J. Math. Soc. Japan
Vol. 49, No. 1, 1997

On the essential spectrum of the Laplacian
on complete manifolds

By Hironori KUMURA

(Received Dec. 9, 1994)

1. Introduction.

The Laplace-Beltrami operator A on a noncompact complete Riemannian
manifold M is essentially self-adjoint on C?(M), and the spectrum of its self-
adjoint extension to L%*M) has been studied by several authors from various
points of view. For instance, Donnelly [6] proved that the essential spectrum
Goss(—A) of —A is equal to [(n—1)%k?%/4, ) if M is an n-dimensional Hadamard
manifold whose sectional curvatures approach a constant — k%2 at infinity. On
the other hand, Escobar and Freire consider the case M has nonnegative
sectional curvatures and showed that ¢.(—A)=[0, <), if M possesses a soul
S such that the normal exponential map exps : NS — M induces a diffeomorphism,

and further if either dim M=2, or dim M=3 and ST(l/v(t))[SS Ric(Vr):ldt<oo,
t

where NS is the normal bundle to S, r(x)=dist(x, S), S;={xe=M]|dist(x, S)=t},
and »(!) denotes the volume of S,. Recently Li proved that if M has
nonnegative Ricci curvatures and possesses a pole (i.e., a point x&M where
the exponential map exp,: 7,.M — M induces a diffeomorphism), then ¢ .(—A)
is equal to [0, o).

In this paper, we shall show the following :

THEOREM 1.1. Let M be a noncompact complete Riemannian manifold of
dimension n. Suppose there exists an open subset U of M with compact smooth
boundary OU such that the outward-pointing normal exponential map expiy:
N*@U)— M—U induces a diffeomorphism. Let ¢ : [0, ©0)—[0, c0) be a continuous
function satisfying

Ricu(rz(@), rz(®) = —(n—De(t),

for all t=0 and x<0U, where y,(t)=exp,(t-#(x)) and 7 stands for the outward
unit normal vector field on 0U. Then the spectrum o(—A) of —A is equal to
[0, o), provided that ¢(f) converges to zero as t— oo,

This is a generalization of the results by Escobar and Freire, and also Li
mentioned above, and it will be deduced from a comparison argument and the
following
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THEOREM 1.2. Let M and U be as in Theorem 1.1. We assume that U is
bounded. If there exists a constant c=(—oo0, o) such that

sup{|(Ar)}x)—c]| ; dist(x, U)=s, x € M} -0 as s— oo,
then o.(—A)=[c%/4, ), where r(x)=dist(U, x).

The result of Donnelly [6] mentioned above is also derived from this
theorem, since an Hadamard manifold M satisfies all of the condition in Theo-
rem 1.2, if the sectional curvatures approach a constant — k% at infinity, where
c=(n—1)k (cf. Corollary 2.1)).

We shall now explain our method of proving For any
A€(c?/4, ) and any &>0, we shall construct a sequence of functions {g,}C

(M) such that supp g;N\supp g:=@ (k+7) and

(a) 1A+Dgrllzon = ellgellzzon, k=1, 2, -

This implies that a.,(—A)D[c*/4, c©). To construct such functions {g:}, we
shall adopt the transplantation method used in Donnelly @ We cut off a
solution of A”+ch’+Ah=0 and transplant them from the real line R to M as
functions depending only on the distance r from oU. To show that those
transplanted functions satisfy such estimates as (a¢), we shall construct infinitely
many warped product manifolds of finite intervals and level hypersurfaces of
the distance function » with a warping function e/ and compare the
Riemannian measures on those warped product manifolds with the Riemannian
measures of M on supports of transplanted functions (cf. Remarks 2.1 and 2.2).
On the other hand, the fact that ¢.(—A) is bounded from below by the con-
stant ¢?/4 is a consequence of the decomposition principle in Donnelly and Li
and the Cheeger’s inequality.

Finally, we remark that certainly holds for an operator on
L¥M, wdVy) given by A,=A+w !grad w, where w is a positive smooth function
on M and dV is the Riemannian measure on M (cf. [[Theorem 2.1). [[heorem
1.1 also holds for A, if we replace the Ricci tensor Ricy with a symmetric
tensor Ricy—w ™ *Hess w.

