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Let $SEP_{B^{-}}-\{X\subseteqq\Sigma* : P[X]\neq BPP[X]\}$ . Bennett-Gill [BG 81] show that,

in the Cantor space $2^{\Sigma^{*}},$ $SEP_{B}$ is of measure zero, and conjectured the possibility
that it may be comeager. (In complexity theory there is such an example: Dowd
[DO 92] shows that the class of $m$-generic oracles is of measure zero and is
comeager.) We give partial answer to this possibility. Namely, we show that
(i) there is a recursive oracle $H$ such that the class {X: $P[X]\neq BPP[H\oplus X]$ }
is comeager, and (ii) if we assume the existence of an oracle with an appropriate
property, then the class $SEP_{B}$ is comeager. These rwo things also hold for
the class $SEP_{D}=\{X:P[X]\neq NP[X]\cap coNP[X]\}$ . Proofs use forcing method
due to Poizat [Po 86] with some modification. However, we do not know
whether $SEP_{D}$ is comeager. If $SEP_{D}$ contains all generic oracles (thence it is
comeager), then we would have $P\neq NP$, by a theorem of Blum-Impagliazzo
[BI 87]. In the last section we state the raison d’etre for the above (i).

\S 1. Introduction.

For $X\subseteqq\Sigma*$ , let $C[X]$ and $D[X]$ be relativized complexity classes, and let
$E(C, D)=\{X:C[X]\neq D[X]\}$ . Then, how large (or small) is $E(C, D)$ ? For
example, $E(P, NP)$ has measure 1 [BG 81] and is comeager ($e.g.$ , [Po 86]),
where $P[X]$ and $NP[X]$ are deterministic and nondeterministic polynomial
time complexity classes relativized by oracle $X$ , respectively. Now, consider
the class

$SEP_{B}=E(P, BPP)=\{X:P[X]\neq BPP[X]\}$ ,

where $BPP[X]$ is the class of sets accepted by probabilistic polynomial tlme
bounded oracle Turing machines with oracle $X$ whose error probability is
bounded above by some positive rationals less than 1/2. Bennett-Gill [BG 81]
showed, among other things, that the class $SEP_{B}$ has measure zero and con-
jectured that it may be comeager.

In this PaPer, we show that it is the case if $BPP[X]$ is relativized by an
appropriate oracle $H$. Namely, let
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$SEP_{B}^{H}=\{X:P[X]\neq BPP[X\oplus H]\}$ ,

where $H\oplus X$ is the disjoint union of $H$ and $X$ (for its precise definition, see
below). Then, we have

THEOREM 1. There is a recursive oracle $H$ such that $SEP_{B}^{H}$ is comeager.

Theorem 1 will be proved by applying some relativized form of Poizat’s
Theorem in [Po 86]. Further, we introduce at class BPPU[X] “probabilistically
uniformly” relativized by $X$ in some sense. Then we have

THEOREM 2. The class $SEP_{B}$ is comeager, provided that there exists an
oracle $A$ such that $P[A]\neq BPPU[A]$ .

The proof of this theorem is similar to that of Theorem 1. This two types
of theorem are applicable to the following classes:

Let $\Delta[X]=NP[X]\cap coNP[X],$ $SEP_{D}=\{X:P[X]\neq\Delta[X]\}$ , and let $SEP_{D}^{H}$

$=\{X:P[X]\neq\Delta[H\oplus X]\}$ . Then, we can show that:
(i) there exists a recursive oracle $H$ such that $SEP_{D}^{H}$ is comeager, and
(ii) if there exists an oracle $A$ such that $P[A]\neq\Delta U[A]$ then, $SEP_{D}$ is

comeager, where a $U[X]$ is an uniformly relativized class in appropriate sense.
However, we do not know whether $SEP_{D}$ is comeager. Blum-Impagliazzo
[BI 87] showed that if $P=NP$ then $P[G]=\Delta[G]$ for some generic oracle $G$ .
Therefore, if $SEP_{D}$ is contains all generic oracles (thence it is comeager),

then we would have $P\neq NP$. So, it may be difficult to show that $SEP_{D}$ is
comeager.

\S 2. Preliminaries.

Let $\Sigma=\{0,1\}$ , and let $\Sigma*$ be the set of all strings over $\Sigma$ with the empty
string R. The elements of $\Sigma*$ can be enumerated as follows:

(1) $\lambda,$ $0,1,00,01,10,11,000,001,$ $\cdots$

We denote the $(n+1)- st$ string in (1) by $z_{n}$ . For $u\in\Sigma*$ , let $u=u(O)u(1)$ ...
$u(n-1)$ , and put $|u|=n$ . For $X\subseteqq\Sigma*$ , let $X=X(0)X(1)\cdots X(n)\cdots$ , where $X(n)$

$=1$ or $0$ according as $z_{n}\in X$ or not. For $n>0,$ $X|n=X(0)X(1)$ ... $X(n-1)$ (the
$n$ -segment of $X$). For $u\in\Sigma*$ , let $[u]=\{X:X|n=u\}$ , where $n=|u|$ . { $[u]$ :
$u\in\Sigma*\}$ is an open base for the space $2^{\Sigma^{*}}$ . We mainly use $u,$ $v,$ $w$ , $\cdot$ .. for
strings, $A,$ $B,$

$\cdots,$
$X,$ $Y$ , for sets (i.e., languages), and $C,$ $D,$ $E$ , $\cdot$ for classes

(i.e., sets of sets).

Let $M^{\sim}$ be a probabilistic polynomial time bounded oracle Turing machine
(abbreviated by prob $p$-time OTM). Assume that each nondeterministic step
of $M^{\sim}$ has two possible branches each of which has probability 1/2. For any
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string $u$ and any oracle $X$, let $M^{X}(u)$ be the output of the machine $M^{\sim}$ on the
input $u$ with oracle $X$ . The range of output is $\{0,1\}$ , where 1 denotes the
acceptance and $0$ the rejection. Let Prob $[M^{X}(u)=a]$ be the probability that
$M^{X}$ on $u$ halts in the $a$ -state, where $a\in\{0,1\}$ .

Let $M_{k}^{\sim}$ be the k-th prob $P$ -time OTM. Then, a set $A$ is in the class
$BPP[X]$ if there is an index $k$ and a binary finite rational $e(0<e<1/2)$ such
that for any string $u$

Prob $[M_{k}^{X}(u)=A(u)]>(1/2)+e$ .
$A$ is in $R[X]$ if there are a $k$ and an $e(0<e<1/2)$ such that for any $u$

$u\in A$ iff Prob $(M_{k}^{X}(u)=1]>(1/2)+e$ ,

and
$u\not\in A$ iff Prob $[M_{k}^{X}(u)=0]=1$ .

