The tightness about sequential fans and combinatorial properties

By Katsuya EDA, Masaru KADA and Yoshifumi YUASA

(Received July 15, 1994) (Revised Feb. 3, 1995)

1. Introduction.

Let κ be an infinite cardinal. The sequential fan S_{κ} with κ -many spines is the quotient space obtained from the disjoint union of κ -many convergent sequences by identifying all the limit points to a single point denoted by ∞ . To be precise, $S_{\kappa} = \{\infty\} \cup (\kappa \times \omega)$ as a set, every point of $\kappa \times \omega$ is isolated, and a basic neighborhood of ∞ is of the form

$$U_{\varphi} = \{\infty\} \cup \{\langle \alpha, n \rangle \colon n \ge \varphi(\alpha)\}$$

where $\varphi \in \boldsymbol{\omega}^{\kappa}$.

For a topological space X, the *tightness* of X, t(X), is the smallest cardinal λ such that for every point $x \in X$ and $A \subseteq X$, if $x \in clA$ then there exists $B \subseteq A$ with $|B| \leq \lambda$ and $x \in clB$.

It follows immediately from the definition that $t(X) \leq |X|$ and it is easily seen that $t(S_{\kappa}) = \omega$ for each κ . But the tightness of the product space of two sequential fans is more complicated.

Gruenhage [4] proved that $t(S_{\omega_1} \times S_{\omega_1}) = \omega_1$, but it is an open question whether $t(S_{\omega_2} \times S_{\omega_2}) = \omega_2$ holds in ZFC. Moreover, such a question whether $t(S_{\kappa} \times S_{\kappa}) = \kappa$ or not, is equivalent to another question related to the collectionwise Hausdorff property. (See [3, 8] for details.)

In this paper we shall give a combinatorial characterization of the tightness of $S_{\omega} \times S_{\kappa}$ for an infinite cardinal κ . Especially the tightness of $S_{\omega} \times S_{2^{\omega}}$ has a natural combinatorial characterization.

To begin with, let us review the definitions of two familiar cardinals with combinatorial characterizations, b and b.

DEFINITION 1.1. For $f, g \in \omega^{\omega}, f \leq g$ if for all but finitely many $n \in \omega$ we have $f(n) \leq g(n)$. A family $\mathcal{I} \subseteq \omega^{\omega}$ is unbounded (respectively dominating) if for every $f \in \omega^{\omega}$ there exists $g \in \mathcal{I}$ such that $g \leq f$ (respectively $f \leq g$). The unbounding number b is the smallest size of the unbounded family of ω^{ω} , and the dominating number b is the smallest size of the dominating family of ω^{ω} .

Now we introduce a new cardinal invariant b^* , which is defined with the notion of the unbounded family but differs from b.

DEFINITION 1.2. \mathfrak{b}^* is the smallest cardinal λ such that, for every unbounded family $\mathfrak{I} \subseteq \omega^{\omega}$, there exists a subfamily $\mathfrak{I} \subseteq \mathfrak{I}$ such that $|\mathfrak{I}| \leq \lambda$ and \mathfrak{I} is still unbounded.

Using this notion we can state our main results:

THEOREM 1.3. (1) For $\omega \leq \kappa < \mathfrak{b}$, $t(S_{\omega} \times S_{\kappa}) = \omega$ holds. (2) $t(S_{\omega} \times S_{\mathfrak{b}}) = \mathfrak{b}$. (3) For $\kappa \geq \mathfrak{b}^*$, $t(S_{\omega} \times S_{\kappa}) = \mathfrak{b}^*$ holds. THEOREM 1.4. (1) $\mathfrak{b} \leq \mathfrak{b}^* \leq \mathfrak{b}$. (2) Both $\mathfrak{b} < \mathfrak{b}^*$ and $\mathfrak{b}^* < \mathfrak{b}$ are consistent with ZFC.

What happens about $t(S_{\omega} \times S_{\kappa})$ for $\mathfrak{b} < \kappa < \mathfrak{b}^*$? In fact it is undecidable under ZFC, that is, both $t(S_{\omega} \times S_{\kappa}) = \kappa$ and $t(S_{\omega} \times S_{\kappa}) < \kappa$ are consistent with ZFC. To prove this, we study Hechler's result about dominating families of ω^{ω} in Section 4.

Our notation is standard and we refer the reader to [7] for undefined notions.

