Generalized \#-unknotting operations

By Katura MiYazaki and Akira Yasuhara

(Received Jan. 12, 1995)

Introduction.

We shall work in the P.L. and locally flat category. We discuss oriented knots and links in S^{3}. Two knots are equivalent if there is an ambient isotopy of S^{3} carrying one knot to the other.
H. Murakami [6] showed that any knot can be changed into a trivial knot by repeatedly altering a diagram of the knot as in Figure 0.

Figure 0.
This move on a diagram is called the \#-move or the \#-unknotting operation. In this note, generalizing this, we define for any prime p, a $\#^{p}$-move on a knot diagram as shown in Figure 1. Note that even if p is fixed, x and y in Figure 1 may vary. (It is easy to define $\#^{p}$-moves for any integers p. However, if p^{\prime} is a factor of p, then a $\#^{p}$-move is also a $\#^{p^{\prime}}$-move. We thus consider $\#^{p}$-moves only for prime numbers p.) The \#-unknotting operation and the pass-move [4] are examples of $\#^{2}$-moves.

We shall show that for any prime p any knot can be transformed into a trivial knot by a finite sequence of $\#^{p}$-moves Theorem 1.1). (In fact, if p is odd, a combination of a certain $\#^{p}$-move and Reidemeister moves achieves a crossing change.) Then we can define the $\#^{p}$-unknotting number $u^{p}(K)$ much like the ordinary unknotting number. Since a family of $\#^{p}$-moves is a wide variety of diagramatic changes, one might initially think that every knot can be untied

Figure 1.
by a single $\#^{p}$-move for some p and/or there might be an upper bound for the values of $\#^{p}$-unknotting numbers. However, we shall show that:

Proposition 1.6. Given n and p, there is a knot K such that $u^{p}(K) \geqq n$.
Proposition 2.7. There is a knot K such that $u^{p}(K)>1$ for any p.
Let M be $S^{2} \times S^{2}$ with a puncture. In $\S 2$, $\#^{p}$-moves are related to certain disks properly embedded in M, and studied using results of 4-dimensional topology. As an application, in $\S 3$, we consider whether every link in $\partial M \cong S^{3}$ bounds disjoint disks in M. It is already known that every knot bounds a disk in M (Norman [8], Suzuki [10]). We shall show that this does not hold for a 2-component link Proposition 3.6. We only find an obstruction of links being slice in M for certain, not all, links.

Problem. Find an obstruction for links to bound disjoint disks in $S^{2} \times S^{2}$ with a puncture.

We summarize the notation used in this note. All manifolds will be assumed to be oriented. For a manifold $M,-M$ denotes M with the opposite orientation. If M^{4} is a closed 4-manifold, punc M^{4} denotes M^{4} with an open 4 -ball deleted; the orientation of $\partial\left(\right.$ punc $\left.M^{4}\right)$ is the one induced from punc M^{4}. For a knot K in S^{3}, we write \bar{K} for the knot $-K$ in $-S^{3}$. We write O for a trivial knot in S^{3}.

1. $\#^{p}$-Moves.

If a diagram of a knot K^{\prime} is a result of one $\#^{p}$-move on a diagram of a knot K, then we write $K \xrightarrow{\not{ }^{p}} K^{\prime}$.

Theorem 1.1. For any prime p, a diagram of any knot can be transformed into a diagram of a trivial knot by a finite sequence of $\#^{p}$-moves.
 a diagram of K^{\prime} is obtained from that of K by a single $\#^{p}$-move, then we define $\varphi_{p}\left(K, K^{\prime}\right)$ to be the sum of signs of the changed crossings. See Figure 2. Note that $\varphi_{p}\left(K, K^{\prime}\right)$ does not depend on the orientation of K. However, $\varphi_{p}\left(K, K^{\prime}\right)$ seems to depend on a diagram of K and the $\#^{p}$-move to apply. Theorem 1.2 below says that $\varphi_{p}\left(K, K^{\prime}\right)$ depends only on p, K and K^{\prime}. The proof will be given in § 2 .

Figure 2.
Theorem 1.2. Suppose $K^{\not \#^{p}} K^{\prime}$. Then for any $\#^{p}$-move transforming a diagram of K into that of $K^{\prime}, \varphi_{p}\left(K, K^{\prime}\right)$ takes the same value.

Corollary 1.3. (1) If $K^{\not{ }^{\# p}} K^{\prime}$, then $K^{\prime} \xrightarrow{\not{ }^{p}} K$ and $\varphi_{p}\left(K^{\prime}, K\right)=-\varphi_{p}\left(K, K^{\prime}\right)$. (2) If K and K^{\prime} are amphicheiral knots such that $K^{\not{ }^{\# p}} K^{\prime}$, then $\varphi_{p}\left(K, K^{\prime}\right)=0$.

Proof of Corollary 1.3. We only prove (2). Let \tilde{K} be a diagram of K which a single $\#^{p}$-move transforms into K^{\prime}. Change all crossings of \tilde{K} and the orientation; then the sign of each crossing changes and \tilde{K} becomes a diagram of \bar{K}. It follows $\bar{K}^{\not{ }^{p}} \bar{K}^{\prime}$ with $\varphi_{p}\left(\bar{K}, \bar{K}^{\prime}\right)=-\varphi_{p}\left(K, K^{\prime}\right)$. Since K and K^{\prime} are amphicheiral, the equality implies $\varphi_{p}\left(K, K^{\prime}\right)=0$.

