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1. Introduction.

Let $\kappa$ be an infinite cardinal. The sequential fan $S_{\kappa}$ with $\kappa$-many spines is
the quotient space obtained from the disjoint union of $\kappa$-many convergent se-
quences by identifyirg all the limit points to a $si_{I3}gle$ point denoted by $\infty$ . To
be precise, $S_{\kappa}=\{\infty\}\cup(\kappa\cross\omega)$ as a set, every point of $\kappa\cross\omega$ is isolated, and a
basic neighborhood of $\infty$ is of the form

$U_{\varphi}=\{\infty\}\cup\{\langle\alpha, n\rangle : n\geqq\varphi(\alpha)\}$

where $\varphi\in\omega^{\kappa}$ .
For a topological space $X$ , the tightness of $X,$ $t(X)$ , is the smallest cardinal

$\lambda$ such that for every point $x\in X$ and $A\subseteqq X$ , if $x\in c1A$ then there exists $B\subseteqq A$

with $|B|\leqq\lambda$ and $x\in c1B$ .
It follows immediately from the definition that t(X)$ $|X|$ and it is easily

seen that $t(S_{\kappa})=\omega$ for each $\kappa$ . But the tightness of the product space of two
sequential fans is more complicated.

Gruenhage [4] proved that $t(S_{\omega_{1}}\cross S_{\omega_{1}})=\omega_{1}$ , but it is an open question whe-
ther $t(S_{\omega_{2}}\cross S_{\omega_{2}})=\omega_{2}$ holds in ZFC. Moreover, such a question whether $t(S.XS.)$

$=\kappa$ or not, is equivalent to another question related to the collectionwise Haus-
dorff property. (See [3, 8] for details.)

In this paper we shall give a combinatorial characterization of the tightness
of $S_{\omega}XS$. for an infinite cardinal $\kappa$ . Especially the tightness of $S_{\omega}\cross S_{z^{\omega}}$ has a
natural combinatorial characterization.

TO begin with, let us review the definitions of two familiar cardinals with
combinatorial characterizations, $\mathfrak{b}$ and $\mathfrak{d}$ .

DEFINITION 1.1. For $f,$ $g\in\omega^{\omega},$ $f\leqq*g$ if for all but finitely many $n\in\omega$ we
have $f(n)\leqq g(n)$ . A family $g;\subseteqq\omega^{\omega}$ is unbounded (respectively dominating) if for
every $f\in\omega^{\omega}$ there exists $g\in g$ such that g$*f (respectively $f\leqq*g$). The un-
bounding number $\mathfrak{b}$ is the smallest size of the unbounded family of $\omega^{\omega}$ , and the
domi ating number $\mathfrak{d}$ is the smallest size of the dominating family of $\omega^{\omega}$ .
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NOW we introduce a new cardinal invariant $\mathfrak{y}*$ , which is defined with the
notion of the unbounded family but differs from $\mathfrak{b}$ .

DEFINITION 1.2. $\mathfrak{y}*$ is the smallest cardinal $\lambda$ such that, for every un-
bounded family $\sigma\tau\subseteqq\omega^{\omega}$ , there exists a subfamily $\mathcal{G}\subseteqq\sigma\tau$ such that $|\mathcal{G}|$ SZ and $\mathcal{G}$

is still unbounded.

Using this notion we can state our main results:

THEOREM 1.3. (1) For $\omega\leqq\kappa<\mathfrak{b},$ $t(S_{\omega}xS_{\kappa})=\omega$ holds.
(2) $t(S_{\omega}\cross S_{\mathfrak{b}})=\mathfrak{b}$ .
(3) For $\kappa\geqq \mathfrak{b}^{*},$ $t(S_{\omega}xS_{\kappa})=\mathfrak{b}^{*}$ holds.

THEOREM 1.4. (1) $\mathfrak{b}\leqq \mathfrak{b}^{*}\leqq \mathfrak{d}$ .
(2) Both $b<b^{*}$ and $\mathfrak{b}^{*}<\mathfrak{d}$ are consistent with ZFC.

What happens about $t(S_{\omega}\cross S_{\kappa})$ for $\mathfrak{b}<\kappa<\mathfrak{b}^{*}i$ In fact it is undecidable under
ZFC, that is, both $t(S_{\omega}XS_{\kappa})=\kappa$ and $t(S.\cross S.)<\kappa$ are consistent with ZFC. To
prove this, we study Hechler’s result about dominating families of $\omega^{\omega}$ in Section 4.