For $f \in \omega^{\omega}$ and $\varphi \in \omega^{\kappa}$ we shall use the notation $U_{f,\varphi}$ rather than $U_f \times U_{\varphi}$ for the neighborhood of $\langle \infty, \infty \rangle$ determined by f and φ . We shall also use $\langle k, m, \alpha, n \rangle$ instead of $\langle \langle k, m \rangle, \langle \alpha, n \rangle \rangle$ to denote points of $S_{\omega} \times S_{\kappa}$.

ACKNOWLEDGEMENT. We thank S. Taniyama for giving helpful advice and suggesting the idea of the notion of b^* . We also thank J. Brendle for some comments and information, mentioned in the context.

2. Characterization of the tightness of $S_{\omega} \times S_{\kappa}$

In this section, we shall give a combinatorial characterization of the tightness of $S_{\omega} \times S_{\kappa}^{1}$. To state the combinatorial characterization, a part of which is due to [1], we generalize a notion in Definition 1.2.

DEFINITION 2.1. Let $b(\kappa)$ be the smallest infinite cardinal λ satisfying the following: For every unbounded family $\mathcal{I} \subseteq \omega^{\omega}$ with $|\mathcal{I}| \leq \kappa$ there exists a subfamily $\mathcal{I} \subseteq \mathcal{I}$ such that $|\mathcal{I}| \leq \lambda$ and \mathcal{I} is still unbounded.

Using this notion b^* is defined as $b(2^{\omega})$.

182

¹⁾ After the submission of the first version of this paper, we have had a chance to see a preprint of Brendle and LaBerge [1]. It deals with a closely related topic and gives a nice idea to simplify the proof of Theorem 1.3. Our previous combinatorial characterization was more complicated.

THEOREM 2.2. For any infinite cardinal κ , $t(S_{\omega} \times S_{\kappa})$ is equal to $b(\kappa)$.

According to this theorem, it is easy to see Theorem 1.3.

LEMMA 2.3. Let κ and λ be infinite cardinals. Then, $t(S_{\omega} \times S_{\kappa}) \geq \lambda$ if there exists an unbounded family $\mathcal{I} = \{f_{\alpha} : \alpha < \kappa\}$ such that any subfamily $\mathcal{I} \subseteq \mathcal{I}$ with $|\mathcal{G}| < \lambda$ is bounded.

PROOF. Let $A = \{\langle k, f_{\alpha}(k), \alpha, k \rangle : k < \omega \land \alpha < \kappa\}$. We show A witnesses $t(S_{\omega} \times S_{\kappa}) \ge \lambda$. Let $h \in \omega^{\omega}, \varphi \in \kappa^{\omega}$. Since \mathcal{T} is unbounded, there exists $\alpha < \kappa$ such that $f_{\alpha} \le *h$. We can find $k > \varphi(\alpha)$ such that $f_{\alpha}(k) > h(k)$ and so $\langle k, f_{\alpha}(k), \alpha, k \rangle \in A \cap U_{h,\varphi}$, which implies $\langle \infty, \infty \rangle \in clA$.

Let $X \subseteq A$ with $|X| < \lambda$. There exists $I \subseteq \kappa$ such that $|I| < \lambda$ and $X \subseteq \{\langle k, f_{\alpha}(k), \alpha, k \rangle : k < \omega \land \alpha \in I\}$. By the assumption, there exists $h \in \omega^{\omega}$ such that $f_{\alpha} \leq *h$ for all $\alpha \in I$. For $\alpha \in I$, we can put $\varphi(\alpha) < \omega$ so that $f_{\alpha}(k) \leq h(k)$ for any $k \geq \varphi(\alpha)$. Then, $U_{h',\varphi} \cap X = \emptyset$, where h'(k) = h(k) + 1. This completes the proof. \Box

LEMMA 2.4. Suppose that $A \subseteq S_{\omega} \times S_{\kappa}$ satisfies that $\langle \infty, \infty \rangle \in clA$ and $\langle \infty, \infty \rangle \notin clC$ for any countable $C \subseteq A$. Then, there exists $B \subseteq A$ such that $\langle \infty, \infty \rangle \in clB$ and for any $k < \omega$ and $\alpha < \kappa$

(1) $\{n: \langle k, m, \alpha, n \rangle \in B \text{ for some } m < \omega\}$ and

(2) $\{m: \langle k, m, \alpha, n \rangle \in B \text{ for some } n < \omega\}$

are both finite.

