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Introduction.

The existence and the uniqueness of the solution of non-linear singular
partial differential equations of the form

5 \m 0 \i/ @\«
I N R G (CA T

were discussed in Gérard-Tahara [1],[2]; though, the uniqueness in [2] can be
applied only to the solution with

©0.1) (t-(%)’ua, x) = O0() (as ¢t — 0 uniformly in x)

for =01, ---, m—1
for some s$>0.
In this paper, the author will prove the uniqueness of the solution of (E)
under the following weaker assumption :

0.2) (tait)ju(t, %) = 0(»(:1;‘;—03—) (as t— 0 uniformly in x)

for j=0,1, ---, m—1
for some s>0.

The motivation for such an improvement will be illustrated in the following
example.

ExXAMPLE. Let us consider

du ou
where (¢, x)€CXxC and A=C. Then:

(1) u=0 is a solution of [0.3).
(2) By the method of the separation of variables we can see that has
solutions of the form
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i ax+b
(/D when 4 # 0,
u(t, x) = ax+b
——«—«x——*—, when A =0,
a(—logt)+c

where a, b, c&C are arbitrary constants.
(3) The condition corresponds to the case 1+0; while the condition
corresponds to the case 1=0.

Compare this with the following assertions on the uniqueness of the solution
of [0.3):

(S;) If Re A<0 and if u(¢, x) is a solution of satisfying for some
s>0, we have u(t, x)=0.

- (S;) If Re A<0 and if u(z, x) is a solution of satisfying for some
s>0, we have u(t, x)=0.

The assertion (S;) is a consequence of the result in [I],[2]. By (2) of
Example we see that in the case Re A>>0 the uniqueness of type (S;) does not
hold. Also, we can see that in the case A=0 the uniqueness of type (S;) does
not hold.

Thus, in this paper we will discuss the case Re A<0 and obtain the assertion
(S;) as a consequence of the main theorem in §1.

The paper is organized as follows. In §1 we state our uniqueness theorem
(Theorem 1) for (E). In §2 we present some preparatory discussions and in §3
we give a proof of our uniqueness theorem. The result is applied in §4 to the
problem of removable singularities of solutions of (E).

§ 1. Formulation and result.

Let meN* (=11, 2, ---}) and put:
In = {(j, @) € NXN"; j+la] =m and | <mj,
d(m) = the cardinal of I,,,

where neN*, N={0, 1, 2, -}, a=(ay, -, a,)€N™ and |a|=a;+ - +a,. De-
note :
te R,

X = (xl; Ty xn) & Cn’
Z=1Z; o} G wery, €C™,

and let F({, x, Z) be a function defined on {{¢, x, Z)eRXC"xXC*™ ; 0<t<T,
lx|£7 and |Z] <R} for some T>0, »r>0 and R>0. ‘
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In this paper, we will consider the following non-linear singular partial
differential equation :

0\ 0\«
(El) (tait u= F<t’ % {(t’aT> (73;) u}(i.a)elm)

with u=u(¢, x) as an unknown function.
Let u(f) be a function on (0, T) satisfying the following conditions p;)~p,):

#l) ,u(t) = Cl((oy T))y
pa) p@) >0 o0n (0, T) and p(f) is increasing in ¢,

ts) So #s) =tds < oo,
) l‘ — (t) =0(u(®) (as t—0).

Note that the condition p(t)—0 (as t—0) follows from p.) and u;). The follow-
ing functions are typical examples:

plt) =t ~1ﬂ'—,,/, : .
(—logt) (—log t)(log(—log 1))

with a>0, b>1, ¢>1.
The main assumptions on the equation (E,) are as follows.

(Cy) F(, x, Z) is continuous in t=[0, 7] and holomorphic in (x, Z);

(€ max|F(, x, 0] = 0(u®™) (as t—0);

(Cs) max 62 —(t, x, 0)| = O(u@®'*") (as t —0) for any (j, a)=l,.
l1ZisT joa

Under (C,), (C,), (C;) we denote by 4,(0), -+, 2,(0) the roots of

A= oF

].._.
207, 50,0, )27 =0

and call them the characteristic exponents of (E,) at x=0.