We now give the proof of Theorem 1.1.
Proof of Theorem 1.1. If $p=2$, then $\#^{2}$-moves contain the $\#$-unknotting operation in [6]. Thus a $\#^{2}$-move is an unknotting operation.

If p is odd, then Figure 3 demonstrates how a combination of a certain $\#^{p}$-move and isotopies achieves a crossing change.

Given two knots K, K^{\prime}, define the $\#^{p}$-Gordian distance $d_{G}^{p}\left(K, K^{\prime}\right)$ to be the minimum number of $\#^{p}$-moves which can transform a diagram of K to that of K^{\prime}. Given a knot K, define the $\#^{p}$-unknotting number $u^{p}(K)$ to be $d_{G}^{p}(K, O)$. The proof of Theorem 1.1 then implies the following.

Corollary 1.4. If p is an odd prime, then $d_{G}\left(K, K^{\prime}\right) \geqq d_{G}^{p}\left(K, K^{\prime}\right)$ where d_{G} is the Gordian distance defined in [6]. In particular, $u(K) \geqq u^{p}(K)$ where $u(K)$ is the ordinary unknotting number of K.

Example 1. By Corollary 1.4 the $\#^{p}$-unknotting number of the figure eight knot 4_{1} is 1 if $p>2$. On the other hand, if $p=2$, Figure 4 describes a sequence $4_{1} \xrightarrow{\#^{2}} \overline{3_{1}} \xrightarrow{\#^{2}} O$ where $\overline{3_{1}}$ is the right handed trefoil. Hence $u^{2}\left(4_{1}\right) \leqq 2$. We also see that $\varphi_{2}\left(4_{1}, \overline{3_{1}}\right)=0$ and $\varphi_{2}\left(\overline{3_{1}}, O\right)=4$. In $\S 2$ we shall see that $u^{2}\left(4_{1}\right)=2$.

Example 2. Let $T(p, q)$ be the (p, q) torus knot. Since a $2 n$-full twist of $力$ parallel strings can be realized by a single $\#^{p}$-move (Figure 5), $T(p, 2 n p \pm 1)$ $\xrightarrow{\# p} T(p, \pm 1) \cong O$. Thus $u^{p}(T(p, 2 n p \pm 1))=1$ for any n, where $\varphi_{p}(T(p, 2 n p \pm 1), O)$ $=2 n p$.

It is a standard technique to find lower bounds of unknotting numbers in terms of the minimum number of generators of the first homology group of a covering space [13], [7]. In this direction Nakanishi pointed out the following estimates.

Proposition 1.5. Let X_{p} be the p-fold cyclic branched covering of S^{3} along a knot K. Let $e_{p}(K)$ be the minimum number of generators of $H_{1}\left(X_{p}\right)$.

$$
\text { Then } \begin{aligned}
d_{G}^{p}\left(K, K^{\prime}\right) & \geqq \frac{\left|e_{p}(K)-e_{p}\left(K^{\prime}\right)\right|}{3 p}, \\
u^{p}(K) & \geqq \frac{e_{p}(K)}{3 p} .
\end{aligned}
$$

Proof. First note that a $\#^{p}$-move is realized by three surgeries as shown in Figure 6. The linking number of each surgery circle and the knot is a multiple of p. Hence the preimage of each surgery circle in X_{p} has p components. In general, a single Dehn surgery changes the minimum number of generators of the first homology group of an ambient manifold by at most one

Figure 3.

Figure 4.
[3, Lemma 3]. Thus, if $K \xrightarrow{\not{ }^{p}} K^{\prime}$, then $\left|e_{p}(K)-e_{p}\left(K^{\prime}\right)\right| \leqq 3 p$. The proposition easily follows.

The estimates in Proposition 1.5 will be far from best possible, but are enough to prove:

Proposition 1.6. For any n and prime p, there is a knot whose $\#^{p}$-unknotting number is greater than or equal to n.

Proof. By Proposition 1.5 it suffices to prove that for given p and n there is a knot K such that $e_{p}(K) \geqq 3 p n$. The figure eight knot 4_{1} has a Seifert matrix $S=\left(\begin{array}{rr}-1 & 0 \\ 1 & 1\end{array}\right)$; for example see $[\mathbf{1}, \mathrm{p} .320]$. Since $\operatorname{det} S=-1, M_{m}=I-$ $\left(S^{T} S^{-1}\right)^{m}$ is a presentation matrix for the first homology group of the m-fold cyclic branched covering along 4_{1}. Hence, if $\operatorname{det} M_{m} \neq \pm 1$, then $e_{m}\left(4_{1}\right) \geqq 1$. A calculation shows that $\operatorname{det} M_{m}=2-\left(\alpha^{m}+\beta^{m}\right)$, where $\alpha=(3+\sqrt{5}) / 2, \beta=(3-\sqrt{5}) / 2$ are the eigenvalues of $S^{T} S^{-1}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$. Since $\alpha>2,2-\left(\alpha^{m}+\beta^{m}\right) \neq \pm 1$ for $m \geqq 2$. Thus, $e_{m}\left(4_{1}\right) \geqq 1$ for $m \geqq 2$, and so $e_{p}\left(\#^{3 p n} 4_{1}\right) \geqq 3 p n$ for any prime p and n.