Our notation is standard and we refer the reader to [7] for undefined
notions.

For $f\in\omega^{\omega}$ and $\varphi\in\omega^{\kappa}$ we shall use the notation $U_{f.\varphi}$ rather than $U_{f}xU_{\varphi}$

for the neighborhood of $\langle\infty, \infty\rangle$ determined by $f$ and $\varphi$ We shall also use
$\langle k, m, \alpha, n\rangle$ instead of $\langle\langle k, m\rangle, \langle\alpha, n\rangle\rangle$ to denote points of S.XS..

ACKNOWLEDGEMENT. We thank S. Taniyama for giving helpful advice and
suggesting the idea of the notion of $\mathfrak{y}*$ . We also thank J. Brendle for some
comments and information, mentioned in the context.

2. Characterization of the tightness of $S_{\omega}\cross S_{\kappa}$

In this section, we shall give a combinatorial characterization of the tight-
ness of $S_{\omega}\cross S_{\kappa^{1}}$ . To state the combinatorial characterization, a part of which
is due to [1], we generalize a notion in Definition 1.2.

DEFINITION 2.1. Let $b(\kappa)$ be the smallest infinite cardinal $\lambda$ satisfying the
following: For every unbounded family $q\subseteqq\omega^{\omega}$ with $|\xi\tau|\leqq\kappa$ there exists a
subfamily $\mathcal{G}\subseteqq\sigma\tau$ such that $|\mathcal{G}|\leqq\lambda$ and $\mathcal{G}$ is still unbounded.

Using this notion 6* is defined as $b(2^{\omega})$ .

1) After the submission of the first version of this paper, we have had a chance to
see a preprint of Brendle and LaBerge [1]. It deals with a closely related topic and
gives a nice idea to simplify the proof of Theorem 1.3. Our previous combinatorial
characterization was more complicated.
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THEOREM 2.2. For any infinite cardinal $\kappa,$
$t(S_{\omega}\cross S_{\kappa})$ is equal to $b(\kappa)$ .

According to this theorem, it is easy to see Theorem 1.3.

LEMMA 2.3. Let $\kappa$ and $\lambda$ be infinite cardinals. Then, $t(S_{\omega}\cross S_{\kappa})\geqq\lambda$ if there
exists an unbounded family $\xi\tau=\{f_{a} : \alpha<\kappa\}$ such that any subfamily $\mathcal{G}\subseteqq\Psi$ with

$|\mathcal{G}|<\lambda$ is bounded.

PROOF. Let $A=\{\langle k, f.(k), \alpha, k\rangle : k<\omega\Lambda\alpha<\kappa\}$ . We show $A$ witnesses
$t(S_{\omega}\cross S_{\kappa})\geqq\lambda$ . Let $h\in\omega^{\omega},$ $\varphi\in\kappa^{\omega}$ . Since Ez‘ is unbounded, there exists $\alpha<\kappa$ such
that $f_{a}\not\leqq*h$ . We can Pnd $k>\varphi(\alpha)$ such that $f.(k)>h(k)$ and so $\langle k, f.(k), \alpha, k\rangle$

$\in A\cap U_{h.\varphi}$ , which implies $\langle\infty, \infty\rangle\in c1A$ .
Let $X\subseteqq A$ with $|X|<\lambda$ . There exists $I\subseteqq\kappa$ such that $|I|<\lambda$ and XEii $\{\langle k$ ,

$f_{a}(k),$ $\alpha,$
$k\rangle:k<\omega\wedge\alpha\in I\}$ . By the assumption, there exists $h\in\omega^{\omega}$ such that

$f_{\alpha}\leqq^{*}h$ for all $\alpha\in I$. For $\alpha\in I$, we can put $\varphi(\alpha)<\omega$ so that $f_{\alpha}(k)\leqq h(k)$ for
any $k\geqq\varphi(\alpha)$ . Then, $U_{h’.\varphi}\cap X=\emptyset$ , where $h’(k)=h(k)+1$ . This completes the
proof. $\square$

LEMMA 2.4. Suppose that $A\subseteqq S_{\omega}\cross S_{\kappa}$ satisfies that $\langle\infty, \infty\rangle\in c1A$ and $\langle\infty, \infty\rangle$