ACKNOWLEDGEMENT. The author would like to express his gratitude to
Professor Atsushi Kasue for his warm encouragement,

2. Main lemma.

Let @ be a positive smooth function on a complete Riemannian manifold
M. We shall consider the differential operator A,:=A+w 'gradw with its
domain C3(M), where grad w denotes the gradient of a function w. We remark
that A, is associated with the following quadratic form g¢:
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o, =\ <Vf, VedVu,

where f, he Cy(M), Vf=grad f, {,> is the Riemannian metric on M and dVy
is the Riemannian measure on M. Then we can verify that A, is an essentially
self-adjoint operator on the Hilbert space L*M, wdV ), and hence A, has a
unique self-adjoint extension A,. (Indeed, we can show that if f is a complex-
valued function in L%M, @dV )NC=(M) and if A.f&L*(M, wdVy), then |Vf|

eL¥M, wdVy) and — SM(Aa,f)fa)d Vu= SM |Vf|*wdV . Hence spectral theory

says that A, on L*M, wdV ) is essentially self-adjoint. See Karp for the
case that @=1). The domain of 4, is given by Dom(4,)= {u& LXM, odV y)| Ay
(distribution sense)e LM, wdV i)} and Ao u=A,u (distribution sense) if ue
Dom(A,). In what follows, we shall denote this extended operator A, by the
same letter A,.

LEMMA 2.1 (main lemma). Let M be an n-dimensional noncompact complete
Riemannian manifold and @ a positive smooth function on M. Let [ be a smooth
function on M satisfying the following three conditions (a)~(y):

(a) For some constant b, S,={x&M]| f(x)=b} is a compact hypersurface of
M and M=U,US, VU, (disjoint union), where U, is a union of bounded
domains and U, is a union of unbounded domains. Moreover, |Vf|>6>0
on S, WU, for some constant 6 and sup{||Vf|(x)—1]; dist(x, U,)=7,
xeM}—0 as r— o0

(B) sup{lA,f(x)—cl|;dist(x, U)z=r, x&M}—0 as r— oo, for some constant
ceR :=(—00, o0);

(7) sup{{(VNHIVSI|(x);dist(x, U)=r, x&M}—0asr— oo, where (Vf)|Vf]
=|Vf| t-Hess f(Vf, Vf) is the derivative of a function |Vf| in the
direction of Vf.

Then O‘gss('—Aw):[cz/4: OO)'

PROOF. To prove (¢?/4, )T 0.:(—A,), we first recall the following fact
from functional analysis:

LEMMA 2.2, Let A be a self-adjoint operator on a Hilbert space. Then,
for A€ R, the following two conditions (a) and (B) are equivalent :

(@) A€ 0.(A);
(B) For any €>0, there exists an infinite dimensional subspace G, in the
domain of A such that

IA=Df = el /I for all f € G..
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For any A€(c?/4, «) and ¢>0, we shall construct a sequence {g;}ien Of
functions in C%M) so that supp g;,N\supp g:=@ if j#% and the linear hull of
{gr|kEN}, denoted by G, satisfies the condition (8) in Cemma 2.2. But, in
order to prove (c%/4, o) 0.(—A,), it suffices to construct such functions g
on one end of M, and hence in the following we shall assume that U, consists
of only one unbounded domain. Moreover we suppose that Vf restricted on S,
points into U, that is, U,={x&M|f(x)>b}. (The case where (Vf)|s, points
into U, can be treated in exactly the same way).

We shall construct a chart outside a compact subset, using the function f.
For any ueS,, let ¢,(): [b, «0)— S, U, be the integral curve of the vector
field (Vf)/IVf|? such that ¢.b)=ucS, and define ¢: [b, «0)XS,— S, UU, by
(t, u)=@u(t) for (t, u)e[b, «0)XS,. Itis easy to see that ¢: [b, ©)XS,— S, UU,
is a diffeomorphism and satisfies f(¢(, w))=t for all (¢, u)€[b, )X S,. In the
following, using this diffeomorphism ¢, we shall simply write g(¢, u):=g-¢(t, u)
for any function g defined on U, In this notation, a direct computation shows
that if a function g C%U,) depends only on the first component ¢&[b, <), then

(1) Ag = |V/I™XDys(VS), VI0.8)+ V[ I*0ig)+(tr A)IVfI@.g) at (&, ),

where A,, tr A,, and D are, respectively, the shape operator of the hypersurface
S.:={x€U,| f(x)=t}, the trace of A and the covariant derivative of the Levi-
Civita connection of M. In particular,

(2) Af=|VfI"XDys(V), Vio+tr ANV = VIV +(r A)IVS]

at (¢, u).

