y$ with $\Delta\cdot C>0$ .
The data $L+\Delta$ above is called a good decomposition of $D$ .
DEFINITION (2.3). For a good decomposition $L+\Delta$ of a Weil divisor $D$ we

call it an ample decomposition of $D$ if $L$ is an ample Cartier divisor. Notice
that (iv) is always the case for any ample Cartier divisor on $Y$ .

REMARK (2.4). Let $(Y, L)$ be a normal polarized 3-fold with non-zero effec-
tive anti-adjoint divisor, that is, $-(K_{Y}+L)$ is linearly equivalent to a non-zero
effective Weil divisor $\Delta$ . Then $L+\Delta$ is an ample decomposition of $-K_{Y}$ .

DEFINITION (2.5). Let $Y$ be a normal projective 3-fold with at worst
$Q$-factorial terminal singularities, and $-K_{Y}\sim L+\Delta$ an ample decomposition of
$-K_{Y}$ . An extremal ray $R$ of $Y$ with the property $\Delta\cdot R>0$ is called an extremal
ray associated to the ample decomposition $-K_{Y}\sim L+\Delta$ , and the contraction
morphism of $R$ is called a contraction morphism associated to the decomposition.

LEMMA (2.6) (cf. [I], Lemma 1.3). Let $Y$ be a normal $pro_{j}$ ective 3-fold with
at worst $Q$-factorial terminal singularities. Assume that $-K_{Y}$ admits an ample
decomposition $L+\Delta$ . Then there exists an extremal ray $R$ associated to the
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ample decomposition above, and the contraction morphism $\varphi:Yarrow Y’$ of $R$ satisfies
one of the following Properties:

(I) $\dim Y’$ S2, $or$

(II) $\varphi$ is a birational contraction which contracts an irreducible dimsor
$D\cong F_{a.0}(a\geqq 1)$ to a nonsingular $p\alpha nt$ on $Y’$ . By setting $\Delta’=\varphi_{*}\Delta$ and $L’=$

$-K_{Y’}-\Delta’,$ $\Delta’$ is a non-zero effective Weil dimsor on $Y’,$ $L’$ is an ample Cartier
dimsor and $-K_{Y’}\sim L’+\Delta’$ is an ample decomposition of $-K_{Y’}$ . Moreover $\varphi^{*}L’$

$=L+aD$ and $\varphi^{*}\Delta’=\Delta+D$ .
PROOF. By Lemma 1.3 in [I], it is sufficient to show that $L’$ is ample.

Let $C’$ be an irreducible curve on $Y’$ and $C$ the proper transform of $C’$ in $Y$ .
By the equality $\varphi^{*}L’=L+aD$ and the inequality $D\cdot C\geqq 0$, we have

$L’\cdot C’=\varphi^{*}L’\cdot C=(L+aD)\cdot C\geqq L\cdot C>0$ .
Hence $L’$ is ample. $\square$

(2.7) By the lemma above we get the following theorem.

THEOREM (2.8) (cf. [I], Theorem 1.3). Let $Y$ be a normal projective 3-fold
with at worst $Q$-factorial terminal singularities. Assume that $-K_{Y}$ admits an
ample decomPosrtion $L+\Delta$ . Then there exists a sequence of morphisms

$Y=Y_{0}arrow Y_{1}arrow Y_{2}\varphi_{0}\varphi_{1}arrow$ $arrow Y_{r}arrow Z\varphi_{r}$

satisfying the following properties.
(i) $Y_{\ell}$ has at worst $Q$-factorial terminal singularities for every $i(0\leqq i\leqq r)$ .
(ii) $-K_{Y_{i}}$ admits an ample decomposition $L_{i}+\Delta_{i}$ for every $i$ ($0$ Si$ $r$), where

$L_{0}=L$ and $\Delta_{0}=\Delta$ .
(iii) For every $i,$

$\varphi_{t}$ is a contraction morphism associated to the ample decom-
position in (ii), which is a birational contraction described in the lemma above for
$i<r$ , and of fiber type for $i=r$ (therefore $\dim Z\leqq 2$).

DEFINITION (2.9). The sequence $Y=Y_{0^{arrow}}^{\varphi_{0}}Y_{1}^{224_{Y_{2}}}arrow\cdotsarrow Y_{r^{arrow}}^{\varphi r}Z$ described
in the theorem above is called a sequence of contractions associated to the ample
decomposition $-K_{Y}\sim L+\Delta$ . The non-negative integer $r$ in the sequence above
is called its length. We call the variety $Z$ the basis of the sequence. In the
case that we do not explicitly specify a sequence of contractions, we call $Z$ a
basis of $Y$ with respect to the given ample decomposition.

(2.10) In the remainder of this paper we treat the cases that $Y$ admits a
basis $Z$ with $\dim Z=2$ with $re$spect to the given ample decomposition of $-K_{Y}$ .

(2.11) The following lemma is due to N. Nakayama. We can find the proof
in [I].
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LEMMA (2.12) (N. Nakayama, see Lemma 1.6 in [I]). Let $Y$ be a normal
projective 3-fold with at worst $Q$-factorial terminal singularities, and $\varphi:Yarrow S$ is
the contraction morphism of an extremal ray of $Y$ to a surface S. Assume that
there exists a Cartier dimsor $L$ on $Y$ such that $L\cdot l=1$ for a general fiber 1 of
$\varphi$ . Then $S$ is a nonsingular surface and $\varphi:Yarrow S$ is a $P^{1}$ -bundle over S. More
prectsely, the direct image $\varphi*O_{Y}(L)$ is a vector bundle of rank 2 on $S$ and $Y$ is
isomorphic to $P_{S}(\varphi_{*}O_{Y}(L))$ over $S$ .

(2.13) By virtue of the lemma above we can prove the following theorem.

THEOREM (2.14). Let $Y$ be a normal projective3-fold with at worst Q-fac-
torial terminal srngularities, $-K_{Y}\sim L+\Delta$ an amPle decomPosrtion of $-K_{Y}$ , and
$Y=Y_{0^{arrow Y_{1}arrow Y_{2}}}^{\varphi_{0}\varphi_{1}}arrow\cdotsarrow Y_{r^{arrow}}^{\varphi_{r}}Z$ a sequence of contractions associated to the ample
decomposition above. Suppose that $\dim Z=2$ . Then the length $r$ must be zero,
that is $Y=Y_{r}$ . Moreover the surface $Z$ is nonsingular, and $\varphi_{r}$ : $Y(=Y_{r})arrow Z$

gives us a $P^{1}$-bundle over Z. More Precisely, there exists an ample vector bundle
$\mathcal{E}$ of rank 2 on $Z$ such that $(Y, L)(=(Y_{r}, L_{r}))$ is isomorphic to $(P_{Z}(\mathcal{E}), H)$ over
$Z$ , where $H$ is the tautological dimsor on $P_{Z}(\mathcal{E})$ .

