On relativized probabilistic polynomial time algorithms

By Hisao TANAKA*) and Masafumi KUDOH

(Received Dec. 16, 1994)

Let $\boldsymbol{S E} \boldsymbol{P}_{B}=\left\{X \subseteq \Sigma^{*}: \boldsymbol{P}[X] \neq \boldsymbol{B P P}[X]\right\}$. Bennett-Gill [BG 81] show that, in the Cantor space $2^{\Sigma^{*}}, \boldsymbol{S E} \boldsymbol{P} \boldsymbol{P}_{B}$ is of measure zero, and conjectured the possibility that it may be comeager. (In complexity theory there is such an example: Dowd [Do 92] shows that the class of m-generic oracles is of measure zero and is comeager.) We give partial answer to this possibility. Namely, we show that (i) there is a recursive oracle H such that the class $\{X: \boldsymbol{P}[X] \neq \boldsymbol{B P P}[H \oplus X]\}$ is comeager, and (ii) if we assume the existence of an oracle with an appropriate property, then the class $\boldsymbol{S E} \boldsymbol{P}_{B}$ is comeager. These two things also hold for the class $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}=\{X: \boldsymbol{P}[X] \neq \boldsymbol{N} \boldsymbol{P}[X] \cap \boldsymbol{c o N P}[X]\}$. Proofs use forcing method due to Poizat $[\mathbf{P o ~ 8 6}]$ with some modification. However, we do not know whether $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}$ is comeager. If $\boldsymbol{S E} \boldsymbol{P}_{D}$ contains all generic oracles (thence it is comeager), then we would have $\boldsymbol{P} \neq \boldsymbol{N} \boldsymbol{P}$, by a theorem of Blum-Impagliazzo [BI 87]. In the last section we state the raison d'etre for the above (i).

§ 1. Introduction.

For $X \subseteq \Sigma^{*}$, let $\boldsymbol{C}[X]$ and $\boldsymbol{D}[X]$ be relativized complexity classes, and let $\boldsymbol{E}(\boldsymbol{C}, \boldsymbol{D})=\{X: \boldsymbol{C}[X] \neq \boldsymbol{D}[X]\}$. Then, how large (or small) is $\boldsymbol{E}(\boldsymbol{C}, \boldsymbol{D})$? For example, $\boldsymbol{E}(\boldsymbol{P}, \boldsymbol{N P})$ has measure 1 [BG 81] and is comeager (e.g., [Po 86]), where $\boldsymbol{P}[X]$ and $\boldsymbol{N P}[X]$ are deterministic and nondeterministic polynomial time complexity classes relativized by oracle X, respectively. Now, consider the class

$$
\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{\boldsymbol{B}}=\boldsymbol{E}(\boldsymbol{P}, \boldsymbol{B P P})=\{X: \boldsymbol{P}[X] \neq \boldsymbol{B P} \boldsymbol{P}[X]\},
$$

where $\boldsymbol{B P P}[X]$ is the class of sets accepted by probabilistic polynomial time bounded oracle Turing machines with oracle X whose error probability is bounded above by some positive rationals less than $1 / 2$. Bennett-Gill [BG 81] showed, among other things, that the class $\boldsymbol{S E} \boldsymbol{P}_{B}$ has measure zero and conjectured that it may be comeager.

In this paper, we show that it is the case if $\boldsymbol{B P P}[X]$ is relativized by an appropriate oracle H. Namely, let

[^0]$$
\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{B}^{H}=\{X: \boldsymbol{P}[X] \neq \boldsymbol{B P} \boldsymbol{P}[X \oplus H]\},
$$
where $H \oplus X$ is the disjoint union of H and X (for its precise definition, see below). Then, we have

Theorem 1. There is a recursive oracle H such that $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{B}^{H}$ is comeager.
Theorem 1 will be proved by applying some relativized form of Poizat's Theorem in [Po 86]. Further, we introduce at class $\boldsymbol{B P P U}[X]$ "probabilistically uniformly" relativized by X in some sense. Then we have

Theorem 2. The class $\boldsymbol{S E} \boldsymbol{P}_{\boldsymbol{B}}$ is comeager, provided that there exists an oracle A such that $\boldsymbol{P}[A] \neq \boldsymbol{B P P U}[A]$.

The proof of this theorem is similar to that of Theorem 1. This two types of theorem are applicable to the following classes:

Let $\boldsymbol{\Delta}[X]=\boldsymbol{N} \boldsymbol{P}[X] \cap \boldsymbol{c o N P}[X], \boldsymbol{S E} \boldsymbol{P}_{D}=\{X: \boldsymbol{P}[X] \neq \boldsymbol{\Delta}[X]\}$, and let $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}^{H}$ $=\{X: P[X] \neq \boldsymbol{\Delta}[H \oplus X]\}$. Then, we can show that:
(i) there exists a recursive oracle H such that $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}^{H}$ is comeager, and
(ii) if there exists an oracle A such that $\boldsymbol{P}[A] \neq \boldsymbol{\Delta} U[A]$ then, $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}$ is comeager, where $\boldsymbol{U} \boldsymbol{U}[X]$ is an uniformly relativized class in appropriate sense. However, we do not know whether $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}$ is comeager. Blum-Impagliazzo [BI 87] showed that if $\boldsymbol{P}=\boldsymbol{N} \boldsymbol{P}$ then $\boldsymbol{P}[G]=\boldsymbol{\Delta}[G]$ for some generic oracle G. Therefore, if $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}$ is contains all generic oracles (thence it is comeager), then we would have $\boldsymbol{P} \neq \boldsymbol{N} \boldsymbol{P}$. So, it may be difficult to show that $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}$ is comeager.

§ 2. Preliminaries.

Let $\Sigma=\{0,1\}$, and let Σ^{*} be the set of all strings over Σ with the empty string λ. The elements of Σ^{*} can be enumerated as follows:

$$
\begin{equation*}
\lambda, 0,1,00,01,10,11,000,001, \cdots . \tag{1}
\end{equation*}
$$

We denote the $(n+1)$-st string in (1) by z_{n}. For $u \in \Sigma^{*}$, let $u=u(0) u(1) \ldots$ $u(n-1)$, and put $|u|=n$. For $X \subseteq \Sigma^{*}$, let $X=X(0) X(1) \cdots X(n) \cdots$, where $X(n)$ $=1$ or 0 according as $z_{n} \in X$ or not. For $n>0, X \mid n=X(0) X(1) \cdots X(n-1)$ (the n-segment of X). For $u \in \Sigma^{*}$, let $[u]=\{X: X \mid n=u\}$, where $n=|u|$. $\{[u]$: $\left.u \in \Sigma^{*}\right\}$ is an open base for the space $2^{\Sigma^{*}}$. We mainly use u, v, w, \cdots for strings, $A, B, \cdots, X, Y, \cdots$ for sets (i.e., languages), and $\boldsymbol{C}, \boldsymbol{D}, \boldsymbol{E}, \cdots$ for classes (i.e., sets of sets).

Let M^{\sim} be a probabilistic polynomial time bounded oracle Turing machine (abbreviated by prob p-time OTM). Assume that each nondeterministic step of M^{\sim} has two possible branches each of which has probability $1 / 2$. For any
string u and any oracle X, let $M^{X}(u)$ be the output of the machine M^{\sim} on the input u with oracle X. The range of output is $\{0,1\}$, where 1 denotes the acceptance and 0 the rejection. Let $\operatorname{Prob}\left[M^{X}(u)=a\right\rceil$ be the probability that M^{X} on u halts in the a-state, where $a \in\{0,1\}$.