PROOF. First we prove that for any $k < \omega$ there exists $M < \omega$ such that $\{n < \omega : \langle k, m, \alpha, n \rangle \in A$ for some $m > M\}$ is finite for all $\alpha < \kappa$. Suppose not, then we can take $k < \omega$ and $\alpha_M < \kappa$ for each $M < \omega$ so that $\{n < \omega : \langle k, m, \alpha_M, n \rangle \in A$ for some $m > M\}$ is infinite. Now we claim that $\langle \infty, \infty \rangle \in cl(\{\langle k, m, \alpha_M, n \rangle \in A : k, m, M, n < \omega\})$, which contradicts the assumption. Fix $h \in \omega^{\omega}$ and $\psi \in \omega^{\kappa}$ arbitrarily and let M = h(k). Then, by the choice of α_M , we can find m > M so that there exists $n \ge \psi(\alpha_M)$ with $\langle k, m, \alpha_M, n \rangle \in A$.

Let f(k) be greater than M, then $\{n : \langle k, m, \alpha, n \rangle \in A \text{ for some } m \geq f(k)\}$ is finite. Symmetrically, we get $\varphi(\alpha)$ so that $\{m : \langle k, m, \alpha, n \rangle \in A \text{ for some } n \geq \varphi(\alpha)\}$ is finite. Then, $B = A \cap U_{f,\varphi}$ is the desired one. \Box

PROOF OF THEOREM 2.2. By Lemma 2.3, it suffices to show $t(S_{\omega} \times S_{\kappa}) \leq b(\kappa)$. Gruenhage [4, Lemma 1] proved $t(S_{\omega} \times S_{\kappa}) = \omega$ in case $\kappa < \mathfrak{b}$, which implies $t(S_{\omega} \times S_{\kappa}) = b(\kappa)$. So, we assume $\kappa \geq \mathfrak{b}$.

Let $A \subseteq S_{\omega} \times S_{\kappa}$ be so that $\langle \infty, \infty \rangle \in clA$ and assume that $\langle \infty, \infty \rangle \notin clC$ for any countable $C \subseteq A$. Then, by Lemma 2.4 we get $B \subseteq A$ with the properties in the lemma. Take an unbounded family \mathcal{G} of strictly increasing functions with $|\mathcal{G}| = \mathfrak{b}$. We define $f_{\alpha}^{\mathfrak{g}}(k) = \max(\{0\} \cup \{m: \exists n(\langle k, m, \alpha, n \rangle \in B \land k \leq g(n))\})$. First, we show $\{f_{\alpha}^{g}: \alpha < \kappa \land g \in \mathcal{G}\}$ is unbounded.

Suppose $f_{\alpha}^{g} \leq *f$ for all $\alpha < \kappa$ and $g \in \mathcal{G}$. Since $\langle \infty, \infty \rangle \in clB$, there exists $\alpha < \kappa$ such that the set $\{n : \exists k, m(f(k) < m \land \langle k, m, \alpha, n \rangle \in B)\}$ is infinite. For $n < \omega$ choose k_n so that $f(k_n) < m$ and $\langle k_n, m, \alpha, n' \rangle \in B$ for some $m < \omega, n' \geq n$. Since \mathcal{G} is unbounded, there is $g \in \mathcal{G}$ such that $k_n \leq g(n)$ for infinitely many n. By the first property of Lemma 2.4, the correspondence from n to k_n is finite-to-one, so we can find $n < \omega$ such that $f_{\alpha}^{g}(k_n) \leq f(k_n)$ and also $k_n \leq g(n)$. By the choice of k_n , there are $n' \geq n$ and $m > f(k_n)$ such that $\langle k_n, m, \alpha, n' \rangle \in B$. Since $g(n) \leq g(n')$ and by the definition of $f_{\alpha}^{g}(k_n)$, this implies $f_{\alpha}^{g}(k_n) \geq m > f(k_n)$, which contradicts $f_{\alpha}^{g}(k_n) \leq f(k_n)$.