PROOF. At first we prove that $Z$ is a nonsingular surface and the final
contraction $\varphi_{r}$ : $Y_{r}arrow Z$ gives us a $P^{1}$-bundle over $Z$ . Recall that $\varphi_{r}$ is the
contraction morphism of an extremal ray $R_{r}$ associated to an ample decomposi-
tion $-K_{Y_{\gamma}}\sim L_{r}+\Delta_{r}$ . We have the property $\Delta_{r}\cdot R_{r}>0$ . Therefore a general
fiber 1 of $\varphi_{r}$ , which is $P^{1}$ , satisfies the inequality $\Delta_{r}\cdot l>0$ . Furthermore the
intersection number $L_{r}\cdot l$ is a positive integer because $L_{r}$ is ample Cartier
divisor. Since $l\cong P^{1}$ , we conclude that $L_{r}\cdot l=1$ and $\Delta_{r}\cdot l=1$ . Now we can apply
Lemma (2.12), and then $Z$ is a nonsingular surface and $\varphi_{r}$ : $Y_{r}arrow Z$ gives a
$P^{1}$-bundle.

If we assume that the length $r$ is greater than $0$ . Then we have a part of
the sequence $Y_{r-1^{arrow Y_{r^{arrow Z}}^{\varphi r}}}^{\varphi r-1}$ . We have $\varphi_{r-1}^{*}L_{r}=L_{r-1}+aD_{r-1}$ for some integer
$a\geqq 1$ and $\varphi_{r-1}(D_{r-1})$ is a point $p$ on $Y_{r}$ by Lemma (2.6), where $D_{r-1}$ is the
exceptional divisor of the morphism $\varphi_{r-1}$ . Because $\varphi_{r}$ : $Y_{r}arrow Z$ is a $P^{1}$-bundle
we can take a fiber $l$ passing through the point $p$ . From the argument above,
we have $L_{r}\cdot l=1$ . Let $\overline{l}$ be a proper transform of 1 on $Y_{r-1}$ . Then $D_{r-1}\cdot\overline{l}>0$

because $l$ passes through the point $p$ . Therefore we have

$1=L_{r}\cdot l=(\varphi_{r-1}^{*}L_{r})\cdot\overline{l}$

$=(L_{r-1}+aD_{r-1})\cdot\overline{l}$

$>L_{r-1}\cdot l$ ,

and this contradicts to the fact that $L_{r-1}$ is an ample Cartier divisor on $Y_{r-1}$ .
Thus we complete the proof. $\square$
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3. Examples.

(3.1) In this section we give examples of polarized 3-folds with non-zero
effective anti-adjoint divisors. In the next section, these examples will turn
out to be the all possible cases for such threefold $s$ with a basis of dimension 2.

(3.2) At first we prepare a simple lemma for the later use.

LEMMA (3.3). Let $Z$ be a nonsingular surface and $\mathcal{E}$ be a vector bundle of
rank 2 on Z. We set $Y=P_{Z}(\mathcal{E})$ and denote the tautological divisor by L. Then
there exists a non-zero effective dinisor which is linearly equivalent to $-(K_{Y}+L)$

if and only if
$H^{0}(Z, \mathcal{E}\otimes(det\mathcal{E})^{-1}\otimes O_{Z}(-K_{Z}))\neq 0$ .

In particular, if $\mathcal{E}$ is ample in addition then $(Y, L)$ is a nonsingular polarized

3-fold wzth non-zero effective anti-adjmnt dimsor.

PROOF. Notice that $-(K_{Y}+L)$ is not trivial because the restriction of it to
a fiber is not trivial. Then it is easy from the formula

$O_{Y}(K_{Y})\cong O_{Y}(-2L)\otimes\varphi^{*}(\det \mathcal{E}\otimes O_{Z}(K_{Z}))$ . $\square$

EXAMPLE (3.4). Let $Z=P^{2},$ $\mathcal{E}=O(k)\oplus O(a),$ $k=1,2$ , or 3 and $a>0,$ $Y=P_{Z}(e)$

and $L$ the tautological divisor. Notice that $L$ is an ample divisor on $Y$ . It is
ea$sy$ to check that $h^{0}(Z, e\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z}))\neq 0$ .

EXAMPLE (3.5). Let $Z=P^{2},$ $\mathcal{E}=\sigma_{Z}$ , where $g_{Z}$ is the tangent bundle of $Z$ .
Then it is well known that $\xi\tau_{Z}$ is an ample vector bundle of rank 2. Since
$\det e=O_{Z}(-K_{Z})$ , we have $\mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(K_{Z})\cong \mathcal{E}\cong\sigma\tau_{Z}$ . Therefore $H^{0}(Z,$ $\mathcal{E}\otimes$

$(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z}))\neq 0$ .

EXAMPLE (3.6). Let $Z=F_{e},$ $D$ an ample divisor on $Z$ and $\mathcal{E}=O_{Z}(D)\oplus$

$\mathcal{O}_{Z}(C_{0}+(e+k)f)$ , for $k=1$ or 2. By ea$sy$ calculation we have

$\mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z})\cong O_{Z}(C_{0}+(2-k)f)\oplus O_{Z}(-D+2C_{0}+(2+e)f)$ ,

and then we can easily see that $h^{0}(\mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z}))\neq 0$ .
EXAMPLE (3.7). Let $Z=F_{e}$ , for $e>0$ and $D$ a divisor on $Z$ with the prop-

erties that $D\cdot f\geqq 1$ and $D\cdot C_{0}=0$ . It is easy to see that $D$ is base point free and
that we have $D\cdot C>0$ for every irreducible curve $C$ different from $C_{0}$ (cf. [H]).
We have the following exact sequence

$0arrow \mathcal{O}_{Z}(D-2C_{0}-(e+2)f)arrow \mathcal{O}_{Z}(D-C_{0}-(e+2)f)arrow O_{C_{0}}(-2)arrow 0$ .
We have $h^{2}(Z, O_{Z}(D-2C_{0}-(e+2)f))=h^{0}(Z, O_{Z}(-D))=0$ by Serre duality and the
fact that $(-D)\cdot f<0$ . Then we obtain the surjection $H^{1}(Z, O_{Z}(D-C_{0}-(e+2)f))arrow$
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$H^{1}(C_{0}, O_{C_{0}}(-2))$ . On the other hand, we have the isomorphisms $H^{1}(Z,$ $O_{Z}(D-C_{0}$

$-(e+2)f))\cong Ext^{1}(O_{Z}(C_{0}+(e+2)f), O_{Z}(D))$ and $H^{1}(C_{0}, O_{C_{0}}(-2))\cong Ext^{1}(O_{C_{0}}(2), O_{C_{0}})$ .
Therefore we can take a vector bundle $\mathcal{E}$ of rank 2 satisfying the exact sequence

(3.7.1) $0arrow O_{Z}(D)arrow \mathcal{E}arrow O_{Z}(C_{0}+(e+2)f)arrow 0$

such that the restriction of the exact sequence above to the curve $C_{0}$

$0arrow 0_{c_{0}}arrow \mathcal{E}_{C_{0}}arrow O_{C_{0}}(2)arrow 0$

does not split. Notice that $\mathcal{E}_{C_{0}}\cong \mathcal{O}_{C_{0}}(1)\oplus O_{C_{0}}(1)$ , and then $e_{c_{0}}$ is ample on $C_{0}$ .
It is easy to see that $h^{0}(Z, \mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z}))\neq 0$ by considering the exact
sequence obtained by tensoring $(\det \mathcal{E})^{-1}\otimes \mathcal{O}_{Z}(-K_{Z})=O_{Z}(-D+C_{0})$ . Therefore we
only have to prove that $\mathcal{E}$ is ample. Let $Y=P_{Z}(\mathcal{E}),$ $L$ the tautological divisor
on $Y$ , and $\Gamma$ the section corresponding to the surjection $\mathcal{E}arrow O_{Z}(C_{0}+(e+2)f)$ . It
suffices to prove that $L$ is ample on $Y$ . By the exact sequence (3.7.1) we have
the following equalities