For more information, see [BGD 88], [BGD 90], [Pa 94], and [Sch 85].

TO show our theorems, we apply Poizat’s Theorem and its some relativized
form. So we explain part of Poizat’s paper [Po 86] with some modification.

Let $C$ be a class: $C\subseteqq 2^{\Sigma^{*}}$ . $C$ is dense if it intersects every basic open set.
$C$ is nowhere dense if every basic open set contains a basic open set which is
disjoint with C. $C$ is meager if it is a countable union of nowhere dense sets.
$C$ is comeager if it is the complement of a meager set.

Let $u$ range over $\Sigma*$ and $X$ over $2^{\Sigma^{*}}$ , and let $H\subseteqq\Sigma*$ be fixed. Consider
arithmetical or arithmetical-in-H Predicates of the forms $\phi(X)(u),$ $\phi^{H}(X)(u),$ $\xi(X)$ ,

and $\xi^{H}(X)$ . For the definition of an arithmetical predicate, see [Ro 67]. Ex-
amples are given as follows: Consider two machines $M_{j}^{\sim}$ and $M_{k}$ ”“. Let

$\phi(X)(u)\equiv Prob[M_{j}^{X}(u)=1]>3/4$ ,
and

$\xi^{H}(X)\equiv:\forall u[Prob[M_{j}^{X}(u)=1]>3/4-Prob[M_{k^{H\oplus X}}(u)=1]>3/4]$

where $H\oplus X=\{y0:y\in H\}\cup\{x1:x\in X\}$ (called the disjoint union of $H$ and $X$).

The former is an arithmetical predicate with respect to $X$ and $u$ , and the latter
is an arithmetical-in-H predicate with respect to $X$ . For such predicates, let

$\phi[X]=$ { $u\in\Sigma*:\phi(X)(u)$ holds}, $\langle\xi\rangle=$ { $X\subseteqq\Sigma*:\xi(X)$ holds},

$\phi^{H}[X]=$ { $u:\phi^{H}(X)(u)$ holds}, $\langle\xi^{H}\rangle=$ { $X:\xi^{H}(X)$ holds}.

The left hands are sets of strings while the right hands are Borel sets of
finite order in the space $2^{\Sigma^{*}}$

Let $G$ be an oracle, i.e., a subset of $\Sigma*$ $G$ is $H$-generic if, for all arith-
metical-in-H predicates of the form $\xi^{H}(X)$ , $\xi^{H}(G)$ holds whenever $\langle\xi^{H}\rangle$ is
comeager. Such a $G$ exists; in fact, the class $G^{H}$ of all $H$-generic oracles is
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comeager, since $G^{H}$ is a countable intersection of comeager sets: $G^{H}=\cap\{\langle\xi^{H}\rangle$ :
$\langle\xi^{H}\rangle$ is comeager $\wedge\xi^{H}$ is arithmetical-in-H}. (Clearly there is such an arith-
metical-in-H predicate $\xi$ that $\langle\xi^{H}\rangle$ is comeager.)

Let $u\in\Sigma*$ . We regard $u$ as a forcing condition. $uH$-forces $\xi^{H}(X)$ (denoted
by $u|\vdash\xi^{H}(X))$ if $[u]\cap\langle\neg\xi^{H}\rangle(=[u]-\langle\xi^{H}\rangle)$ is meager. So, if $u|\vdash\xi^{H}(X)$ , then
$\xi^{H}(G)$ holds for every $H$-generic $G$ in $[u]$ . Because, letting $\theta^{H}(X)\equiv(X\not\in[u]$

V $\xi^{H}(X)),$ $\theta^{H}(X)$ is an arithmetical-in-H and $\langle\theta^{H}\rangle$ is comeager. As basic prop-
erties for forcing and generic notions we know the following ( $[Po86$ ; p. 24]):

FACT 1. For every $u$ , there is an $H$-generic set $G$ such that $G\in[u]$ . For,
since $G^{H}$ is comeager, $[u]\cap G^{H}\neq\emptyset$ .

FACT 2. If $G$ is $H$-generic and $\xi^{H}(G)$ is true, where $\xi^{H}(X)$ is an arithmet-
ical-in-H predicate, then there is a $u$ such that $G\in[u]$ and $u|\vdash\xi^{H}(X)$ . For,
put $\zeta^{H}(Y)=\exists u(Y\in[u]\Lambda u|\vdash\xi^{H}(X))$ . Since tbe relation $u|\vdash\xi^{H}(X)$ is arith-
metical-in-H, so is $\zeta^{H}(Y)$ . Then we have:

$\forall Y(Y:H- generic\Rightarrow Y\in\langle\zeta^{H}\neg\xi^{H}\rangle)$ .
So, $G\in\langle\zeta^{H}\neg\xi^{H}\rangle$ . Since $\xi^{H}(G)$ holds, we have $P\zeta^{H}(G)$ . Hence, there is a
$u$ such that $G\in[u]$ and $u|\vdash\xi^{H}(X)$ .

We mainly use continuous predicates $\phi(X)(u),$ $i.e.$ , for $\phi$ there is a number-
theoretic function $\alpha$ : $Narrow N$ such that for any $u$ and $X$

$\forall n\geqq\alpha(|u|)[\phi(X)(u)-\phi(X|n)(u)]$

holds. Here we temporarily identify finite function $X|n$ with the full function
(X $|n$ ) $000\cdots$ . Similarly for $\phi^{H}$ . So, we can weaken the notions of forcing
and generic oracles by restricting predicates to such ones, though we do not
do so here. (Dowd [Do 92] uses the notion of machine-generic oracles.)

Hereafter, we sometimes do not distinguish syntactical symbols ( $i.e.$ , symbols
occurred in formulas in forcing relations) with metasymbols.

LEMMA 2.1. Let $\phi(X)(u)$ and $\theta^{H}(X)(u)$ be continuous arithmetical$(- in- H)$ pre-
dicates, and let $u$ be a forcing condition. Suppose $u|\vdash\forall y(\theta^{H}(X)(y)rightarrow\phi(X)(\gamma))$ .
Then, $\forall y(\theta^{H}(A)(y)rightarrow\phi(A)(y))$ holds for every $A\in[u]$ .