Let $M_{k} \sim$ be the k-th prob p-time OTM. Then, a set A is in the class $\boldsymbol{B P P}[X]$ if there is an index k and a binary finite rational $e(0<e<1 / 2)$ such that for any string u

$$
\operatorname{Prob}\left[M_{k}{ }^{X}(u)=A(u)\right]>(1 / 2)+e .
$$

A is in $\boldsymbol{R}[X]$ if there are a k and an $e(0<e<1 / 2)$ such that for any u

$$
u \in A \quad \text { iff } \operatorname{Prob}\left[M_{k}^{X}(u)=1\right\rceil>(1 / 2)+e,
$$

and

$$
u \notin A \quad \text { iff } \operatorname{Prob}\left[M_{k}^{X}(u)=0\right]=1
$$

For more information, see [BGD 88], [BGD 90], [Pa 94], and [Sch 85].
To show our theorems, we apply Poizat's Theorem and its some relativized form. So we explain part of Poizat's paper [Po 86] with some modification.

Let \boldsymbol{C} be a class: $\boldsymbol{C} \cong 2^{\Sigma^{*}} . \boldsymbol{C}$ is dense if it intersects every basic open set. \boldsymbol{C} is nowhere dense if every basic open set contains a basic open set which is disjoint with $\boldsymbol{C} . \boldsymbol{C}$ is meager if it is a countable union of nowhere dense sets. \boldsymbol{C} is comeager if it is the complement of a meager set.

Let u range over Σ^{*} and X over $2^{\Sigma^{*}}$, and let $H \cong \Sigma^{*}$ be fixed. Consider arithmetical or arithmetical-in- H predicates of the forms $\phi(X)(u), \phi^{H}(X)(u), \xi(X)$, and $\xi^{H}(X)$. For the definition of an arithmetical predicate, see [Ro67]. Examples are given as follows: Consider two machines $M_{j}{ }^{\sim}$ and $M_{k}{ }^{\sim}$. Let

$$
\phi(X)(u) \equiv \operatorname{Prob}\left[M_{j}{ }^{X}(u)=1\right]>3 / 4,
$$

and

$$
\xi^{H}(X) \equiv: \forall u\left[\operatorname{Prob}\left[M_{j}^{X}(u)=1\right]>3 / 4 \longleftrightarrow \operatorname{Prob}\left[M_{k}^{H \oplus X}(u)=1\right]>3 / 4\right]
$$

where $H \oplus X=\{y 0: y \in H\} \cup\{x 1: x \in X\}$ (called the disjoint union of H and X). The former is an arithmetical predicate with respect to X and u, and the latter is an arithmetical-in- H predicate with respect to X. For such predicates, let

$$
\begin{aligned}
& \phi[X]=\left\{u \in \Sigma^{*}: \phi(X)(u) \text { holds }\right\}, \quad\langle\xi\rangle=\left\{X \subseteq \Sigma^{*}: \xi(X) \text { holds }\right\}, \\
& \phi^{H}[X]=\left\{u: \phi^{H}(X)(u) \text { holds }\right\},\left\langle\xi^{H}\right\rangle=\left\{X: \xi^{H}(X) \text { holds }\right\} .
\end{aligned}
$$

The left hands are sets of strings while the right hands are Borel sets of finite order in the space $2^{\Sigma^{*}}$.

Let G be an oracle, i.e., a subset of $\Sigma^{*} . G$ is H-generic if, for all arith-metical-in- H predicates of the form $\xi^{H}(X), \xi^{H}(G)$ holds whenever $\left\langle\xi^{H}\right\rangle$ is comeager. Such a G exists; in fact, the class \boldsymbol{G}^{H} of all H-generic oracles is
comeager, since G^{H} is a countable intersection of comeager sets: $G^{H}=\cap\left\langle\left\langle\xi^{H}\right\rangle\right.$: $\left\langle\xi^{H}\right\rangle$ is comeager $\wedge \xi^{H}$ is arithmetical-in- $\left.H\right\}$. (Clearly there is such an arith-metical-in- H predicate ξ that $\left\langle\xi^{H}\right\rangle$ is comeager.)

Let $u \in \Sigma^{*}$. We regard u as a forcing condition. $u H$-forces $\xi^{H}(X)$ (denoted by $\left.u \Vdash \xi^{H}(X)\right)$ if $[u] \cap\left\langle\neg \xi^{H}\right\rangle\left(=[u]-\left\langle\xi^{H}\right\rangle\right)$ is meager. So, if $u \Vdash \xi^{H}(X)$, then $\xi^{H}(G)$ holds for every H-generic G in [$\left.u\right]$. Because, letting $\theta^{H}(X) \equiv(X \notin[u]$ $\left.\vee \xi^{H}(X)\right), \theta^{H}(X)$ is an arithmetical-in- H and $\left\langle\theta^{H}\right\rangle$ is comeager. As basic properties for forcing and generic notions we know the following ([Po 86;p.24]):

Fact 1. For every u, there is an H-generic set G such that $G \in[u]$. For, since $\boldsymbol{G}^{\boldsymbol{H}}$ is comeager, $[u] \cap \boldsymbol{G}^{\boldsymbol{H}} \neq \boldsymbol{\phi}$.

FACT 2. If G is H-generic and $\xi^{H}(G)$ is true, where $\xi^{H}(X)$ is an arithmet-ical-in- H predicate, then there is a u such that $G \in[u]$ and $u \Vdash \xi^{H}(X)$. For, put $\zeta^{H}(Y)=\exists u\left(Y \in[u] \wedge u \Vdash \xi^{H}(X)\right)$. Since the relation " $u \Vdash \xi^{H}(X)$ " is arith-metical-in- H, so is $\zeta^{H}(Y)$. Then we have:

$$
\forall Y\left(Y: H \text {-generic } \Rightarrow Y \in\left\langle\zeta^{H} \vee \neg \xi^{H}\right\rangle\right) .
$$

So, $G \in\left\langle\zeta^{H} \vee \neg \xi^{H}\right\rangle$. Since $\xi^{H}(G)$ holds, we have $\vDash \zeta^{H}(G)$. Hence, there is a u such that $G \in[u]$ and $u \Vdash \xi^{H}(X)$.

We mainly use continuous predicates $\phi(X)(u)$, i.e., for ϕ there is a numbertheoretic function $\alpha: N \rightarrow N$ such that for any u and X

$$
\forall n \geqq \alpha(|u|)[\phi(X)(u) \longleftrightarrow \phi(X \mid n)(u)]
$$

holds. Here we temporarily identify finite function $X \mid n$ with the full function $(X \mid n)^{\wedge} 000 \cdots$. Similarly for ϕ^{H}. So, we can weaken the notions of forcing and generic oracles by restricting predicates to such ones, though we do not do so here. (Dowd [Do 92] uses the notion of machine-generic oracles.)

Hereafter, we sometimes do not distinguish syntactical symbols (i.e., symbols occurred in formulas in forcing relations) with metasymbols.

Lemma 2.1. Let $\boldsymbol{\phi}(X)(u)$ and $\theta^{H}(X)(u)$ be continuous arithmetical(-in-H) predicates, and let u be a forcing condition. Suppose $u \Vdash \forall y\left(\theta^{H}(X)(y) \leftrightarrow \phi(X)(y)\right)$. Then, $\forall y\left(\theta^{H}(A)(y) \leftrightarrow \phi(A)(y)\right)$ holds for every $A \in[u]$.