$L\sim\Gamma+\varphi^{*}D$ ,

$L_{\Gamma}\sim C_{0}+(e+2)f$ .
It is easy to see that $L$ has no base points outside of $\Gamma$ from the first equality
above and from the fact that the divisor $D$ is base point free. Moreover it is
well known that $L_{\Gamma}\cong C_{0}+(e+2)f$ is base point free. Therefore we know that
$L$ is base point free because $H^{1}(Y, O_{Y}(L-\Gamma))\cong H^{1}(Z, \mathcal{O}_{Z}(D))=0$ (cf. [H]). Then
we can define the morphism $\varphi_{1L1}$ associated to the linear system $|L|$ . On the
other hand, $\mathcal{E}_{C}$ is ample for every irreducible curve $C$ on $Z$ different from $C_{0}$ ,

because of the inequality $D\cdot C>0$ and the exact sequence (3.7.1). We remarked
that $\mathcal{E}_{C_{0}}$ is ample. Then it is easy to see that $L\cdot C>0$ for every irreducible
curve $C$ on $Y$ . Therefore $\varphi_{\mathfrak{l}L1}$ is finite morphism and then $L$ is ample.

EXAMPLE (3.8). Let $Z$ be a nonsingular Del Pezzo surface, $D$ an ample
divisor on $Z$ , and $\mathcal{E}=O_{Z}(D)\oplus O_{Z}(-K_{Z})$ . Then the vector bundle $\mathcal{E}$ is ample.
We have

$\mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z})\cong O_{Z}\oplus O_{Z}(-D-K_{Z})$ ,

and then $h^{0}(Z, \mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z}))\neq 0$ .
EXAMPLE (3.9) Let $S=F_{1}$ and $Z=P^{2}$ . We denote the morphism of blow

down by $\sigma$ : $Sarrow Z$ . Let us take a divisor $D$ on $S$ with the properties that
$D\cdot f\geqq 2$ and $D\cdot C_{0}=-1$ . We can easily see the inequality $D\cdot C>0$ for every
irreducible curve $C$ on $S$ , different from $C_{0}$ . We have an exact sequence

$0arrow O_{S}(D-2C_{0}-2f)arrow O_{S}(D-C_{0}-2f)arrow O_{C_{0}}(-2)arrow 0$ ,
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from which we obtain the surjection $H^{1}(S, O_{S}(D-C_{0}-2f))arrow H^{1}(C_{0}, \mathcal{O}_{C_{0}}(-2))$

because $h^{2}(S, O_{S}(D-2C_{0}-2f))=h^{0}(S, O_{S}(-D-f))=0$ by the inequalities $(-D-f)$
. $f<0$ . Therefore we can take a vector bundle with the exact sequence

(3.9.1) $0arrow \mathcal{O}_{S}(D)arrow\tilde{\mathcal{E}}arrow O_{S}(C_{0}+2f)arrow 0$

such that the restriction of the exact sequence above to the curve $C_{0}$ does not
split. Then it is easy to see that $\mathcal{E}_{c_{0}}$ is trivial. By Schwarzenberger’s theorem
[S] there exists a vector bundle $\mathcal{E}$ on $Z$ such that $8\cong\sigma^{*}\mathcal{E}$. By the fact that
$D\cdot C>0$ for every irreducible curve $C$ on $S$ different from $C_{0},$ $\mathcal{E}$ turns out to
be an ample vector bundle on $Z$ . On the other hand, we have

$\sigma^{*}\mathcal{E}\otimes(\det\sigma^{*}\mathcal{E})^{-1}\otimes O_{S}(-\sigma^{*}K_{Z})\cong\tilde{\mathcal{E}}\otimes O_{S}(-D+2C_{0}+f)$ ,

and then

$H^{0}(Z, \mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z}))\cong H^{0}(S, \sigma^{*}8\otimes(\det\sigma^{*}\mathcal{E})^{-1}\otimes O_{S}(-\sigma^{*}K_{Z}))$

$\cong H^{0}(S,\tilde{C}\otimes O_{S}(-D+2C_{0}+f))$

$\neq 0$

from the exact sequence (3.9.1).

EXAMPLE (3.10). Let $S,$ $Z$ and $\sigma:Sarrow Z$ be as in Example (3.9). Taking
a divisor $D$ with the property that $D\cdot f\geqq 3$ and $D\cdot C_{0}=-2$ . By the similar
argument as in Example (3.9), we can find a vector bundle 8 of rank 2 on $S$

satisfying the exact sequence

$0arrow O_{S}(D)arrow 8arrow O_{S}(C_{0}+3f)arrow 0$

such that the restriction $\tilde{\mathcal{E}}_{C_{0}}$ to the curve $C_{0}$ is trivial. Moreover we can easily
see that $D\cdot C>0$ for every irreducible curve $C$ different from $C_{0}$ . Therefore we
can find an ample vector bundle $\mathcal{E}$ of rank 2 on $Z$ such that $\mathcal{E}\cong\sigma^{*}\mathcal{E}$ . We can
easily see that $H^{0}(Z, \mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z}))\neq 0$ as in Example (3.9).

EXAMPLE (3.11). Let $Z$ be a nonsingular Del Pezzo surface, $S$ a nonsingular
weak Del Pezzo surface (that is, $-K_{s}$ is nef and big), and $\sigma$ : $Sarrow Z$ a birational
morphism from $S$ to $Z$ such that all $(-2)$-curves on $S$ are exceptional divisors
of $\sigma$ . Then there exists an effective divisor $E$ , whose support is contained in
the exceptional locus of $\sigma$ , such that $K_{S}\sim\sigma^{*}K_{Z}+E$ . Notice that $K_{S}$ and $E$

have the same intersection numbers with the $\sigma$ -exceptional divisors. Let us
assume that we are given an ample divisor $D$ on $Z$ . We set $D_{=}\sigma^{*}D+E$ . We
can easily see that for any $\sigma$ -exceptional $(-1)$-curve $C$ there exists a nonsingular
rational curve 1 on $S$ such that $l^{2}\geqq 0$ and $C\cdot l=0$ . Then we have $(C-D)\cdot l=$

$-D\cdot l=-(\sigma^{*}D+E)\cdot l\leqq-1$ because $D$ is ample, $E$ is effective and $E$ and 1 have
no common component. Therefore we have $H^{0}(S, O_{S}(C-\tilde{D}))=0$ for every
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$\sigma$-exceptlonal $(-1)$-curve $C$ . Since $\tilde{D}\cdot C=-1$ for any $\sigma$-exceptional curve $C$ ,
we have an exact sequence

$0arrow O_{S}(\tilde{D}+K_{S}-C)arrow O_{S}(\tilde{D}+K_{S})arrow o_{c}(-2)arrow 0$ .
Then we have a surjection $H^{1}(S, O_{S}(\tilde{D}+K_{s}))arrow H^{1}(C, o_{c}(-2))$ because
$h^{2}(S, O_{S}(\tilde{D}+K_{S}-C))=h^{0}(S, O_{S}(C-\tilde{D}))=0$ by Serre duality and the argument
above. Therefore we can take a vector bundle $\mathcal{E}$ of rank 2 on $S$ satisfying
the exact sequence

(3.11.1) $0arrow O_{S}(\tilde{D})arrow \mathcal{E}arrow O_{S}(-K_{S})arrow 0$

whose restriction to any $\sigma$-exceptional $(-1)$-curve $C$ does not split. Hence $\mathcal{E}_{c}$

is trivial for every $\sigma$-exceptional $(-1)$-curve $C$ . Also, we can easily see that
$\tilde{\mathcal{E}}_{C}$ is trivial for every $(-2)$-curve $C$ . Then there exists a vector bundle $\mathcal{E}$ of
rank 2 on $Z$ such that $\sigma^{*}\mathcal{E}\cong\tilde{\mathcal{E}}$ by applying Schwarzenberger’s theorem [S]
successively.