PROOF. Suppose not. So, there is an $A\in[u]$ and a string $y_{0}$ such that
$\theta^{H}(A)(y_{0})*\phi(A)(y_{0})$ . Since $\theta^{H}$ and $\phi$ are continuous, there are number-theoretic
functions $\alpha$ and $\beta$ such that for all $y$ and $X$ ,

$\forall n\geqq\alpha(|y|)[\theta^{H}(X)(y)-\theta^{H}(X|n)(y)]$ ,

and
$\forall n\geqq\beta(|y|)[\phi(X)(y)arrow\geq\phi(X|n)(y)]$ .



Polynomial time algorithms 19

Take an $m$ such that $m> \max\{\alpha(|y_{0}|), \beta(|y_{0}|)\}$ and $[A|m]\subseteqq[u]$ . Then,
$\theta^{H}(A|m)(y_{0})\not\simeq\phi(A|m)(y_{0})$ . Since $G^{H}$ is comeager, $[A|m]$ contains an H-generic
oracle $G_{0}\in[u]$ . For this $G_{0}$ we have

$(*)$ $\neg\forall y(\theta^{H}(G_{0})(y)-\phi(G_{0})(y))$ .

Since $u|\vdash\forall y(\theta^{H}(X)(y)rightarrow\phi(X)(y)),$ $[u]\cap\langle\neg\forall y(\theta^{H}(X)(y)rightarrow\phi(X)(y))\rangle$ is meager,
and hence the union $\neg[u]\cup\langle\forall y(\theta^{H}(X)(y)rightarrow\phi(X)(y))\rangle$ is comeager. Therefore,
if $G$ is an $H$-generic oracle, then that $G$ belongs to $[u]$ implies $\forall y(\theta^{H}(G)(y)$

$rightarrow\phi(G)(y))$ . This contradicts $(*)$ . $\square$

\S 3. A relativized form of Poizat’s Theorem and an oracle $H$.
For any set $C(X)$ (or $C^{H}(X)$ ) of continuous arithmetical$(- in- H)$ Predicates of

the form $\theta(X)(y)$ (or $\theta^{H}(X)(y)$ ) we define a class of sets of strings $C[X]$ (or
$C^{H}[X])$ as follows:

$C[X]=$ { $A\subseteqq\Sigma*:A=\theta\overline{\lfloor}X]$ for some $\theta(X)(y)$ in $C(X)$ } ,

where, as defined in the previous section, $\theta[X]=$ { $y\in\Sigma*:$ $\theta(X)(y)$ holds}. Note
tbat we are severely distinguishing between $C(X)$ and $C[X]$ . The former is a
set of predicates wbile the latter is a class of sets of strings. Similarly for
$C^{H}(X)$ and $C^{H}[X]$ .

Let $p_{k}(n)$ be the time bound function for the OTM $M_{k}^{\sim}$ , and let $H$ be an
oracle. We consider the following condition:

(2) $\forall X\forall y(Prob[M_{k^{H\oplus X}}(y)=1]>(1/2)+eProb[M_{k}^{H\oplus X}(y)=0]=1)$ ,

and define an index-set $I^{H}$ by

$I^{H}=$ { $\langle k,$ $e\rangle$ :( $e$ is a binary rational such that $0<e<(1/2))\wedge(2)$}.

(Apparently $I^{H}$ is $\Pi_{1^{-}}1in- H$, but really, by using continuity of the machines or
using $p_{k}(n)$ , it is seen that this set is arithmetical-in-H. However, this obser-
vation does not affect the subsequent argument.) For example, suppose $B\in R[H]$

and $M^{\sim}$ is a prob $P$ -time OTM which accepts $B$ witb a rational $e$ . Suppose,
further, $P^{\sim}$ is a deterministic $P$ -time oracle Turing transducer. Then there is
an index le such that $\forall y[M_{k^{H\oplus X}}(y)=\Lambda f^{H}(P^{X}(y))]$ , and thus $\langle k, e\rangle\in I^{H}$ .

NOW, for each $\langle k, e\rangle\in I^{H}$ , let $\phi_{\langle k,e\rangle}^{H}(X)(y)$ be the following arithmetical-in-H
predicate:

$\phi_{\langle k.e\rangle}^{H}(X)(y)\equiv:Prob(M_{k^{H\oplus X}}(y)=1)>(1/2)+e$ .
Then, we define $RU^{H}(X)$ and $RU^{H}[X]$ by:

$RU^{H}(X)=\{\phi_{\langle k.e\rangle}^{H}(X)(y):\langle k, e\rangle\in I^{H}\}$ ,
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and
$RU^{H}[X]=\{\theta^{H}[X]:\theta^{H}(X)(y)\in RU^{H}(X)\}$ .

Clearly, $R[H]\subseteqq RU^{H}[X]$ for every $X$ . Since $X\in RU^{H}[X]$ , there is an oracle
$A$ such that $R[H]\subset RU^{H}[A]$ . Here, $\subset$ means the proper inclusion.

The class $P[X]$ is well-known (see, e.g., [BGS 75] or [BDG 90]). How-
ever, we must reasonably define its corresponding $P(X)$ as a set of arithmetical
predicates, for later usage. Let $P_{k}^{\sim}$ be the k-th deterministic $P$ -time OTM.
Define $\eta_{k}$ as follows:

$\eta_{k}(X)(y)=:P_{k}^{X}$ accepts $y(\equiv P_{k}^{X}(y)=1)$ .
Clearly this predicate is arithmetical, in fact, it is recursive, and hence it
is continuous. Define $P(X)=\{\eta_{k}(X)(y):k=0,1,2, \cdots\}$ . Then $P[X]=\{\theta[X]$ :
$\theta(X)(y)\in P(X)\}$ .

LEMMA 3.1. (i) $RU^{H}[X]=\{A:\exists\langle k, e\rangle\in I^{H}\forall y$

($y\in A$ iff $Prob[M_{k^{H\oplus X}}(y)=1]>(1/2)+e$ and
$y\not\in A$ iff $Prob[M_{k}^{H\oplus X}(y)=0]=1)\}$ .