Now, we shall study the behavior of the measure wdV . We denote by
dVs, the Riemannian measure on S, with respect to the induced metric on S,
by the inclusion S,CM. Using diffeomorphism ¢, for (¢, u)e[b, «)XS, we
define the positive function a(?, u) by dVy=a(t, u)dtdVs, where dV, is the
Riemannian measure of M. A direct computation shows that a(u, t) satisfies

da _ _<DyVI V| A,
a Vil \Vie

We put a(t, u):=a(t, ww(, u) for ¢, u)elb, «)xS,. (3) implies
(0.a)/a = (0:a)/a+(0.0)/w
—IVAPRVDIVAIHIVAI T tr Ao V75V, Vo).
Therefore, by using (2), we obtain
(4) @.a)/a= =2\Vf|(VNHIVII+IVIIHAf+o Vo, V)
= =2[VAI-(VAOIVA+IVAITAS.

(3)

Il
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On the other hand, we note that
(5) f(x) < K-dist(S,, x)+b for all x € U,,

where K=supy,|Vf|>0. Indeed, for xU, let c¢:[b, []—U, be a geodesic
such t{lat:c(b)esb, c()=x and [—b=dist(S,, x). Then, f(x)zg:d(f(c(t)))/dt-dt
+b§§b]Vf|dt+b§K(l-b)+b. Hence, (5) holds. The assumptions of the main
lemma together with (4) and (5) imply that

a.a(t, u)
(6) sup{ 1—d(—t:~15—~~-c

;ueSb}—>0 as t — oo,

For a monotone increasing sequence {f,} C(b, =), which will be determined
later, we shall consider the following sequence of manifolds: let W(t,)=[tr, o)X
S, be a warped product manifold with a Riemannian metric d*+4 {e¢‘~t»} >/ (=D
{w(ty, W} vdst, for (t, u)e[ty, «)XS,, where S;, is the hypersurface {x&U,]
f(x)=t,} with a Riemannian metric {w(t,, u)}** Pdsj, and ds?, is the induced
metric on S,, by the inclusion S;,,CM. In the above definition, we think that
w(ty, u) (uES,) is the restriction of w on S;, and that S,, is parametrized by
uE€S, through the diffeomorphism ¢ ,ixs,: {te} XSp— S¢,.

We take cut-off function HeC7P(R) such that supp HZ(0, 3), H({)=1 if
tel, 2], and OZH(#) L1 for all t=(—o0, ), We set E=sup{|H'(t)|+|H"{®)| ;
tE(—o0, co)}.

Let e=(0, 1) be an any given constant and A an arbitrary constant greater
than ¢?/4. We define a function f, by fe.({)=exp(—c{t—t;)/2)-sin(A;}(t—1.)),
where A;'=(1—c*4"")"/%, The function f, satisfies the equation — f{—cfi=Af%.
f» can be considered as a function on W(¢,) depending only on the first com-
ponent {E[¢,, ). When we denote by A,, the Laplace operator on W(ty), f,
satisfies —A,, fe=—07fr—cd.fr=2Afs. We note that f, has the infinite number
of zeros.

We define a positive function b,(¢t, u) for (f, u)&[t:, )X S, by the identity
dVwa, =bs(t, w)dtdVs, where dVy,, is the Riemannian measure on W(ty).
Then b,(¢, u) satisfies 0,(log b.(t, w))=c for all (¢, u)&[tz, )X S,. On the other
hand, as is showed above, (¢, u) satisfies sup{|0d,(log a(t, u))—c|; usS,} —0 as

t—oco. Hence, noting that a(, w=a(ts, u)- expg d.(log a)(r, u)a’z‘ and that
br(t, w)=by(ts, u)- expS ¢ dr for te[t,, o), we see that there exist constants
0s(l, o), t,&[1, co) and a positive integer ¢ such that the following six con-
ditions hold :

(i) sin(47'0) =0;

(ii) E/d<e;
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(iii) If we set f, by te=t,-+24.mqk for k=0, 1, 2, ---, then [t;, t,+30]N
(¢, t;+30]=Q if k+j;

(iv) 27 )at, w)/b(t, w)|*<2, for all t&ly :=[ts, t,+30] and all usS,

and all #=0, 1, 2, ---;

(v) 1—eZ|VfI®, wysl+4e for all (¢, wye(t, «©)XSs;

(vi) |Aof—cl(t, w)<e for all (t, u)E[t,, o)X S,.