(3.12) NOW we will see that $\mathcal{E}$ is ample and satisfies the condition in
Lemma (3.3). At first let us remark that for any curve $C$ on $Z$ , the restriction
$\mathcal{E}_{C}$ of $\mathcal{E}$ to the curve $C$ is ample because D $\overline{C}>0$, where $\overline{C}$ is the proper
transform of $C$ by $\sigma$ . Let $Y=P_{Z}(\mathcal{E}),\tilde{Y}=P_{S}(\tilde{\mathcal{E}})$ , and $L$ and $\hat{L}$ the tautological
divisors on $Y$ and $\tilde{Y}$ respectively. Then we have a cartesian square

$\tilde{Y}arrow\tau Y$

$\psi\downarrow$ $\downarrow\varphi$

$Sarrow Z$
$\sigma$

and denote the morphisms $Yarrow Z,\tilde{Y}arrow S$ and $\tilde{Y}arrow Y$ by $\varphi,$
$\psi$ and $\tau resoectively$ .

We denote the section corresponding to the surjection $\tilde{\mathcal{E}}arrow O_{S}(-K_{S})$ by $\tilde{\Gamma}$ and
the image $\tau(\tilde{\Gamma})$ by $\Gamma$. Then there exist $s$ a divisor $E’$ , whose support is con-
tained in the exceptional locus of $\sigma$ , such that the equality $\tau^{*}\Gamma\sim\tilde{\Gamma}+\psi^{*}E’$ .
By using the base change theorem we obtain the equality

$\sigma^{*}\varphi_{*}\mathcal{O}_{Y}(L-\Gamma)\cong\psi_{*}\tau^{*}\mathcal{O}_{Y}(L-\Gamma)$

$\cong\psi_{*}O_{\tilde{Y}}(\tilde{L}-\tilde{\Gamma}-\psi^{*}E’)$

$\cong O_{S}(D-E’)$

cr $O_{S}(\sigma^{*}D+E-E’)$

and then $E$ and $E’$ is numerically equivalent relative to $\sigma$ . Thus $E\sim E’$

because their supports are contained in the exceptional locus of $\sigma$ and the
intersection matrix of the exceptional divisors are negative definite. Hence we
have the following equalities by easy calculations:
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$\det \mathcal{E}\cong O_{Z}(D-K_{Z})$

$\mathcal{E}\otimes(\det \mathcal{E})^{-1}\mathfrak{U}z(-K_{Z})\cong 8\otimes O_{Z}(-D)$

$L\sim\Gamma+\varphi^{*}D$

$-K_{Y}\sim L+\Gamma$

$-K_{\Gamma}\sim L_{\Gamma}$

$-K_{\overline{Y}}\sim\tilde{L}+\tilde{\Gamma}$

$-K_{\tilde{\Gamma}}\sim\tilde{L}_{\tilde{\Gamma}}$

$\tau^{*}\Gamma\sim\tilde{\Gamma}+\psi^{*}E$

$\sigma^{*}(\mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes O_{Z}(-K_{Z}))\cong\tilde{\mathcal{E}}\mathfrak{U}s(E-\tilde{D})$ .
Thus we have

$H^{0}(Z, \mathcal{E}\otimes(\det \mathcal{E})^{-1}\otimes \mathcal{O}_{Z}(-K_{Z}))\cong H^{0}(S, \mathcal{E}\otimes o_{s}(E-\tilde{D}))\neq 0$

from the exact sequence (3.11.1). Now it is sufficient to prove that $L$ is an
ample divisor. For every irreducible curve $C$ on $Y$ , we have $L\cdot C>0$ , because
the restriction of $\mathcal{E}$ on every irreducible curve in $Z$ is ample as we remarked
before. Therefore it suffices to show that $mL$ is base point free for some
positive integer $m$ . Notice that $L_{\Gamma}$ is ample because $(Lr)^{2}=(L_{\Gamma})^{2}=( K_{S})^{2}>0$ .

(3.13) Since $-K_{\Gamma}\sim L_{\Gamma}$ is ample, the surface $\Gamma$ is a rational Gorenstein
Del Pezzo surface. Moreover we have a birational morphism $\tau_{\tilde{\Gamma}}$ : $\tilde{\Gamma}arrow\Gamma$ such
that $\tau_{\tilde{\Gamma}}^{*}(-K_{\Gamma})\sim-K_{\tilde{\Gamma}}$ , Therefore $\Gamma$ is normal from the classification of non-
normal Gorenstein Del Pezzo surfaces by M. Reid [R]. Notice that $\Gamma$ has at
worst rational double points as its singular points. Also, it is easy to see that
$\tau_{\dot{\Gamma}}$ is the minimal resolution of $\Gamma$.

(3.14) Since $D$ is an ample divisor on $Z$ , and $L_{\Gamma}$ is an ample divisor on
$\Gamma$, there exists a positive integer $m$ such that we have the followings:

$H^{1}(Z, O_{Z}(mD))=0$ ,

$mD$ is base point free,

$mL_{\Gamma}$ is base point free.

NOW we prove the following lemma.

LEMMA (3.15). In the situation above, we have

$H^{1}(\Gamma, O_{\Gamma}(mL-k\Gamma))=0$

for every integer $k$ with $0\leqq k\leqq m+1$ .
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PROOF. Because $\Gamma$ has only rational double points, we have an isomorphism

$H^{1}(\Gamma, O_{\Gamma}(mL-k\Gamma))\cong H^{1}(\tilde{\Gamma}, \tau_{\tilde{\Gamma}}^{*}O_{\Gamma}(mL-k\Gamma))$

for every integer $k$ . Using the equalities in (3.12) we obtain

$\tau_{\dot{\Gamma}}^{*}O_{\Gamma}(mL-k\Gamma)-K_{\tilde{\Gamma}}\sim(m+1-k)(-K_{\tilde{\Gamma}})+k(\psi^{*}\sigma^{*}D)_{\tilde{\Gamma}}$ .
Because $-K_{\tilde{\Gamma}}$ is nef and $D$ is ample, the sheaf $\tau_{\tilde{\Gamma}}^{*}\mathcal{O}_{\Gamma}(mL-k\Gamma)-K_{\tilde{\Gamma}}$ is nef and
big for integer $k$ with $0\leqq k\leqq m+1$ . Hence we conclude the results by Kawa-
mata-Vieweg vanishing theorem. $\square$

(3.16) We have

$H^{1}(Y, O_{Y}(mL-m\Gamma))\cong H^{1}(Z, O_{Z}(mD))=0$

by the asumption. Now we can easily see that $H^{1}(Y, O_{Y}(mL-k\Gamma))=0$ for
O$k\leqq m by descending induction on $k$ . Therefore we obtain the surjection

$H^{0}(Y, \mathcal{O}_{Y}(mL))arrow H^{0}(\Gamma, O_{\Gamma}(mL))$ .
Thus we know that

$Bs|mL|\cap\Gamma=\emptyset$ .
On the other hand,

$mL\sim m\Gamma+\varphi^{*}(mD)$

and $mD$ is base point free. Therefore it turns out that $mL$ is base point free.