(isotopy

Figure 5.

Figure 6.

2. $\#^{p}$-moves from a 4-dimensional point of view.

In this section, we show that $\varphi_{p}\left(K, K^{\prime}\right)$ in $\S 1$ is well-defined and study its properties via 4-dimensional topology. As shown below, $\varphi_{p}\left(K, K^{\prime}\right)$ approximates $\sigma_{p}\left(K^{\prime}\right)-\sigma_{p}(K)$, where σ_{p} is Tristram's p-signature [11].

Proposition 2.1. If $K^{\not{ }^{p}} K^{\prime}$, then the following hold.

$$
\begin{equation*}
\left|\frac{4}{p^{2}}\left[\frac{p}{2}\right]\left(p-\left[\frac{p}{2}\right]\right) \varphi_{p}\left(K, K^{\prime}\right)+\sigma_{p}(K)-\sigma_{p}\left(K^{\prime}\right)\right| \leqq 2 \tag{1}
\end{equation*}
$$

where $[x]$ is the greatest integer not exceeding x.
(2) $\frac{1}{4} \varphi_{2}\left(K, K^{\prime}\right) \equiv \operatorname{Arf}(K)+\operatorname{Arf}\left(K^{\prime}\right) \bmod 2$.

Note that the coefficient of φ_{p} in the inequality of (1) above equals 1 if $p=2,\left(p^{2}-1\right) / p^{2}$ if $p>2$.

REMARK 1. If a knot K^{\prime} is obtained from a knot K by a \#-unknotting operation [6], then we have $K^{\#^{p}} K^{\prime}$ with $\varphi_{2}\left(K, K^{\prime}\right)= \pm 4$. It follows from Proposition 2.1 (1) that $\sigma_{2}\left(K^{\prime}\right)-\sigma_{2}(K)=-2,-4,-6$ if $\varphi_{2}\left(K, K^{\prime}\right)=-4$, and $\sigma_{2}\left(K^{\prime}\right)$ $-\sigma_{2}(K)=2,4,6$ if $\varphi_{2}\left(K, K^{\prime}\right)=4$. This recovers [6, Theorem 3.2], which is proved by using a Goeritz matrix.

Remark 2. Recall that Tristram's p-signature $\sigma_{p}(K)$ is the signature of the Hermitian matrix $V(\xi)=(1-\xi) M+(1-\bar{\xi}) M^{T}$ where M is a Seifert matrix of a knot K and $\xi=\exp ([p / 2] 2 \pi i / p)$. Note that $2 \pi / 3 \leqq[p / 2] 2 \pi / p \leqq \pi$. The matrix $V(\xi)$ is singular if and only if ξ is a root of the Alexander polynomial $\Delta(t)$ of K. The signature of $V(z)$ for $z \in S^{1}$ is continuous at $z=z_{0}$ if $V\left(z_{0}\right)$ is a nonsingular matrix. Thus, if the arguments of the roots of $\Delta(t)$ do not lie in
$[2 \pi / 3, \pi]$, then Tristram's p-signatures of K do not depend on p.
As an application of Proposition 2.1 we show:
PRoposition 2.2. $\quad u^{2}\left(4_{1}\right)=2$.
Proof. We know that $u^{2}\left(4_{1}\right) \leqq 2$ (Example 1 in $\S 1$). Assume for a contradiction that $4_{1} \xrightarrow{\#^{2}} O$. Since 4_{1} is amphicheiral, Corollary 1.3(2) implies $\varphi_{2}\left(4_{1}, O\right)$ $=0$. Then, applying Proposition 2.1 (2) gives $\operatorname{Arf}\left(4_{1}\right)=0$, a contradiction.

Lemma 2.3. If $K \xrightarrow{\not{ }^{p}} K^{\prime}$, then there exists a properly embedded 2-disk Δ in $M=\operatorname{punc}\left(S^{2} \times S^{2}\right)$ such that
(1) $\partial \Delta \subset \partial M$ is $\bar{K} \# K^{\prime}$,
(2) $[\Delta] \in H_{2}(M, \partial M)$ is divisible by p, and
(3) the intersection number $[\Delta] \cdot[\Delta]$ equals $2 \varphi_{p}\left(K, K^{\prime}\right)$.