(ii) $P[X]\subseteqq RU^{H}[X]\subseteqq R[H\oplus X]\subseteqq BPP[H\oplus X]$ . $\square$

Let us define a recursive oracle $H$ such that $L(H)\in R[H]-P_{\overline{L}}H]$ , where
$L(H)=\{0^{n} : \exists y\in H(|y|=n)\}$ . Let $n_{0}=0$ , and $H(O)=\emptyset$ (the empty set). This
time let $H(s)$ be the set of strings put in $H$ before stage $s$ . (Note that it is not
the characteristic function of $H.$ )

Stage $s\geqq 0$ . Let $m_{s}$ be the least $m>n_{s}$ sucb that $p_{s}(m)<2^{m-2}$ . Run $P_{s^{H(S)}}$

on $0^{m_{S}}$ . If it rejects the string, then we choose $2^{m_{S}-1}+2^{m_{S}-2}+1$ strings of length
$m_{s}$ which are not queried during the computation, and add these strings to $H(s)$

to make $H(s+1)$ . Such strings exist. If it accepts the string, then let $H(s+1)$

$=H(s)$ . Put $n_{S+1}=2^{m_{S}}$ . Then, the set $H=\cup\{H(s):s=0,1,2, \cdots\}$ is the desired
oracle.

For this oracle $H$, we have: $L(H)\in RU^{H}[X]$ for all $X$ . For, let $M_{\iota^{H\oplus X}}$

be a prob OTM such that: on $0^{n}$ it randomly writes a string of length $n$ on
its oracle tape and suffixies $0$ to it; then it enters the query state; if the
queried string is in $H\oplus X$ , then the machine accepts the input, otherwise it
rejects. This machine is $P$-time bounded and its probability is independent of
the oracle $X$ . So, the index $\langle k, 1/4\rangle$ is in $I^{H}$ , and hence we have the following
lemma:

LEMMA 3.2. There is a recursive oracle $H$ such that

$L(H)\in RU^{H}[X]-P[H]$ for all X. $\square$

Later we shall use this $H$.
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NOW, let $C(X)(C^{H}(X))$ be a set of arithmetical$(- in- H)$ predicates of the form
$\phi(X)(y)(\phi^{H}(X)(y))$ and let $C[X](C^{H}[X])$ be its corresponding class of sets. For
$X,$ $Y\subseteqq\Sigma*,$ $X\doteqdot Y$ means that $X$ and $Y$ are identical but finitely many members.
The following conditions are Poizat’s four hypotheses for $C(X)$ (here we add
ones for relativized classes also):

HYPOTHESIS 1. Each predicate in $C(X)(C^{H}(X))$ is continuous.

HYPOTHESIS 2. If $X\doteqdot Y$ , then $C[X]=C[Y](C^{H}[X]=C^{H}[Y])$ .
HYPOTHESIS 3. If $A\in C[X](\in C^{H}[X])$ and if $B\doteqdot A$ , then $B\in C[X]$

$(\in C^{H}[X])$ .
HYPOTHESIS 4. There is a mapping $\#:2^{\Sigma^{*}}arrow 2^{\Sigma^{*}}$ such that (a) $C[X]=C[\# X]$

$(C^{H}[X]=C^{H}[\# X])$ , and (b) for any $A\in C[X](\in C^{H}[X])$ there is a predicate $\theta$

in $C(X)$ ( $\theta^{H}$ in $C^{H}(X)$) such that $A=\theta[\# X](=\theta^{H}[\# X])$ and it has the follow-
ing property : if $Y\doteqdot\# Z$ , then $\theta[Y]\doteqdot\theta[\# Z](\theta^{H}[Y]\doteqdot\theta^{H}[\# Z])$ . (We slightly
modify Poizat’s Hypothesis 4.)

Then,

A relativized version of Poizat’s Theorem.

Let $H$ be an oracle. Let $C(X)(D^{H}(X))$ be a set of arithmetical$(- in- H)$

predicates of the form $\phi(X)(y)(\theta^{H}(X)(y))$ which satisfies the Hypotheses 1\sim 4

with the same mapping: $Xarrow\# X$ . $C[X](D^{H}[X])$ is its corresponding class
of sets. Suppose that there exists an oracle $A$ such that $D^{H}[A]-C[A]\neq\emptyset$ .
Then, $C[G]\neq D^{H}[G]$ for every $H$-generic oracle $G$ , and hence

$E(C, D^{H})=\{X:C[X]\neq D^{H}[X]\}$

is comeager.

PROOF. Take a $B\in D^{H}[A]-C[A]$ . Then, by Hypothesis 4, there is a
predicate $\theta^{H}$ in $D^{H}(X)$ such that $B=\theta^{H}[\# A]$ and such that

(3) $Y\doteqdot\# Z\Rightarrow\theta^{H}[Y]\doteqdot\theta^{H}[\# Z]$ .

CLAIM. For any predicate $\phi(X)(y)$ in $C(X)$ , if $G$ is $H$-generic, then $\neg\forall y$

$(\theta^{H}(G)(y)rightarrow\phi(G)(y))$ holds.

PROOF. Suppose not. Then, there is a predicate $\phi(X)(y)$ in $C(X)$ and an
$H$-generic $G_{0}$ such that $\forall y(\theta^{H}(G_{0})(y)rightarrow\phi(G_{0})(y))$ holds. Put $\xi^{H}(X)\equiv\forall y(\theta^{H}(X)(y)$

$rightarrow\phi(X)(y))$ . Then, $\xi^{H}(G_{0})$ holds. By $H$-genericity of $G_{0},$ $\langle\xi^{H}\rangle$ is not meager.
So, by the Baire property for $\langle\xi^{H}\rangle$ , for some forcing condition $u,$ $[u]\cap\langle\neg\xi^{H}\rangle$

is meager. Hence, $u1\vdash\xi^{H}(X)$ , i.e., $u|\vdash\forall y(\theta^{H}(X)(y)rightarrow\phi(X)(y))$ . So, by Lemma
2.1, we have



22 H. TANAKA and M. KUDOI 1

(4) $\forall Y(Y\in[u]arrow\forall y(\theta^{H}(Y)(y)arrow\geq\phi(Y)(y)))$ .
For the above $A$ , we consider its image $\# A$ and take an $S\in[u]$ such that
$S\doteqdot\# A$ . Then, $\theta^{H}[S]\doteqdot\theta^{H}[\# A]$ . Since $S\in[u]$ , by (4) we have $\forall y(\theta^{H}(S)(y)$

$rightarrow\phi(S)(y))$ . Let $Z=\theta^{H}[S]$ . Then, $Z=\phi[S]$ . So, $Z\in C[S]=C[\# A]$ (by $Hyp$ .
2). AS seeing above we have $\theta^{H}[S]\doteqdot\theta^{H}[\# A]$ , and hence $Z\doteqdot B$ . Since
$Z\in C[\# A]$ , by Hyp. 3 we have $B\in C[\# A]$ . Since by Hyp. 4, $C[\# A]=C[A]$ ,

we have $B\in C[A]$ . This contradicts the assumption $B\not\in C[A]$ . So, the proof
of the claim completes.