4. Case of two-dimensional basis.

(4.1) Let $Y$ be a normal projective 3-fold with at worst $Q$-factorial terminal
singularities and $-K_{Y}\sim L+\Delta$ an ample decomposition of $-K_{Y}$ . Throughout
this section, we assume that there exists a basis $Z$ with $\dim Z=2$ with resPect
to the ample decomposition above.

(4.2) Because of Theorem (2.14), there exists an ample vector bundle $\mathcal{E}$ of
rank 2 such that $Y$ is isomorphic to $P_{Z}(\mathcal{E})$ and $L$ is identified with the tauto-
logical divisor via this isomorphism.

(4.3) Since $\Delta\cdot l=1$ , there exists a prime divisor $\Gamma$ on $Y$ with $\Gamma\cdot l=1$ , and
$\Delta=\Gamma+\varphi^{*}\delta$ for some effective divisor $\delta$ on $Z$ . From the equality in (4.1) we
have

(4.3.1) $-K_{Y}\sim L+\Gamma+\varphi^{*}\delta$ .
Then $\Gamma$ is a Gorenstein surface and the restriction $\varphi r:\Gammaarrow Z$ of $\varphi$ to $\Gamma$ is a
birational morphism. Furthermore we have
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(4.3.2) $-K_{\Gamma}\sim-(K_{Y}+\Gamma)_{\Gamma}\sim L_{\Gamma}+\varphi_{\Gamma}^{*}\delta$

by the adjunction formula and substituting the equality (4.3.1). Therefore we
can apply Corollary (1.3) to $\Gamma$, and we get the possibilities described in the
Corollary (1.3).

(4.4) On the other hand we divide the problem into four parts according
as $\Gamma$ is a section or not, and as $\delta$ is equal to $ze$ro or not. Combining these
possibilities, we have the following case $s$ . Let us $re$mark that we identify $\Gamma$

and $Z$ by $\varphi r$ when $\Gamma$ is a section.
(I-1) $\Gamma$ is a section and $\Gamma\cong Z\cong P^{2}$ . $L_{\Gamma}\sim kH,$ $\delta\sim(3-k)H,$ $k=1$ , or 2,

where $H$ is a line in $P^{2}\cong\Gamma\cong Z$ , that is, $O_{Z}(H)\cong O_{Z}(1)$ .
(I-2) $\Gamma$ is a section and $\Gamma\cong Z\cong F_{e},$ $L_{\Gamma}\cong C_{0}+(e+k)f,$ $\delta\sim C_{0}+(2-k)f,$ $k=$

$1$ , or 2.
(II) $\Gamma$ is a section, $\delta=0$ , and $Z\cong\Gamma$ is a nonsingular Del Pezzo surface.
(m) $\Gamma\cong F_{1},$ $Z\cong P^{2}$ and $\varphi r$ is the morphism of blow-down. $L_{\Gamma}\sim C_{0}+2f$ ,

$\delta\sim H$ on $Z\cong P^{2}$ .
(IV-1) $\Gamma$ is a non-normal Del Pezzo surface, $Z\cong P^{2}$ , and $\delta=0$ . Setting

$\pi:\tilde{\Gamma}arrow\Gamma$ the normalization of $\Gamma$, then $\tilde{\Gamma}\cong F_{1}$ and the composition $\varphi r\cdot\pi:\tilde{\Gamma}arrow Z$

is the morphism of blow-down. Moreover $\pi^{*}L_{\Gamma}\sim C_{0}+3f$ .
(IV-2) $\Gamma$ is not a section and normal (possibly nonsingular) rational

Gorenstein De1 Pezzo surface, and $\delta=0$ .
(4.5) Case (I-1). In this case, $\mathcal{E}=\varphi_{*}\mathcal{O}_{Y}(L)$ is an ample vector bundle of

rank 2 on $Z\cong P^{2}$ and $Y\cong P_{Z}(\mathcal{E})$ . We have an exact sequence

$0arrow O_{Y}(L-\Gamma)arrow \mathcal{O}_{Y}(L)arrow 0_{\Gamma}(L)arrow 0$

and then applying $\varphi*$ , we get an exact sequence

$0arrow\varphi_{*}O_{Y}(L-\Gamma)arrow \mathcal{E}arrow O_{Z}(k)arrow 0$ $k=1,2$ ,

because $\Gamma\cong Z$ and $L_{\Gamma}\sim kH$. Furthermore $\varphi_{*}O_{Y}(L-\Gamma)$ is a line bundle by the
continuity theorem. Therefore $\mathcal{E}\cong O_{Z}(k)\oplus O_{Z}(a),$ $a>0$, because the exact sequence
above always splits on $Z\cong P^{2}$ , and because $\mathcal{E}$ is ample. This is the case of
Example (3.4).

(4.6) Case (I-2). By the similar argument as in (4.5), we get an exact
sequence

(4.6.1) $0arrow O_{Z}(D)arrow \mathcal{E}arrow \mathcal{O}_{Z}(C_{0}+(e+k)f)arrow 0$ $k=1,2$ ,

where $\mathcal{E}$ is an ample vector bundle of rank 2 on $Z\cong F_{e}$ with the property
$Y\cong P_{Z}(\mathcal{E})$ . We write down $D\sim aC_{0}+bf$ . By restricting the exact sequence
above to $f\cong P$ ‘. We get an exact sequence

$0arrow O_{f}(a)arrow \mathcal{E}_{f}arrow O_{f}(1)arrow 0$
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and then
$a+1=\det \mathcal{E}_{f}\geqq$ rank $\mathcal{E}=2$

since $\mathcal{E}$ is ample. Hence we have $a\geqq 1$ . By restricting (4.6.1) on $C_{0}\cong P^{1}$ , we
get

$0arrow O_{C_{0}}(b-ae)arrow \mathcal{E}_{C_{0}}arrow O_{C_{0}}(k)arrow 0$

and then, we have

(4.6.2) $b-ae\geqq 2-k$ $k=1,2$ .
Thus we have

(4.6.3) $b-ae-k$ $)$ $2-2k\geqq-2$ .

On the other hand, we can see that

$\dim Ext^{1}(\mathcal{O}_{Z}(C_{0}+(e+k)f), O_{Z}(D))$

$=h^{1}(Z, O_{Z}(D-C_{0}-(e+k)f))$

$=h^{1}$ ( $P^{1}$ , Sym $(a-1)(O\oplus O(-e))\mathfrak{U}(b-e-k)$ )

$=\{$

$0$ if $b-ae-k>-2$

1 if $b-ae-k=-2$ ,

by easy computation. Thus, if $b-ae-k>-2$ , then $\mathcal{E}\cong O_{Z}(D)\oplus \mathcal{O}_{Z}(C_{0}+(e+k))$ ,
$k=1,2$ by the equality above and the exact sequence (4.6.1). This is the case
of Example (3.6). In the case that $b-ae-k=-2$, we have $k=2$ and $D\cdot C_{0}=0$

by the equalities (4.6.2) and (4.6.3). Therefore $\mathcal{E}$ satisfies the exact sequence

$0arrow O_{Z}(D)arrow earrow \mathcal{O}_{Z}(C_{0}+(e+2)f)arrow 0$ ,

and the restriction $\mathcal{E}_{C_{0}}$ to the curve $C_{0}$ is isomorphic to $O_{C_{0}}(1)\oplus \mathcal{O}_{C_{0}}(1)$ . Thus
this is the case of Example (3.7).