Indeed, we shall take ¢ so that (i) and (ii) hold, and then for this 4, we can
choose #, so that (iv), (v) and (vi) are satisfied. We note that b,(¢:, u)=a(ts, u)
by the construction of the warped product manifolds W(t;) and that f,(t,)=
f(te+30)=0.

Now, we define g,=Ci%R) by g:(t)=h(t)f:(t), where we put h,() :=
H(0-'(t—t,)). We transplant g, onto U, as a function depending only on the
first component ¢ with respect to the coordinates system (¢, u)&[b, o©)X S, on
U,. Then, since (1) and (2) imply A,g=|Vf|%g+(A,f)d,g for g=C*U,)
which depends only on the first parameter ¢, we have

—Augr = —Agr—0 Vo, Vg,:>
= —(Auh)fr—heAofr—2{Vhy, V>
= —{IVfPPRE+Bo N fe— UV P fE+ Qo ) f it he =21V f 1 frhi
= —{IVFIPH"6*+(Au IH'7"} fa+ A  chs+ R {1=1Vf 1%} [
+helc—Auf} fx—=2\VfI?H'67 f},

where we have used the fact that f/+cfi=-—A4f:. Hence,

1(—Au—2A) g4l L2, wdV 3p)
= (1+5)2Ea_2”xkfk“Lz(M,deM)+E5—l(]Cl FXe [l LM, wdV 3
+3el1 X0t f el L20r, wavpp T ENXe0: frll L2001, wav ppp + 201+ EO7 X160 f &l 22 ot wavyp »

where X, is the characteristic function of /,. Also, by the condition (v), we
have

d([’ u)ﬁ 1/2

(7) kaatfk“Lz(M,deM) é m‘) ‘ “xka;fk”lﬁ(w(tk))

(t.u)EIpx8y
= ankatfk”Lz(W(t)) .

On the other hand, Gregn’s formula on W(¢,) implies

(8) ”Xkatfk”LZ(W(tk)) = VYIIkakHLZ(WQk» .

LEMMA 2.3. Following inequality holds:

1Xe fallzzava,y = V3 1gellzzore,y -
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PROOF.
“xkkaZLz(W(tk))

_ Ss dvsb(wS‘““ FUObL(E, w)dt
b L

i

[ 4V s expl—cli—ta)-sin e ¢ —t2)-atts, wexplelt—t)ds

L
b

i

[, @Vsi|att,, wsinG e
Sy 0

Il

3\ atts, wavs, | sinasod
[ atts, Vs, sin*Giee)de

lIA

3., atts, waVs, )] Hw/0)sin'zz0)de
b 0

< 3, atts, waV s H () o explet—tands

= 3“gk”22<wu,¢)> .

In the last equality, we have used the fact that b,(¢, u)=da(ts, w)exp(c(t—1tz)). O
By virtue of [Lemma 2.3 together with (7) and (8), we get

(9) “xkatfk”LZ(M,deM) = 2\/7“kak”L2(W(tk)) = 2‘\/32”gk”Lz(W(ck))
i b(t, 1/2 _
= ZV/BX(t,u)Se%pkxsb }k((t,;%) lgell 2o waryy = 4AV3AgelL2or war -
Similarly,
d(t, u) 1/2
s < AL ;
(10) “kak”LZ(M,deM) = (Lu)SEIkab be(t, 1) 1Xe frll L2 (tp)

= 2]|kak”L2(W(zk>) <243 ”ngLZ(W(tk)) = 4\/73ﬁ”gk”Lz(M,deM)-
The inequality (9), and the fact that f/+4cfi+Af,=0 imply
1Xe0% f 1l L20r,0avyp = Ak Frllz2an wavyp T 1] - 10 frll 2200, 0av
SV 3l gelzorvar,p+ el -4vV3A1 gl 22 0r wavyp -