$\not\in c1C$ for any countable $C_{\Rightarrow}\subset A$ . Then, there exists $B\subseteqq A$ such that $\langle\infty, \infty\rangle\in c1B$

and for any $k<\omega$ and $\alpha<\kappa$

(1) { $n:\langle k,$ $m,$ $\alpha,$
$n\rangle\in B$ for some $m<\omega$} and

(2) { $m:\langle k,$ $m,$ $\alpha,$
$n\rangle\in B$ for some $n<\omega$}

are both finite.
PROOF. First we prove that for any $k<\omega$ there exists $M<\omega$ such that

{ $n<\omega:\langle k,$ $m,$ $\alpha,$
$n\rangle\in A$ for some $m>M$ } is finite for all $\alpha<\kappa$ . Suppose not,

then we can take $k<\omega$ and $\alpha_{M}<\kappa$ for each $M<\omega$ so that $\{n<\omega:\langle k, m, \alpha_{M}, n\rangle$

$\in A$ for some $m>M$ } is infinite, Now we claim that $\langle\infty, \infty\rangle\in c1(\{\langle k, m, \alpha_{M}, n\rangle$

$\in A:k,$ $m,$ $M,$ $n<\omega\})$ , which contradicts the assumption. Fix $h\in\omega^{\omega}$ and $\psi\in\omega^{\kappa}$

arbitrarily and let $M=h(k)$ . Then, by the choice of $\alpha_{jf}$ , we can find $m>M$ so
that there exists $n\geqq\psi(\alpha_{M})$ with $\langle k, m, \alpha_{M}, n\rangle\in A$ .

Let $f(k)$ be greater than $M$, then { $n:\langle k,$ $m,$ $\alpha,$
$n\rangle\in A$ for some $m\geqq f(k)$ }

is finite. Symmetrically, we get $\varphi(\alpha)$ so that {$m:\langle k, m, \alpha, n\rangle\in A$ for some
$n\geqq\varphi(\alpha)\}$ is finite. Then, $B=A\cap U_{f.\varphi}$ is the desired one. $\square$

PROOF OF THEOREM 2.2. By Lemma 2.3, it suffices to show $t(S_{\omega}\cross S_{\iota})\leqq$

$b(\kappa)$ . Gruenbage [4, Lemma 1] proved $t(S_{\omega}\cross S_{\kappa})=\omega$ in case $\kappa<\mathfrak{b}$ , which implies
$t(S_{\omega}\cross S_{\kappa})=b(\kappa)$ . So, we assume $\kappa\geqq \mathfrak{b}$ .

Let $A\subseteqq S_{\omega}XS_{\kappa}$ be so tbat $\langle\infty, \infty\rangle\in c1A$ and assume that $\langle\infty, \infty\rangle\not\in c1C$ for
any countable $C\subseteqq A$ . Then, by Lemma 2.4 we get $B\subseteqq A$ with the properties
in the lemma. Take an unbounded family $\mathcal{G}$ of strictly increasing functions
with $|\mathcal{G}|=6$ . We define $f_{a}^{g}(k)= \max(\{0\}\cup\{m:\exists n(\langle k, m, \alpha, n\rangle\in B\wedge k\leqq g(n))\})$ .
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First, we show $\{f_{a}^{g} : \alpha<\kappa\wedge g\in \mathcal{G}\}$ is unbounded.
Suppose $f_{a}^{g}\leqq*f$ for all $\alpha<\kappa$ and $g\in \mathcal{G}$ . Since $\langle\infty, \infty\rangle\in c1B$ , there exists

$\alpha<\kappa$ such that the set $\{n : \exists k, m(f(k)<m\wedge\langle k, m, \alpha, n\rangle\in B)\}$ is infinite. For
$n<\omega$ choose $k_{n}$ so that $f(k_{n})<m$ and $\langle k_{n}, m, \alpha, n’\rangle\in B$ for some $m<\omega,$ $n’\geqq n$ .
Since $\mathcal{G}$ is unbounded, there is $g\in \mathcal{G}$ such that $k_{n}\leqq g(n)$ for infinitely many $n$ .
By the first property of Lemma 2.4, the correspondence from $n$ to $k_{n}$ is finite-
to-one, so we can find $n<\omega$ such that $f_{\alpha}^{g}(k_{n})\leqq f(k_{n})$ and also $k_{n}\leqq g(n)$ . By
the choice of $k_{n}$ , there are $n’\geqq n$ and $m>f(k_{n})$ such that $\langle k_{n}, m, \alpha, n’\rangle\in B$ .
Since $g(n)\leqq g(n’)$ and by the definition of $f_{\alpha}^{g}(k_{n})$ , this implies $f_{\alpha}^{g}(k_{n})\geqq m>f(k_{n})$ ,

which contradicts $f_{a}^{g}(k_{n})\leqq f(k_{n})$ .
We have shown that $\{f_{\alpha}^{g} : \alpha<\kappa\wedge g\in \mathcal{G}\}$ is unbounded. There exists $J\subseteqq\kappa$

such that $|J|\leqq b(\kappa)$ and $\{f_{a}^{g} : \alpha\in J\wedge g\in \mathcal{G}\}$ is unbounded. Let $D=\{\langle k, m, \alpha, n\rangle$