The claim states: If $G$ is an $H$-generic oracle, then

$\theta^{H}[G]\neq\phi[G]$ for any predicate $\phi(X)(y)$ in $C(X)$ .
So, $\theta^{H}[G]$ does not beJong to $C[G]$ for any $H$-generic $G$ . Therefore, for all
$H$-generic $GD^{H}[G]\neq C[G]$ . Since the class $G^{H}$ of all $H$-generic oracles is
comeager, so is $E(C, D^{H})=\{X:C[X]\neq D^{H}[X]\}$ . $\square$

\S 4. Proof of Theorem 1.

Consider the class $E(P, RU^{H})(=\{X:P[X]\neq RU^{H}[X]\})$ , then $E(P, RU^{H})$

$\subseteqq\{X:P[X]\neq R[H\oplus X]\}\subseteqq SEP_{B}^{H}(=\{X:P[X]\neq BPP[H\oplus X]\})$ . Therefore, if
it is shown that $E(P, RU^{H})$ is comeager for some recursive $H$, then so is
$SEP_{B^{H}}$ for the same $H$, and hence we obtain Theorem 1. So, for our purPose,

by the relativized Poizat’s Theorem, it suffices to show that $P(X)$ and $RU^{H}(X)$

satisfy Hypotheses 1\sim 4 for the $H$ in Lemma 3.2 with the same mapping $\#$

defined below, since $E(P, RU^{H})$ is not empty for this $H$ (in fact, it contains
the $H$ as an element).

Here we show this for $RU^{H}(X)$ with the mapping $\#:Xarrow\# X$ , where
$\# X=\pi(\Sigma*, X)$ and $\pi$ is an one-to-one pairing function from $\Sigma*\cross\Sigma*$ onto $\Sigma*$

which is polynomial time computable and is polynomial time invertible. The
proof for $P(X)$ can be understood in the course of the following argument.

HYPOTHESIS 1. For $\phi_{\langle k.e\rangle}^{H}$ , where $\langle k, e\rangle\in I^{H}$ , we can take $\alpha(n)=2^{p_{k^{(n)}}}+1-1$

in the definition of continuity, since the maximal number of srrings of length
$m$ in the enumeration (1) is $2^{m+1}-2$ .

HYPOTHESIS 2. Suppose $X\doteqdot Y$ , and let $A\in RU^{H}[X]$ . So, there is an
index $\langle k, e\rangle\in I^{H}$ such that for all $y$ and $ZProb[M_{k^{H\oplus Z}}(y)=1]>(1/2)+e$ or
$Prob[M_{k^{H\oplus Z}}(y)=0]=1$ holds, and $y\in A$ iff $Prob[M_{k^{H\oplus X}}(y)=1]>(1/2)+e$ . Since
$X\doteqdot Y$ , there is a linear time bound OTM $P^{\sim}$ such that $X=P^{Y}$ . Then, we can
construct a prob $p$ -time OTM $M_{j}^{\sim}$ preserving the probability, i.e., such that
for any $ZProb[M_{k}^{H\oplus P^{Z}}(y)=a)=Prob(M_{j}^{H\oplus Z}(y)=a]$ for all $a\in\{0,1\}$ and $y$ .
So, we bave $\langle j, e\rangle\in I^{H}$ and hence $A\in RU^{H}[Y]$ . Thus, $RU^{H}[X]\subseteqq RU^{H}[Y]$ .
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The proof of the reverse inclusion is similar.

HYPOTHESIS 3. Suppose $A\in RU^{H}[X]$ and $B\doteqdot A$ . We show $B\in RU^{H}[X]$ .
By the supposition, there are an index $\langle k, e\rangle\in I^{H}$ and a number $m$ such that for
any input $y$

(5) $y\in A$ iff $Prob[M_{k}^{H\oplus X}(y)=1]>(1/2)+e$ ,

(6) $y\not\in A$ iff $Prob[M_{i}^{H\oplus X}(y)=0]=1$ ,

and

(7) $\forall n\geqq m(B(n)=A(n))$ .
Recall $A(n)=1$ if $z_{n}\in A$ , $A(n)=0$ otherwise. We shall define a $P$ -time OTM
$M_{j}^{\sim}$ such that $\langle], e\rangle\in I^{H}$ and such that for all $y$

(8) $y\in B$ iff $Prob[M_{j}^{H\oplus X}(y)=1]>(1/2)+e$ ,

(9) $y\not\in B$ iff $Prob[M_{j}^{H\oplus X}(y)=0]=1$ .

We use the notation ‘ ’ defined by $tz_{n}’=n$ . First of all, we define a segment
of the OTM $M_{j}^{\sim}$ by a finite table so that for every $y$ with $y’<m$ the segment
satisfies (8) and (9) as well as the following condition: for every oracle $Z$

(10) either $Prob[M_{j}^{H\oplus Z}(y)=1)>(1/2)+e$ or Prob $(M_{j}^{H\oplus Z}(y)=0)=1$ .
On any input $y$ with $y’\geqq m$ , $M_{j}^{H\oplus Z}$ simulates $M_{k}^{H\oplus Z}$ so that $M_{j}^{H\oplus Z}(y)=$

$M_{k^{H\oplus Z}}(y)$ holds. Then, by (5) and (6) we have (8) and (9) for these $y$ and the
X. Such an index $j$ exists and $\langle], e\rangle\in I^{H}$ . Thus, $B\in RU^{H}[X]$ .

HYPOTHESIS 4. We must show that the same mapping $Xarrow\overline{\#}^{\neg X}$ , where
$\# X=\pi(\Sigma*, X)$ , satisfies the following conditions (a) and (b):

(a) $RU^{H}[X]=RU^{H}[\# X]$ .