Proof. Suppose not. So, there is an $A \in[u]$ and a string y_{0} such that $\theta^{H}(A)\left(y_{0}\right) \leftrightarrow \phi(A)\left(y_{0}\right)$. Since θ^{H} and ϕ are continuous, there are number-theoretic functions α and β such that for all y and X,

$$
\forall n \geqq \alpha(|y|)\left[\theta^{H}(X)(y) \longleftrightarrow \theta^{H}(X \mid n)(y)\right],
$$

and

$$
\forall n \geqq \beta(|y|)[\phi(X)(y) \longleftrightarrow \phi(X \mid n)(y)] .
$$

Take an m such that $m>\max \left\{\alpha\left(\left|y_{0}\right|\right), \beta\left(\left|y_{0}\right|\right)\right\}$ and $[A \mid m] \subseteq[u]$. Then, $\theta^{H}(A \mid m)\left(y_{0}\right) \nleftarrow \boldsymbol{\phi}(A \mid m)\left(y_{0}\right)$. Since $\boldsymbol{G}^{\boldsymbol{H}}$ is comeager, $[A \mid m]$ contains an H-generic oracle $G_{0} \in[u]$. For this G_{0} we have

$$
\begin{equation*}
\neg \forall y\left(\theta^{H}\left(G_{0}\right)(y) \longleftrightarrow \phi\left(G_{0}\right)(y)\right) . \tag{*}
\end{equation*}
$$

Since $u \Vdash \forall y\left(\theta^{H}(X)(y) \leftrightarrow \boldsymbol{\phi}(X)(y)\right), \quad[u] \cap\left\langle\neg \forall y\left(\theta^{H}(X)(y) \leftrightarrow \phi(X)(y)\right)\right\rangle$ is meager, and hence the union $\neg[u] \cup\left\langle\forall y\left(\theta^{H}(X)(y) \leftrightarrow \phi(X)(y)\right)\right\rangle$ is comeager. Therefore, if G is an H-generic oracle, then that G belongs to [u] implies $\forall y\left(\theta^{H}(G)(y)\right.$ $\leftrightarrow \boldsymbol{\phi}(G)(y))$. This contradicts (*).

§ 3. A relativized form of Poizat's Theorem and an oracle \boldsymbol{H}.

For any set $\boldsymbol{C}(X)$ (or $\boldsymbol{C}^{H}(X)$) of continuous arithmetical(-in- H) predicates of the form $\theta(X)(y)$ (or $\theta^{H}(X)(y)$) we define a class of sets of strings $\boldsymbol{C}[X]$ (or $\left.C^{H}[X]\right)$ as follows:

$$
\boldsymbol{C}[X]=\left\{A \cong \Sigma^{*}: A=\theta[X] \text { for some } \theta(X)(y) \text { in } \boldsymbol{C}(X)\right\},
$$

where, as defined in the previous section, $\theta[X]=\left\{y \in \Sigma^{*}: \theta(X)(y)\right.$ holds $\}$. Note that we are severely distinguishing between $\boldsymbol{C}(X)$ and $\boldsymbol{C}[X]$. The former is a set of predicates while the latter is a class of sets of strings. Similarly for $\boldsymbol{C}^{\boldsymbol{H}}(X)$ and $\boldsymbol{C}^{H}[X]$.

Let $p_{k}(n)$ be the time bound function for the OTM $M_{k}{ }^{\sim}$, and let H be an oracle. We consider the following condition:

$$
\begin{equation*}
\forall X \forall y\left(\operatorname{Prob}\left[M_{k}^{H \oplus X}(y)=1\right]>(1 / 2)+e \vee \operatorname{Prob}\left[M_{k}^{I \oplus X}(y)=0\right]=1\right), \tag{2}
\end{equation*}
$$

and define an index-set I^{H} by

$$
I^{H}=\{\langle k, e\rangle:(e \text { is a binary rational such that } 0<e<(1 / 2)) \wedge(2)\} .
$$

(Apparently I^{H} is Π_{1}^{1}-in- H, but really, by using continuity of the machines or using $p_{k}(n)$, it is seen that this set is arithmetical-in- H. However, this observation does not affect the subsequent argument.) For example, suppose $B \in \boldsymbol{R}[H]$ and M^{\sim} is a prob p-time OTM which accepts B with a rational e. Suppose, further, P^{\sim} is a deterministic p-time oracle Turing transducer. Then there is an index k such that $\forall y\left[M_{k}{ }^{H \oplus X}(y)=M^{H}\left(P^{X}(y)\right)\right]$, and thus $\langle k, e\rangle \in I^{H}$.

Now, for each $\langle k, e\rangle \in I^{H}$, let $\phi_{k, e\rangle}^{H}(X)(y)$ be the following arithmetical-in- H predicate:

$$
\phi_{t k, e\rangle}^{H}(X)(y) \equiv: \operatorname{Prob}\left[M_{k}^{H \oplus X}(y)=1\right]>(1 / 2)+e .
$$

Then, we define $R U^{H}(X)$ and $R U^{H}[X]$ by:

$$
\boldsymbol{R} \boldsymbol{U}^{H}(X)=\left\{\boldsymbol{\phi}_{k, e\rangle}^{H}(X)(y):\langle k, e\rangle \in I^{H}\right\},
$$

and

$$
\boldsymbol{R} \boldsymbol{U}^{H}[X]=\left\{\theta^{H}[X]: \theta^{H}(X)(y) \in \boldsymbol{R} \boldsymbol{U}^{H}(X)\right\} .
$$

Clearly, $\boldsymbol{R}[H] \subseteq \boldsymbol{R} \boldsymbol{U}^{H}[X]$ for every X. Since $X \in \boldsymbol{R} \boldsymbol{U}^{H}[X]$, there is an oracle A such that $\boldsymbol{R}[H] \subset R \boldsymbol{U}^{H}[A]$. Here, \subset means the proper inclusion.

The class $\boldsymbol{P}[X]$ is well-known (see, e.g., [BGS 75] or [BDG 90]). However, we must reasonably define its corresponding $\boldsymbol{P}(X)$ as a set of arithmetical predicates, for later usage. Let $P_{k} \sim$ be the k-th deterministic p-time OTM. Define η_{k} as follows:

$$
\eta_{k}(X)(y) \equiv: P_{k}^{x} \text { accepts } y\left(\equiv P_{k}^{x}(y)=1\right) .
$$

Clearly this predicate is arithmetical, in fact, it is recursive, and hence it is continuous. Define $\boldsymbol{P}(X)=\left\{\eta_{k}(X)(y): k=0,1,2, \cdots\right\}$. Then $\boldsymbol{P}[X]=\{\theta[X]:$ $\theta(X)(y) \in \boldsymbol{P}(X)\}$.

Lemma 3.1. (i) $\boldsymbol{R} \boldsymbol{U}^{H}[X]=\left\{A: \exists\langle k, e\rangle \in I^{H} \forall y\right.$

$$
\begin{aligned}
& \left(y \in A \text { iff } \operatorname{Prob}\left[M_{k}^{H \oplus X}(y)=1\right\rceil>(1 / 2)+e\right. \text { and } \\
& \left.\left.y \notin A \text { iff } \operatorname{Prob}\left[M_{k}^{H \oplus X}(y)=0\right]=1\right)\right\} .
\end{aligned}
$$

(ii) $\boldsymbol{P}[X] \cong \boldsymbol{R} \boldsymbol{U}^{H}[X] \cong \boldsymbol{R}[H \oplus X] \subseteq \boldsymbol{B P P}[H \oplus X]$.

Let us define a recursive oracle H such that $L(H) \in \boldsymbol{R}[H]-\boldsymbol{P}[H]$, where $L(H)=\left\{0^{n}: \exists y \in H(|y|=n)\right\}$. Let $n_{0}=0$, and $H(0)=\phi$ (the empty set). This time let $H(s)$ be the set of strings put in H before stage s. (Note that it is not the characteristic function of H.)

Stage $s \geqq 0$. Let m_{s} be the least $m>n_{s}$ such that $p_{s}(m)<2^{m-2}$. Run $P_{s}{ }^{H(s)}$ on $0^{m_{s}}$. If it rejects the string, then we choose $2^{m_{s}^{-1}}+2^{m_{s}-2}+1$ strings of length m_{s} which are not queried during the computation, and add these strings to $H(s)$ to make $H(s+1)$. Such strings exist. If it accepts the string, then let $H(s+1)$ $=H(s)$. Put $n_{s+1}=2^{m}$. Then, the set $H=\cup\{H(s): s=0,1,2, \cdots\}$ is the desired oracle.