We have shown that $\{f_{\alpha}^{g}: \alpha < \kappa \land g \in \mathcal{G}\}$ is unbounded. There exists $J \subseteq \kappa$ such that $|J| \leq b(\kappa)$ and $\{f_{\alpha}^{g}: \alpha \in J \land g \in \mathcal{G}\}$ is unbounded. Let $D = \{\langle k, m, \alpha, n \rangle \in B: \alpha \in J \land k, m, n < \omega\}$. We claim that $\langle \infty, \infty \rangle \in clD$, which shows $t(S_{\omega} \times S_{\kappa}) \leq b(\kappa)$. Take arbitrary $h \in \omega^{\omega}$ and $\varphi \in \omega^{\kappa}$. Then we can find $\alpha \in J$ and $g \in \mathcal{G}$ so that $f_{\alpha}^{g} \leq *h$. By the definition of $f_{\alpha}^{g}(k), f_{\alpha}^{g}(k) > 0$ implies $\langle k, f_{\alpha}^{g}(k), \alpha, n \rangle \in D$ for some n with $k \leq g(n)$. Since $f_{\alpha}^{g} \leq *h$, there are infinitely many n such that $\langle k, f_{\alpha}^{g}(k), \alpha, n \rangle \in D$ and $h(k) < f_{\alpha}^{g}(k)$ for some k. So we can find $n \geq \varphi(\alpha)$ and $k < \omega$ with $h(k) < f_{\alpha}^{g}(k)$ so that $\langle k, f_{\alpha}^{g}(k), \alpha, n \rangle \in D$, i.e., $U_{h, \omega} \cap D \neq \emptyset$. \Box

3. Relations between b, b and b^* .

In this section we shall show that b^* is located between b and b but consistently different from both of them.

Theorem 3.1. $\mathfrak{b} \leq \mathfrak{b}^* \leq \mathfrak{d}$.

PROOF. $b \leq b^*$ follows immediately from the definition of b^* . To show $b^* \leq b$, let \mathcal{T} be any unbounded family and $\mathcal{D} = \{g_\beta : \beta < b\}$ a dominating family. For each $\beta < b$, we can find $f_\beta \in \mathcal{T}$ so that $f_\beta \leq ^*g_\beta$. Let $\mathcal{Q} = \{f_\beta : \beta < b\} \subseteq \mathcal{T}$. Then, $|\mathcal{Q}| \leq b$ and \mathcal{Q} is still unbounded. \Box

Now we turn to the consistency proofs. Both of the models satisfying $b^* < b$ and $b < b^*$ are obtained by the Cohen extensions.

Before proving them, we observe a basic fact on the Cohen forcing. Let $C_I = \text{Fn}(I, 2, \omega)$ be the canonical Cohen forcing notion for an infinite set I (see [7, Chapter 7]).

LEMMA 3.2 ([2, Corollary 3.5]). For any infinite set I, if $\mathcal{I} \subseteq \omega^{\omega}$ is an unbounded family, then $\|-c_I$ " \mathcal{I} is unbounded."

DEFINITION 3.3. For a forcing notion P, a standard P-name f for a real is a name uniquely determined by a system $\{A_{mn}: m, n < \omega\}$ with the following:

(1) $A_{mn} \subseteq \mathbf{P}$ is an antichain of \mathbf{P} and $n \neq n'$ implies $A_{mn} \cap A_{mn'} = \emptyset$,

- (2) $\bigcup_{n < \omega} A_{mn}$ is a maximal antichain of **P**, and
- (3) For each $p \in A_{mn}$, $p \Vdash_{P} f(m) = n$.

THEOREM 3.4. Let $2^{\omega} = \lambda$. Then, in the Cohen extension by C_{κ} for an infinite κ , any unbounded family \Im of ω^{ω} has an unbounded subfamily of size less than or equal to λ .

PROOF. For an infinite $I \subseteq \kappa$, let X(I) be the collection of all standard C_I names of reals and let $\mathfrak{X} = X(\kappa)$. It suffices to deal with the case $\kappa > \lambda$. Suppose
that there are $p_0 \in C_{\kappa}$ and a collection \mathcal{T} of standard C_{κ} -names for reals such
that

 $p_0 \Vdash \mathscr{G}$ is unbounded $\land \forall \mathcal{G} \subseteq \mathcal{I}(|\mathcal{G}| \leq \lambda \rightarrow \mathcal{G}$ is bounded)."