Proof. Suppose that $\bar{K} \# K$ is in the boundary of a 4 -ball D^{4}. Note that $\bar{K} \# K^{\# \nu} \bar{K} \# K^{\prime}$ and that $\bar{K} \# K$ bounds a 2 -disk Δ in D^{4}. Figure 7 shows that doing 0 -surgeries along l_{1} and l_{2} have the same effect on $\bar{K} \# K$ as the $\#^{p}$-move. Attach 2-handles h_{1}^{2} and h_{2}^{2} to D^{4} with framings 0 along l_{1} and l_{2} respectively. Then $M=D^{4} \cup h_{1}^{2} \cup h_{2}^{2}$ is homeomorphic to punc $\left(S^{2} \times S^{2}\right)$ and $(\partial M, \partial \Delta) \cong\left(S^{3}, \bar{K} \# K^{\prime}\right)$. Orient l_{1}, l_{2} so that $\operatorname{lk}\left(l_{1}, l_{2}\right)=1$, and set $x=1 \mathrm{k}\left(l_{1}, \bar{K} \# K\right)$ and $y=1 \mathrm{k}\left(l_{2}, \bar{K} \# K\right)$. Then Δ represents $x \alpha+y \beta \in H_{2}(M, \partial M)$ where $\alpha, \beta \in H_{2}(M, \partial M)$ are represented by the cocores of h_{1}^{2}, h_{2}^{2}, respectively. It follows that $[\Delta] \cdot[\Delta]=2 x y=2 \varphi_{p}\left(K, K^{\prime}\right)$. By the definition of $\#^{p}$-moves x and y are multiples of p, thus $[\Delta]$ is divisible by p.

Figure 7.

Lemma 2. 3 relates a $\#^{p}$-move to an embedded disk in punc $\left(S^{2} \times S^{2}\right)$. Then Theorem 1.2 and Proposition 2.1 follow from the theorems in 4 -dimensional topology, Theorems 2.4 and 2.5 below. Theorem 2.4 is originally due to Viro [12]. It is also obtained by letting $d=p$ and $a=[p / 2]$ in the inequality of Gilmer [2, Remarks (a) on p. 371]. Theorem 2.5 is really Robertello's definition of the Arf invariant [9].

Theorem 2.4. Let M be a compact, oriented 4 -manifold with $\partial M \cong \varnothing$ or $\cong S^{3}$, and F a properly embedded, oriented surface in M with $\partial F \cong \varnothing$ or $\cong S^{1}$. If $[F] \in H_{2}(M, \partial M ; Z)$ is divisible by a prime integer p, then we have

$$
\left|\frac{2}{p^{2}}\left[\frac{p}{2}\right]\left(p-\left[\frac{p}{2}\right]\right)[F] \cdot[F]-\sigma_{p}(\partial F)-\sigma(M)\right| \leqq \operatorname{dim} H_{2}\left(M ; Z_{p}\right)+2 \operatorname{genus}(F) .
$$

Theorem 2.5. Let M and F be as in Theorem 2.4. If $\operatorname{genus}(F)=0$ and F represents a characteristic element of $H_{2}(M, \partial M)$, then the following holds.

$$
\frac{[F] \cdot[F]-\sigma(M)}{8} \equiv \operatorname{Arf}(\partial F) \bmod 2
$$

where $\operatorname{Arf}(\partial F)=0$ for $\partial F=\varnothing$.
Proof of Theorem 1.2. Suppose that $\varphi_{p}\left(K, K^{\prime}\right)$ takes two values n_{1} and n_{2}. By Lemma 2.3, for each $n_{i}(i=1,2)$, there is a properly embedded 2 -disk Δ_{i} in $M_{i}=\operatorname{punc}\left(S^{2} \times S^{2}\right)$ such that: (1) $\partial \Delta_{i} \subset \partial M_{i}$ is $\bar{K} \# K^{\prime}$, (2) $\left[\Delta_{i}\right]$ is divisible by p, and (3) $\left[\Delta_{i}\right] \cdot\left[\Delta_{i}\right]=2 n_{i}$.

Set $M=M_{1} \cup_{f}\left(-M_{2}\right), \quad \Sigma=\Delta_{1} \cup_{f}\left(-\Delta_{2}\right)$, where f is an orientation reversing diffeomorphism from $\left(\partial M_{1}, \partial \Delta_{1}\right)$ to ($-\partial M_{2},-\partial \Delta_{2}$). Then $M \cong \#^{2}\left(S^{2} \times S^{2}\right), \Sigma \cong S^{2}$, $[\Sigma] \in H_{2}(M, \partial M)$ is divisible by p and $[\Sigma] \cdot[\Sigma]=2\left(n_{1}-n_{2}\right)$.

If $p=2$, then Theorems 2.4, 2.5 give

$$
\left|n_{1}-n_{2}\right|=\left|\frac{[\Sigma] \cdot[\Sigma]}{2}\right| \leqq 4,
$$

and

$$
\frac{\left(n_{1}-n_{2}\right)}{4}=\frac{[\Sigma] \cdot[\Sigma]}{8} \equiv 0 \bmod 2 .
$$

This implies $n_{1}=n_{2}$.
Suppose p is an odd prime. By Theorem 2. 4,

$$
\left|\frac{\left(n_{1}-n_{2}\right)\left(p^{2}-1\right)}{p^{2}}\right|=\left|\frac{[\Sigma] \cdot[\Sigma]\left(p^{2}-1\right)}{2 p^{2}}\right| \leqq 4 .
$$

By the definition of a $\#^{p}$-move, both n_{1} and n_{2} are multiples of p^{2}. If $n_{1} \neq n_{2}$, then

$$
p^{2}-1 \leqq\left|\frac{\left(n_{1}-n_{2}\right)\left(p^{2}-1\right)}{p^{2}}\right| \leqq 4
$$

This contradicts $p>2$. It follows $n_{1}=n_{2}$.
Proof of Proposition 2.1. By Lemma 2.3 and Theorem 2.4, we have

$$
\left|\frac{4}{p^{2}}\left[\frac{p}{2}\right]\left(p-\left[\frac{p}{2}\right]\right) \varphi_{p}\left(K, K^{\prime}\right)-\sigma_{p}\left(\bar{K} \# K^{\prime}\right)\right| \leqq 2
$$

Since $\sigma_{p}\left(\bar{K} \# K^{\prime}\right)=-\sigma_{p}(K)+\sigma_{p}\left(K^{\prime}\right)$ for any prime integer p, we have (1) of the proposition. Proposition 2.1(2) follows from Lemma 2.3 and Theorem 2.5. We omit the detail.