For this oracle H, we have: $L(H) \in \boldsymbol{R} \boldsymbol{U}^{H}[X]$ for all X. For, let $M_{k}{ }^{H \oplus X}$ be a prob OTM such that: on 0^{n} it randomly writes a string of length n on its oracle tape and suffixies 0 to it; then it enters the query state; if the queried string is in $H \oplus X$, then the machine accepts the input, otherwise it rejects. This machine is p-time bounded and its probability is independent of the oracle X. So, the index $\langle k, 1 / 4\rangle$ is in I^{H}, and hence we have the following lemma :

Lemma 3.2. There is a recursive oracle H such that

$$
L(H) \in \boldsymbol{R} \boldsymbol{U}^{H}[X]-\boldsymbol{P}[H] \text { for all } X .
$$

Later we shall use this H.

Now, let $\boldsymbol{C}(X)\left(\boldsymbol{C}^{\boldsymbol{H}}(X)\right)$ be a set of arithmetical(-in $\left.-H\right)$ predicates of the form $\boldsymbol{\phi}(X)(y)\left(\boldsymbol{\phi}^{H}(X)(y)\right)$ and let $\boldsymbol{C}[X]\left(\boldsymbol{C}^{H}[X]\right)$ be its corresponding class of sets. For $X, Y \subseteq \Sigma^{*}, X \doteqdot Y$ means that X and Y are identical but finitely many members. The following conditions are Poizat's four hypotheses for $\boldsymbol{C}(X)$ (here we add ones for relativized classes also):

Hypothesis 1. Each predicate in $\boldsymbol{C}(X)\left(\boldsymbol{C}^{\boldsymbol{H}}(X)\right)$ is continuous.
Hypothesis 2. If $X \doteqdot Y$, then $\boldsymbol{C}[X]=\boldsymbol{C}[Y]\left(\boldsymbol{C}^{H}[X]=\boldsymbol{C}^{H}[Y]\right)$.
Hypothesis 3. If $A \in \boldsymbol{C}[X]\left(\in \boldsymbol{C}^{H}[X]\right)$ and if $B \doteqdot A$, then $B \in \boldsymbol{C}[X]$ $\left(\in \boldsymbol{C}^{H}[X]\right)$.

Hypothesis 4. There is a mapping \#: $2^{\Sigma^{*}} \rightarrow 2^{\Sigma^{*}}$ such that (a) $\boldsymbol{C}[X]=\boldsymbol{C}[\# X]$ $\left(\boldsymbol{C}^{H}[X]=\boldsymbol{C}^{H}[\# X]\right)$, and (b) for any $A \in \boldsymbol{C}[X]\left(\in \boldsymbol{C}^{H}[X]\right)$ there is a predicate θ in $\boldsymbol{C}(X)\left(\theta^{H}\right.$ in $\left.\boldsymbol{C}^{H}(X)\right)$ such that $A=\theta[\# X]\left(=\theta^{H}[\# X]\right)$ and it has the following property: if $Y \doteqdot \# Z$, then $\theta[Y] \doteqdot \theta[\# Z]\left(\theta^{H}[Y] \doteqdot \theta^{H}[\# Z]\right)$. (We slightly modify Poizat's Hypothesis 4.)

Then,

A relativized version of Poizat's Theorem.

Let H be an oracle. Let $\boldsymbol{C}(X)\left(\boldsymbol{D}^{H}(X)\right)$ be a set of arithmetical(-in- H) predicates of the form $\phi(X)(y)\left(\theta^{H}(X)(y)\right)$ which satisfies the Hypotheses $1 \sim 4$ with the same mapping: $X \rightarrow \# X . C[X]\left(\boldsymbol{D}^{H}[X]\right)$ is its corresponding class of sets. Suppose that there exists an oracle A such that $\boldsymbol{D}^{H}[A]-\boldsymbol{C}[A] \neq \boldsymbol{\phi}$. Then, $\boldsymbol{C}[G] \neq \boldsymbol{D}^{\boldsymbol{H}}[G]$ for every H-generic oracle G, and hence

$$
\boldsymbol{E}\left(\boldsymbol{C}, \boldsymbol{D}^{H}\right)=\left\{X: \boldsymbol{C}[X] \neq \boldsymbol{D}^{H}[X]\right\}
$$

is comeager.
Proof. Take a $B \in \boldsymbol{D}^{H}[A]-\boldsymbol{C}[A]$. Then, by Hypothesis 4, there is a predicate θ^{H} in $\boldsymbol{D}^{H}(X)$ such that $B=\theta^{H}[\# A]$ and such that

$$
\begin{equation*}
Y \doteqdot \# Z \Longrightarrow \theta^{H}[Y] \doteqdot \theta^{H}[\# Z] . \tag{3}
\end{equation*}
$$

Claim. For any predicate $\boldsymbol{\phi}(X)(y)$ in $\boldsymbol{C}(X)$, if G is H-generic, then $\neg \forall y$ $\left(\theta^{H}(G)(y) \leftrightarrow \phi(G)(y)\right)$ holds.

Proof. Suppose not. Then, there is a predicate $\phi(X)(y)$ in $\boldsymbol{C}(X)$ and an H-generic G_{0} such that $\forall y\left(\theta^{H}\left(G_{0}\right)(y) \leftrightarrow \phi\left(G_{0}\right)(y)\right)$ holds. Put $\xi^{H}(X) \equiv \forall y\left(\theta^{H}(X)(y)\right.$ $\leftrightarrow \phi(X)(y))$. Then, $\xi^{H}\left(G_{0}\right)$ holds. By H-genericity of $G_{0},\left\langle\xi^{H}\right\rangle$ is not meager. So, by the Baire property for $\left\langle\xi^{H}\right\rangle$, for some forcing condition u, $[u] \cap\left\langle\neg \xi^{H}\right\rangle$ is meager. Hence, $u \Vdash \xi^{H}(X)$, i.e., $u \Vdash \forall y\left(\theta^{H}(X)(y) \leftrightarrow \phi(X)(y)\right)$. So, by Lemma 2.1, we have

$$
\begin{equation*}
\forall Y\left(Y \in[u] \longrightarrow \forall y\left(\theta^{H}(Y)(y) \longleftrightarrow \phi(Y)(y)\right)\right) \tag{4}
\end{equation*}
$$

For the above A, we consider its image $\# A$ and take an $S \in[u]$ such that $S \doteqdot \# A$. Then, $\theta^{H}[S] \doteqdot \theta^{H}[\# A]$. Since $S \in[u]$, by (4) we have $\forall y\left(\theta^{H}(S)(y)\right.$ $\leftrightarrow \phi(S)(y)$). Let $Z=\theta^{H}[S]$. Then, $Z=\phi[S]$. So, $Z \in \boldsymbol{C}[S]=\boldsymbol{C}[\# A]$ (by Hyp. 2). As seeing above we have $\theta^{H}[S] \doteqdot \theta^{H}[\# A]$, and hence $Z \doteqdot B$. Since $Z \in \boldsymbol{C}[\# A]$, by Hyp. 3 we have $B \in \boldsymbol{C}[\# A]$. Since by Hyp. $4, \boldsymbol{C}[\# A]=\boldsymbol{C}[A]$, we have $B \in \boldsymbol{C}[A]$. This contradicts the assumption $B \notin \boldsymbol{C}[A]$. So, the proof of the claim completes.

The claim states: If G is an H-generic oracle, then

$$
\theta^{H}[G] \neq \phi[G] \text { for any predicate } \phi(X)(y) \text { in } C(X)
$$

So, $\theta^{H}[G]$ does not belong to $C[G]$ for any H-generic G. Therefore, for all H-generic $G \boldsymbol{D}^{H}[G] \neq \boldsymbol{C}[G]$. Since the class \boldsymbol{G}^{H} of all H-generic oracles is comeager, so is $\boldsymbol{E}\left(\boldsymbol{C}, \boldsymbol{D}^{H}\right)=\left\{X: \boldsymbol{C}[X] \neq \boldsymbol{D}^{H}[X]\right\}$.

§4. Proof of Theorem 1.