$\in B:\alpha\in J\wedge k,$ $m,$ $n<\omega\}$ . We claim that $\langle\infty, \infty\rangle\in c1D$ , whicb shows $t(S_{\omega}\cross S_{\kappa})$

$\leqq b(\kappa)$ . Take arbitrary $h\in\omega^{\omega}$ and $\varphi\in\omega^{\kappa}$ . Then we can find $\alpha\in J$ and $g\in \mathcal{G}$

so that $f_{\alpha}^{g}\not\leqq*h$ . By the definition of $f_{\alpha}^{g}(k),$ $f_{\alpha}^{g}(k)>0$ implies $\langle k, f_{a}^{g}(k), \alpha, n\rangle\in$

$D$ for some $n$ with $k\leqq g(n)$ . Since $f_{\alpha}^{g}\not\leqq*h$ , there are infinitely many $n$ such
that $\langle k, f_{a}^{g}(k), \alpha, n\rangle\in D$ and $h(k)<f_{a}^{g}(k)$ for some $k$ . So we can find $n\geqq\varphi(\alpha)$

and $k<\omega$ with $h(k)<f_{\alpha}^{g}(k)$ so that $\langle k, f_{a}^{g}(k), \alpha, n\rangle\in D,$ $i.e.,$ $U_{h,\varphi}\cap D\neq\emptyset$ . $\square$

3. Relations between $\mathfrak{b},$
$\mathfrak{d}$ and $\mathfrak{b}*$ .

In this section we shall show that $\mathfrak{b}*$ is located between $\mathfrak{b}$ and $\mathfrak{d}$ but con-
sistently different from both of them.

THEOREM 3.1. $\mathfrak{b}\leqq \mathfrak{b}^{*}\leqq \mathfrak{d}$ .

PROOF. bf\leq --b* follows immediately from tbe definition of $\mathfrak{b}*$ . To show
$\mathfrak{b}^{*}\leqq \mathfrak{d}$ , let ET be any unbounded family and $9=\{g_{\beta} : \beta<\mathfrak{d}\}$ a dominating family.
For each $\beta<\mathfrak{d}$ , we can find $fp\in Er$ so that $f_{\beta}\not\leqq^{*}g_{\beta}$ . Let $\mathcal{G}=\{f_{\beta} : \beta<\mathfrak{d}\}\subseteqq z$ .
Then, $|\mathcal{G}|$ Sd and $\mathcal{G}$ is still unbounded. $\square$

NOW we tum to the consistency proofs. Both of the models satisfying $\mathfrak{b}*$

$<\mathfrak{d}$ and $\mathfrak{b}<\mathfrak{b}^{*}$ are obtained by the Cohen extensions.
Before proving them, we observe a baslc fact on the Cohen forcing. Let

$C_{I}=Fn(I, 2, \omega)$ be the canonical Cohen forcing notion for an infinite set $I$ (see
[7, Chapter7] $)$ .

LEMMA 3.2 ([2, Corollary 3.5]). For any infinite set $I$, if $\sigma\tau$ Ell $\omega^{\omega}$ is an
unbounded family, then $||-c_{I}$

“
$\sigma\tau\iota is$ unbounded.”

DEFINITION 3.3. For a forcing notion $P$, a standard $P$-name $\dot{f}$ for a real
is a name uniquely determined by a system $\{A_{mn} : m, n<\omega\}$ with the following:

(1) A.. $n\subseteq P$ is an antichain of $P$ and $n\neq n’$ implies $A_{mn}\cap A_{mn’}=\emptyset$ ,
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(2) $\bigcup_{n<\omega}A_{mn}$ is a maximal antichain of $P$, and
(3) For each $p\in A_{mn},$ $P|\vdash_{P}\dot{f}(m)=n$ .
THEOREM 3.4. Let $2^{\omega}=\lambda$ . Then, in the Cohen extension by C. for an in-

finite $\kappa$ , any unbounded family $q$ of $\omega^{\omega}$ has an unbounded subfamily of size less
than or equal to $\lambda$ .