PROOF. Let $X$ be fixed, and suppose $A\in RU^{H}[X]$ . Then, we must show
$A\in RU^{H}[\# X]$ . By the supposition, there is an index $\langle k, e\rangle\in I^{H}$ such that for
any $y(5)$ and (6) hold. Then, we will find an index $j$ such tbat $\langle], e\rangle\in I^{H}$

and such that for any $y$

(11) $y\in A$ iff Prob $[M_{J^{H\oplus\# X}}(y)=1)>(1/2)+e$ ,

and

(12) $y\not\in A$ iff Prob $(M_{J^{H\oplus\# X}}(y)=0]=1$

hold. For this purpose, we define an OTM $M_{j}^{\sim}$ (call it $j$-machine) as follows:
Let $Y\subseteqq\Sigma^{*}$ be arbitrary and let $\rho(Y)=\{v:\exists y, w[w\in YAw=\pi(y, v)]\}$ . Then
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$\rho(Y)=X$ if $Y=\# X$ . Now, given input $y$ , the $j$-machine begins to simulate
the computation of $M_{k}^{H\oplus\sim}(y)$ . Suppose $M_{k^{H\oplus\sim}}$ enters the query state. Let $x$

be the queried string. Then, the $j$-machine checks the tail end letter of $x$ . If
the letter is $0$ , then the $J$ -machine enters yes-state or no-state according as
$x’\in H$ or not, where $x’$ is the string obtained from $x$ by deleting the tail letter.
If it is 1, then the $j$-machine writes $\pi(y, x’)$ on its oracle tape (this work can
be done in time $O(p_{h}(|y|)))$ , and queries whether $\pi(y, x’)1\in H\oplus Y$ . If the
answer is yes, then $x’\in\rho(Y)$ and so the $j$-machine simulates the yes-branch of
the computation of $M_{k^{H\oplus\sim}}(y)$ . Otherwise, it simulates the no-branch. After the
whole simulation ends, the $j$-machine outputs the value of this simulation for
$M_{k}^{H\oplus\sim}(y)$ . This is a quasi-simulation for $M_{k}^{H\oplus\rho(Y)}(y)$ (it may not be the exact
one, because there can be a case that $\pi(y, x’)\not\in Y$ but for some other $u\pi(u, x’)$

$\in Y\wedge x’\in\rho(Y))$ . If $Y=\# Z$ for some $Z$ , then the output of $j$-machine is the
same as that of $M_{k}^{H\oplus Z}(y)$ , since for any $u\pi(u, x’)\in Y$ iff $x’\in Z$ . The j-machine
is a prob $p$ -time OTM, so certainly such an index $j$ exists, and it has the
additional uniformity property (2). Hence $\langle j, e\rangle\in I^{H}$ . For this $j$-machine, we
have

$Prob[M_{j}^{H\oplus*X}(y)=a]=Prob(M_{k^{H\oplus X}}(y)=a]$

for any input $y$ and $a\in\{0,1\}$ . (Since the $j$-machine must be probabilistic OTM,
at any time it must be binarily branching, for example, even during the calcu-
lation of $\pi(y, x’)$ . During such period, the machine does the same computation
on each branch. So, though $M_{J^{H\oplus*X}}s$ computation is longer than that of
$M_{k}^{H\oplus X}$ , the probabilities of both machines are the same.) Thus, we have
$A\in RU^{H}[\# X]$ .

Conversely, let $A\in RU^{H}[\# X]$ . Then, there is an index $\langle], e\rangle\in I^{H}$ such
that for all $y$ (11) and (12) hold. We define a prob $P$ -time OTM $M_{k}^{\sim}$ as
follows: on an input $y$ , $M_{k}^{H\oplus X}$ simulates the computation of $M_{j}^{H\oplus\sim}$ on $\sim 1$

Suppose the latter machine enters the query state. Let $x$ be the queried string.
$M_{k^{H\oplus X}}$ checks its tail end letter. If the letter is $0$ , then the machine enters
yes-state or no-state according as $x’\in H$ or not, where, as before, $x’$ is the
string obtained from $x$ by deleting the tail end letter. If that letter is 1, then
the machine calculates $v$ such that $\pi(y, v)=x’$ . Recall that $v$ is uniquely deter-
mined and can be computed in polynomial time of $|x|$ . Then, the machine
queries whether $v\in X$ (i.e., whether $v1\in H\oplus X$). After it enters yes-state or
no-state, it resumes simulating. Finally, it outputs the same value as $M_{j}^{\sim}$ .
This $M_{k}^{\sim}$ satisfies the desired condition. Namely, such an index $k$ exists and
$\langle k, e\rangle\in I^{H}$ . Clearly, for any $a\in\{0,1\}$

Prob $(M_{k^{H\oplus X}}(y)=a]=Prob[M_{J^{H\oplus\# X}}(y)=a]$ .
Thus we have $A\in RU^{H}[X]$ .
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(b) For each $A\in RU^{H}[X]$ there is a predicate $\theta^{H}(X)(y)$ in $RU^{H}(X)$ such
that (b1) $A\in\theta^{H}[\# X]$ and (b2) if $Y=\# Z$ then $\theta^{H}[Y]=\theta^{H}[\# Z]$ .

PROOF. By the assumption, there is an index $\langle k, e\rangle\in I^{H}$ such that (5) and
(6) hold. Then we take the OTM $M_{j}^{\sim}$ described in the proof of (a). As
was shown above, we have (11) and (12). Let $\theta^{H}(X)(y)$ be the predicate
$Prob[M_{J^{H\oplus X}}(y)=11>(1/2)+e$ . Then, $\theta^{H}(X)(y)$ is in $RU^{H}(X)$ , and we have

$A=\theta^{H}[\# X]$ . Thus, (b1) is shown. To show (b2), suppose $Y\doteqdot\# Z$ . Then,
there is a number $m$ (depending on $Y$ and $Z$ ) such that

$\forall y\forall v$ [( $|y|\geqq m$ or $|v|\geqq m$ ) $arrow(\pi(y, v)\in Y$ iff $\pi(y, v)\in\# Z$

iff $v\in Z$)].

So, both $M_{J^{H\oplus Y}}(y)$ and $M_{J^{H\oplus\# Z}}(y)$ are identical with $M_{k}^{H\oplus Z}(y)$ for any $y$ with
$|y|\geqq m$ . Therefore we have $\theta^{H}[Y]\doteqdot\theta^{H}[\# Z]$ .

Thus, we have shown that $RU^{H}(X)$ satisfies Hypotheses 1\sim 4. Similarly
for $P(X)$ .

Consequently we have the following theorem:

THEOREM 1. There is a recursive oracle $H$ such that the class {X: $P[X]\neq$

$RU^{H}[X]\}$ is comeager, a fortiori so is $SEP_{B}^{H}$ .