COROLLARY 2.6. If there is a 'triangle' sequence of $\#^{p}$-moves $K_{0} \xrightarrow{\#^{p}} K_{1} \xrightarrow{\#^{\prime}}$ $K_{2} \xrightarrow{\# p} K_{0}$, then $\varphi_{p}\left(K_{0}, K_{1}\right)+\varphi_{p}\left(K_{1}, K_{2}\right)+\varphi_{p}\left(K_{2}, K_{0}\right)=0$.

Proof. For simplicity, set $\alpha=\left(4 / p^{2}\right)[p / 2](p-[p / 2]), K_{3}=K_{0}$, and $x=$ $\sum_{i=1}^{3} \varphi_{p}\left(K_{i-1}, K_{i}\right)$. Apply Proposition 2.1(1) to sequences $K_{i-1} \xrightarrow{\not{ }^{p}} K_{i}$ and add those three inequalities; then

$$
\sum_{i=1}^{3}\left|\alpha \varphi_{p}\left(K_{i-1}, K_{i}\right)+\sigma_{p}\left(K_{i-1}\right)-\sigma_{p}\left(K_{i}\right)\right| \leqq 6
$$

Hence $\left|\alpha x+\sigma_{p}\left(K_{0}\right)-\sigma_{p}\left(K_{3}\right)\right| \leqq 6$, so that $|x| \leqq 6 / \alpha$. If $p>2,6 / \alpha=6 p^{2} /\left(p^{2}-1\right)$ $\leqq 27 / 4$; otherwise, $6 / \alpha=6$. Since φ_{p} and thus x are multiples of p^{2}, it follows $x=0$ for $p>2$ as desired.

If $p=2$, then $x=0, \pm 4$. On the other hand, adding the three equalities obtained by applying Proposition $2.1(2)$ to $K_{i-1} \xrightarrow{\#^{2}} K_{i}(1 \leqq i \leqq 3)$, we obtain $x / 4 \equiv$ $\operatorname{Arf}\left(K_{0}\right)+\operatorname{Arf}\left(K_{3}\right) \equiv 0 \bmod 2$. Hence, $x=0$.

REMARK. Corollary 2.6 does not necessarily hold for an ' n-gon' sequence of $\#^{p}$-moves if $n>3$. By Example 1 in $\S 1$ there is a sequence $4_{1} \xrightarrow{\#^{2}} \overline{3_{1}} \xrightarrow{\#^{2}} O$ such that $\varphi_{2}\left(4_{1}, \overline{3_{1}}\right)=0$ and $\varphi_{2}\left(\overline{3_{1}}, O\right)=4$. By the amphicheirality of 4_{1}, changing all the crossings in Figure 4 yields a sequence $4_{1} \xrightarrow{\#^{2}} 3_{1} \xrightarrow{\#^{2}} O$ such that $\varphi_{2}\left(4_{1}, 3_{1}\right)$ $=0, \varphi_{2}\left(3_{1}, O\right)=-4$, where 3_{1} is the left handed trefoil. We thus obtain a '4-gon' sequence $4_{1} \xrightarrow{\#^{2}} \overline{3_{1}} \xrightarrow{\#^{2}} O \xrightarrow{\#^{2}} 3_{1} \xrightarrow{\#^{2}} 4_{1}$ such that $\varphi_{2}\left(4_{1}, \overline{3_{1}}\right)+\varphi_{2}\left(\overline{3_{1}}, O\right)+\varphi_{2}\left(O, 3_{1}\right)$ $+\varphi_{2}\left(3_{1}, 4_{1}\right)=8 \neq 0$.

Proposition 2.7. There is a knot K such that $\min _{p} u_{p}(K)=2$.
Proof. We show that $5_{2} \# 5_{2}$ is the desired knot. Set $K=5_{2}$. Figure 8 shows that $O \xrightarrow{\not{ }^{y}} K$ with $\varphi_{p}(O, K)=0$ for any p. This extends to a sequence
$O \xrightarrow{\# p} K \xrightarrow{\# r} K \# K$ with $\varphi_{p}(O, K)=\varphi_{p}(K, K \# K)=0$. Suppose $K \# K^{\# p} O$ for some p. Then, by those sequences and Corollary 2.6 we have $\varphi_{p}(K \# K, O)=$ $-\varphi_{p}(O, K)-\varphi_{p}(K, K \# K)=0$. Proposition 2.1 (1) then implies $\left|\sigma_{p}(K \# K)\right| \leqq 2$. Since $\sigma_{p}(K)$ is even, $\sigma_{p}(K)=0$ for some p. This is absurd because $\sigma_{p}(K)=2$ for any prime p as proved below. It is known that $\sigma_{2}(K)=2$ [1, p. 312], so it suffices to see $\sigma_{p}(K)=\sigma_{2}(K)$. Now the roots of the Alexander polynomial $2 t^{2}-3 t+2$ of 5_{2} are $e^{i \theta}$ where $\cos \theta=3 / 4$, so $\theta \notin[2 \pi / 3, \pi]$. Hence, by Remark 2 after Proposition 2.1, $\sigma_{p}\left(5_{2}\right)=\sigma_{2}\left(5_{2}\right)=2$.