(4.7) Case (II). By the similar argument as in (4.5) we have an exact
sequence

(4.7.1) $0arrow \mathcal{O}_{Z}(D)arrow \mathcal{E}arrow \mathcal{O}_{Z}(-K_{Z})arrow 0$ .

Let us remark that this exact sequence corresponds to an element of

$Ext^{1}(O_{Z}(-K_{Z}), \mathcal{O}_{Z}(D))\cong H^{1}(Z, \mathcal{O}_{Z}(D+K_{Z}))\cong(H^{1}(Z, O_{Z}(-D)))^{\sqrt{}}$

by Serre duality, where v denotes the dual vector space.
At first, we study the case that $\rho(Z)>2$ , where $\rho(Z)$ denotes the Picard

number of $Z$ .
Since $Z$ is a nonsingular De1 Pezzo surface, we have
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(4.7.2) $\overline{NE}(Z)=\sum_{j}R_{\geq 0}[E_{j}]$ ,

where $R_{\geqq 0}[E_{j}]$ is an extremal ray generated by an extremal curve $E_{j}$ . Notice
that the assumption $\rho(Z)>2$ implie $s$ that all $E_{j}’ s$ are (–1)-curves.

Restricting the exact sequence (4.7.1) to a $(-1)$-curve $E$ ,

$0arrow O_{E}(D)arrow e_{E}arrow \mathcal{O}_{E}(1)arrow 0$

because $K_{Z}\cdot E=-1$ . Therefore we have $D\cdot E\geqq 1$ because $e_{E}$ is ample. By (4.7.2)

and Kleiman’s criteria, $D$ turns out to be an ample divisor, and then
$H^{1}(Z, O_{Z}(-D))=0$ by Kodaira vanishing theorem. Hence we have $\mathcal{E}\cong O_{Z}(D)\oplus$

$O_{Z}(-K_{Z})$ . This is the case of Example (3.8).
(4.8) Next we study the case that $\rho(Z)\leqq 2$ . In this case we have only

thre $e$ possibilities that $Z\cong P^{2},$ $Z\cong P^{1}\cross P^{1}$ , and $Z\cong F_{1}$ .
(4.9) If $Z\cong P^{2}$ , then $e=O_{Z}(D)\oplus O_{Z}(-K_{Z})$ from the exact sequence (4.7.1),

and $D$ must be an ample divisor. Therefore we have $e=O(a)\oplus O(3),$ $a>0$,

which is the case of Example (3.4).

(4.10) For the case that $Z\cong P^{1}xP^{1}$ , we obtain an exact sequence

(4.10.1) $0arrow O_{Z}(D)arrow \mathcal{E}arrow O_{Z}(2l_{1}+2l_{Z})arrow 0$

where $l_{j}’ s$ are fibers of the projections $p_{j}$ : $P^{1}\chi P^{1}arrow P^{1}$ for $j=1,2$ . Restricting
the exact sequence above to $l_{j}\cong P^{1}$ as before, we obtain inequalities $D\cdot l_{j}\geqq 0$ for
$j=1,2$ . If the inequalities $D\cdot l_{j}>0$ hold for both $j$ , then $D$ is an ample divisor,
and $e\cong O_{Z}(D)\oplus O_{Z}(2l_{1}+2l_{2})$ by the fact that $H^{1}(Z, O_{Z}(-D))=0$ because of the
Kodaira vanishing theorem. This is the case of Example (3.8).

(4.11) If the equality $D\cdot l_{2}=0$ in the case of (4.10), $D\cong\alpha l_{2}$ for a nonnegative
integer a. In this case we have $\mathcal{E}_{l}\cong O_{l}(1)\oplus O_{l}(1)$ for every fiber $l$ of $p_{2}$ from
the exact sequence (4.10.1) and from the fact that $\mathcal{E}$ is ample. Therefore we
obtain an isomorphism $\mathcal{E}\cong O_{Z}(l_{1})\otimes p_{2}^{*}\epsilon$ where $\epsilon$ is a vector bundle of rank 2 on
$P^{1}$ . Since $\epsilon$ splits into a direct sum of two invertible sheaves, we have a
decomposition $\mathcal{E}\cong O_{Z}(l_{1}+al_{2})\oplus O_{Z}(l+bl_{2})$ , where $a$ and $b$ are positive integers
because of the amplene $ss$ of $\mathcal{E}$ . From the exact sequence (4.10.1) we have
$\alpha+2=a+b$ . Moreover the exact sequence (4.10.1) doe $s$ not split, because $D$ is
not ample. Then we have $h^{1}(Z, O(-D))=h^{1}(Z, O_{Z}(-\alpha l_{2}))\neq 0$ . Therefore we
have an inequality $\alpha\geqq 2$ . We can take a nonsingular irreducible member $C$ of
the linear system $|2l_{1}+l_{2}|$ , because $2l_{1}+l_{2}$ is very ample. Then we can easily
see that $C$ is a rational curve because of the adjunction formula. Restricting
the exact sequence (4.10.1) to $C$ we obtain the following exact sequence

$0arrow \mathcal{O}_{C}(2\alpha)arrow O_{C}(2a+1)\oplus \mathcal{O}_{C}(2b+1)arrow O_{C}(6)arrow 0$ ,

which can not split. Therefore we must have $h^{1}(C, O_{C}(2\alpha-6))\neq 0$ , and then
$\alpha\leqq 2$ . Combining it with the inequality before, we obtain $\alpha=2$ . By restricting
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the exact sequence (4.10.1) to the curve $l_{1}$ we can easily see that $a=b=2$ . Thus
this is the case of Example (3.6).

(4.12) For the case that $Z\cong F_{1}$ , we obtain inequalities $D\cdot C_{0}\geqq 1$ and $D\cdot f\geqq 0$

by the similar argument as before. Moreover if $D\cdot f>0$ holds, then $D$ is ample,
and $\mathcal{E}\cong \mathcal{O}_{Z}(D)\oplus \mathcal{O}_{Z}(-K_{Z})$ . This is the case of Example (3.8). In the case that
$D\cdot f=0$ we have $D\sim\alpha f$ and the exact sequence (4.7.1) does not split. Therefore
we have $\alpha\geqq 2$ as in (4.11). Moreover we can easily see the isomorphism
$\mathcal{E}\cong O_{Z}(C_{0}+af)\oplus O_{Z}(C_{0}+bf)$ by $re$stricting the exact sequence (4.7.1) to the fiber
$f$ . By restricting (4.7.1) to the minimal section $C_{0}$ and to a nonsingular member
of the linear system $|C_{0}+f|$ , we can see that $\alpha=2$ and $\mathcal{E}\cong O_{Z}(C_{0}+2f)\oplus O_{Z}(C_{0}+3f)$

by the similar computation as in (4.11). This is the case of Example (3.6).