Therefore, by combining the above inequalities and by using (v), (vi) and
e=(0, 1), we obtain

[(—Aw—2A)gell 2. ©wdV )
< {4V 3(1+e)e+4v 3e(|c|+e)+12v 3 2e+12+4/32e| ¢| +44/34e+84/34e(1+ &)}

Xl gellL2onr, wavyp

S AV 35+ 1c|(1+3vV A)+32+9vV A gl 2 ar,wavyp -
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We note that g, C3(M) and that supp g, N\supp g;=@ if k+#J (see (iii)). Thus,
by we get AS0.55(—A,). Since 1&(c¢?/4, «o) is arbitrary, we have

(1D [c?/4, ) C 0ess(—A0).

When ¢=0, we have thus shown o.(—A.)=[0, <), as claimed. When ¢>0,
we shall need the following decomposition principle in Donnelly and Li [8] and
Cheeger’s inequality :

LEMMA 2.4 (decomposition principle). Let M be a noncompact complete Rie-
mannian manifold and @ a positive smooth function on M. Let A,=A+w ' grad
be a self-adjoint operator on L*(M, wdV y), as defined above. We assume that
NCM is a compact submanifold with boundary, of the same dimension as M. Let
Al, be the self-adjoint extension of Aulezar-ny to LY M—N, odV i) which satisfies
Dirichlet boundary condition. Then, A, and A, have the same essential spectrum.

LEMMA 2.5 (Cheeger’s inequality). Let M be a compact Riemannian mani-
fold with nonempty boundary oM and w a positive smooth function on M. We set

Du(M) = inf Au(0)/V (D),

where 2 ranges over all open submanifold of M, with 0QN\OM=@, and with
smooth boundary 08, and we set Aw(aﬂ)zgagwdvm, V(U(Q)ZggdeM, where dV ;g

is the Riemannian measure on 052 with respect to the induced metric. Then we
have

Ao 2 Do(M)*/4,
where 2, is the first Dirichlet eigenvalue of —A,.

We can prove Lemma 2.4 and 2.5 in exactly the same way as in the case

that w=1. Hence, we shall omit the proof. (As to the Cheeger’s inequality, see
Chavel [3)).

Now, in case ¢>0, making use of Lemma 2.4 and 2.5, we shall show that
Goss(—A,) is bounded from below by the constant ¢?/4. Let 6<(0, ¢) be any
given constant. For all bounded domain Q sufficiently apart from U,, we have
by the assumption of the main lemma

-0 < |VfI <140 on 2
and

lA(,)f"'C] <5 on Q
Hence, we get

1+0)4,02) = | _Vfl0dVag
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= Wf, DodVs
:SJHWwVﬂdVM

= | AupwdV s
% (C—B)Vw('g) ’

-

where # is the outward unit normal vector field on 02. So, we have A,02)/
Vo(8)=(c—0)/(1+40). Therefore, for all ¢=C(U,) with its support sufficiently
apart from U,, Lemma 2.5 implies

IV *wdV
SMQSZ(DCZ' VM

c—0\?2
(159)-
Hence, by using Lemma 214, we obtain

c—0\?

. 1
inf g.5(—As) = Z(m

for all ¢ = (0, ¢).

Thus, we have shown that ¢,,(—A,) is bounded from below by the constant

c?/4. From this fact and [1I), in case ¢>0, we obtain o.,(—A,)=[c?/4, ).
In case ¢<0, it suffices to substitute — f for f in the above argument. We

have thus proved the main lemma.

REMARK 2.1. In the proof above, we have used a solution of
—h”—ch’ = 2h

(defined on the real line), which satisfies the equation —A,hA=A4h on warped
product manifolds W(¢,) with warping function e*/*"V_ if we transplant it to
W(t,). On the other hand, under the assumption that the sectional curvatures
of an Hadamard manifold tend to —&* at infinity, Donnelly employed a
solution of different equations:

(12) — f"(r)—ccoth(cr/(n—1))- f'(r) = Af(r)
or
(13) — ") —(n—=Dr7 f'(r) = 2f(r),

which satisfies —Af=4f on the hyperbolic space H*(—»?) with constant curva-
tures —b® or Euclidean space R”, if we transplant it to H*(—b?) or R* as a
function depending only on the distance from a single point, where b=c/(n—1)
>0. Our choice for transplanted functions makes it easier to obtain such
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estimates as [[(Ao+A gkl 22, wavp Selgelli2ar wavyy. Compare Lemma 23 with
[6, Lemma 4.6 and Lemma 4.107).