Figure 8.

3. Non-slice links in punc $\left(S^{2} \times S^{2}\right)$.

To construct a non-slice link in punc $\left(S^{2} \times S^{2}\right)$, we first define a $\#^{2}$-move for knot concordance classes. The definition is based on the 4 -dimensional properties of $\#^{2}$-moves stated in Lemma 2 3.

Definition 3.1. Let C, C^{\prime} be knot concordance classes. We write $C \xrightarrow{\not{ }^{2}} C^{\prime}$ if there are a properly embedded disk $\Delta \subset \operatorname{punc}\left(S^{2} \times S^{2}\right)$ and knots $K \in C, K^{\prime} \in C^{\prime}$ satisfying the following:
(1) $\partial \Delta \subset \partial M$ is a knot $\bar{K} \# K^{\prime}$
(2) $[\Delta] \in H_{2}(M, \partial M)$ is divisible by 2, i.e., characteristic.

Definition 3.2. Let C, C^{\prime} be knot concordance classes. If $C \xrightarrow{\ddot{*}^{2}} C^{\prime}$, then define $\varphi\left(C, C^{\prime}\right)$ to be a half of the intersection number $[\Delta] \cdot[\Delta]$ where Δ is the
disk in Definition 3, 1.
Remarks. (1) If $K^{\not \#^{2}} K^{\prime}$ for knots K, K^{\prime}, then Lemma 2, 3 implies that $[K] \xrightarrow{\#^{2}}\left[K^{\prime}\right]$ and $\varphi\left([K],\left[K^{\prime}\right]\right)=\varphi_{2}\left(K, K^{\prime}\right)$ where [*] denotes knot concordance class.
(2) Suppose $C \xrightarrow{\not{ }^{2}} C^{\prime}$ for some knot concordance classes C, C^{\prime}; then for any knots $K \in C, K^{\prime} \in C^{\prime}$ there is a disk Δ in $\operatorname{punc}\left(S^{2} \times S^{2}\right)$ satisfying (1) and (2) in Definition 3.1.

The disk Δ in Definition 3.1 satisfies conditions (1), (2) of Lemma 2.3, Therefore the proofs of Theorem 1.2 and Proposition 2.1 readily imply the following results on a $\#^{2}$-move of concordance classes.

Proposition 3.3. Let C, C^{\prime} be knot concordance classes. If $C \xrightarrow{\#^{2}} C^{\prime}$, then $\varphi\left(C, C^{\prime}\right)$ does not depend on the choice of a disk Δ and representatives of C, C^{\prime}.

Proposition 3.4. Let C, C^{\prime} be knot concordance classes, and knots K, K^{\prime} their representatives, respectively. If $C \xrightarrow{\#^{2}} C^{\prime}$, then
(1) $\left|\varphi\left(C, C^{\prime}\right)+\sigma_{2}(K)-\sigma_{2}\left(K^{\prime}\right)\right| \leqq 2$,
(2) $\frac{1}{4} \varphi\left(C, C^{\prime}\right) \equiv \operatorname{Arf}(K)+\operatorname{Arf}\left(K^{\prime}\right) \bmod 2$.

In $\S 2$ it is shown that the figure eight knot 4_{1} cannot be untied by a single $\#^{2}$-move Proposition 2.2. Here we show that $\left[4_{1}\right]^{\#^{2}}[O]$ is impossible for knot concordance classes. In other words, the following holds.

Proposition 3.5. The figure eight knot does not bound a disk in punc $\left(S^{2} \times S^{2}\right)$ representing a characteristic element.

Proof. If the figure eight knot 4_{1} bounded a disk in punc $\left(S^{2} \times S^{2}\right)$ representing a characteristic element, then $\left[4_{1}\right] \stackrel{\#^{2}}{\rightarrow}[O]$. Reversing the orientation of $\operatorname{punc}\left(S^{2} \times S^{2}\right)$, we obtain $\left[\overline{4_{1}}\right] \xrightarrow{\#^{2}}[\bar{O}]$ with $\varphi\left(\left[4_{1}\right],[O]\right)=-\varphi\left(\left[\overline{4_{1}}\right],[\bar{O}]\right)$. Since 4_{1} and O are amphicheiral, $\varphi\left(\left[4_{1}\right],[O]\right)=0$. It then follows from Proposition 3.4(2) that $\operatorname{Arf}\left(4_{1}\right)=0$, which is absurd.