DEFINITION. Let ¢>0 and 6>0. We denote by S(e, 8; u(t)) the set of all
functions u(?, x) satisfying the following (i), (ii) and (iii):

(i) wu(f, x) is a function on {{t, x)€RXC"; 0<i<e and |x|<d} ;

(i1) u(t, x) is of C™ class in t<(0, €) and holomorphic in x;

(ili) There is an s>0 such that for =0, 1, ---, m—1 we have
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max
EAR

(t%)’ﬁ(t, x)l = 0(u(t)") (as t— 0).

Note that by (iii) and the Cauchy’s inequality in x we easily see for any
0<d.<0

max
E2F2

(t% ’ (%)"u(r, 0| = 0(u®") (as t—0)

for any (J, a) € I,

We will use S(e, 0; p(t)) as a framework of our solutions of (E,). Since
p)—0 (as t—0) holds, (#(9/0t))u(t, x) (=0, 1, ---, m—1) can be continuous in
te[0, ¢) (including t=0). Then:

THEOREM 1. Let u(t) be a function on (0, T) satisfying the conditions p;)~
pe).  Assume (C,), (Co), (Cs) and the condition

1.1) Re 2,(0) <0 fori=1, -, m.

Then, if w,(t, x) and u,(t, x) are two solutions of (E,) belonging to S(e, d; p@)),
we have u,(t, x)=uy{t, x) on {¢, x)SBRXC"; 0<t<e, and | x| <0,} for some &,>0
and 6,>0.

REMARK 1. (1) In the case u()=t°, ¢>0, the above result is obtained by
the discussion in [2].
@2) In §4 we will use this theorem in the case
O=—L _ ¢>1
B = Clog ity '
Note that in this case the discussion in [2] does not work in general.

REMARK 2. The author believes that should be improved in the
following form: if (C,), (C,), (Cs) and are satisfied, the uniqueness of the
solution of (E,) is valid under the condition

max
EAF

(tgt—)ju(t, x)' =o(l) (as t—0) for j=0,1, -, m—1,

Though, at present he has no idea to prove this conjecture.

In the proof of (in §3) we will use the following norm: for a
convergent power series f(¢, x) in x with coefficients in C°(0, T)) of the form

f 0= 2 f0x% fa) € CUO, T)

we write
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(1.2) 1Ol = 3,101 2o
' o= oG AP

(which is a convergent power series in p with coefficients in C%(0, 7T))).
The following lemma holds :

LEMMA 1. For f(t, x) and g(t, x) we have:

) 1O, < 1£O g, -
0 p '
@ |(5..)00] < IOl for i=1, . n

§2. Preparatory discussion.
Before the proof of [Theorem 1, we will prove here the following proposition.

PROPOSITION 1. Let u(t) be as before. Assume (C,), (Co), (Cs) and (1.1).
Then, if u(t, x) is a solution of (E.) belonging to S(e, 0; pt)) and if 6>0 s
sufficiently small, we have for any 0<4,<0

2.1 max

12150,

(tgt—)’(%)"u(t, x)‘ = O(u(®™) (as t—0)
for any (J, @) € I,.

To prove this, we need a result on the ordinary differential equation:

(2.2) (t—(%)"‘u =Slat, x)(t-gt—>ju+ £, x),

where

aj(t, x) = —a”aZ}j;‘io(t, X, 0)7 ] = O’ 1) Tty m—1.

For k=N, ¢>0 and 0>0 we denote by I.(s, d) the set of all functions
u(t, x) satisfying the following properties i), ii) and iii):
i) u(¢ x) is a function on {(f, x)eRXC™; 0<t<e and |x|<d} ;
ii) u(t, x) is of C* class in t<(0, ¢) and holomorphic in x;

iii) For any j=0, 1, ---, £ we have
a\/
max (5 ) et x)l =0Q) (as t— 0).