(4.13) Case (III). We denote the surface $F_{1}$ by $S$ and the morphism of
blow-down by $\sigma$ : $Sarrow P^{2}\cong Z$ . Taking the fiber product, we get a $P^{1}$-bundle
$\tilde{Y}=Y\cross_{Z}S\cong P_{S}(\sigma^{*}\mathcal{E})$ over $S$ . We denote the projections $\tilde{Y}arrow Y$ and $\tilde{Y}arrow S$ by $\tau$

and $\psi$ re $s$pectively. Then we have a $se$ction $\tilde{\Gamma}$ of $\psi:\tilde{Y}arrow S$ whose image by $\tau$

is equal to $\Gamma$, that is, $\tilde{\Gamma}$ is the proper transform of $\Gamma$ by $\tau$ . Notice that
$\tau_{\tilde{\Gamma}}:\tilde{\Gamma}arrow\Gamma$ is an isomorphism. Therefore we have $(\tau^{*}L)_{\tilde{\Gamma}}=\tau_{\tilde{\Gamma}}^{*}(L_{\Gamma})=C_{0}+2f$

where $C_{0}$ is the minimal section of $S\cong F_{1}$ . Then we obtain an exact sequence

$0arrow \mathcal{O}_{\tilde{Y}}(\tau^{*}L-\tilde{\Gamma})arrow O_{\dot{Y}}(\tau^{*}L)arrow O_{\tilde{\Gamma}}(C_{0}+2f)arrow 0$

and applying the functor $\psi_{*}$ we get the following exact sequence

(4.13.1) $0arrow O_{S}(D)arrow\sigma^{*}\mathcal{E}arrow O_{S}(C_{0}+2f)arrow 0$

where $D$ is a divisor on S. $Re$stricting the last exact sequence to a fiber $f\cong P^{1}$

and using the fact that $(\sigma^{*}\mathcal{E})_{f}$ is ample, we obtain an inequality $D\cdot f\geqq 1$ .
$Re$stricting it to the minimal section $C_{0}$ and using the fact that $(\sigma^{*}\mathcal{E})_{C_{0}}$ is
trivial, we get the equality $D\cdot C_{0}=-1$ . If we have the inequality $D\cdot f\geqq 2$ , then
this is the case of Example (3.9).

(4.14) AS for the case that we have the equality $D\cdot f=1$ , we have $D\sim C_{0}$ .
From the exact sequence (4.13.1) we obtain that $\sigma^{*}\mathcal{E}_{f}cO_{f}(1)\oplus \mathcal{O}_{f}(1)$ . Therefore
we obtain an isomorphism $\sigma^{*}\mathcal{E}\cong \mathcal{O}_{S}(C_{0}+af)\oplus O_{S}(C_{0}+bf)$ . By restricting this
isomorphism to the curve $C_{0}$ , we have $a=b=1$ , that is, $\mathcal{E}\cong \mathcal{O}_{Z}(1)\oplus \mathcal{O}_{Z}(1)$ , which
is the case of Example (3.4).

(4.15) Case (IV-1). In this case we set up $S,$ $\sigma,\tilde{Y}$, etc. as in (4.13). Then
we can realize the surface $\tilde{\Gamma}$ , which is the normalization of $\Gamma$, as a section of
$\psi:\tilde{Y}arrow S$ and the canonical morphism $\pi:\tilde{\Gamma}arrow\Gamma$ as the restriction of $\sigma$ to $\tilde{\Gamma}$ . By
the similar argument as in (4.13) we obtain an exact sequence

(4.15.1) $0arrow \mathcal{O}_{S}(D)arrow\sigma^{*}\mathcal{E}arrow O_{S}(C_{0}+3f)arrow 0$ .
Restricting it to $f$ and $C_{0}$ , we obtain an inequality $D\cdot f\geqq 1$ and an equality
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$D\cdot C_{0}=-2$ . If we have the inequality $D\cdot f\geqq 3$ , then this is the case of Example
(3.10).

(4.16) If we assume that $D\cdot f=2$ , then $D=2C_{0}$ . We can easily see that $\mathcal{E}$

is a uniform vector bundle on $Z\cong P^{2}$ , because of the fact that $\mathcal{E}$ is ample and
$\det e\cong O_{Z}(3)$ . Let us remark that $H^{i}(Z, \mathcal{E}\otimes O_{Z}(k))\cong H^{i}(S, \sigma^{*}\mathcal{E}\otimes O_{S}(k(C_{0}+f)))$ , for
every integer $k$ and $i=0,1$ , and 2. From the exact sequence obtained by
$te$nsoring $O_{S}(-2(C_{0}+f))$ with (4.15.1), we can easily se $e$ that $h^{1}(S,$ $\sigma^{*}\mathcal{E}\otimes$

$O_{S}(-2(C_{0}+f)))\neq 0$ . Therefore the vector bundle $\mathcal{E}$ does not split into the direct
sum of two invertible sheaves. Hence $\mathcal{E}$ must be isomorphic to the tangent
bundle of $Z\cong P^{2}$ by Van de Ven’s theorem [OSS]. On the other hand, we
have $c_{2}(\mathcal{E})=c_{2}(\sigma^{*}\mathcal{E})=4$ from the exact sequence (4.15.1). This is a contradiction.
Therefore we have $D\cdot f\neq 2$ .

(4.17) For the case that $D\cdot f=1$ , we have $D=C_{0}-f$ . In this case, we
obtain $e=0_{Z}(1)\oplus 0_{Z}(1)$ by the similar argument as in (4.14). Thus this is the
case of Example (3.4).

(4.18) Case (IV-2). Let $\pi$ : $Sarrow\Gamma$ be the minimal resolution of $\Gamma$ (if $\Gamma$

itself is nonsingular we regard $\pi=id.$ ) and $\sigma$ the composition of $\pi$ and $\varphi r$ , that
is, $\sigma=\varphi_{\Gamma}\cdot\pi$ . Let us denote the exceptional divisors of $\sigma$ by $\{E_{i}\}_{i\in I}$ . Then we
have an effective divisor $E=\Sigma_{i}a_{i}E_{i}$ such that $K_{S}\sim\sigma^{*}K_{Z}+E$ . In this case we
have $L_{\Gamma}\sim-K_{\Gamma}$ , and $\pi^{*}K_{\Gamma}\sim K_{S}$ as studied in [HW]. For an irreducible curve
$C$ on $Z$ we have $(-K_{S})\cdot C>0$ , because of the equality $\pi^{*}K_{\Gamma}\sim K_{S}$ , where $\overline{C}$ is
the proper transform of $C$ by $\sigma$ . Therefore we have $(-K_{Z})\cdot C>0$ for any
irreducible curve $C$ on $Z$ . Moreover we can easily check the equality $(-K_{Z})^{2}$

$=(-K_{S})^{2}-K_{s}\cdot E$ , and then we have $(-K_{Z})^{2}>0$ because $(-K_{S})^{2}>0,$ $-K_{s}$ is nef
and $E$ is effective. Therefore $-K_{Z}$ turns out to be ample, and then the surfac $e$