Proposition 3.6. There is a 2 -component link in $\partial\left(\operatorname{punc}\left(S^{2} \times S^{2}\right)\right)$ which does not bound disjoint disks in punc $\left(S^{2} \times S^{2}\right)$.

The rest of this section is devoted to proving this proposition. We define a band sum of a link as follows. Let L be a link in S^{3}, and $f: I \times I \rightarrow S^{3}$ an embedding such that $f(I \times I) \cap L=f(\partial I \times I)$. We assume that if L is oriented, $f(I \times I)$ and L induce the opposite orientations to $L \cap f(I \times I)$. Then the link $L \cup f(I \times I)-f(I \times \operatorname{int} I)$ is said to be the band sum of L along the band $f(I \times I)$.

Lemma 3.7. Let $L=K_{1} \cup K_{2}$ be a 2 -component link with $\operatorname{lk}\left(K_{1}, K_{2}\right)$ even. Let K_{3} be the band sum of L via arbitrary band connecting K_{1} and K_{2}. If none of K_{i} bounds a disk in punc $\left(S^{2} \times S^{2}\right)$ representing a characteristic element, then L cannot bound two disjoint disks in punc $\left(S^{2} \times S^{2}\right)$.

Proof. Suppose for a contradiction that L bounds disjoint disks D_{1}, D_{2} in $M=\operatorname{punc}\left(S^{2} \times S^{2}\right)$. Let α and β be generators of $H_{2}(M, \partial M)$, and set $\left[D_{i}\right]=$ $x_{i} \alpha+y_{i} \beta, i=1$, 2. Then K_{3} bounds a 2 -disk D_{3} in M representing $\left[D_{3}\right]=\left[D_{1}\right]$ $+\left[D_{2}\right]=\left(x_{1}+x_{2}\right) \alpha+\left(y_{1}+y_{2}\right) \beta$. Since $D_{1} \cap D_{2}=\varnothing, \operatorname{lk}\left(K_{1}, K_{2}\right)=\left[D_{1}\right] \cdot\left[D_{2}\right]=x_{1} y_{2}+$ $x_{2} y_{1}$ is even. Then $x_{1} y_{2} \equiv x_{2} y_{1} \equiv 1 \bmod 2$ or $x_{1} y_{2} \equiv x_{2} y_{1} \equiv 0$. The former implies x_{i}, y_{i} are all odd, and hence $\left[D_{3}\right]$ is characteristic, a contradiction. Suppose the latter holds. Without loss of generality $x_{1} \equiv 0 \bmod 2$. Since $\left[D_{1}\right],\left[D_{2}\right]$ are not characteristic, it follows that $y_{1} \equiv 1, x_{2} \equiv 0$, and $y_{2} \equiv 1$. However, this implies $\left[D_{3}\right]$ is characteristic, a contradiction.

To construct such a link as in Lemma 3.7, we use a result from the theory of spatial theta curves. A labelled theta curve is a graph θ with two vertices labelled v_{1}, v_{2}, and three edges labelled $1,2,3$. A spatial theta curve is the image of an embedding of a labelled theta curve into S^{3}. The i-th constituent $k n o t$ of a spatial theta curve is the union of the two edges labelled j and k where $\{i, j, k\}=\{1,2,3\}$. As for the representability of constituent knots, Kinoshita [5] proved:

Theorem 3.8. Given knots K_{1}, K_{2}, K_{3}, there is a spatial theta curve whose three constituent knots are equivalent to K_{1}, K_{2}, K_{3}.

See the Appendix for a concise proof using a canonical diagram of knots.
Proof of Proposition 3.6. Using Theorem 3.8, take a spatial theta curve, G, such that each constituent knot is equivalent to the figure eight knot. Let K be one of the constituent knots of G, and e the edge not contained in K. Take a band B in S^{3} which connects K to itself and its centerline is the edge e. Then the band sum of K along B is a 2 -component link, say $K_{1} \cup K_{2}$ with $K_{i} \cong 4_{1}$. By twisting the band B, if necessary, we may assume that the linking number of K_{1} and K_{2} is even. Since $B \cap K_{i}$ is an arc for $i=1$, 2, we can regard the disk B as a band connecting K_{1} and K_{2}. Then, the band sum of the link $K_{1} \cup K_{2}$ along B becomes K. Since the figure eight knot does not bound a disk in punc $\left(S^{2} \times S^{2}\right)$ representing a characteristic element, the link $K_{1} \cup K_{2}$ satisfies the hypothesis in Lemma 3.7. Therefore, by Lemma 3,7 this is a non-slice link in punc $\left(S^{2} \times S^{2}\right)$.

Appendix. Proof of Theorem 3.8.

We first show the claim below by using a canonical diagram of knots due to Suzuki, Terasaka, and Yamamoto.

Claim. Given a knot K, there is a spatial theta curve such that one of its constituent knots is equivalent to K and the other two are trivial knots.