Then, we have:

LEMMA 2. If
Re2;(00<0 fori=1, -, m
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and if ¢>0 and 0>0 are sufficiently small, then:
(1) For any f(t, x)ET (¢, 0) there exists a unique solution u(t, x)E T (¢, 0)
of (2.2); moreover the estimates

j;m Os<171£z ( ;r) u(r, x)' < C sup | f(z, x)i)

for any 0<t<eand |x| £0

hold for some C>0 which is independent of u and f.
(2) If f(t, x) satisfies

max| f(t, )| = O(u(1)?) (as 1 —0)

for some s>0, then the unique solutzon u(t, x) of (2.2) also satisfies for any
0<d,<0

(t-g?)j(—a%)“u(z, x)l = O(u(t)*) (as t— 0)
for any (j, @) € I,,.

max
1z 150y

(1) is obtained from the discussion in Tahara [3, §2]. (2) is a corollary of
(1). By using this lemma, let us give a proof of [Proposition Il.

PROOF OF PROPOSITION 1. Let u(¢, x) be a solution of (E,) belonging to
S(e, 0; p@). Then, there is an s>0 such that for any 0<d,<<d

(2.3) max

|1z 150y

(trrg[)j(fa‘;)au(t, x)\ = O(u(ty) (as t—0)
for any (J, @) € I,,.

Since u(¢, x) is a solution of (E,), by the Taylor expansion we get

<tAng)mu = 2 b, x><t’§t')j(3%)au+F(f, x, 0),

(Joayelp,

where
1 9 0 \Jis 0\«

(2.4) bj, (t, x) = Soﬁ%o 0{(t_3_)](ax> }u‘.a)ezym)dﬁ
a?j (&, %, O+O0(u()

= 0(p®)'*)+0(u(®)") (as t—0)
(from and (C,)). Therefore, if we put

R[u] = F(, x, 0)+j:jm(b,~,0(t, x)— agjo(t x, o>)< 0 )ju
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*o, 2 mbj.a(l‘, X)(t%)j(%)au,

YEL
lai>0

|R

we have

2.5) (tgt—)mu = S alt x)(z‘%)ju—}—l?[u]

and for »=min{l, s} >0 we see

(2.6) R[] = O<ﬂ<f>’">+u,mze,mO(WW(f‘gf)j('aa? )

(from (C,) and [2.4).

Now, choose a sequence s, S, -+, S, so that the following properties are
satisfied :

@-1) s;=s5<s5< - <sp=m;
(a-2) s, <r+s; holds for i=1, -+, p—1.

Then, let us show that

(tg—t—)"'(%)“u(t, x>\ = O(p()*") (as t — 0)

for any (J, a) € I,

2. N max

x| <89

holds for any 0<0,<é and k=1, 2, ---, p.
Since s,=s, (2.7), is clear from [2.3). Then, by and (a-2) we see

gx&){j{le[u](t, x)| = O(u®)™)+0(u)" 1)
= 0(u(ty'?) (as t—0):

therefore by applying (2) of to we have (2.7),. By substituting
this into we have

gxé%glR[u](t, x)| = O(u®)y™)+O0(u(t)™**2)
= 0(p®)s) (as t—0)

and hence by using (2) of again we obtain (2.7)s.
Repeating the same argument, we see that (2.7), holds for any 2=1, 2, ---, p.

Since s,=m, (2.7), is the same as (2.1). Thus, is proved.

§3. Proof of Theorem 1.

Let p(t) be a function on (0, T) satisfying the conditions u;)~u,). Assume
(Cy), (Cy), (Cy) and the condition [I.1). Then we can choose A>0 and A>0 so
that
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xt_ddfti(t)l < Apt), 0<t<T;

Re 2,(0) < —2h <0, i=1, -, m.
Put

........................

........................

0= (03 2a0) L i) - (5 -200),

Let u,(¢, x) and u,(t, x) be two solutions of (E,) belonging to S(e, d; u())

and put

(3.1 w(t, x) = us(t, x)—u,(t, x).

Then, w(t, x) is a solution of

62 () e =Pl = () () e (5 GO )y o)

= (5 () )y )

Moreover by [Proposition 1| we have

3.3) max (1Y (o) i, ©| = 0™ (as 1-0),
(3.4) max (t%)j(%Yw(t, x>] = 0(t)™ (as t— 0)

for any 0<0,<é and any (J, a)eI,.