The following is an immediate consequence of [Lemma 2.1.

THEOREM 2.1. Let M be a noncompact complete Riemannian manifold, and
® a positive smooth function on M. Suppose there exists a bounded open subset
U of M with smooth boundary 0U such that the outward-pointing normal expo-
nential map expiy : N*QU)— M—U induces a diffeomorphism. If there exists a
constant c<(—oo, o) such that

sup{|(QAur)(x)—c| ; dist(x, Uy =s, x €« M} -0 as s— oo,
then 6..(—A,) = [c?/4, =), where r(x)=dist(U, x).

REMARK 2.2. To obtain estimates [[(A,+A)(hr/)zan=Zellhefllzzan for a
function f which satisfies or and cut-off functions h,, Donnelly [6]
compared the Riemannian measure on M with that on the model space H"(—b?)
or R*. But under the assumption that A,r — ¢, what we can see is only the
limit of the growth rate of weighted Riemannian measures on level hypersurfaces
of the function », and we can get neither the model space as in [6, §6] nor
the asymptotic value of measures on level hypersurfaces of » as in [6, §12].
For this reason, we have constructed infinitely many warped product manifolds
W (t,) to make the difference between the measures on {yeM|t, <r(y)=t,+ 30}
and those on W(t,) small enough.

REMARK 2.3. Let N be an arbitrary k-dimensional compact Riemannian
manifold. Let W be a warped product manifold (MXN, gu+w**gy), where M
is a noncompact complete Riemannian manifold, g (resp. gy) is a Riemannian
metric on M (resp. N) and o is a positive smooth function on M. Then it is
easy to see that under the assumption of [Theorem 2.1 (or Lemma 2.1) the
essential spectrum ¢,.,(4,) of A, on L*M, wdVy) is equal to that of the
Laplacian of the warped product manifold W.

The following is a generalization of the result by Donnelly
(6, Theorem 6.3] stated in Introduction.

COROLLARY 2.1. Let M be a complete Riemannian manifold with a pole p.
We assume that

K(pu(OAv)Z1/(4t%)  for all (t, w)E(0, o)XU,M and vE Ty, (yM—R-7,(t),

where r,{t)=exp,(w), UM={veT,M;|vi=1} and K@G,({t)Av) is the sectional
curvature of the 2-plane spanned by 1,(t) and v. If there exists a nonnegative
constant ¢ such that
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sup{| K(yu(OAv)+cl; t=s, veTr,wM—R-7,), weU,M} -0 as s— oo,
then 6.(—A)=[c(n—1)%/4, o).

ProOOF. Under the assumption above, the Laplacian Ar of the distance
function » to p converges to (n—1)4/¢ uniformly with respect to welU,M as
r—oco, (The assumption K(y,(t)Av)<1/(4t*) implies that 0<(n—1)/(2r)<Ar).
Consequently, follows from [Theorem 2.1l O

3. Proof of Theorem 1.1.

By the assumption, »=dist(U, %) is a smooth function on M—U. By virtue
of [Theorem 2.1, it suffices to prove that sup{|Ar|(y.(t)); x€dU}—0 as {— oo,
Let x be a fixed point of 0U and we denote Ar(y,(¢)) by H(t). H(t)is the mean
curvature of the hypersurface S,={xeM—U |dist(x, U)=t} at the point y=r.),
that is, >{zf"%V,,gradr, ¢;>(y), where {e;} is an orthonormal base of the
tangent space 7,(S,) to S; at vy, V is the Riemannian connection of M, and {, )
is the Riemannian metric of M. We observe that H(f) satisfies

H’(t)+-h}:THz(t)—(n—l)¢(t) <0 forallt=0.

(See, for example, Chavel [3, p.72]). We set S,=max{H,(0)|xcdU}, where
H,(0) is the mean curvature of U at x. Let f be the solution of the equation

FO+ L O~ (-Dp) =0, fO)=S,.

By means of a usual comparison argument, we see that f is defined on all of
[0, o) and satisfies H(t)< f(t) for all 1=0.