Consider the class $\boldsymbol{E}\left(\boldsymbol{P}, \boldsymbol{R} \boldsymbol{U}^{\boldsymbol{H}}\right)\left(=\left\{X: \boldsymbol{P}[X] \neq \boldsymbol{R} \boldsymbol{U}^{H}[X]\right\}\right)$, then $\boldsymbol{E}\left(\boldsymbol{P}, \boldsymbol{R} \boldsymbol{U}^{H}\right)$ $\subseteq\{X: \boldsymbol{P}[X] \neq \boldsymbol{R}[H \oplus X]\} \subseteq \boldsymbol{S E} \boldsymbol{P}_{B}{ }^{H}(=\{X: \boldsymbol{P}[X] \neq \boldsymbol{B P P}[H \oplus X]\})$. Therefore, if it is shown that $\boldsymbol{E}\left(\boldsymbol{P}, \boldsymbol{R} \boldsymbol{U}^{H}\right)$ is comeager for some recursive H, then so is $\boldsymbol{S E} \boldsymbol{P}_{B}{ }^{H}$ for the same H, and hence we obtain Theorem 1. So, for our purpose, by the relativized Poizat's Theorem, it suffices to show that $\boldsymbol{P}(X)$ and $\boldsymbol{R} \boldsymbol{U}^{\boldsymbol{H}}(X)$ satisfy Hypotheses $1 \sim 4$ for the H in Lemma 3.2 with the same mapping \# defined below, since $\boldsymbol{E}\left(\boldsymbol{P}, \boldsymbol{R} \boldsymbol{U}^{\boldsymbol{H}}\right)$ is not empty for this H (in fact, it contains the H as an element).

Here we show this for $\boldsymbol{R} \boldsymbol{U}^{H}(X)$ with the mapping $\#: X \rightarrow \# X$, where $\# X=\pi\left(\Sigma^{*}, X\right)$ and π is an one-to-one pairing function from $\Sigma^{*} \times \Sigma^{*}$ onto Σ^{*} which is polynomial time computable and is polynomial time invertible. The proof for $\boldsymbol{P}(X)$ can be understood in the course of the following argument.

HYPOTHESIS 1. For $\phi_{\langle k, e\rangle}^{H}$, where $\langle k, e\rangle \in I^{H}$, we can take $\alpha(n)=2^{p_{k}(n)+1}-1$ in the definition of continuity, since the maximal number of strings of length m in the enumeration (1) is $2^{m+1}-2$.

Hypothesis 2. Suppose $X \doteqdot Y$, and let $A \in \boldsymbol{R} \boldsymbol{U}^{H}[X]$. So, there is an index $\langle k, e\rangle \in I^{H}$ such that for all y and $\left.Z \operatorname{Prob}\left[M_{k}{ }^{H \oplus Z}(y)=1\right]\right\rangle(1 / 2)+e$ or $\operatorname{Prob}\left[M_{k}{ }^{H \oplus Z}(y)=0\right]=1$ holds, and $y \in A$ iff $\operatorname{Prob}\left[M_{k}{ }^{H \oplus X}(y)=1\right]>(1 / 2)+e$. Since $X \doteqdot Y$, there is a linear time bound OTM P^{\sim} such that $X=P^{Y}$. Then, we can construct a prob p-time OTM M_{j}^{\sim} preserving the probability, i.e., such that for any $Z \operatorname{Prob}\left[M_{k}{ }^{H \oplus P^{Z}}(y)=a\right]=\operatorname{Prob}\left[M_{j}{ }^{H \oplus Z}(y)=a\right]$ for all $a \in\{0,1\}$ and y. So, we have $\langle j, e\rangle \in I^{H}$ and hence $A \in \boldsymbol{R} \boldsymbol{U}^{H}[Y]$. Thus, $\boldsymbol{R} \boldsymbol{U}^{H}[X] \subseteq \boldsymbol{R} \boldsymbol{U}^{H}[Y]$.

The proof of the reverse inclusion is similar.
Hypothesis 3. Suppose $A \in \boldsymbol{R} \boldsymbol{U}^{H}[X]$ and $B \doteqdot A$. We show $B \in \boldsymbol{R} \boldsymbol{U}^{H}[X]$. By the supposition, there are an index $\langle k, e\rangle \in I^{H}$ and a number m such that for any input y

$$
\begin{array}{ll}
y \in A & \text { iff } \operatorname{Prob}\left[M_{k}^{H \oplus X}(y)=1\right]>(1 / 2)+e, \\
y \notin A & \text { iff } \operatorname{Prob}\left[M_{k}^{H \oplus X}(y)=0\right]=1, \tag{6}
\end{array}
$$

and

$$
\begin{equation*}
\forall n \geqq m(B(n)=A(n)) . \tag{7}
\end{equation*}
$$

Recall $A(n)=1$ if $z_{n} \in A, A(n)=0$ otherwise. We shall define a p-time OTM $M_{j} \sim^{\text {s }}$ such that $\langle j, e\rangle \in I^{H}$ and such that for all y

$$
\begin{array}{ll}
y \in B & \text { iff } \operatorname{Prob}\left[M_{j}^{H \oplus X}(y)=1\right]>(1 / 2)+e, \\
y \notin B & \text { iff } \operatorname{Prob}\left[M_{j}^{H \oplus X}(y)=0\right]=1 . \tag{9}
\end{array}
$$

We use the notation ' ' defined by ' z_{n} ' $=n$. First of all, we define a segment of the OTM $M_{j} \sim$ by a finite table so that for every y with ' y '<m the segment satisfies (8) and (9) as well as the following condition: for every oracle Z

$$
\begin{equation*}
\text { either } \operatorname{Prob}\left[M_{j}^{H \oplus Z}(y)=1\right]>(1 / 2)+e \text { or } \operatorname{Prob}\left[M_{j}{ }^{H \oplus Z}(y)=0\right]=1 \tag{10}
\end{equation*}
$$

On any input y with ' y ' $\geqq m, M_{j}^{H \oplus Z}$ simulates $M_{k}{ }^{H \oplus Z}$ so that $M_{j}^{H \oplus Z}(y)=$ $M_{k}{ }^{H \oplus Z}(y)$ holds. Then, by (5) and (6) we have (8) and (9) for these y and the X. Such an index j exists and $\langle j, e\rangle \in I^{H}$. Thus, $B \in \boldsymbol{R} \boldsymbol{U}^{H}[X]$.

Hypothesis 4. We must show that the same mapping $X \rightarrow \# X$, where $\# X=\pi\left(\Sigma^{*}, X\right)$, satisfies the following conditions (a) and (b):
(a) $\boldsymbol{R} \boldsymbol{U}^{H}[X]=\boldsymbol{R} \boldsymbol{U}^{H}[\# X]$.

Proof. Let X be fixed, and suppose $A \in \boldsymbol{R} \boldsymbol{U}^{H}[X]$. Then, we must show $A \in \boldsymbol{R} \boldsymbol{U}^{H}[\# X]$. By the supposition, there is an index $\langle k, e\rangle \in I^{H}$ such that for any y (5) and (6) hold. Then, we will find an index j such that $\langle j, e\rangle \in I^{H}$ and such that for any y

$$
\begin{equation*}
y \in A \quad \text { iff } \operatorname{Prob}\left[M_{j}^{H \oplus \# X}(y)=1\right]>(1 / 2)+e, \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
y \notin A \quad \text { iff } \operatorname{Prob}\left[M_{j}{ }^{H \oplus \# X}(y)=0\right]=1 \tag{12}
\end{equation*}
$$