\S 5. Proof of Theorem 2.

AS in the preceding argument, we can define $RU(X)$ and $RU[X]$ deleting
the oracle $H$. Also we have the $H$-unrelativized versions of Lemmas 2.1, 3.1,
and Poizat’s Theorem. However we do not have any $H$-unrelativized version
of Lemma 3.2. So, we must assume the following assumption:

(A) There exists an oracle $A$ such that $RU[A]-P[A]\neq\emptyset$ .
Under this assumption, we can prove that the class {X: $P[X]\neq RU[X]$ } is

comeager. However, in order to obtain our Tbeorem 2, we must modify (A).

Let $I’=$ { $\langle k,$ $e\rangle$ : ( $e$ is a binary rational such that $0<e<1/2)\wedge(2$ ’)}, where

(2) $\forall X\forall y(Prob[M_{\iota^{X}}(y)=1)>(1/2)+eProb[M_{k}^{X}(y)=0]>(1/2)+e)$ .
For each $\langle k, e\rangle\in I’$ , let

$\phi_{\langle k.e\rangle}(X)(y)\equiv Prob[M_{k}^{X}(y)=1]>(1/2)+e$ .
Then

BPPU(X) $=$ { $\phi_{\langle k,e\rangle}(X)(y)$ : $\langle$ le, $e\rangle\in I’$ },

and
BPPU $[X]=\{\xi[X]:\xi(X)(y)\in BPPU(X)\}$ .
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We can show that BPPU(X) and BPPU[X] satisfy the Hypotheses 1\sim 4

suppressed $H$. Since $BPPU[X]\subseteqq BPP[X]$ , by Poizat’s Theorem, we have

THEOREM 2. Assume
(A) There exists an oracle $A$ such that $BPPU[A]-P[A]\neq\emptyset$ .

Then, the class $SEP_{B}=\{X:P[X]\neq BPP[X]\}$ is comeager.

By a similar argument as in the proof of Lemma 3.2, we can get an oracle
$A$ such that $L(A)\in BPP[A]-P[A]$ . But, the probability of the prob p-time
OTM with oracle $A$ that accepts $L(A)$ depends on the oracle $A$ , and the
machine does not have the uniformity described in (2). This is why we
assume (A).

So, Bennett-Gill’s problem whether $SEP_{B}$ is comeager is still open.

\S 6. On $NP[X]\cap coNP[X]$ .
AS before, let $\Delta[X]\equiv NP[X]\cap coNP[X]$ . Whether the measure of

$SEP_{D}=E(P, \Delta)=\{X:P[X]\neq\Delta[X]\}$

is one is a well-known open problem. Whether $SEP_{D}$ is comeager is also
open. The assertion that $SEP_{D}$ is comeager, by the argument in \S 3, seems
to be considerably near the assertion that $SEP_{D}$ contains all generic oracles.
The latter asserrion implies $P\neq NP$, by a result of Blum-Impagliazzo [BI 86].
So, whether $SEP_{D}$ is comeager may be a hard problem. By reason of this
account, we will take the course of argument developed in \S 3.

Let $F$ be a fixed oracle. Define an index set $J^{F}$ as follows:

$J^{F}=$ { $\langle],$ $k\rangle$ : VXV $y$ ( $NP_{j}^{F\oplus X}(y)=1$ iff $NP_{k}^{F\oplus X}(y)\neq 1$ )},

where $NP_{k}^{\sim}$ is the k-th nondeterministic $p$ -time OTM. For each $\langle], k\rangle\in J^{F}$

we define the formula $\psi_{\langle j.k\rangle}^{F}(X)(y)$ as follows:

$\psi_{\langle j.k\rangle}^{F}(X)(y)\equiv NP_{j}^{F\oplus X}(y)=1(\equiv NP_{k}^{F\oplus X}(y)\neq 1)$ .
Then, let $\Delta U^{F}(X)=\{\psi_{\langle j.k\rangle}^{F}(X)(y):\langle j, k\rangle\in J^{F}\}$ , and a $U^{F}[X]=\{\theta^{F}[X]:\theta^{F}(X)(y)\in$

$\Delta U^{F}(X)\}$ . Further, let

$L_{0}(F)=\{x:\exists y(0y\in F\Lambda|0y|=|x|)\}$ .
After Baker-Gill-Solovay [BGS 75; Theorem 7], we can construct a recursive
oracle $F$ such that $L_{0}(F)\not\in P[F]$ and

(13) $\exists y(0y\in F\Lambda|0y|=n)$ iff $\neg\exists y(1y\in F\Lambda|1y|=n)$

for all $n$ , and hence
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(14) $L_{0}(F)\in NP[F]\cap coNP[F]-P[F]$ .

LEMMA 6.1. For the above $F$, we have

$L_{0}(F)\in\Delta U^{F}[X]-P[F]$ for all $X$ .

PROOF. We define two nondeterministic $P$-time OTM’s $NP_{j}^{\sim}$ and $NP_{i}^{\sim}$ as
follows:

$NP_{j}^{F\oplus\sim}:$ On input $x$ , it guesses $Oy$ such that $|0y|=|x|$ , and writes $OyO$

on its query tape and enters the query state. If $OyO\in F\oplus\sim$ , then it accepts $x$ .
If $OyO\not\in F\oplus\sim$ for any $y$ such that $|0y|=|x|$ , then it rejects $x$ .

$NP_{k^{F\oplus\sim}}:$ On input $x$ , it guesses $1y$ such that $|1y|=|x|$ , and writes 1 $yO$

on its query tape and enters the query state. If 1 $yO\in F\oplus\sim$ , then it accepts $x$ .
If $1yO\not\in F\oplus\sim$ for any $y$ such that $|1y|=|x|$ , then it rejects $x$ .
Certainly there exist such indicies $j$ and $k$ . It is easy to show that for these
$j$ and $k\langle j, k\rangle\in J^{F}$ and $L_{0}(F)\in NP_{j}^{F\oplus X}$ for all $X$ . Hence we have $L_{0}(F)\in$

$\Delta U^{F}[X]$ for all X. $\square$

This is the counterpart of Lemma 3.2.
By a similar argument, we can show that the $aU^{F}(X)$ and a $U^{F}[X]$ satisfy

Hypotheses 1\sim 4 with $F$ instead of $H$. Here we show Hypothesis $2F$ only: Let
$X\doteqdot Y$ , and suppose $A\in\Delta U^{F}[X]$ . So, there is $\langle], k\rangle\in J^{F}$ such that $\forall y(y\in_{-}1$

iff $NP_{j}^{F\oplus X}(y)=1$ iff $NP_{k}^{l!\oplus X}(y)\neq 1)$ . For some linear time bounded OTM $\tau\sim$

$X=T^{Y}$ . For this $T$ we can find indicies $r$ and $s$ sucb that

$\forall Z\forall y$ ( $NP_{j}^{F\oplus T^{Z}}(y)=1$ iff $NP_{r}^{F\oplus Z}(y)=1$ )

and the same formula with $k$ and $s$ instead of $j$ and $r$ . So we have

$\forall Z\forall y$ ( $NP_{r}^{F\oplus Z}(y)=1$ iff $NP_{s}^{F\oplus Z}(y)\neq 1$ ).