$Z$ is a nonsingular Del Pezzo surface. Let $\sim=S\chi_{Z}Y\cong P_{Z}(\tau^{*}\mathcal{E})$ and $\tilde{L}$ the
tautological divisor on $\tilde{Y}$. We denote the projections $\tilde{Y}arrow Y$ and $\tilde{Y}arrow S$ by $\tau$ and
$\psi$ respectively. Then we have $\tilde{L}\cong\tau^{*}L$ . There exist $s$ a section $\tilde{\Gamma}$ , which is
the proper transform of $\Gamma$, obtained by the morphism $i\cdot\pi:Sarrow Y$ where $i:\Gammaarrow Y$

is the inclusion. Since we have $(\tau^{*}\tilde{L})_{\tilde{\Gamma}}\cong\tau_{\tilde{\Gamma}}^{*}L_{\Gamma}\cong-\tau_{\tilde{\Gamma}}^{*}K_{\Gamma}\cong-K_{S}$ via the identifi-
cation of $\tilde{\Gamma}$ with $S$ , we obtain an exact sequence

$0arrow O_{S}(\tilde{D})arrow\sigma^{*}\mathcal{E}arrow O_{S}(-K_{S})arrow 0$ ,

where $\tilde{D}$ is a divisor on $S$ . Restricting the exact sequence above to an irredu-
cible curve $C$ on $S$ , we get the following conditions according to the property
of the curve $C$

(4.18.1) For a $\sigma$-exceptional $(-1)$-curve $C$ on $S$ , we have $\tilde{D}\cdot C=-1$ .
(4.18.2) For a $(-1)$-curve $C$ whose image by $\sigma$ is still a curve on $Z$ , we

have $\tilde{D}\cdot C\geqq 1$ .
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(4.18.3) For a $(-2)$-curve $C$ , we have D. $C=0$ .
(4.18.4) For a $0$-curve $C$ on $S$ , we have $\tilde{D}\cdot C\geqq 0$ .
On the other hand, $E$ satisfies the same equalities in (4.18.1) and (4.18.3)

because $E$ is numerically equivalent to $K_{S}$ relative to $\sigma$ . Therefore we have
$(\tilde{D}-E)\cdot C=0$ for every $\sigma$-exceptional curve $C$ . Then there exists a divisor $D$

on $Z$ , such that $D-E=\sigma^{*}D$ . From the inequality (4.18.2) we have $D\cdot C\geqq 1$

for every $(-1)$-curve $C$ on $Z$ . Let us remark that $\det e\cong O_{Z}(D-K_{Z})$ by easy
calculation.

(4.19) If the divisor $D$ is ample, then this is the case of Example (3.11). If
$\rho(Z)>2$ , then $D$ is ample because $\overline{NE}(Z)$ is generated by (–1)-curves.

(4.20) From now on we assume that $D$ is not ample. Then the Picard
number $\rho(Z)\leqq 2$ as remarked above.

(4.21) For the case that $Z=F_{1}$ , we have $D\cdot C_{0}\geqq 1$ and $D\cdot f\geqq 0$ from the
argument in (4.18). Therefore $D\cdot f=0$ because $D$ is not ample. Then $(\det \mathcal{E})\cdot f$

$=(D-K_{Z})\cdot f=2$ and $\mathcal{E}_{f}\cong O_{f}(1)\oplus \mathcal{O}_{f}(1)$ . Thus we obtain an isomorphism

$e=O_{Z}(C_{0}+af)\oplus O_{Z}(C_{0}+bf)$

where $a$ and $b$ are integers with $2\leqq a\leqq b$ . From the fact that

$H^{0}(Z, \mathcal{E}\otimes(\det \mathcal{E})^{-1}\mathfrak{U}(-K_{Z}))\neq 0$

$a$ must be equal to 2 or 3. This is a case of Example (3.6).

(4.22) The case that $Z=P^{1}\cross P^{1}$ . Similarly we have $D\cdot l_{i}$ “-ii $0$ for $i=1,2$

where $l_{i}$ is a fiber of the projection $p_{i}$ : $P^{1}\cross P^{1}arrow P^{1}$ . Since $D$ is not ample,
we may assume that $D\cdot l_{2}=0$ . Then $(\det e)\cdot l_{2}=(D-K_{Z})\cdot l_{2}=2$ . By the similar
argument above we obtain

$\mathcal{E}\cong O_{Z}(l_{1}+l_{2})\oplus O_{Z}(l_{1}+al_{2})$

or
$\mathcal{E}\cong O_{Z}(l_{1}+2l_{2})\oplus O_{Z}(l_{1}+al_{2})$

where $a$ is a positive integer in each case. So they are case $s$ of Example (3.6).
(4.23) For the case that $Z=P^{2}$ , we can easily see that $\mathcal{O}_{Z}(D)\cong \mathcal{O}_{Z}$ or

$O_{Z}(-1)$ , and $\det \mathcal{E}\cong O_{Z}(3)$ or $\mathcal{O}_{Z}(2)$ re $s$pectively because $\det \mathcal{E}\cdot H=D\cdot H-K_{Z}\cdot H=$

$D\cdot H+3\geqq 2$ , where $H$ denotes the line in $Z=P^{2}$ . Then it is easy to see that
$\mathcal{E}$ is a uniform vector bundle on $P^{2}$ . Therefore we have three possibilities that

$e$ cr $\mathcal{O}_{Z}(1)\oplus \mathcal{O}_{Z}(1)$

$\mathcal{E}\cong \mathcal{O}_{Z}(1)\oplus \mathcal{O}_{Z}(2)$

$e\cong\sigma_{z}$
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by Van de Ven’s theorem [OSS] and the condition on $\det \mathcal{E}$ . Then they are the
cases of Example (3.4) and (3.5).

(4.24) Combining all the possibilities above together, we obtain the following
theorem.

THEOREM (4.25). Let $(Y, L)$ be a polarized threefold such that $Y$ is a
normal variety with at worst $Q$-factorial terminal srngularities, and that the
anti-adjoint dimsor $-(K_{Y}+L)$ is linearly equivalent to a non-zero effective divisor
$\Delta$ . Assume that $Y$ has a basis of dimension 2 with respect to the ample decompo-
srtion $-K_{Y}\sim L+\Delta$ . Then there exists a Pair of a nonsingular projective surface
$Z$ and an ample vector bundle $\mathcal{E}$ of rank 2 on $Z$ which is described in one of the
Examples $(3.4)-(3.11)$ , such that $(Y, L)$ is isomorphic to $(P_{Z}(\mathcal{E}), H)$ where $H$ denotes
the tautological divisor on $P_{Z}(\mathcal{E})$ .

References

[F] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lecture
Note Ser., 155, Cambridge University Press.

[H] R. Hartshorne, Algebraic Geometry, Springer.
[HW] F. Hidaka and K.-i. Watanabe, Normal Gorenstein surfaces with ample anti-canon-

ical divisor, Tokyo J. Math., 4 (1981), 319-330.
[I] S. Ishii, On Fano 3-folds with non-rational singularities and two-dimensional base,

Abh. Math. Sem. Univ. Hamburg, 64 (1994), 249-277.
[OSS] C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective

spaces, Progr. Math., 3, Birkh\"auser.
[R] M. Reid, Nonnormal del Pezzo surfaces, preprint.
[S] R. L. E. Schwarzenberger, Vector bundles on algebraic surfaces, Proc. London Math.

Soc., 11 (1961), 601-622.

Taro FUJISAWA
Nagano National College of Technology
Nagano 381
Japan


	Introduction.
	1. Preliminaries.
	2. Contraction morphism ...
	THEOREM (2.8) ...
	THEOREM (2.14). ...

	3. Examples.
	4. Case of two-dimensional ...
	THEOREM (4.25). ...

	References