Let $S = \{X(I) : I \in [\kappa]^{\lambda} \land \operatorname{supp}(p_0) \subseteq I\}$, then $S \subseteq [\mathfrak{X}]^{\lambda}$. S is stationary, since it is unbounded and closed under unions of increasing ω_1 -sequences. By assumption and using Lemma 3.2, for each $X = X(I) \in S$ we get a standard C_I -name \dot{g}_X for a real so that p_0 forces $\dot{f} \leq *\dot{g}_X$ for all $\dot{f} \in \mathcal{I} \cap X$. By Fodor's lemma for $[\mathfrak{X}]^{\lambda}$ (see [6, Theorem 3.2]) there is a stationary set $S' \subseteq S$ such that $\dot{g}_X = \dot{g}$ for all $X \in S'$. Since S' is unbounded in $[\mathfrak{X}]^{\lambda}$, we have $p_0 \Vdash ``\dot{f} \leq *\dot{g}"$ for all $\dot{f} \in \mathcal{I}$, which is a contradiction. \Box

COROLLARY 3.5. Assume CH. For a cardinal κ of uncountable cofinality, $\mathfrak{b}=\mathfrak{b}^*=\omega_1$ and $\mathfrak{d}=\kappa$ hold in the forcing model by C_{κ}^2

Using Lemma 3.2 and Theorem 3.4, we can easily prove both the consistency of $b < b^* < b$ and that of $b < b^* = b$.

PROPOSITION 3.6. Assume MA+ $\omega_1 < 2^{\omega} = \lambda \leq \kappa$ and κ has uncountable cofinality. Then, $\mathfrak{b} = \omega_1$, $\mathfrak{b}^* = \lambda$ and $\mathfrak{b} = \kappa$ hold in the forcing model by C_{κ} .

PROOF. Since MA and $2^{\omega} = \lambda$ hold in the ground model, we can take an unbounded family \mathcal{T} of order type λ with respect to \leq^* . Then, in the forcing model \mathcal{T} is still unbounded by Lemma 3.2 and every subfamily of \mathcal{T} of size $<\lambda$ must be bounded, since λ is regular. This implies $\lambda \leq b^*$. On the other hand, $b^* \leq \lambda$ by Theorem 3.4. As is well-known, $b = \omega_1$ and $b = \kappa$ hold in the forcing model by C_{κ} . \Box

4. More on b^* and the tightness of $S_{\omega} \times S_{\kappa}$.

In this section we study Hechler's result about dominating families of ω^{ω} and show that $t(S_{\omega} \times S_{\kappa})$ for $\mathfrak{b} < \kappa < \mathfrak{b}^*$ may or may not be equal to κ .

²⁾ J. Brendle informed us that LaBerge and Landver [8] proved this same result by another method independently. The paper was published after the submission of the present paper.

To investigate structures of dominating subfamilies of ω^{ω} , Hechler [5] introduced the so-called Hechler Forcing. However, his paper had been written before the simplified forcing method appeared and consequently it involves some complicated presentation. Here, we introduce a simplified notion in the current presentation. Since our final purpose is to investigate the notions around the cardinals b, b* and b, we confine ourselves only to a well-founded partially ordered set R.

DEFINITION 4.1. Let R be a well-founded partially ordered set. We define forcing notions inductively.

A member of a partially ordered set H_a for $a \in R$ is of the form $\{\langle s_b, \mathcal{I}_b \rangle: b \in F\}$ with the following:

(1) F is a finite subset of $\{b \in R : b \leq a\}$;

(2) $s_b \in \omega^{<\omega}$ for $b \in F$;

(3) For $b \in F$, \mathcal{I}_b is a finite subset of standard names for reals such that if $\dot{f} \in \mathcal{I}_b$, \dot{f} is an H_c -name for some c < b.

 $\{\langle t_c, \mathcal{Q}_c \rangle : c \in G\}$ extends $\{\langle s_b, \mathcal{T}_b \rangle : b \in F\}$ if the following hold:

- (a) $F \subseteq G$, and $\mathcal{I}_b \subseteq \mathcal{G}_b$ and $s_b \subseteq t_b$ for $b \in F$;
- (b) For each $b \in F$, c < b, an H_c -name $\dot{f} \in \mathcal{I}_b$ and $k \in \operatorname{dom}(t_b) \setminus \operatorname{dom}(s_b)$, we have

 $\{\langle t_d, \mathcal{G}_d \rangle : d \in G \land d \leq c\} \Vdash_{H_c} \dot{f}(k) \leq t_b(k).$

Finally, H_R is the set $\bigcup_{a \in R} H_a$ with the ordering $\bigcup_{a \in R} \leq a$, where $\leq a$ is the ordering of H_a .