PROOF. For an infinite $I\subseteqq\kappa$ , let $X(I)$ be the collection of all standard $C_{J^{-}}$

names of reals and let $X=X(\kappa)$ . It suffices to deal with the case $\kappa>\lambda$ . Suppose
that tbere are $p_{0}\in C_{\kappa}$ and a collection $\sigma r$ of standard C.-names for reals such
that

$p_{0}|\vdash f\Gamma$ is unbounded $\Lambda\forall \mathcal{G}\subseteqq\xi T$ ( $|\mathcal{G}|\leqq\lambdaarrow \mathcal{G}$ is bounded).”

Let $S=\{X(I):I\in[\kappa]^{\lambda}\wedge supp(p_{0})\subseteqq I\}$ , then $S\subset\Leftarrow[X]^{\lambda}$ . $S$ is stationary, since
it is unbounded and closed under unions of increasing $\omega_{1}$ -sequences. By assumP-
tion and using Lemma 3.2, for each $X=X(I)\in S$ we get a standard $C_{I}$ -name $\dot{g}_{X}$

for a real so that $p_{0}$ forces $\dot{f}\leqq*\dot{g}_{X}$ for all $\dot{f}\in f\cap X$ . By Fodor’s lemma for
$[X]^{\lambda}$ (see [6, Theorem 3.2]) there is a stationary set $S’\subseteqq S$ such that $\dot{g}_{X}=\dot{g}$

for all $X\in S’$ . Since $S’$ is unbounded in $[X]^{\lambda}$ , we have $P_{0}|\vdash\dot{f}\leqq*\dot{g}$ ’ for all
$\dot{f}\in q$ , which is a contradiction. $\square$

COROLLARY 3.5. Assume CH. For a cardinal $\kappa$ of uncountable cofinality,
$f_{J}=\mathfrak{b}^{*}=\omega_{1}$ and $\mathfrak{d}=\kappa$ hold in the forcing model by $C_{\kappa}^{2}$

Using Lemma 3.2 and Theorem 3.4, we can easily prove both the consistency
of $b<b^{*}<b$ and that of $b<b^{*}=b$ .

PROPOSITION 3.6. Assume $MA+\omega_{1}<2^{\omega}=\lambda\leqq\kappa$ and $\kappa$ has uncountable cofinality.
Then, $\mathfrak{b}=\omega_{1},$ $\mathfrak{b}^{*}=\lambda$ and $\mathfrak{d}=\kappa$ hold in the forcing model by C..

PROOF. Since MA and $2^{\omega}=\lambda$ hold in the ground model, we can take an
unbounded family $\Psi$ of order type $\lambda$ with respect to $\leqq*$ Then, in the forcing
model $\xi r$ is still unbounded by Lemma 3.2 and every subfamily of $f$ of size
$<\lambda$ must be bounded, since $\lambda$ is regular. This implies $\lambda\leqq \mathfrak{b}^{*}$ . On the other
hand, $\mathfrak{b}^{*}\leqq\lambda$ by Theorem 3.4. As is well-known, $\mathfrak{b}=\omega_{1}$ and $\mathfrak{d}=\kappa$ hold in the
forcing model by C.. $\square$

4. More on 6* and the tightness of $S_{\omega}XS_{\kappa}$ .
In this section we study Hechler’s result about dominating families of to’

and show that $t(S_{\omega}\cross S_{\kappa})$ for $b<\kappa<b^{*}$ may or may not be equal to $\kappa$ .

2) J. Brendle informed us that LaBerge and Landver [8] proved this same result by
another method independently. The paper was published after the submission of the
present paper.
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TO investigate structures of dominating subfamilies of $\omega^{\omega}$ , Hechler [5]

introduced the so-called Hechler Forcing. However, his paper had been written
before the simplified forcing method appeared and consequently it involves some
complicated presentation. Here, we introduce a simplified notion in the current
presentation. Since our final purpose is to investigate the notions around the
cardinals $b,$ $b^{*}$ and $\mathfrak{d}$ , we confine ourselves only to a well-founded partially
ordered set $R$ .

DEFINITION 4.1. Let $R$ be a well-founded partially ordered set. We define
forcing notions inductively.