Our aim is to show that w({, x)=0 holds on {(t, x)eRXC"
|x|<0,} for some ¢,>0 and 0,>0. Let us show this from now.

For (J, k)& NXN satisfying j+k<m—1 we put

T

(3.5) ¢j‘ Wt p) = S:)(T)_Re Zj+1(o)ﬂ(r)k

{2,

lai=

; 0<t<e, and

0.2 wiol +ia 2 o L) w4
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where | -], is the norm introduced in [1.2). Then we have:

LEMMA 3. Let 0<ey<e and 0<0,<0. Then, ¢;:(t, p) G+kE=<m—1) are
well-defined in C°([0, e,]1X[0, d;]) and satisfy the following properties on {(t, p);
0<t<e, and 0<p=0y} :

(1) @;,:@ p) is of C* class in t<(0, ;] and analytic in p<[0, d.].

2) For any (J, k) we have

3y When k>0, we have
0
(t_a‘t—+2h)¢j,k(t: 0)
=n (l‘)""a—sﬁ- (¢, p)+nkA (l‘)iié' ¢ 0)
S ny ap j+1, k-0, O U ap i k-1\(y .
(4) When k=0 and j=0,1, ---, m—2, we have
(ti+2h)¢~ (t, 0) < Brurofts p)
at 7, 0\b) P = J+1,0\F P .
(5) When k=0 and j=m—1, we have
0
(157 +2h)$m-1ult, 0)
0
=7t 0) Z 6500, p)+Bp(t)% PR RGN

for some B>0 and some y(t, p)& C[0, e.]X[0, d5]) satisfying (0, 0)=0.

ProOOF. (1) is clear from the definition. For (7, ) and |a]=F% we have

(& a0 ro o))

= u(f>’“@f+l<’aa‘)aw+k#<t>k'1t£%ri@f(5a; )w.

X

By integrating this we get
p0°0,() )= [ () e 65 2) wie)

R DL

and hence by taking the norm we see
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o)),
< S:(%>-Re 2j+1(0){#(7)k

()t

= ()7 e

c{losm(g) ], +eafe(G) vl } 7
which implies (2).

Let us show (3). Since 0<2h<—Re 4;,,(0) and ¢;, «(t, p)=0 hold, we have

p()*

0 \« i
@jﬂ(ﬂ) w(T)“p

o = ORI

+ kA
4

3.6) (t%+2h)¢j, (t, o)
< (19 —Re 2,040t 0)

= p*{ 2 ki\@m(;;)“w(whﬁMmz‘; k

oyl }

Since |a|=k>0, we can decompose « into
3.7 a=a'te, |a|=FkF-1

for some 7 (1=<7/<n), where ¢,=(, 0, ---, 0), ---, ¢,=(0, ---, 0, 1)&N™". - Therefore
by (2) of and (2) of this lemma (which is proved already) we
obtain

(tait+2h)¢j,k<t, 0)

: 9 |
w0 2,551

a a’' | a a’
O 5g) W), +rA 2, ;‘i @f(éa£> v}
Qm(aa;)a'w(”ﬂp
vean 2 o6, () v }
0\«
1!]@j+1(5’x*> w(t)np

0\
Ofaz)
= nﬂ(t)% {¢j+1,k~l(t, P)+kA¢j.k-1(t, P)}

< p<t>k{nm,§k-1aa;i

P
a'j=k-

0
= ny(t)g‘;{;z(t)’”“

FRADT D

ja’|=k~1

)

This implies (3).
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When k=0 and ;=0, 1, ---, m—2, by the same argument as in and by
(2) of this lemma we get
0 a
(57 +21)10tt, 0) = (t5,—Re 2,008yt 0) = 16,00,

< @10ty )
which implies (4).
Lastly let us show (5). Since w(t, x) is a solution of by the Taylor
expansion we get

(3.8) (t ) w = melma, 8, x)( gt )j(aa )aw,

where

5 0 \i/ 0 \a 0 \if @ \a
nalts 0= {5 5 () ) w005 ) () e 0

Moreover, it is easy to see

oF
3.9 a0, X) = 55—(0, x, 0
( ) a.), ( x) aZj,a( P )
and by and (C;) we have
oF
(3.10) g]g)a\;!aj.a(ty x)| = iz, a(t x, 0)+0(u®)™)

= O(p®)"*)+0(u@®)™)
= O(p(t)'*') (as t—0).