hold. For this purpose, we define an OTM $M_{j} \sim$ (call it j-machine) as follows: Let $Y \subseteq \Sigma^{*}$ be arbitrary and let $\rho(Y)=\{v: \exists y, w[w \in Y \wedge w=\pi(y, v)]\}$. Then
$\rho(Y)=X$ if $Y=\# X$. Now, given input y, the j-machine begins to simulate the computation of $M_{k}{ }^{H \oplus \sim}(y)$. Suppose $M_{k}{ }^{H \oplus \sim}$ enters the query state. Let x be the queried string. Then, the j-machine checks the tail end letter of x. If the letter is 0 , then the j-machine enters yes-state or no-state according as $x^{\prime} \in H$ or not, where x^{\prime} is the string obtained from x by deleting the tail letter. If it is 1 , then the j-machine writes $\pi\left(y, x^{\prime}\right)$ on its oracle tape (this work can be done in time $O\left(p_{k}(|y|)\right)$), and queries whether $\pi\left(y, x^{\prime}\right) 1 \in H \oplus Y$. If the answer is yes, then $x^{\prime} \in \rho(Y)$ and so the j-machine simulates the yes-branch of the computation of $M_{k}{ }^{H \oplus \sim} \sim(y)$. Otherwise, it simulates the no-branch. After the whole simulation ends, the j-machine outputs the value of this simulation for $M_{k}{ }^{H \oplus \sim}(y)$. This is a quasi-simulation for $M_{k}{ }^{H \oplus \rho(Y)}(y)$ (it may not be the exact one, because there can be a case that $\pi\left(y, x^{\prime}\right) \notin Y$ but for some other $u \pi\left(u, x^{\prime}\right)$ $\in Y \wedge x^{\prime} \in \rho(Y)$). If $Y=\# Z$ for some Z, then the output of j-machine is the same as that of $M_{k}{ }^{H \oplus Z}(y)$, since for any $u \pi\left(u, x^{\prime}\right) \in Y$ iff $x^{\prime} \in Z$. The j-machine is a prob p-time OTM, so certainly such an index j exists, and it has the additional uniformity property (2). Hence $\langle j, e\rangle \in I^{H}$. For this j-machine, we have

$$
\operatorname{Prob}\left[M_{j}^{H \oplus \# X}(y)=a\right]=\operatorname{Prob}\left[M_{k}^{H \oplus X}(y)=a\right]
$$

for any input y and $a \in\{0,1\}$. (Since the j-machine must be probabilistic OTM, at any time it must be binarily branching, for example, even during the calculation of $\pi\left(y, x^{\prime}\right)$. During such period, the machine does the same computation on each branch. So, though $M_{j}{ }^{H \oplus \# X}$, computation is longer than that of $M_{k}{ }^{H \oplus X}$, the probabilities of both machines are the same.) Thus, we have $A \in \boldsymbol{R} \boldsymbol{U}^{\boldsymbol{H}}[\# X]$.

Conversely, let $A \in \boldsymbol{R} \boldsymbol{U}^{H}[\# X]$. Then, there is an index $\langle j, e\rangle \in I^{H}$ such that for all y (11) and (12) hold. We define a prob p-time OTM $M_{k}{ }^{\sim}$ as follows: on an input $y, M_{k}{ }^{H \oplus X}$ simulates the computation of $M_{j}{ }^{H \oplus \sim}$ on y Suppose the latter machine enters the query state. Let x be the queried string. $M_{k}{ }^{H \oplus X}$ checks its tail end letter. If the letter is 0 , then the machine enters yes-state or no-state according as $x^{\prime} \in H$ or not, where, as before, x^{\prime} is the string obtained from x by deleting the tail end letter. If that letter is 1 , then the machine calculates v such that $\pi(y, v)=x^{\prime}$. Recall that v is uniquely determined and can be computed in polynomial time of $|x|$. Then, the machine queries whether $v \in X$ (i.e., whether $v 1 \in H \oplus X$). After it enters yes-state or no-state, it resumes simulating. Finally, it outputs the same value as $M_{j}{ }^{\text {r }}$. This $M_{k} \sim$ satisfies the desired condition. Namely, such an index k exists and $\langle k, e\rangle \in I^{H}$. Clearly, for any $a \in\{0,1\}$

$$
\operatorname{Prob}\left[M_{k}{ }^{H \oplus X}(y)=a\right]=\operatorname{Prob}\left[M_{j}^{H \oplus \# X}(y)=a\right] .
$$

Thus we have $A \in \boldsymbol{R} \boldsymbol{U}^{H}[X]$.
(b) For each $A \in \boldsymbol{R} \boldsymbol{U}^{H}[X]$ there is a predicate $\theta^{H}(X)(y)$ in $\boldsymbol{R} \boldsymbol{U}^{H}(X)$ such that (b1) $A \in \theta^{H}[\# X]$ and (b2) if $Y \doteqdot \# Z$ then $\theta^{H}[Y] \doteqdot \theta^{H}[\# Z]$.

Proof. By the assumption, there is an index $\langle k, e\rangle \in I^{H}$ such that (5) and (6) hold. Then we take the OTM $M_{j} \sim$ described in the proof of (a). As was shown above, we have (11) and (12). Let $\theta^{H}(X)(y)$ be the predicate "Prob $\left[M_{j}{ }^{H \oplus X}(y)=1\right\rceil>(1 / 2)+e$ ". Then, $\theta^{H}(X)(y)$ is in $\boldsymbol{R} \boldsymbol{U}^{H}(X)$, and we have $A=\theta^{H}[\# X]$. Thus, (b1) is shown. To show (b2), suppose $Y \doteqdot \# Z$. Then, there is a number m (depending on Y and Z) such that

$$
\begin{aligned}
\forall y \forall v[(|y| \geqq m \text { or }|v| \geqq m) \longrightarrow(\pi(y, v) \in Y & \text { iff } \pi(y, v) \in \# Z \\
& \text { iff } v \in Z)] .
\end{aligned}
$$

So, both $M_{j}{ }^{H \oplus Y}(y)$ and $M_{j}{ }^{H \oplus \# Z}(y)$ are identical with $M_{k}{ }^{H \oplus Z}(y)$ for any y with $|y| \geqq m$. Therefore we have $\theta^{H}[Y] \doteqdot \theta^{H}[\# Z]$.

Thus, we have shown that $\boldsymbol{R} \boldsymbol{U}^{H}(X)$ satisfies Hypotheses $1 \sim 4$. Similarly for $\boldsymbol{P}(X)$.

Consequently we have the following theorem:
Theorem 1. There is a recursive oracle H such that the class $\{X: P[X] \neq$ $\left.\boldsymbol{R} \boldsymbol{U}^{H}[X]\right\}$ is comeager, a fortiori so is $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{B}{ }^{H}$.

§ 5. Proof of Theorem 2.

As in the preceding argument, we can define $\boldsymbol{R} \boldsymbol{U}(X)$ and $\boldsymbol{R} \boldsymbol{U}[X]$ deleting the oracle H. Also we have the H-unrelativized versions of Lemmas 2.1, 3.1, and Poizat's Theorem. However we do not have any H-unrelativized version of Lemma 3.2 So, we must assume the following assumption:
(A) There exists an oracle A such that $\boldsymbol{R} \boldsymbol{U}[A]-\boldsymbol{P}[A] \neq \boldsymbol{\phi}$.

Under this assumption, we can prove that the class $\{X: \boldsymbol{P}[X] \neq \boldsymbol{R} \boldsymbol{U}[X]\}$ is comeager. However, in order to obtain our Theorem 2, we must modify (A).