Now we shall show that lim sup;... f(#)<0 by contradiction. We assume
that there exists a positive constant C. such that

(14 sup{f€[0, o) | f[()22(n—1)Co} = 0.

From the hypothesis: lim,..¢(t)=0, for any e<(0, C.), there exists a constant
t,>0 such that —¢(t)=—¢* for all t=¢,. We may assume f(#)=2(n—1)C.. Let
G : [t,, )— R be the solution of the equation

(15) G+ ;{EI Gi—(n—1e* =0, Gt:)= f(t).

A standard comparison argument shows that f(#)<G(¢) for all t=¢,. The solu-
tion of the equation is expressed as follows:
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Be*t 41
G(t)=(n—1e Boi 1
where B is the constant determined by f(f,)+(n—1)e=Be*'2{f(t,)—(n—1)e}.
Since f(t,)=2(n—1)Cw=2(n—1)e, we have
fl)+(n—1)e
Be?tte — 20 T T 1
R (e e P

and lim,...G(t)=(n—1)e. Therefore, lim sup,... f({)<(n—1)e. But, since e=(0, C.)
is arbitrary, lim sup;... f(1)<0. This contradicts the assumption [14). Hence, for
any C.>0, sup{t<[0, )| f)=2(n—1)C.} <+oo. Thus, lim sup;.. f{#)<0.

Next, we shall show that for any ¢>0, if —¢({#)=—(n—1)"%¢* for all {=¢,
then H(¢) satisfies H(t)= —e? for all {=¢,. Assuming that there exists a constant
t,=t, such that H(t,)<<—e?, we shall obtain a contradiction. Let F:[¢{, )— R
is the solution of the equation
1 gt .
FPe— =0, F(,)=H{) < —¢,

1o R R

where [¢, ) is the maximal interval of existance. Then H({)<F(t) for all
1, =t</. But the solution of the equation (16) is expressed as follows:

2 2 .
Ft) = 52[/11-exp{gzgrl—»}—kl]/[/ll~exp{7128:t1}»—1] for t; <t <,
where A, is the constant determined by F({t)4+¢e?=A,-exp{(2e%,)/(n—1)}-
{F(t,)—¢?. The inequality, F(t,)<<—e¢® means A,-exp{(2e%,)/(n—1)}=(—F(t,)
—e¥)/(—F(t)+e5)<(0, 1).. Hence, [ is the bounded number so that A,-exp{(2¢2)
/(n—1} =1 and lim,.;_, F(#)=—co. But this means lim,.;_, H{{)=—o0, contra-
dicting the fact that H{(¢) is the mean curvature of S, at exp.?#(x). Therefore,
H({t)=—¢* for all t>t,. Since, from the assumption of [Theorem 1.1, for any
>0 there exists £,>0 such that —¢()=—(n—1)"%* for all 1={, we see
lim,..inf {Ar(y,(#))| x€dU, t=s} =20. We have thus proved that sup{|Ar|(y.(®));
xe0U} —0 as t— oo, This completes the proof of [Theorem 1.1.

Lower bound of the Ricci curvatures can be relaxed. For instance, we
have the following

THEOREM 3.1. Let {a,} and {b,} be two sequences of positive numbers such
that 0<a,<1 and lim,..a,=lim,..b,=0. Let M be a noncompact complete
Riemannian manifold of dimension n. Suppose there exists an open subset U of
M with compact smooth boundary OU such that the outward-pointing normal
exponential map expiy: N*@U)— M—U induces a diffeomorphism and that
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Ricy(yz(0), r:() =2 —(n—1X({),

for all t=0 and x<0U, as in Theorem 1.1. Here X is a function defined as
follows :

x(t) _{ ‘_C, tE [O; kD]UU;O=k0(]‘7 j+aj>!
_bf’ e [j+aj’ ]+1] s ] - /30, k0+l’

where ¢ is a positive constant and k, is a positive integer. Then the spectrum
of the minus Laplacian of M is equal to [0, o).

The proof of will be done along the same lines as those of
and hence we shall omit the proof of Theorem 3.1.

REMARK 3.1. As is seen from the proof above, [ITheorem 1.1 and [Theorem
3.1 certainly hold for A, if we replace Ric(y7(f), rz(8)) with Ricy(y2(5), 7:{)—w™*-
Hess o(r5(t), 74(t)).
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