Therefore, can be rewritten into the form

3 \m
((05) =2 70 0. 0(t5) e

~2@Mx>%WOW“QW%?m%NJW%ﬂ%Yw

and hence
(3.11) O = Syt D0+ Dyt 00 ) w
' T g T T

for some y,(t, x) and some c; ,(f, x) satisfying the following:

(b-1) 7,0, 00 =0
(b-2)  max f¢; .t x)| = O(p®)*)) (as 1 —0).
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By and (b-2) it is easy to see:
0
(3.12) (t-57 42k )$m-10(t, 0)
0
< (t7—Re 2n(®)fn-s.olt, 0) = 18w D),

= BIOLIOwl,+, = | cj.aa)np\\@j(;,a;)“wl\p

o)l

= BInOl8wl,t , 3, 0

Using the decomposition
a = a'—{—ei
in [3.7), we see

(b-3) p(t)'™ = u(t)p(t)™"
ej(%)“wnp < %\ @j(%)a .

Thus, by substituting (b-3) and (b-4) into we obtain

(b-4)

0
(t*a—t—+2h)¢m-1.o(t; P)
- a fa’|
< Slr 18wl +0Wuty (, 2 mo

j+tia'ism-1

0 \a'
6:(55) )
0

< D011t OO 3 6140 o)

which implies (5). Thus, all the parts of are proved.
Next, we first choose ¢;>0 (=0, 1, ---, m—1) so that

9% h 01 me
o_j+1<2) ]‘_0’1) )mz

(3.13)

and then choose ¢,>0, d,>0 sufficiently small so that

(314) T(t, p)am_l < ﬁ‘: ] = O; 1) EY m—1
ag; 2

hold on {(¢, p); 0=t<e; and 0<p=<0,}, where y(¢, p) is the one in (5) of Lemma 3.
Put

O, p) = 2 9:5.0t, )+ H%%@_l%k(t, 0).
Then we have:

LemMA 4. There is a C>0 such that
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0
(tAa~+h)d§(t p) < Cp(t) 0 0)

holds on {(t, p); 0=t=<e; and 0<p =<0}
PrROOF. By [(3.13) and [3.14) we have

(3.15) (t%ﬂh)(p

el g (G

<

]<m 2

5 1m0 na (it 0) 3 650+ Bt o7

—1¢j' k}

h

2
2

IA

s l{nmt)%qs,-“.k_1+nkAy<t>a 6. }
ey

<

T51Pie10t 5 2 3 0,850 (0 ns Brntnlm—1)A)p(t)
<lpih

0
—;j+k§m-l¢j'k
2(P+C (t)a
for some C>0. Hence, on {(t, p); 0=t<e; and 0<p<d;} we obtain

(t5r+h)0 o) < cmn—@a o).
COMPLETION OF THE PROOF OF THEOREM 1. Since

1Oy = oty ) S 0, p)

holds, to show it is sufficient to prove that @(f, p)=0 holds on
{(¢, p); 0=<t=<e, and 0= p=<0,} for some & >0 and 9,>0

1 .
Let C>0 be as in Lemma 4 Choose T,>0 so that 0<T,<e, and

e[ 2 gs <5,
0 S
Define the function p(f) by

o= {45, 0st<T..
t S
Then, 0< 0,(0)<ds, po(T,)=0 and p,(t) is decreasing in ¢
Put

o) = 0@, po(®), 0=t T,.
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Then, by Lemma 4 we have

d,oo(t)

(f%%)@(t) at 2, po(t>)+t 30 2 (¢, 0229 L ha, 0ut)

p=po (1)

(3+h—Cutty3, )0 0]
0

IA

and therefore

L e <0, 0<t=T,.