Let $I^{\prime}=\{\langle k, e\rangle$: (e is a binary rational such that $\left.0<e<1 / 2) \wedge\left(2^{\prime}\right)\right\}$, where
(2') $\quad \forall X \forall y\left(\operatorname{Prob}\left[M_{k}{ }^{X}(y)=1\right]>(1 / 2)+e \bigvee \operatorname{Prob}\left[M_{k}{ }^{X}(y)=0\right]>(1 / 2)+e\right)$.
For each $\langle k, e\rangle \in I^{\prime}$, let

$$
\phi_{\langle k, e\rangle}(X)(y) \equiv \operatorname{Prob}\left[M_{k}{ }^{x}(y)=1\right\rceil>(1 / 2)+e .
$$

Then

$$
\boldsymbol{B P P U}(X)=\left\{\phi_{\langle k, e\rangle}(X)(y):\langle k, e\rangle \in I^{\prime}\right\},
$$

and

$$
\boldsymbol{B P P U}[X]=\{\boldsymbol{\xi}[X]: \boldsymbol{\xi}(X)(y) \in \boldsymbol{B P P} \boldsymbol{U}(X)\} .
$$

We can show that $\boldsymbol{B P P U}(X)$ and $\boldsymbol{B P P U}[X]$ satisfy the Hypotheses $1 \sim 4$ suppressed H. Since $\boldsymbol{B P P} \boldsymbol{U}[X] \subseteq \boldsymbol{B P P}[X]$, by Poizat's Theorem, we have

Theorem 2. Assume
(A') There exists an oracle A such that $\boldsymbol{B P P U}[A]-\boldsymbol{P}[A] \neq \boldsymbol{\phi}$. Then, the class $\boldsymbol{S E} \boldsymbol{P}_{\boldsymbol{B}}=\{X: \boldsymbol{P}[X] \neq \boldsymbol{B P P}[X]\}$ is comeager.

By a similar argument as in the proof of Lemma 3, 2, we can get an oracle A such that $L(A) \in \boldsymbol{B P P}[A]-\boldsymbol{P}[A]$. But, the probability of the prob p-time OTM with oracle A that accepts $L(A)$ depends on the oracle A, and the machine does not have the uniformity described in (2'). This is why we assume (A^{\prime}).

So, Bennett-Gill's problem whether $\boldsymbol{S E} \boldsymbol{P}_{B}$ is comeager is still open.
§6. On $\boldsymbol{N P}[X] \cap \operatorname{coNP}[X]$.
As before, let $\boldsymbol{\Delta}[X] \equiv \boldsymbol{N P}[X] \cap \boldsymbol{c o N P}[X]$. Whether the measure of

$$
\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}=\boldsymbol{E}(\boldsymbol{P}, \boldsymbol{\Delta})=\{X: \boldsymbol{P}[X] \neq \boldsymbol{\Delta}[X]\}
$$

is one is a well-known open problem. Whether $\boldsymbol{S E} \boldsymbol{E} \boldsymbol{P}_{D}$ is comeager is also open. The assertion that $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}$ is comeager, by the argument in $\S 3$, seems to be considerably near the assertion that $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}$ contains all generic oracles. The latter assertion implies $\boldsymbol{P} \neq \boldsymbol{N} \boldsymbol{P}$, by a result of Blum-Impagliazzo [BI 86]. So, whether $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}$ is comeager may be a hard problem. By reason of this account, we will take the course of argument developed in $\S 3$.

Let F be a fixed oracle. Define an index set J^{F} as follows:

$$
J^{F}=\left\{\langle j, k\rangle: \forall X \forall y\left(N P_{j}^{F \oplus X}(y)=1 \quad \text { iff } N P_{k}{ }^{F \oplus X}(y) \neq 1\right)\right\},
$$

where $N P_{k} \sim$ is the k-th nondeterministic p-time OTM. For each $\langle j, k\rangle \in J^{F}$ we define the formula $\psi_{\langle j, k\rangle}(X)(y)$ as follows:

$$
\psi_{\langle j, k\rangle}^{F}(X)(y) \equiv N P_{j}{ }^{F \oplus X}(y)=1\left(\equiv N P_{k}{ }^{F \oplus X}(y) \neq 1\right) .
$$

Then, let $\boldsymbol{\Delta} \boldsymbol{U}^{F}(X)=\left\{\psi^{F}{ }_{j, k\rangle}(X)(y):\langle j, k\rangle \in J^{F}\right\}$, and $\boldsymbol{\Delta} \boldsymbol{U}^{F}[X]=\left\{\theta^{F}[X]: \theta^{F}(X)(y) \in\right.$ $\Delta U^{F}(X)$. Further, let

$$
L_{0}(F)=\{x: \exists y(0 y \in F \wedge|0 y|=|x|)\} .
$$

After Baker-Gill-Solovay [BGS 75; Theorem 7], we can construct a recursive oracle F such that $L_{0}(F) \notin \boldsymbol{P}[F]$ and

$$
\begin{equation*}
\exists y(0 y \in F \wedge|0 y|=n) \quad \text { iff } \neg \exists y(1 y \in F \wedge|1 y|=n) \tag{13}
\end{equation*}
$$

for all n, and hence

$$
\begin{equation*}
L_{0}(F) \in \boldsymbol{N} \boldsymbol{P}[F] \cap \boldsymbol{c o N} \boldsymbol{P}[F]-\boldsymbol{P}[F] . \tag{14}
\end{equation*}
$$

Lemma 6.1. For the above F, we have

$$
L_{0}(F) \in \boldsymbol{\Delta} \boldsymbol{U}^{F}[X]-\boldsymbol{P}[F] \text { for all } X .
$$

Proof. We define two nondeterministic p-time OTM's $N P_{j} \sim$ and $N P_{k}{ }^{\sim}$ as follows:
$N P_{j}{ }^{F \oplus \sim}$: On input x, it guesses $0 y$ such that $|0 y|=|x|$, and writes $0 y 0$ on its query tape and enters the query state. If $0 y 0 \in F \oplus \sim$, then it accepts x. If $0 y 0 \notin F \oplus \sim$ for any y such that $|0 y|=|x|$, then it rejects x.
$N P_{k}{ }^{F \oplus \sim}$: On input x, it guesses $1 y$ such that $|1 y|=|x|$, and writes $1 y 0$ on its query tape and enters the query state. If $1 y 0 \in F \oplus \sim$, then it accepts x. If $1 y 0 \notin F \oplus \sim$ for any y such that $|1 y|=|x|$, then it rejects x.

Certainly there exist such indicies j and k. It is easy to show that for these j and $k\langle j, k\rangle \in J^{F}$ and $L_{0}(F) \in N P_{j}{ }^{F \oplus X}$ for all X. Hence we have $L_{0}(F) \in$ $\Delta \boldsymbol{U}^{F}[X]$ for all X.

This is the counterpart of Lemma 3.2.
By a similar argument, we can show that the $\Delta U^{F}(X)$ and $\Delta U^{F}[X]$ satisfy Hypotheses $1 \sim 4$ with F instead of H. Here we show Hypothesis $2 F$ only : Let $X \doteqdot Y$, and suppose $A \in \boldsymbol{\Delta} \boldsymbol{U}^{F}[X]$. So, there is $\langle j, k\rangle \in J^{F}$ such that $\forall y(y \in A$ iff $N P_{j}{ }^{F \oplus X}(y)=1$ iff $\left.N P_{k}{ }^{F \oplus X}(y) \neq 1\right)$. For some linear time bounded OTM T^{\sim} $X=T^{Y}$. For this T we can find indicies r and s such that

$$
\forall Z \forall y\left(N P_{j}^{F \oplus T^{Z}}(y)=1 \quad \text { iff } N P_{r}^{F \oplus Z}(y)=1\right)
$$

and the same formula with k and s instead of j and r. So we have

$$
\forall Z \forall y\left(N P_{r}{ }^{F \oplus Z}(y)=1 \quad \text { iff } N P_{s}{ }^{F \oplus Z}(y) \neq 1\right) .
$$

Thus, $\langle r, s\rangle \in J^{F}$ and $\forall y\left(y \in A\right.$ iff $\left.N P_{r}{ }^{F \oplus Y}(y)=1\right)$. Hence we have $A \in \boldsymbol{\Delta} \boldsymbol{U}^{F}[Y]$. Therefore Hypothesis $2 F$ holds.

By Lemma 6.1, there is an oracle A such that $\boldsymbol{\Delta} \boldsymbol{U}^{F}[A] \neq \boldsymbol{P}[A]$. So, by the F-relativized Poizat's Theorem, we have

Theorem 3. There is a recursive oracle F such that the class $\boldsymbol{S E} \boldsymbol{P}_{D}{ }^{F}=$ $\{X: \boldsymbol{P}[X] \neq \boldsymbol{N} \boldsymbol{P}[F \oplus X] \cap$ con $\boldsymbol{P}[F \oplus X]\}$ is comeager.