A member of a partially ordered set $H_{a}$ for $a\in R$ is of the form { $\langle s_{b}, g_{b}\rangle$ :
$b\in F\}$ with the following:

(1) $F$ is a finite subset of $\{b\in R:b\leqq a\}$ ;
(2) $s_{b}\in\omega^{<\omega}$ for $b\in F$ ;
(3) For $b\in FS_{b}$ is a finite subset of standard names for reals such that if

$\dot{f}\in g_{b},\dot{f}$ is an $H_{c}$-name for some $c<b$ .

$\{\langle t_{c}, \mathcal{G}_{c}\rangle : c\in G\}$ extends $\{\langle s_{b}, g_{b}\rangle:b\in F\}$ if the following hold:

(a) $F\subseteqq G$ , and $\sigma r_{b}\subseteqq \mathcal{G}_{b}$ and $s_{b}\subseteqq t_{b}$ for $b\in F$ ;
(b) For each $b\in Fc<b$ , an $H_{c}- name\dot{f}\in\sigma r_{b}$ and $k\in dom(t_{b})\backslash dom(s_{b})$ , we have

$\{\langle t_{d}, \mathcal{G}_{d}\rangle:d\in G\wedge d\leqq c\}|\vdash_{H_{c}}\dot{f}(k)$ ;El $t_{b}(k)$ .

Finally, $H_{R}$ is the set $\cup {}_{a\in R}H_{a}$ with the ordering $\bigcup_{a\in R}\leqq_{a}$ , where $\leqq_{a}$ is
the ordering of $H_{a}$ .

Let $G$ be the canonical name for an $H_{R}$-generic filter, $i.e.$ , $p|\vdash p\in G$ for
$p\in H_{R}$ and let $\dot{d}_{a}$ be the name for $\cup$ { $s_{a}$ : $\langle s_{a},$ $\xi\Gamma\rangle\in p\in G$ for some $p,$ $\sigma\tau$ } for
each $a\in R$ .

Note that if $a<b$ we can put $\dot{d}_{a}$ in $g_{b}$ .

LEMMA 4.2. (1) $H_{R}$ satisfies $c.c.c$ .
(2) For $a\leqq b$, the inclusim from $H_{a}$ to $H_{b}$ is a complete embedding and so

is the inclusion from $H_{a}$ to $H_{R}$ .
(3) For a, $b\in R,$ $a\leqq b$ implies $|\vdash\dot{d}_{a}\leqq*\dot{d}_{b}$ and $a\not\leqq b$ implies $|\vdash\dot{d}_{a}\not\leqq*\dot{d}_{b}$ .
(4) If any countable subset of $R$ has a strict upper bound in $R,$ $|\vdash"$ { $\dot{d}_{a}$ :

$a\in R\}$ is a dominating family.”

NOW it is easy to see the following:

PROPOSITION 4,3. Let $R=\omega_{1}X\omega_{2}X\omega_{s}$ with the product ordering. Then $\mathfrak{b}=$

$\omega_{1},$
$\mathfrak{b}^{*}=b=\omega_{s}$ , and $t(S_{\omega}xS_{\omega_{2}})=\omega_{2}$ hold in the forcing model by $H_{R}$ .

PROPOSITION 4.4. Let $R=\omega_{1}\cross\omega_{3}$ with the product ordering. Then $\mathfrak{b}=\omega_{1}$ ,
$\mathfrak{b}^{*}-\mathfrak{d}=\omega_{a}$ , and $t(S_{\omega}\cross S_{\omega_{2}})=\omega_{1}$ hold in the forcing model by $H_{R}$ .
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PROOF. By Lemma 4.2 there exists a dominating family $\{d_{a} : a\in R\}$ such
that $d_{a}\leqq*d_{b}$ iff $a\leqq b$ in the product ordering. Now, the first two statements
are clear. To show the last one, let $\xi\tau$ be an unbounded family of size $\omega_{2}$ .
For $f\in g$ and $\alpha<\omega_{1}$ , let $\beta(f, \alpha)<\omega_{3}$ such that $f\leqq*d_{\langle\alpha.\beta(f.\alpha)\rangle}$ if such $\beta(f, a)$

exists and $\beta(f, \alpha)=0$ otherwise. Let $\beta_{0}=\sup\{\beta(f, \alpha) : f\in\sigma\Gamma A\alpha<\omega_{1}\}<\omega_{3}$ and
take $\mathcal{G}\subseteqq\sigma\tau$ so that $|\mathcal{G}|=\omega_{1}$ and $d_{\langle\alpha.\beta_{0}\rangle}$ does not bound $\mathcal{G}$ for any $\alpha<\omega_{1}$ . Then,
$\mathcal{G}$ is unbounded. $\square$
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