Thus, $\langle r, s\rangle\in J^{F}$ and $\forall y$ ( $y\in A$ iff $NP_{r}^{F\oplus Y}(y)=1$ ). Hence we have $A\in\Delta U^{F}[Y]$ .
Therefore Hypothesis $2F$ holds.

By Lemma 6.1, there is an oracle $A$ such that $\Delta U^{F}[A]\neq P[A]$ . So, by
the $F$-relativized Poizat’s Theorem, we have

THEOREM 3. There is a recursive oracle $F$ such that the class $SEP_{D^{F}}=$

{X: $P[X]\neq NP[F\oplus X]qcoNP[F\oplus X]$ } is comeager.

Next, as in the proof of Theorem 2, we omit the oracle $F$ in the above
argument. Then we obtain $J,$ $\psi_{\langle j,k\rangle},$ $\Delta U(X)$ , and $\Delta U[X]$ . But we do not
have the $F$-unrelativized version of Lemma 6.1. So, we must assume the fol-
lowing assumption:
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(B) There exists an oracle $F$ such that a $U[F]-P[F]\neq\emptyset$ .
By a similar argument as above we have:

THEOREM 4. Under the assumPtion (B), the class $SEP_{D}=\{X:P[X]\neq NP[X]$

$\cap coNP[X]\}$ is comeager. $\square$

\S 7. Conclusion.

We have shown that there is a recursive oracle $H$ such that the class
{X: $P[X]\neq BPP[H\oplus X]$ } is comeager, and also have obtained some related
results.

NOW, consider the following proposltion
There is an oracle $H$ such that

(15) $\forall X(P[X]\neq BPP[H\oplus X])$ .

If this Proposition were true, then our Theorem 1 would be entirely trivial.
But this proposition is incorrect ! Namely:

LEMMA 7.1. For each oracle $H$ there is an oracle $A$ such that

$P[A]=BPP[H\oplus A]$ .

PROOF. Let $H$ be given. Then, we construct an oracle $A$ such that

(16) $H\oplus A\equiv PTA$ and $P[A]=BPP[A]$ .
So, we have: $P[A]=BPP[A]=BPP[H\oplus A]$ . (For $\equiv_{PT}$ , see [BDG 88].)

Construction of an $A$ which satisfies (16): As before, let $M_{k}^{\sim}$ be the k-th
prob $P$ -time OTM with the time bound $p_{k}(n)$ . This time let $A(s)$ be the set
consisting of the strings put in $A$ before stage $s$ , and let $A(O)=\emptyset$ .

Stage $2s\geqq 0$ . Consider the following strings $w$ :

(17) $w=0^{k}1y10^{n},$ $|w|=s$ , and $n=p_{k}(|y|)$ for some $k$ and $y$ .

Run $M_{k}^{A(2S)}$ on $y$ . If it accepts $y$ , i.e., Prob($M_{k^{A(2S)}}(y)=1]>1/2$ , then put $w1$

in $A$ . Otherwise, i.e., $Prob[M_{k^{A(2S)}}(y)=0]\geqq 1/2$ , then do nothing. Let $A_{s}$ be
the set of all strings put in $A$ by doing the above procedure for all such $w’ s$

satisfying (17), and let $A(2s+1)=A(2s)\cup A_{s}$ .
If there is no such $w$ , then let $A(2s+1)=A(2s)$ .
Stage $2s+1$ . If there is a string $w$ such that $|w|=s$ and $w\in H$, then make

$A(2s+2)$ by adding to $A(2s+1)wO$ for all such $w’ s$ . Otherwise, let $A(2s+2)=$

$A(2s+1)$ .
Let $A=\cup s\infty=0A(s)$ . When there is a string $w$ such that (17) holds,

$M_{k^{\Lambda(2S)}}(y)=M_{i^{A}}(y)$ , since lengths of queried strings in the computation are
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;$ $p_{k}(|y|)<s$ and lengths of strings put in $A$ after stage $2s$ are $>s$ .
CLAIM. $PP[A]\subseteqq P[A]$ .

PROOF. Let $L\in PP[A]$ . Then there is an index $k$ such that $\forall y(y\in L$

iff $Prob[M_{k^{A}}(y)=1]>1/2)$ . (See, e.g., [BDG 88] or [Pa 94].) Then we define a
$\det p$ -time OTM $\tau\sim$ as follows: Given $y,$

$\tau\sim$ writes the string $w=0^{k}1y10^{n}$ on
its oracle tape, where $n=p_{k}(|y|)$ , and enters query state. If the answer is yes,
then it accepts $y$ ; otherwise it rejects $y$ . Clearly $\tau\sim$ is a deterministic p-time
OTM. NOW for an arbitrary input $y$ , let $s=|0^{k}1y10^{n}|$ , where $n=p_{k}(|y|)$ , and
consider at stage $2s$ . Then, $T^{A}$ accepts $y$ iff $0^{k}1y10^{n}1\in A$ iff $Prob[M_{k^{A(2S)}}(y)$

$=1]>1/2$ iff $Prob[M_{k^{A}}(y)=1]>1/2$ iff $y\in L$ . Thus $L\in P[A]$ . Hence $PP[A]$
$\subseteqq P[A]$ .

Clearly, $H\leqq_{PT}A$ and hence $H\oplus A\equiv_{PT}A$ . By the Claim, $P[A]=PP[A],$ $a$

fortiori, $we_{A}have:P[A]=BPP[A]$ . $\square$

Thus, there is no $H$ satisfying (15).

So, our Theorem 1 has the raison d’etre.
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