Next, as in the proof of Theorem 2, we omit the oracle F in the above argument. Then we obtain $J, \psi_{(j, k\rangle}, \boldsymbol{U} \boldsymbol{U}(X)$, and $\boldsymbol{\Delta} \boldsymbol{U}[X]$. But we do not have the F-unrelativized version of Lemma 6,1. So, we must assume the following assumption:
(B) There exists an oracle F such that $\boldsymbol{\Delta U}[F]-\boldsymbol{P}[F] \neq \boldsymbol{\phi}$.

By a similar argument as above we have:
Theorem 4. Under the assumption (B), the class $\boldsymbol{S} \boldsymbol{E} \boldsymbol{P}_{D}=\{X: \boldsymbol{P}[X] \neq \boldsymbol{N P}[X]$ $\cap \boldsymbol{c o N P}[X]\}$ is comeager.

§ 7. Conclusion.

We have shown that there is a recursive oracle H such that the class $\{X: \boldsymbol{P}[X] \neq \boldsymbol{B P P}[H \oplus X]\}$ is comeager, and also have obtained some related results.

Now, consider the following proposition
There is an oracle H such that

$$
\begin{equation*}
\forall X(\boldsymbol{P}[X] \neq \boldsymbol{B P P}[H \oplus X]) . \tag{15}
\end{equation*}
$$

If this proposition were true, then our Theorem 1 would be entirely trivial. But this proposition is incorrect! Namely:

Lemma 7.1. For each oracle H there is an oracle A such that

$$
\boldsymbol{P}[A]=\boldsymbol{B} \boldsymbol{P} \boldsymbol{P}[H \oplus A] .
$$

Proof. Let H be given. Then, we construct an oracle A such that

$$
\begin{equation*}
H \oplus A \equiv{ }_{P \boldsymbol{P}} A \quad \text { and } \quad \boldsymbol{P}[A]=\boldsymbol{B P} \boldsymbol{P}[A] \tag{16}
\end{equation*}
$$

So, we have: $\boldsymbol{P}[A]=\boldsymbol{B P} \boldsymbol{P}[A]=\boldsymbol{B P} \boldsymbol{P}[H \oplus A]$. (For $\equiv_{P T}$, see [BDG 88].)
Construction of an A which satisfies (16): As before, let $M_{k} \sim$ be the k-th prob p-time OTM with the time bound $p_{k}(n)$. This time let $A(s)$ be the set consisting of the strings put in A before stage s, and let $A(0)=\phi$.

Stage $2 s \geqq 0$. Consider the following strings w :

$$
\begin{equation*}
w=0^{k} 1 y 10^{n},|w|=s, \quad \text { and } n=p_{k}(|y|) \text { for some } k \text { and } y . \tag{17}
\end{equation*}
$$

Run $M_{k}^{A(2 s)}$ on y. If it accepts y, i.e., $\operatorname{Prob}\left[M_{k}^{A(2 s)}(y)=1 〕>1 / 2\right.$, then put $w 1$ in A. Otherwise, i.e., $\operatorname{Prob}\left[M_{k}{ }^{4(2 s)}(y)=0 〕 \geqq 1 / 2\right.$, then do nothing. Let A_{s} be the set of all strings put in A by doing the above procedure for all such w 's satisfying (17), and let $A(2 s+1)=A(2 s) \cup A_{s}$.

If there is no such w, then let $A(2 s+1)=A(2 s)$.
Stage $2 s+1$. If there is a string w such that $|w|=s$ and $w \in H$, then make $A(2 s+2)$ by adding to $A(2 s+1) w 0$ for all such w 's. Otherwise, let $A(2 s+2)=$ $A(2 s+1)$.

Let $A=\bigcup_{s=0}^{\infty} A(s)$. When there is a string w such that (17) holds, $M_{k}{ }^{A(2 s)}(y)=M_{k}{ }^{A}(y)$, since lengths of queried strings in the computation are
$\leqq p_{k}(|y|)<s$ and lengths of strings put in A after stage $2 s$ are $>s$.
Claim. $\boldsymbol{P} \boldsymbol{P}[A] \subseteq \boldsymbol{P}[A]$.
Proof. Let $L \in \boldsymbol{P P}[A]$. Then there is an index k such that $\forall y(y \in L$ iff $\operatorname{Prob}\left[M_{k}{ }^{A}(y)=1\right]>1 / 2$). (See, e.g., [BDG 88] or [Pa 94].) Then we define a det p-time OTM T^{\sim} as follows: Given y, T^{\sim} writes the string $w=0^{k} 1 y 10^{n}$ on its oracle tape, where $n=p_{k}(|y|)$, and enters query state. If the answer is yes, then it accepts y; otherwise it rejects y. Clearly T^{\sim} is a deterministic p-time OTM. Now for an arbitrary input y, let $s=\left|0^{k} 1 y 10^{n}\right|$, where $n=p_{k}(|y|)$, and consider at stage $2 s$. Then, T^{A} accepts y iff $0^{k} 1 y 10^{n} 1 \in A$ iff $\operatorname{Prob}\left[M_{k}^{A(2 s)}(y)\right.$ $=1]>1 / 2$ iff $\operatorname{Prob}\left[M_{k}{ }^{A}(y)=1\right]>1 / 2$ iff $y \in L$. Thus $L \in \boldsymbol{P}[A]$. Hence $\boldsymbol{P P}[A]$ $\cong \boldsymbol{P}[A]$.

Clearly, $H \leqq_{P T} A$ and hence $H \oplus A \equiv_{P T} A$. By the Claim, $\boldsymbol{P}[A]=\boldsymbol{P P}[A], a$ fortiori, we have: $\boldsymbol{P}[A]=\boldsymbol{B P P}[A]$.

Thus, there is no H satisfying (15).
So, our Theorem 1 has the raison d'etre.
Acknowledgment. The authors thank the anonymous referee for his kind advice.

References

[BGS 75] T. Baker, J. Gill and R. Solovay, Relativizations of the $P=$? NP question, SIAM J. Comput., 4 (1975), 431-442.
[BDG 88] J. Balcázar, J. Díaz and J. Gabarró, Structural Complexity I, Springer-Verlag, Berlin etc., 1988.
[BDG 90] J. Balcázar, J. Díaz and J. Gabarró, Structural Complexity II, Springer-Verlag, Berlin etc., 1990.
[BG 81] C. H. Bennett and J. Gill, Relative to random oracle $A, P^{A} \neq N P^{A} \neq c o-N P^{A}$ with probability 1, SIAM J. Comput., 10 (1981), 96-113.
[BI 87] M. Blum and R. Impagliazzo, Generic oracles and oracle classes, 19-th Symposium FOCS, 1987, pp. 118-126.
[Do 92] M. Dowd, Generic oracles, uniform machines, and codes, Inform. and Comput., 96 (1992), 65-76.
[Pa 94] C.H. Papadimitrious, Computational Complexity, Addison-Wesley, 1994.
[Po 86] B. Poizat, $Q=N Q$?, J. Symbolic Logic, 51 (1986), 22-32.
[Ro 67] H. Rogers, Jr., Theory of recursive functions and effective computability, McGraw-Hill, 1967.
[Sch 85] U. Schoning, Complexity and Structure, Lecture Notes in Comput. Sci., 211 1985.

Hisao TANAKA	Masafumi KUDOH
Division of Mathematical Science	Toshiba Corporation
Department of System and Control Engineering	Shibaura, Minato-ku
College of Engineering	Tokyo 105-01
Hosei University	Japan
Koganei, Tokyo 184	
Japan	

[^0]: * This research was partially supported by Grant-in-Aid for Scientific Research (No. 06640084), Ministry of Education, Science and Culture, Japan.