Proof of Claim. Let $L=\gamma_{0} \cup \gamma_{1} \cup \cdots \cup \gamma_{u}$ be the link in the diagram of Figure 9, where $u=u(K)$, and let σ be the union of the left, right and lower sides of the rectangle γ_{0}. Let $\Delta_{1}, \cdots, \Delta_{u}$ be mutually disjoint disks in S^{3} such that $\partial \Delta_{i}=\gamma_{i}$ and $\Delta_{i} \cap \gamma_{0}$ is a single point off σ for all i. Suzuki [10] showed that the knot K can be expressed as a band sum of L along mutually disjoint u bands B_{1}, \cdots, B_{u} with the following properties (1) (2):
(1) B_{i} connects γ_{i} and σ for $i=1, \cdots, u$,
(2) $B_{i} \cap$ int $\Delta_{j}=\varnothing$ for all i, j.

Moreover, Yamamoto [15] improved these in such a way that
(3) when γ_{0} is counterclockwise oriented, the u subarcs $B_{1} \cap \sigma, B_{2} \cap \sigma, \cdots$, $B_{u} \cap \sigma$ are located on σ in this order.

Figure 9.
This diagram is said to be a canonical diagram K. An example is Figure 10(a).
Now attach an edge, e, to this diagram, say \tilde{K}, of K so that $e \cap \tilde{K}=\partial e=\partial \sigma$, $e \cap\left(\Delta_{i} \cup B_{i}\right)=\varnothing$ for all i, and the spatial theta curve $\gamma_{0} \cup e$ lies on some plane after an ambient isotopy. (Cf. Figure 10(b).) Then, the constituent knots of the spatial theta curve $\tilde{K} \cup e$ are $e \cup\left(\gamma_{0}-\sigma\right), e \cup\left(\tilde{K}-\left(\gamma_{0}-\sigma\right)\right), \tilde{K}$; the knot types are O, O, K respectively. Hence, $\widetilde{K} \cup e$ is the desired theta curve in Claim.

Let $K_{k}(1 \leqq k \leqq 3)$ be arbitrary knots. By Claim, for $1 \leqq i<j \leqq 3$ there is a spatial theta curve $f_{i j}: \theta \rightarrow S^{3}$ such that its k-th constituent knot is equivalent

Figure 10.
to O if $k \in\{i, j\}$, and K_{k} otherwise. Take the vertex connected sum of the three spatial theta curves $f_{12}(\theta), f_{23}(\theta), f_{13}(\theta)$ (Figure 11). (For the definition of a vertex connected sum refer to [14].)

Figure 11.
Then the first constituent knot of the resulting theta curve is $O \# K_{1} \# O \cong K_{1}$; the second one $O \# O \# K_{2} \cong K_{2}$; the third one $K_{3} \# O \# O \cong K_{3}$. Therefore, $f_{12}(\theta) \# f_{23}(\theta) \# f_{13}(\theta)$ is the desired spatial theta curve.

References

[1] G. Burde and H. Zieschang, Knots, de Gruyter Studies in Math., vol. 5, Walter de Gruyter, Berlin, 1985.
[2] P.M. Gilmer, Configurations of surfaces in 4-manifolds, Trans. Amer. Math. Soc., 264 (1981), 353-380.
[3] J. Hoste, Y. Nakanishi and K. Taniyama, Unknotting operations involving trivial tangles, Osaka J. Math., 27 (1990), 555-566.
[4] L. Kauffman, On knots, Ann. of Math. Stud., vol. 115, Princeton Univ. Press, Princeton, New Jersey, 1987.
[5] S. Kinoshita, On θ_{n}-curves in R^{3} and their constituent knots, Topology and Computer Science, (ed. S. Suzuki), Kinokuniya, Tokyo, Japan, 1987, pp. 211-216.
[6] H. Murakami, Some metrics on classical knots, Math. Ann., 270 (1985), 35-45.
[7] Y. Nakanishi, A note on unknotting number, Math. Sem. Notes, Kobe Univ., 9 (1981), 99-108.
[8] R.A. Norman, Dehn's Lemma for certain 4-manifolds, Invent. Math., 7 (1969), 143-147.
[9] R. Robertello, An Arf invariant of knot cobordism, Comm. Pure Appl. Math., 18 (1965), 543-555.
[10] S. Suzuki, Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad., 45 (1969), 34-38.
[11] A.G. Tristram, Some cobordism invariants for links, Proc. Cambridge Philos. Soc., 66 (1969), 251-264.
[12] O. Ya Viro, Link types in codimension-2 with boundary, Uspekhi Mat. Nauk, 30 (1970), 231-232, (Russian).
[13] H. Wendt, Die gordische Auflösung von Knoten, Math. Z., 42 (1937), 680-696.
[14] K. Wolcott, The knotting of theta curves and other graphs in S^{3}, Geometry and Topology, (eds. C. McCrory and T. Shifrin), Marcel Dekker, New York, 1987, pp. 325-346.
[15] M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, Topology Appl., 36 (1990), 291-298.

Katura Miyazaki

Faculty of Engineering
Tokyo Denki University
2-2 Kanda-Nishikicho
Tokyo 101
Japan
(E-mail: miyazaki@cck.dendai.ac.jp)

Akira Yasuhara

Department of Mathematical Sciences
College of Science and Engineering
Tokyo Denki University
Hatoyama-Machi
Saitama 350-03
Japan

Present Address

Department of Mathematics
Faculty of Education
Tokyo Gakugei University
Koganei, Tokyo 184
Japan
(E-mail: yasuhara@u-gakugei.ac.jp)