By integrating this from ¢ to ¢ (>0) we get
tho(t) < stple), 0<e=st=T,
and by letting ¢ —0 we see

o) <0 for 0<t=<T,.

On the other hand, ¢(¥)=0 is clear from the definition of ¢(¢!). Hence, we
obtain

o) =0 for 0=t < T,
which implies
(3.16) O, 0)=0 on {(t, p); 0=<t<T, and p = pa(t)}.
Since @(t, p) is increasing in p, (3.16) implies

@t p)=0 on {t p); 0<t<T,and 0= p < po(t)}.
This completes the proof of [Theorem 1.

§4. Application.

Lastly, let us apply [Theorem 1] to the problem of removable singularities of
solutions of

J\m 0 \i/ 0 \2
(E,) (t@_> u= F(t’ x5 {(tb?> (-a;) }(j»ﬂ)elm),

where teC, x=(x,, -+, x,)=C™ and I, is the same as in §1.
On F(t, x, Z) we impose the following conditions:

(A) F(, x, Z) is holomorphic in ({, x, Z) near (0, 0, 0);
(Ay) F(@©, x, 0)=0 near x=0;

0
Ay o

aZ,a(O x, 0)=0 near x=0, if |a|>0.
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Then (E,) is the equation discussed by Gérard-Tahara [2]. We define the
characteristic exponents 4,(0), ---, 1,(0) of (E,) at x=0 by the roots of

o5 OF

— =
207, 0,0, 047 =0.

Denote by :

- R(C\ {0}) the universal covering space of C~\ {0} ;
=Se(e)={t€ RIC~{0}); 0<|ti<e and l|argt|<<d};
-D; = {xeC"; |x|=d}.

By Gérard-Tahara we already know the following :
THEOREM 2 ([2]). Assume (A,), (As), (A;) and the condition
4.D Re2,(0) L0 fori=1, -, m.

Then, if u(t, x) is a solution of (E,) holomorphic on Sy(e)X D5 for some 6 >0,
>0, 0>0 and satisfying

4.2) ma)glu(t, x) =03t (as t—0 in Sye))
|x|s
for some s>0, u(t, x) must be holomorphic in a full neighborhood of (0, 0).

This implies that under the singularity of the form is removable.
Since the function

1
ut) = —log by’ c>1
satisfies the conditions p,)~p,) in §1, by using we can treat the

logarithmic singularities of solutions of (E,).
THEOREM 3. Assume (A,), (Ay), (A:) and the condition
4.3) Re 4,(0) <0 for i=1, -, m.

Then, if u(t, x) is a solution of (E.) holomorphic on Se(e)X Ds for some 6>0,
>0, 0>0 and satisfying
1

(4.4) max | u(t, x)| = O<’C1’8§W) (as t—0 in Sy(e))

for some s>0, u(t, x) must be holomorphic in a full neighborhood of (0, 0).

REMARK 3. The following example shows that we can not replace by
(4.1): the equation
ou _ (au)k

bor = "ox
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(where (¢, x)eCXxC and k=N*) has singular solutions of the form

1\1/k x+c
“0=(3) Cigor =0

Proor OoF THEOREM 3. Let u(t, x) be a solution of (E,) holomorphic on
Se(e)xX Ds; and satisfying [4.4). Denote by wug(t, x) the restriction of u(?, x)
on R,xD; Then, by using the Cauchy’s inequality in ¢ we see that for
].:Oy 1’ E) m—1

max

|z 158

(z‘—g{)jug(t, x)] = 0(@) (as t—0in R,).

This implies that ug(?, x) belongs to S(e, 9; p(f)) with

y(t):»( 1 c>1.

—logt)y’

On the other hand, by we know that (E,) has a solution u,(t, x) holo-
morphic in a full neighborhood of (0, 0) and satisfying u,(0, x)=0 near x=0.

Hence, by applying to (E,) we obtain ug(t, x)=u.(f, x) on
{t, x)ERXC™"; 0<it<e, and |x|<d,} for some &,>0 and 4,>0. This leads us
to the conclusion of
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