Let G be the canonical name for an H_R -generic filter, i.e., $p \Vdash p \in G$ for $p \in H_R$ and let \dot{d}_a be the name for $\bigcup \{s_a : \langle s_a, \mathcal{I} \rangle \in p \in G$ for some $p, \mathcal{I}\}$ for each $a \in R$.

Note that if a < b we can put \dot{d}_a in \mathcal{T}_b .

LEMMA 4.2. (1) H_R satisfies c.c.c.

(2) For $a \leq b$, the inclusion from H_a to H_b is a complete embedding and so is the inclusion from H_a to H_R .

(3) For $a, b \in \mathbb{R}$, $a \leq b$ implies $\| -\dot{d}_a \leq *\dot{d}_b$ and $a \leq b$ implies $\| -\dot{d}_a \leq *\dot{d}_b$.

(4) If any countable subset of R has a strict upper bound in R, \Vdash " $\{\dot{d}_a : a \in R\}$ is a dominating family."

Now it is easy to see the following:

PROPOSITION 4.3. Let $R = \omega_1 \times \omega_2 \times \omega_3$ with the product ordering. Then $\mathfrak{b} = \omega_1$, $\mathfrak{b}^* = \mathfrak{b} = \omega_3$, and $t(S_{\omega} \times S_{\omega_2}) = \omega_2$ hold in the forcing model by H_R .

PROPOSITION 4.4. Let $R = \omega_1 \times \omega_3$ with the product ordering. Then $\mathfrak{b} = \omega_1$, $\mathfrak{b}^* = \mathfrak{b} = \omega_3$, and $t(S_{\omega} \times S_{\omega_2}) = \omega_1$ hold in the forcing model by H_R .

PROOF. By Lemma 4.2 there exists a dominating family $\{d_a: a \in R\}$ such that $d_a \leq *d_b$ iff $a \leq b$ in the product ordering. Now, the first two statements are clear. To show the last one, let \mathcal{I} be an unbounded family of size ω_2 . For $f \in \mathcal{I}$ and $\alpha < \omega_1$, let $\beta(f, \alpha) < \omega_3$ such that $f \leq *d_{\langle \alpha, \beta(f, \alpha) \rangle}$ if such $\beta(f, \alpha)$ exists and $\beta(f, \alpha)=0$ otherwise. Let $\beta_0 = \sup\{\beta(f, \alpha): f \in \mathcal{I} \land \alpha < \omega_1\} < \omega_3$ and take $\mathcal{G} \subseteq \mathcal{I}$ so that $|\mathcal{G}| = \omega_1$ and $d_{\langle \alpha, \beta_0 \rangle}$ does not bound \mathcal{G} for any $\alpha < \omega_1$. Then, \mathcal{G} is unbounded. \Box

References

- J. Brendle and T. LaBerge, Forcing tightness in products of fans, Fund. Math., 150 (1996), 211-226.
- [2] J. Cichoń and J. Pawlikowski, On ideals of subsets of the plane and on Cohen reals, J. Symbolic Logic, 51 (1986), 560-569.
- [3] K. Eda, G. Gruenhage, P. Koszmider, K. Tamano and S. Todorčević, Sequential fans in topology, (submitted).
- G. Gruenhage, k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc., 80 (1980), 478-482.
- [5] S.H. Hechler, On the existence of certain cofinal subsets of ω_{ω} , Axiomatic Set Theory, (ed. T. Jech), Amer. Math. Soc., 1974, pp. 155-173.
- [6] T. Jech, Some combinatorial problems concerning uncountable cardinals, Ann. Math. Logic, 5 (1973), 165-198.
- [7] K. Kunen, Set theory, North Holland, 1980.
- [8] T. LaBerge and A. Landver, Tightness in products of fans and pseudo-fans, Topology Appl., 65 (1995), 237-255.

Katsuya Eda	Masaru Kada
Waseda University	University of Osaka Prefecture
Tokyo 169	Sakai, Osaka 591
Japan	Japan
(e-mail: eda@logic.info.waseda.ac.jp)	(e-mail: kada@center.osakafu-u.ac.jp)

Yoshifumi YUASA Waseda University Tokyo 169 Japan (e-mail: yuasa@logic.info.waseda.ac.jp)